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Résumé. — Nous montrons que la tessellation d’une surface compacte de courbure stric-
tement négative induite par un long segment géodésique aléatoire ressemble localement à un
processus de Poisson en droites, après rééchelonnement. Ceci implique que les statistiques
globales de la tessellation (par exemple, la proportion de triangles) convergent vers celles du
processus de Poisson en droites limite.

1. Main Results: Intersection Statistics of Random
Geodesics

1.1. Local Statistics

Any sufficiently long geodesic segment γ on a compact, negatively curved surface
S partitions S into a finite number of non-overlapping geodesic polygons of various
shapes and sizes, whose vertices(1) are the self-intersection points of γ. If a geodesic
segment γ of length T is chosen by selecting its initial tangent vector v at random,
according to (normalized) Liouville measure µL on the unit tangent bundle T 1S, then
with probability 1, as T → ∞ the maximal diameter of a polygon in the induced
partition will converge to 0, and hence the number of polygons in the partition
will become large. The goal of this paper is to elucidate some of the statistical
properties of this random polygonal partition for large T . Our main result will be
a local geometric description of the partition: roughly, this will assert that in a
neighborhood of any point x ∈ S the partition will, in the large−T limit, look as if
it were induced by a Poisson line process [Mil64a, Mil64b]. We will also show that
this result has implications for the global statistics of the partition: for instance, it
will imply that with probability ≈ 1 the fraction of polygons in the partition that
are triangles will stabilize near a non-random limiting value τ3 > 0.

Definition 1.1. — A Poisson line process L of intensity κ > 0 is a random
collection L = {Ln}n∈Z of lines in R2 constructed as follows. Let {(Rn,Θn)}n∈Z be
the points of a Poisson point process(2) of intensity κ/π on the infinite strip R× [0, π).
For each n ∈ Z let Ln be the line
(1.1) Ln :=

{
(x, y) ∈ R2 : Rn = x cos Θn + y sin Θn

}
.

That is, we consider the line through the origin of angle Θn to the horizontal, and
Ln is the line orthogonal to this line passing through it at distance Rn from the
origin. Observe that the mapping (1.1) of points (r, θ) to lines is a bijection from
the strip R × [0, π) to the space of all lines in R2. For any convex region Ω ⊂ R2,

(1)A long segment of a random geodesic ray doesn’t quite induce a tessellation, as there will be
two faces [triangles, quadrilaterals, or whatever] that contain the two ends of the geodesic segment.
We ignore these, however, since they will not influence statistics when the length of the geodesic
segment is large.
(2)The ordering of the points doesn’t really matter, but for definiteness take · · · < R−1 < 0 <
R0 < R1 < · · · . The assumption that {(Rn,Θn)}n∈Z is a Poisson point process of intensity κ/π is
equivalent to the assumption that {Rn}n∈R is a Poisson point process of intensity κ on R and that
{Θn}n∈Z is an independent sequence of i.i.d. random variables with uniform distribution on [0, π].
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Local geometry of random geodesics 189

call the restriction to Ω of a Poisson line process a Poisson line process in Ω. It is
not difficult to show (see Lemma 2.4 below) that, with probability one, if Ω is a
bounded domain with piecewise smooth boundary then the Poisson line process in Ω
will consist of only finitely many line segments, and that at most two line segments
will intersect at any point of Ω. For any realization of the process, the line segments
will uniquely determine (and be determined by) their intersection points with ∂Ω,
grouped in (unordered) pairs.
In order to formulate our main result, we must explain how geodesic segments

in a small neighborhood of a point x ∈ S are associated with line segments in the
tangent space TxS. We shall assume throughout that the Riemannian metric % on
S is C∞; therefore, geodesics are C∞ curves that depend smoothly on their initial
tangent vectors. Furthermore, we will only consider geodesics of unit speed. Fix
x ∈ S, and consider a small disk D(x, r) on S of radius r centered at x. A (unit-
speed) geodesic ray γt(v) with initial tangent vector v ∈ T 1S distributed according
to normalized Liouville measure µL (that is, v = (y, θ) where y ∈ S is distributed
according to normalized surface area measure and θ is distributed according to the
uniform distribution on the set [0, 2π] of directions based at x) will, with probability
one, eventually enter D(x, r), at a time roughly of order 1/r (this will follow from
our main results). Thus, if we wish to study the local intersection statistics of a
random geodesic segment of (large) length T in a neighborhood of x, we should focus
on the intersections of the geodesic segment with neighborhoods of x of diameters
proportional to 1/T .
For any α > 0 and T > 0, set DT (x, α) := D(x, αT−1) to be the ball of radius

α/T about x in S. Let expx : TxS → S be the exponential mapping. Then,

(1.2) DT (x, α) =
{

expx(v) : ‖v‖ 6 αT−1
}
.

The boundary ∂(x, αT−1) is a smooth closed curve. Consequently, the intersection of
DT (x, α) with any geodesic segment will consist of (i) finitely many geodesic crossings
of DT (x, α); (ii) up to two incomplete geodesic crossings; and (iii) a finite number
of isolated points on ∂DT (x, α), the latter coming from tangencies of the geodesic
with the boundary. Since the set of all unit tangent vectors tangent to the curve
∂DT (x, α) has Liouville measure 0, tangent intersections will have probability zero
if the initial vector of the geodesic is chosen randomly; hence, we shall henceforth
ignore these. Furthermore, incomplete geodesic crossings will occur if and only if the
initial or terminal point of the geodesic segments lies in the interior of D(x, αT−1);
this will occur with probability of order O(area(D(x, αT−1)) = O(T−2), and so can
also be ignored in the T → ∞ limit. Thus, with probability → 1, the intersection
consists of finitely many geodesic crossings. Now any geodesic crossing of D(x, αT−1)
pulls back, via the scaled exponential mapping v 7→ expx(v/T ), to a smooth curve
in the ball B(0, α) with endpoints on the circle ∂B(0, α). When T is large, such a
curve will closely approximate the chord of the circle with the same endpoints on
∂B(0, α).
Suppose now that v ∈ T 1S is a unit vector chosen randomly according to nor-

malized Liouville measure µL. Define IT = IT (v;x, α) to be the intersection of the
geodesic segment γ[0,T ](v) with the set D(x, αT−1), and define LT = LT (v;x, α) to
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be the finite set of chords in B(0, α) ⊂ TxS obtained by pulling back the geodesic
crossings from IT and then replacing the resulting curves by the corresponding
chords.

Theorem 1.2. — Let S be a compact surface of genus g > 2, and assume that
S is endowed with a C∞ Riemannian metric % of negative curvature. Fix x ∈ S and
α > 0, and let LT = LT (v;x, α) be the random chord process corresponding to the
intersection IT = IT (v;x, α) of a random geodesic segment (i.e., one whose initial
tangent vector v is chosen randomly according to the normalized Liouville measure)
of length T with the neighborhood D(x;αT−1) of x. As T →∞, the random chord
process LT converges in distribution to a Poisson line process in B(0;α) of intensity

(1.3) κ = κS = 1
area(S) .

Because the elements of the random processes here live in somewhat unusual
spaces (finite unions of chords), we now elaborate on the meaning of convergence in
distribution. In general, we say that a sequence of random elements of a complete
metric space X converge in distribution if their distributions (the induced probability
measures on X ) converge weakly. Weak convergence is defined as follows [Bil68]: if
µn, µ are Borel probability measures on a complete metric space X , then µn → µ
weakly if for every bounded, continuous function f : X → R,

(1.4) lim
n→∞

∫
f dµn =

∫
f dµ.

In Theorem 1.2, the appropriate metric space is
X = ∪∞n=0Xn

where Xn is the set of all collections of n unordered pairs yi, zi ∈ ∂B(0;α). For any
two such unordered pairs {y, z} , {y′, z′}, set

d ({y, z} , {y′, z′}) = min(d(y, y′) + d(z, z′), d(y, z′) + d(z, y′));
and for any two elements F, F ′ ∈ X , define

d(F, F ′) = min
π ∈Sn

d
(
{yi, zi} ,

{
y′π(i), z

′
π(i)

})
if F, F ′ ∈ Xn,

=∞ otherwise
where Sn is the group of permutations of the set [n]. Henceforth, we will refer to
this space X as configuration space (the dependence on the parameter α > 0 will be
suppressed).
The proof of Theorem 1.2 will also show that the limiting Poisson line processes

in neighborhoods of distinct points of S are independent.

Theorem 1.3. — Fix two distinct points x, x′ ∈ S and α > 0, and let LT and
L′T be the chord processes induced by intersections of a random geodesic of length T
with the neighborhoods D(x;αT−1) and D(x′;αT−1), respectively. Then as T →∞,
the random chord processes LT and L′T converge jointly in distribution to a pair
of independent Poisson line processes in B(0;α), both of intensity κ = 1

area(S) , as
in (1.3).
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1.2. Heuristics

There is an explanation for the convergence to Poisson line processes that falls
short of being a complete proof. This heuristic argument is, in essence, the same as
that used in [Lal96] to guess the limiting frequency of self-intersections of a random
geodesic segment. It rests on the fact that the (normalized) Liouville measure µL on
the unit tangent bundle T 1S is a mixing invariant measure for the geodesic flow.
Let γ̃ : [0,∞) → T 1S be a random geodesic ray with distribution µL, viewed as

a (random) curve in the unit tangent bundle T 1S, and let γ be its projection to
the surface S. Since µL is invariant for the geodesic flow, for any fixed time t > 0
the random point γ(t) will be uniformly distributed on S (according to normalized
surface area measure), and the tangent angle γ′(t) will be uniformly distributed on
[0, 2π] (according to normalized Lebesgue measure). Fix ε > 0, and let T = Nε be
a large integer multiple of ε; then the geodesic segment γ̃[0, T ) can be partitioned
into N nonoverlapping segments Γj := γ̃[jε, (j + 1)ε), each of whose initial tangent
vectors γ̃(jε) is uniformly distributed according to µL. If ε is sufficiently small then
any pair of segments Γj,Γj′ will intersect at most once. Moreover, as ε → 0 the
segments Γj approximate straight line segments of length ε in the tangent plane at
the initial point.
Now we appeal to the fact that the geodesic flow is mixing relative to µL. This

implies that for any two integers j, j′ such that |j − j′| is large, the random vectors
γ̃(jε) and γ̃(j′ε) of the random segments Γj and Γj′ are approximately independent.
This suggests that the pattern and number of self-intersections in γ[0, T ] should not
differ appreciably from those of a random sample of N independent random geodesic
segments Γ′j of length ε, each of whose initial tangent vectors is randomly chosen
from µL.

Figure 1.1. Γj and Γj′ intersect in an angle close to θ.

Consider, in particular, the number of self-intersections of γ[0, T ). For θ ∈ [0, π]
and for any pair of indices j, j′, the event Fj,j′(θ; dθ) that the projections to S of the
segments Γj and Γj′ cross at angle between θ − dθ and θ + dθ is, up to an error of
size O(dθ), the same as the event that (i) the point γ(j′ε) lies in a rhombus on S
whose sides meet at angle θ and whose “top” side is the projection to S of Γj, and (ii)
the tangent angle of γ̃(j′ε) differs from that of j̃ε by θ ± dθ (Figure 1.1). (Similarly,
for Γj and Γj′ to cross at angle π + (θ ± dθ) the “bottom” side of the rhombus
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should be the projection of Γj.) Since Γj and Γj′ are approximately independent,
the probability of this event is (approximately) the relative area of this rhombus
times 2dθ divided by 2π. Summing over θ and taking dθ → 0 now shows that the
probability of intersection is about

2ε2 ∫ π
0 sin θ dθ

2π area(S) = 2ε2κ

π

where κ = (1/ area(S)). This fails, of course, if |j−j′| is small, but for most pairs j, j′
the difference will be large. Consequently, by the law of large numbers, the number
of self-intersections of the segment γ[0, T ], when divided by T 2, should satisfy

1
T 2

N∑
j=1

N∑
j′=j+1

1 {Γj′ crosses Γj} ≈
κ

π
.

Amplification of this argument “explains” the local convergence of the induced
tessellation to the Poisson line process. Consider, for instance, the number of distinct
geodesic arcs that cross the disk D(x, α/T ), for some fixed point x ∈ S: we will argue
that this should have approximately a Poisson distribution. Choose ε small, and let
T = Nε be an integer multiple of ε large enough that 1/T � ε. For each j 6 N , the
probability that (the projection of) Γj crosses the disk D(x, αT−1) is, for small ε,
about Cεα/T = Cα/N for a suitable geometric constant C > 0. (This follows by a
simple geometric argument similar to that given above for self-intersections.) Thus,
if the random segments Γj were actually independent, the number that would cross
the disk D(x, α/T ) would be the sum of N independent Bernoulli random variables
each with mean Cα/N . For N large, the distribution of this count would therefore
converge to Poisson with mean Cα (cf. Proposition 2.11 below).
The sticky point, of course, is that the random segments Γj are not independent.

What is worse, the events of interest (for instance, the event that Γj crosses the disk
D(x, αT−1)) are events whose probabilities become small as N becomes large; thus,
the mixing property of the geodesic flow does not by itself imply that

P ({Γj crosses D(x, αT−1)} ∩ {Γj′ crosses D(x, αT−1)})
P {Γj crosses D(x, αT−1)}P {Γj′ crosses D(x, αT−1)} ≈ 1

even for |j− j′| large. The rigorous arguments to be given below are largely designed
to circumvent the failure of mixing at this level by exploiting the Gibbsean structure
of the Liouville measure.
Mixing problems in which the events of interest have probabilities tending to

zero are known as “shrinking target” problems. Such problems occur naturally in
hyperbolic dynamics: see, for instance, [Sul82], where the “target” is one of the cusps
of a non-compact hyperbolic surface of finite area, or Kleinbock–Margulis [KM99],
who consider related problems for diagonal flows on finite-volume homogeneous
spaces. For shrinking target problems where the targets lie in the compact part of
the space, see Dolgopyat [Dol04], and Maucourant [Mau06]. Unfortunately none of
these results is easily adapted to the problems we consider here.

ANNALES HENRI LEBESGUE



Local geometry of random geodesics 193

1.3. Global Statistics

Theorems 1.2–1.3 describe the “local” structure of the random tessellation TT of the
surface S induced by a long segmentγ[0, T ] of a random geodesic. The tessellation TT
will consist of geodesic polygons, typically of diameter of order T−1, since the O(T 2)
self-intersections will subdivide the length T geodesic segment into sub-segments of
length O(T−1). Thus, it is natural to look at the statistics of the scaled tessellation
TTT , which we view as consisting of a random number of triangles, quadrilaterals,
etc., each with its own set of side-lengths and interior angles.
The empirical frequencies of triangles, quadrilaterals, etc. and the empirical distri-

bution of side-length and interior-angle sets in a Poisson line process of intensity κ
on the ball B(0;α) of radius α converge as α→∞. (These results are evidently due
to R. E. Miles [Mil64a, Mil64b]; proofs are given in Section 2 below.) Theorem 1.2
asserts that when L is large, then for any point x ∈ S the statistics of the polygonal
partition in B(x;α−1L) induced by a random geodesic segment of length L should
approach those of a Poisson line process. From this observation we will deduce the
following assertion regarding global statistics.
Theorem 1.4. — Let TT be the tessellation of S induced by a random geodesic of

length T . Then with probability approaching 1 as T →∞, the empirical frequencies
of triangles, quadrilaterals, etc. and the empirical distribution of side-length and
interior-angle sets in TT approach the corresponding theoretical frequencies for a
Poisson line process.
For example, for each v ∈ T 1(S), let TT (v) be the tessellation induced by the length

T arc with initial direction v. Let f3 be the function that returns the frequency of
triangles in a tessellation. Suppose the expected value of f3 is τ3 for a Poisson line
process. Then we show that for any ε > 0,

lim
T→∞

µL
{
v ∈ T 1(S) : |f3(TT (v))− τ3| > ε

}
= 0

where µL is the Liouville measure on T 1(S).

Plan of the paper.

The proofs of Theorems 1.2–1.3 will occupy most of the paper. The strategy will
be to reduce the problem to a corresponding counting problem in symbolic dynamics.
Preliminaries on Poisson line processes will be collected in Section 2, and preliminaries
on symbolic dynamics for the geodesic flow in Section 3. Section 4 will be devoted to
heuristics and a reformulation of the problem; the proofs of Theorems 1.2–1.3 will
then be carried out in Sections 5–8. Theorem 1.4 will be proved in Section 9. Finally,
in Section 10, we give a short list of conjectures, questions, and possible extensions
of our main results.

2. Preliminaries: Poisson line processes
The Poisson line process and its generalizations have a voluminous literature, with

notable early contributions by Miles [Mil64a, Mil64b]. See [SKM87] for an extended
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discussion and further pointers to the literature. In this section we will record some
basic facts about these processes. These are mostly known – some of them are stated
as theorems in [Mil64a] without proofs – but proofs are not easy to track down, so
we shall provide proof sketches in Appendix A.

2.1. Statistics of a Poisson line process

Lemma 2.1. — A Poisson line process of constant intensity κ is rotationally and
translationally invariant, that is, if A is any orientation preserving isometry of R2

then the configuration {ALn}n∈Z has the same joint distribution as the configuration
{Ln}n∈Z.

Remark 2.2. — This result is stated without proof in [Mil64a]. A proof of the
corresponding fact for the intensity measure can be found in [San04], and another
in [SKM87, Chapter 8]. A short, elementary proof is given in Appendix A. The
following Corollary 2.3, which is stated without proof as [Mil64a, Theorem 2], follows
easily from isometry-invariance.

Corollary 2.3. — Let L be a Poisson line process of intensity κ > 0. For any
fixed line ` in R2, the point process of intersections of ` with lines in L is a Poisson
point process of intensity 2κ/π.

Lemma 2.4. — Let L be a Poisson line process of intensity κ > 0, and for
each point x ∈ R2 and each real r > 0 let N(B(x; r)) be the number of lines
in L that intersect the ball B(x; r) of radius r centered at x. Then the random
variable N(B(x; r)) has the Poisson distribution with mean 2κr. Consequently, with
probability one, for any compact set K ⊆ R2 the set of lines Ln in L that intersect
K is finite.

Proof. — Without loss of generality, take K = B(0;R) to be the closed ball of
radius R centered at the origin. Then the line Ln intersects K if and only if |Rn| 6 R.
Since a Poisson point process on R of constant intensity has at most finitely many
points in any finite interval, the result follows. �

The next result characterizes the Poisson line process (see also Proposition 2.10
below). Fix a bounded, convex region D ⊂ R2 with C∞ boundary Γ = ∂D, and let
A,B be non-intersecting closed arcs on Γ. For any line process L, let

(2.1) N{A,B} = # {lines that cross both A and B} .

For any angle θ ∈ [−π/2, π/2], the set of lines that intersect both A and B and
meet the x−axis at angle θ + π/2 constitute an infinite strip that intersects the line
{reiθ}r∈R in an interval; see Figure 2.1 below. Let ψ(θ) = ψA,B(θ) be the length of
this interval, and define

(2.2) βA,B = 1
π

∫ π/2

−π/2
ψ(θ) dθ.

ANNALES HENRI LEBESGUE



Local geometry of random geodesics 195

Figure 2.1. Lines that cross A and B at angle θ.

Proposition 2.5. — A line process L in D is a Poisson line process of rate κ > 0
if and only if

(i) for any two non-intersecting arcs A,B ⊂ Γ, the random variable N{A,B} has
the Poisson distribution with mean κβA,B, and

(ii) for any finite collection {Ai, Bi}i6m of pairwise disjoint boundary arcs, the
random variables N{Ai, Bi} are mutually independent.

See Appendix A for the proof of the forward implication, along with that of the
following corollary. The converse implication in Proposition 2.5 will follow from
Proposition 2.10 in Section 2.3 below.

Corollary 2.6. — Let D ⊂ R2 be a compact, convex region, and let L be
a Poisson line process with intensity κ. The number V (D) of intersection points
(vertices) of L in D has expectation

EV (D) = κ2|D|/π

where |D| is the Lebesgue measure of D.

2.2. Ergodic theorem for Poisson line processes

The configuration space C in which a Poisson line process takes values is the set of
all countable, locally finite collections of lines in R2. This space has a natural metric
topology, specifically, the weak topology generated by the Hausdorff topologies on
the restrictions to balls in R2. Moreover, C admits an action (by translations) of
R2. Denote by νκ the distribution of the Poisson line process with intensity κ. By
Lemma 2.1, the measure νκ is translation-invariant.

Proposition 2.7. — The probability measure νκ is mixing (and therefore er-
godic) with respect to the translational action of R2 on C.

Remark 2.8. — Ergodicity of the measure νκ is asserted in Miles’ papers [Mil64a,
Mil64b], and proved in his unpublished Ph. D. dissertation. We have been unable to
locate a proof in the published literature, so we have provided one in the Appendix.

Corollary 2.9. — Let Φn, k be the fraction of k−gons, Fn (for “faces”) the total
number of polygons, and Vn (for “vertices”) the number of intersection points in the
tessellation of the square [−n, n]2 induced by a Poisson line process L of intensity κ.
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There exist constants φk > 0 such that with probability 1,
lim
n→∞

Fn/(2n)2 = κ2/π,(2.3)

lim
n→∞

Vn/(2n)2 = κ2/π, and(2.4)
lim
n→∞

Φn, k = φk.(2.5)

Integral formulas for the quantities φk are given in [Cal03].
The ergodic theorem can also be used to prove that a variety of other statistical

properties stabilize in large squares. Consider, for example, the number Nn(A,B,C)
of triangles contained in [−n, n]2 whose side lengths α, β, γ lie in the intervals A,B,C;
then as n→∞,

Nn(A,B,C)/(2n)2 −→ E1G(A,B,C)(L)
where G(A,B,C) is the event that the polygon containing the origin is a triangle
with side lengths in A,B,C.

2.3. Weak convergence to a Poisson line process

For any unordered pair {A,B} of non-overlapping boundary arcs of the disk
B(0, α), let L{A,B} be the set of lines in R2 that intersect both A and B. This set can
be identified with the set of point pairs {x, y} where x ∈ A and y ∈ B. This allows
us to view any random collection of unordered point pairs {x, y} as a line process in
B(0, α), even when the collection consists of endpoints of arcs across B(0, α) that
are not line segments (in particular, when they are pullbacks of geodesic arcs to the
tangent space). For any line process L in B(0, α) let N{A,B} be the cardinality of
L ∩ L{A,B} (cf. equation (2.1)).

Proposition 2.10. — Let Ln be a sequence of line processes in B(0;α), and let
µn be the distribution of Ln (i.e., the probability measure on X induced by Ln). In
order that µn → µ weakly, where µ is the law of a rate−κ Poisson line process, it
suffices that the following condition holds. For any finite collection {{Ai, Bi}}i6m
of unordered pairs of non-overlapping boundary arcs of B(0;α) such that the sets
L{Ai, Bi} are pairwise disjoint, the joint distribution of the counts N{Ai, Bi} under µn
converges to the joint distribution under µ, that is, for any choice of nonnegative
integers ki,

(2.6) lim
n→∞

µn
{
N{Ai, Bi} = ki ∀ i 6 m

}
=

m∏
i=1

(κβAi, Bi)ki
ki!

e−κβAi,Bi .

Proof Sketch. — Recall that the configuration space X is the disjoint union of
the sets Xk, where Xk is the set of all finite sets F = {{xi, yi}}16 i6 k consisting of k
unordered pairs of points on ∂B(0, α). Since each set Xk is both open and closed in
X , to prove weak convergence µn → µ it suffices to establish the convergence (1.4)
for every continuous function f supported by just one of the sets Xk.
For each k, the space Xk is a quotient of (∂B(0, α)2)k with the usual topology, and

so every continuous function f : Xk → R can be uniformly approximated by “step
functions”, that is, functions g of configurations F = {{xi, yi}}16 i6 k that depend
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only on the counts NAi, Bi for arcs Ai, Bi in some partition of ∂B(0, α). If (2.6) holds,
then it follows by linearity of expectations that for any such step function g,

lim
n→∞

∫
g dµn =

∫
g dµ,

and hence (1.4) follows. �

2.4. The “law of small numbers”

A elementary theorem of discrete probability theory states that for large n, the
Binomial−(n, κ/n) distribution is closely approximated by the Poisson distribution
with mean κ. The following is a generalization that we will find useful.
Proposition 2.11. — Let X1, X2, . . . , Xn be independent Bernoulli random

variables with success parameters EXi = pi. Let α = maxi pi and κ = ∑
i pi. Then

there is a constant C <∞ not depending on p1, p2, . . . , pn such that
∞∑
k=0

∣∣∣∣∣P
{∑

i

Xi = k

}
− κk

k! e
−κ
∣∣∣∣∣ 6 Cα.

Note that for all k > n, the probability P {∑iXi = k} is zero, but the elements
of the sum are not.
See [LC60] for a proof. The important feature of the proposition for us is not the

explicit bound, but the fact that the closeness of the approximation depends only
on max pi.
A similar result holds for multinomial variables.
Proposition 2.12. — Let X1, X2, . . . , Xn be independent random variables each

taking values in the finite set {0, 1, 2, . . . , K} = {0} ∪ [K], and for each pair i, j set
pi, j = P{Xi = j}. Let α = maxj > 1 maxi pi, j and κj = ∑

i pi, j, and for each jdefine

Tj =
n∑
i=1

1{Xi = j}.

Then there is a function CK(α) satisfying limα↓0C(α) = 0 such that
∞∑

m1=0

∞∑
m2=0

· · ·
∞∑

mK=0

∣∣∣∣∣∣P {Tj = mj ∀ j ∈ [K]} −
K∏
j=1

κ
mj
j e−κj/mj!

∣∣∣∣∣∣ 6 C(α).

3. Preliminaries: Symbolic Dynamics

3.1. Shifts and suspension flows

The geodesic flow on the unit tangent bundle T 1S of a compact, negatively curved
surface S has a concrete representation as a suspension flow over a shift of finite type.
In describing this representation, we shall follow (for the most part) the terminology
and notation of [Bow75, Lal14, Ser81]. Let A be a finite alphabet and F a finite set
of finite words on the alphabet A, and define Σ = ΣF to be the set of doubly infinite
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sequences ω = (ωn)n∈Z such that no element of F occurs as a subword of ω. The
sequence space Σ is given the metric d(ω, y) = exp{−n(ω, y)} where n(ω, y) is the
minimum nonnegative integer n such that ωj 6= yj for j = n or j = −n. For each
nonnegative integer m and each ω ∈ Σ, define the cylinder set Σm(ω) to be the set
of all ω′ ∈ Σ that agree with ω in all coordinates j such that |j| 6 m; equivalently,

(3.1) Σm(ω) =
{
ω′ ∈ Σ : d(ω, ω′) < e−m

}
.

The forward shift σ : Σ→ Σ is known as a (two-sided) shift of finite type.(3)

For any continuous function F : Σ → (0,∞) on Σ, define the suspension space
ΣF by

ΣF := {(ω, t) : ω ∈ Σ and 0 6 t 6 F (ω)},
with points (ω, F (ω)) and (σω, 0) identified. The metric d on the sequence space Σ
induces a metric dTaxi on ΣF , the “taxicab” metric. (Roughly, the distance between
any two points (ω, t) and (ω′, t′) in ΣF is the length of the shortest “path” between
them consisting of alternating “horizontal” and “vertical” segments. See [BW72] for
the formal definition.) The suspension flow with height function F is the flow φt on
ΣF whose orbits proceed up vertical fibers

Fω := {(ω, s) : 0 6 s 6 F (ω)}
at speed 1, and upon reaching the ceiling at (ω, F (ω)) jump instantaneously to
(σω, 0). If the height function F : Σ → R is Hölder continuous with respect to the
metric d, then the suspension flow φt is Hölder continuous with respect to the metric
dTaxi: in particular, there exists α > 0 such that
(3.2) dTaxi(φt(ω, 0), φt(ω′, 0)) 6 eα|t|d(ω, ω′) for all ω, ω′ ∈ Σ and t ∈ R.

There is a bijective correspondence between invariant probability measures µ∗ for
the flow φt and shift-invariant measures µ on Σ. This correspondence can be specified
as follows: for any continuous function g : ΣF → R,

(3.3)
∫
g dµ∗ =

∫
Σ

∫ F (ω)

0
g(ω, s) ds dµ(ω)/

∫
Σ
F dµ.

If µ is ergodic for the shift (Σ, σ) then µ∗ is ergodic for the flow (ΣF , φt). By Birkhoff’s
theorem, for any ergodic probability measure µ on Σ,

(3.4) lim
n→∞

n−1
n−1∑
j=0

F ◦ σj =
∫

Σ
F dµ almost surely;

thus, under µ∗, almost every orbit makes roughly T/
∫
F dµ visits to the base Σ×{0}

by time T , when T is large.

(3)Bowen [Bow75] requires that the elements of the set F all be of length 2. However, any shift of
finite type can be “recoded” to give a shift of finite type obeying Bowen’s convention, by replacing
the original alphabet A by Am, where m is the length of the longest word in F , and then replacing
each sequence ω by the sequence ω̄ whose entries are the successive length-m subwords of ω. In
Series’ [Ser81] symbolic dynamics for the geodesic flow on a closed hyperbolic surface, the alphabet
A is a set of natural generators for the fundamental group π1(S) of the surface S, and the forbidden
subwords F are gotten from the relators of π1(S).
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3.2. Symbolic dynamics for the geodesic flow

The following Proposition 3.1 is a special case of the main result of [Rat73] (see
also [Bow73]), as the geodesic flow on a compact, negatively curved surface is an
Anosov flow.
Proposition 3.1. — For any compact, negatively curved surface (S, %) with C∞

Riemannian metric %, there exist a topologically mixing shift (Σ, σ) of finite type,
a suspension flow (ΣF , φt) over the shift with Hölder continuous height function
F , and a surjective, Hölder-continuous mapping π : ΣF → T 1S such that π is a
semi-conjugacy with the geodesic flow γt on T 1S, i.e.,
(3.5) π ◦ φt = γt ◦ π for all t ∈ R.

In the special case where % is a hyperbolic (constant curvature) Riemannian met-
ric, a much more explicit symbolic dynamics was constructed by Series: see espe-
cially [Ser81, Theorem 3.1] and also [BS79]. In this symbolic dynamics, the sequence
space Σ is mapped to a subset of ∂D× ∂D, where ∂D is the ideal boundary of the
Poincaré disk, in such a way that every vertical fiber Fω of the suspension flow is
mapped to a segment of the hyperbolic geodesic in D whose endpoints are gotten
from the boundary correspondence. Series’ symbolic dynamics can be extended to
the variable curvature case using the Conformal Equivalence Theorem ([SY94, Theo-
rem V.1.3]) and the structural stability theorem for Anosov flows. This more explicit
symbolic dynamics will not be needed in the analysis below. However, we will need
the following fact (see [PPS15, Chapter 7]).
Proposition 3.2. — Under the hypotheses of Proposition 3.1, the pullback

λ∗ := µL ◦ π−1 of the normalized Liouville measure µL on T 1S is Gibbs, that is, it
corresponds to a Gibbs state λ for the shift via the identity (3.3).

3.3. Regenerative representation of Gibbs states

When the underlying shift (Σ, σ) is topologically mixing, Gibbs states with Hölder
continuous potentials enjoy strong exponential mixing properties (e.g., [Bow75,
the “exponential cluster property” 1.26 in Chapter 1]). We shall make use of an
even stronger property, the regenerative representation of a Gibbs state established
in [Lal86].(4) This representation is most usefully described in terms of the stationary
process governed by the Gibbs state. Let µ be a Gibbs state with Hölder continuous
potential function f : Σ → R, where σ : Σ → Σ is a topologically mixing shift of
finite type, and let Xn : Σ→ A be the coordinate projections on Σ, for n ∈ Z. The
sequence (Xn)n∈Z, viewed as a stochastic process on the probability space (Σ, µ), is
a stationary process that we will henceforth call a Gibbs process.
The regenerative representation relates the class of Gibbs processes to another

class of stationary processes, called list processes (the term used by [Lal86]). A list
(4)The article [Lal86] proves the regenerative representation only for Gibbs states defined on a
full shift, but the arguments are easily modified for topologically mixing shifts of finite type. See
also [CFF02] for a somewhat different approach.
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process is a stationary, positive-recurrent Markov chain (Zn)n∈Z with state space
∪k> 1Ak and stationary distribution ν that obeys the following transition rules: first,
(3.6) P

(
Zn+1 = (ω1, ω2, . . . , ωm)

∣∣∣Zn = (ω′1, ω′2, . . . , ω′k)
)

= 0
unless either m = 1 or m = k + 1 and ωi = ω′i for each 1 6 i 6 k; and second, for
every letter ω1 and every word ω′1ω′2 · · ·ω′m,
(3.7) P

(
Zn+1 = ω1

∣∣∣Zn+1 ∈ A1 and Zn = (ω′1, ω′2, · · · , ω′m)
)

= ν((ω1))/ν(A1).
Thus, the process (Zn)n∈Z evolves by either adding one letter to the end of the list
or erasing the entire list and beginning from scratch. Furthermore, by (3.7), at any
time when the list is erased, the new 1-letter word chosen to begin the next list is
independent of the past history of the entire process.
For any list process define the regeneration times 0 = τ0 < τ1 < τ2 < · · · by

τ1 = min
{
n > 1 : Zn ∈ A1

}
;

τm+1 = min
{
n > 1 + τm : Zn ∈ A1

}
.

By condition (3.7), the random variables τm+1 − τm are independent, and for m > 1
are identically distributed, as are the excursions(

Zτm+1, Zτm+2, . . . , Zτm+1

)
.

Denote by π : ∪k> 1Ak → A the projection onto the last letter.
Proposition 3.3. — If (Xn)n∈Z is a Gibbs process then there is a list process

(Zn)n∈Z such that the projected process (π(Zn))n∈Z has the same joint distribution
as the Gibbs process (Xn)n∈Z. Thus, the random sequence obtained by concatenating
the successive excursions Wm := Zτm , i.e.,

W1 ·W2 ·W3 · · · · ,
has the same distribution as the sequence {Xn}n> 0. Moreover, the list process can
be chosen in such a way that the excursion lengths τm+1 − τm satisfy
(3.8) P (τm+1 − τm > n) 6 Cαn

for some 0 < α < 1 and C <∞ not depending on either m or n.
See [Lal86, Theorem 1], or [CFF02, Theorem 4.1.], (The article [Lal86] uses the

(older) term chain with complete connections for a Gibbs process, and a different (but
equivalent) definition than that given in [Bow75]. Moreover,[Lal86] considers only
the case where the underlying shift is the full shift on the symbol set A, although
the proof extends routinely to the general case. See [LNP19] for details.)

4. Theorem 1.2 Proof: Strategy

We shall use the symbolic dynamics outlined in Section 3.2 to translate the weak
convergence problem to a problem involving the Gibbs state λ corresponding to the
pullback λ∗ of Liouville measure to the suspension space ΣF . Recall (cf. Proposi-
tion 3.1) that the projection π : ΣF → T 1S provides a semi-conjugacy (3.5) between
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the suspension flow φt and the geodesic flow γt; thus, each segment of the suspension
flow projects (via the mapping p ◦ π, where p : T 1S → S is the natural projection)
to a geodesic segment of the same length, and in particular, each fiber Fω of the
suspension space ΣF projects to a geodesic segment of length F (ω).
By Birkhoff’s ergodic theorem (cf. equation (3.4)), for λ−almost every ω ∈ Σ, the

number of returns to the base Σ×{0}made by the suspension flow by time T , divided
by T , converges to 1/EλF . We will show (cf. Proposition 5.1 in Section 5 below) that
for any α > 0, the probability that a random geodesic enters the disk D(x, αT−1)
between times (1 − ε)T and (1 + ε)T is bounded by Cε for some C = C(α) < ∞
not depending on T . Consequently, with λ−probability approaching 1 as T → ∞,
the intersection of the random geodesic segment p ◦ π(φ[0, T ](ω)) with D(x, αT−1) is
identical to the intersection of D(x, αT−1) with the geodesic segment

(4.1) p ◦ π(∪n(T )−1
i=0 Fσiω) where n(T ) = [T/EλF ].

Henceforth, we will use the abbreviation n = n(T ).
Denote by In(x, ω) be the intersection of the geodesic segment p ◦ π(∪n−1

i=0 Fσiω)
with the neighborhood D(x;αT−1), and by Jn(x, ω) the pullback to a finite collection
of chords of the ball B(0, α) in the tangent space TxS (cf. the discussion preceding
the statement of Theorem 1.2). Our goal is to prove that, for any fixed x ∈ S, the
sequence of line processes Jn converges in law to a Poisson line process on B(0, α).
For this we will use the criterion of Proposition 2.10.
For any pair A,B of non-overlapping boundary arcs of ∂B(0, α), define LA,B to

be the set of oriented line segments from A to B, and let NA,B(ω) be the number
of oriented chords in Jn(x, ω) from boundary arc A to boundary arc B in B(0, α),
equivalently, the number of oriented geodesic segments in the collection In(x;ω) that
cross the target neighborhood D(x;αT−1) from (the image of) arc A to (the image
of) arc B. (Recall that B(0, α) is identified with the neighborhood D(x, αT−1) by
the scaled exponential mapping. Henceforth, for any pair of arcs A,B in ∂B(0, α)
we shall denote by AT , BT the corresponding boundary arcs of D(x, αT−1).) The
counts NA,B depend on n = [T/EλF ] and ω, but to reduce notational clutter we
shall suppress this dependence. Observe that the number of undirected crossings
N{A,B}(cf. equation (2.1)) is given by

N{A,B} = NA,B +NB,A,

and consequently EN{A,B} = ENA,B+ENB,A. Since the sum of independent Poisson
random variables is Poisson, to prove that in the n→∞ limit the random variable
N{A,B} becomes Poisson, it suffices to show that the directed crossing counts NA,B

become Poisson. Thus, our objective now is to prove the following assertion, which,
by Proposition 2.10, will imply Theorem 1.2.

Proposition 4.1. — For any finite collection {(Ai, Bi)}i6 r of pairs of non-
overlapping closed boundary arcs of B(0, α) such that the sets LAi, Bi are pairwise
disjoint, and for any choice of nonnegative integers ki,

(4.2) lim
n→∞

λ {ω : NAi, Bi(ω) = ki ∀ i} =
r∏
i=1

(κβAi, Bi/2)ki
ki!

e−κβAi,Bi/2
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where βA,B is defined by equation (2.2) (with D = B(0, a)) and κ = 1/ area(S).

Note that for fixed boundary arcs A,B the constants βA,B = βA,B(α) are pro-
portional to α, because the function ψ = ψA,B in (2.2) is proportional to α. See
Figure 2.1.
The proof of Proposition 4.1 will be accomplished in four stages, as follows.
First, we will prove in Section 5 that for any positive function f(T ) satisfying

lim
T→∞

f(T )/T = 0,

(a) the probability that a random geodesic ray enters the neighborhood D(x,
αT−1) before time f(T ) converges to 0 as T → ∞ (meaning there are no
quick entries), and

(b) the probability that a random geodesic ray enters D(x, αT−1) before time T
and then re-enters (after having exited) within time f(T ) also converges to 0
(meaning there are no quick re-entries).

This will justify the replacement of the random length-T geodesic segment in the
statement of Theorem 1.2 by the geodesic segment (4.1) above, and will also ulti-
mately be used to partition this segment into nearly independent blocks.
Second, define Σ(A,B;T ) to be the set of all sequences ω ∈ Σ such that the geodesic

segment p◦π(Fω) intersectsD(x, αT−1) in a geodesic segment with terminal endpoint
in the boundary arc BT , and either coincides with or extends to a geodesic crossing
from boundary arc AT to boundary arc BT . (Note that if the image p◦π(ω, 0) of the
base point (ω, 0) lies in the interior of D(x, αT−1) then the intersection will only be
a partial crossing.) By assertions (a) and (b) above, the event {ω : NA,B(ω) = k}
coincides (up to a set of measure → 0 as T →∞) with the set of sequences ω ∈ Σ
such that

n−1∑
i=0

1Σ(A,B;T )(σiω) = k,

that is, sequences whose forward σ−orbits (σiω)i> 0 make exactly k visits to the set
Σ(A,B;T ) for i 6 n − 1. We will prove, in Section 6, that the set Σ(A,B;T ) has
λ−measure satisfying

(4.3) lim
T→∞

Tλ(Σ(A,B;T )) = 1
2κβA,B EλF.

Third, in Section 7, we will show that the set Σ(A,B;T ) can be represented
approximately as a finite union of cylinder sets Σm(ω). This will be done in such
a way that the lengths of the words defining the cylinder sets satisfy m = (log n)2

= C ′(log T )2. It will then follow that the set {ω : NA,B(ω) = k} is (approximately)
the set of all sequences ω ∈ Σ whose first n letters contain exactly k occurrences of
one of the length-2m+ 1 sub-words
(4.4) ω−mω−m+1 · · ·ωm
that define the cylinder sets Σm(ω).
Finally, in Section 8, we will use the results of steps 1, 2, and 3 to show that

the number NA,B of crossings through arcs A,B on ∂D(x;αT−1) equals (with high
probability) the number of length-(log T )2 blocks that contain one of the magic
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subwords, and (using the regeneration theorem of Section 3.3) that these occurrence
events are independent small-probability events. Furthermore, we will show that
for distinct pairs (Ai, Bi) of boundary arcs the counts NAi, Bi are (approximately)
independent. The desired result (4.2) will then follow from the Poisson convergence
criterion of Section 2.3.
The strategy just outlined is easily adapted to Theorem 1.3. Fix distinct points

x, x′ ∈ S. For any pair A,B of non-overlapping boundary arcs of ∂B(0, α), denote
by NA,B(ω) and N ′A,B(ω) the numbers of geodesic arcs in the collections In(x) and
In(x′), respectively, that cross the target regions D(x;αT−1) and D(x′;αT−1) from
arc A to arc B. To prove Theorem 1.3 it suffices to prove the following.

Proposition 4.2. —
For any finite collections {(Ai, Bi)}16 i6 r and {(A′i, B′i)}16 i6 r′ and any choice of
nonnegative integers ki, k′i,

(4.5) lim
n→∞

λ
{
ω : NAiBi(ω) = ki and N ′A′iB′i(ω) = k′i ∀ i

}
=
(

r∏
i=1

1
ki!

(κβAi, Bi/2)kie−κβAi,Bi/2
) r′∏

i=1

1
k′i!

(κβA′i, B′i/2)k′ie−κβA′i, B′i/2
 .

Note: To avoid notational clutter, here and throughout Sections 5,6, and 7 we will
use the abbreviation κ for κS = 1/ area(S).

5. No Quick Entries or Re-entries of Small Disks

Proposition 5.1. — For any α > 0 there exists C <∞ such that if the geodesic
ray γ has initial tangent vector chosen at random according to normalized Liouville
measure, then for any ε > 0 the probability that γ enters the disk D(x, αT−1) before
time εT is less than Cε.

Proof. — For any unit vector v ∈ T 1S, denote by τ(v) the smallest nonnegative
time t (possibly +∞) at which the geodesic ray γt(v) with initial tangent vector v
enters D(x, αT−1). Since any geodesic that enters D(x, αT−1) must spend at least
2αT−1 units of time in the surrounding disk D(x, 2αT−1), we have, by the invariance
of the Liouville measure,

µL {v : τ(v) 6 εT} 6 (2α)−1T
∫
T 1S

∫ εT

0
1
{
γt(v) ∈ D(x; 2αT−1)

}
dt dµL(v)

= (2α)−1T
∫ εT

0

∫
T 1S

1
{
γt(v) ∈ D(x; 2αT−1)

}
dµL(v) dt

= (2α)−1T
∫ εT

0
area

(
D(x; 2αT−1)

)
dt/ area(S)

6 Cε

for a suitable C <∞. �
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Proposition 5.2. — Let γ be a geodesic ray whose initial tangent vector is
chosen at random according to normalized Liouville measure. If f(T ) = o(T ) as
T →∞ then the probability that γ enters (or begins in) D(x, αT−1) before time T
and then re-enters within time f(T ) converges to 0 as T →∞.

The proof will be based on the following estimate Lemma 5.3.

Lemma 5.3. — Fix y ∈ D(x, 2αT−1) and 0 < β < 1, and define RT = RT (y)
to be the set of unit tangent vectors v based at y such that the geodesic ray with
initial tangent vector v enters the ball D(x, αT−1) before time f(T ) after having
first exited D(x, 2αT−1). There is a constant K = K(α) < ∞ not depending on y
such that for all T > 1 the Lebesgue measure of RT satisfies
(5.1) Lebesgue(RT ) 6 Kf(T )/T.

The proof is deferred until after the proof of Proposition 5.2. Given the Lemma 5.3,
Proposition 5.2 follows by an argument similar to that used in the proof of Proposi-
tion 5.1.
Proof of Proposition 5.2. — Denote by BT the set of all unit tangent vectors v

with base point in D(x, αT−1) such that the geodesic ray γt(v) re-enters D(x, αT−1)
before time f(T ) (after having first exited), and by B∗T the set of all unit tangent
vectors v with base point in the enlarged disk D(x, 2αT−1) such that the geodesic
ray γt(v) enters BT before leaving D(x, 2αT−1). Clearly, BT ⊂ B∗T , and if v ∈ B∗T ,
then the geodesic ray must spend at least αT−1 units of time in the disk D(x, 2αT−1)
before exiting. Moreover, Lemma 5.3 implies that

µL(B∗T ) 6 KT−1f(T )× area(D(x, 2αT−1))
area(S) 6 K ′α2T−3f(T ).

For any v ∈ T 1(S) let τ ∗(v) be the first time t that the geodesic ray γt(v) enters
the set BT . Then by the invariance of Liouville measure,

µL {v : τ ∗(v) 6 T} 6 α−1T
∫
T 1S

∫ T

0
1 {γt ∈ B∗T} dt dµL(v)

= α−1T
∫ T

0

∫
T 1S

1 {γt ∈ B∗T} dµL(v) dt

= α−1T
∫ T

0
µL(B∗T ) dt

6 K ′α2T−1f(T ) −→ 0 as T →∞. �

Proof of Lemma 5.3. — Let S̃ be the universal cover of S, viewed as the (open) unit
disk D endowed with Riemannian metric %̃, the natural lift of the Riemannian metric
% on S. The metric %̃ is invariant by the fundamental group π1(S). Furthermore,
the action of π1(S) on S̃ is discrete, and there is a fundamental polygon P for this
action, bounded by geodesic segments, such that S̃ is tiled by the isometric images
gP, where g ranges over π1(S). Since the surface S is compact, the fundamental
polygon P can be chosen so that it has finite diameter δ. Fix pre-images x̃, ỹ ∈ S̃
of the points x, y ∈ S in such a way that x̃ ∈ P and ỹ ∈ D(x̃, 2αT−1); then for
all sufficiently large T the pre-image of the disk D(x, αT−1) is the disjoint union of
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isometric disks D(gx̃, αT−1) where g ranges over π1(S). Clearly, since these disks
are non-overlapping, only finitely many can intersect the fundamental polygon.
The set RT (y) lifts to a set R̃T (ỹ) of the same Lebesgue measure in the unit

tangent space T 1
ỹ (S̃); this lift R̃T (ỹ) contains all direction vectors v ∈ T 1

ỹ (S̃) such
that the geodesic ray γ̃t(v) in S̃ with initial tangent vector v intersects one of the
balls D(gx̃, αT−1) with g 6= 1 at distance 6 f(T ) from ỹ. To estimate the size of
R̃T (ỹ), we decompose it by grouping the target disks D(gx̃, αT−1) in concentric
shells by distance from the point ỹ: thus, in particular,

R̃T (ỹ) ⊂
[f(T ) + 1]/(3δ)⋃

m=1

⋃
g ∈Am

Θg, T (ỹ)

where Θg, T (ỹ) is the set of all unit tangent vectors v ∈ T 1
ỹ (S̃) such that the geodesic

ray γ̃t(v) intersects the disk D(gx̃, αT−1), and
Am := {g ∈ π1(S) : 3(m− 1)δ 6 distance(gx̃, ỹ) < 3mδ} .

(Recall that δ is the diameter of the fundamental polygon. Consequently, every point
on the circle Γ3mδ of radius 3mδ centered at ỹ is within distance 5δ/2 of gx̃ for some
g ∈ Am.) To prove inequality (5.1) it will suffice to prove that for some constant K
independent of m,T and the choice of ỹ ∈ D(x̃, αT−1),

(5.2)
∑
g∈Am

Lebesgue(Θg, T ) 6 KT−1.

For each unit tangent vector v ∈ T 1
ỹ S̃ and each real t > 0, define the expansion

factor ηt(v) for the geodesic flow at time t in direction v to be the amount by which
the exponential map expỹ expands distances at the tangent vector tv in the direction
w = w(v) ∈ T 1S orthogonal to v, that is,

ηt(v) =
∥∥∥(d expỹ(tv))w

∥∥∥
where w = w(y) ∈ T 1

ỹ S̃ is the unit vector orthogonal to v (the choice of sign is
irrelevant). Note that since our surface is compact, this quantity is bounded away
from both 1 and ∞ (since the curvature is bounded away from zero). Thus, if
Γt = Γt(ỹ) is the circle of radius t centered at ỹ in S̃, then

(5.3) circumference(Γt) =
∫
T 1
ỹ S̃
ηt(v) d Lebesgue(v),

and more generally, for any interval Θ ⊂ T 1
ỹ S̃,

(5.4) arc-length
(
expỹ(tΘ)

)
=
∫

Θ
ηt(v) dLebesgue(v).

Claim 1. — There exists a constant C < ∞ not depending on the choice of
ỹ ∈ S̃ such that for any two unit vectors v1, v2 ∈ T 1

ỹ S̃ satisfying the condition
distance(γ̃t(v1), γ̃t(v2)) 6 3δ, any t > 3δ, and any 0 6 s 6 3δ,

(5.5) C−1 6
ηt(v1)
ηt−s(v2) 6 C.
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Before proving the claim, we show how it implies inequality (5.2). For each deck
transformation g ∈ Am, let Θ∗g,m be the set of all direction vectors v based at ỹ
for which the geodesic ray γ̃t(v) approaches the point gx̃ at least as closely as it
approaches any other g′x̃, where g′ ∈ Am. These sets overlap either in isolated points
or not at all, and their union is the entire set T 1

ỹ S̃. Thus, the sets Θ∗m, where g ∈ Am,
form (up to a set of measure 0) a partition of T 1

ỹ S̃. Furthermore, since the action of
π1(S) on the universal cover S̃ is discrete, there exists an integer k > 1 such that
none of the sets Θ∗m intersects more than k of the arcs Θg,T .
Claim 1, together with the identity (5.4), implies that for a suitable constant

1 < C1 <∞ not depending on T, ỹ,m, or g ∈ Am,

Lebesgue(Θg,T ) 6 C1T
−1η3mδ(vg)−1 and

Lebesgue(Θ∗g,m) > C−1
1 η3mδ(vg)−1.

where vg ∈ T 1
ỹ S̃ is the unique direction such that the geodesic ray γ̃t(vg) goes through

the point gx̃. Since each arc Θg,T is contained in the union (over g′ ∈ Am) of the
sets Θ∗g′,m, and since no Θ∗g′,m intersects more than k of the arcs Θg,T , it follows that∑

g ∈Am
Lebesgue(Θg,T ) 6 kC2

1T
−1 ∑

g ∈Am
Lebesgue(Θ∗g,m).

The desired result (5.2) now follows, because the sets Θ∗g,m partition (up to a set of
measure 0) the unit tangent space T 1

ỹ S̃.
Proof of Claim 1. — The expansion factor ηt(v) can be calculated by integrating

the infinitesimal expansion rates along the geodesic:

ηt(v) = exp
{∫ t

0
ζs(v) ds

}
where

ζt(v) = log d

ds

(∥∥∥d expγ̃t(v)(sγ̃′t(v))wt
∥∥∥)

s=0

and wt ∈ T 1
γ̃t(v)S̃ is the unit vector tangent to the circle Ct (or equivalently, orthogonal

to the direction γ̃′t(v) of the geodesic) at the point γ̃t(v). Because the curvature of
the Riemannian metric % is everywhere negative, the infinitesimal expansion rate
ζt(v) is strictly positive. Moreover, because the Riemannian structure is C∞, so is
the dependence of ζt(v) on both t and v ∈ T 1S̃. Consequently, there exist constants
C2 <∞ and a > 0 such that for any two unit vectors v1, v2 ∈ T 1

ỹ S̃ and any t > 0,

distance(γ̃t(v1), γ̃t(v2)) 6 3δ
=⇒ distance(γ̃t−s(v1), γ̃t−s(v2)) 6 C2e

−as for all 0 6 s 6 t.

Therefore, the integral formula for the expansion rate ηt(v) implies that for an
appropriate constant C3 <∞,

distance(γ̃t(v1), γ̃t(v2)) 6 1

=⇒ C−1
3 6

ηt(v1)
ηt−s(v2) 6 C3 for all t > 3δ and 0 6 s 6 3δ. �
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6. Measure of the Crossing Sets

Fix x ∈ S and α > 0. Let A,B be any two disjoint closed arcs, each with nonempty
interior, on the boundary of the ball B(0, α) in the unit tangent space T 1

xS. Recall
that we have agreed to identify the arcs A,B with their images AT , BT on the closed
curve ∂D(x, αT−1) under the scaled exponential mapping v 7→ expx(v/T ). Recall
also that Σ(A,B;T ) is the set of all sequences ω ∈ Σ such that the intersection
of the geodesic segment p ◦ π(Fω) with the neighborhood D(x, αT−1) is a geodesic
segment that either coincides with or extends to a geodesic crossing of D(x, αT−1)
from boundary arc AT to boundary arc BT .

Proposition 6.1. — For all A,B, and α > 0,

(6.1) lim
T→∞

Tλ(Σ(A,B;T )) = 1
2κβA,B EλF

where βA,B is as defined by equation (2.2) (with D = B(0, α)) and κ = 1/ area(S).

Proof. — Be definition, if ω ∈ Σ(A,B;T ) then there exist unique times
sA(ω) < sB(ω) < F (ω) such that the segment φ([sA(ω), sB(ω)]) projects via p ◦ π
to a geodesic crossing of D(x, αT−1) from boundary arc AT to boundary arc BT .
It is possible that sA(ω) < 0; this will occur if and only if p ◦ π(ω, 0) is an interior
point of D(x, αT−1). Now the surface area of D(x, αT−1) is of order T−2; hence,
since λ∗ is the pullback of the normalized Liouville measure µL, the λ−measure of
the set of ω ∈ Σ(A,B;T ) such that sA(ω) < 0 is also of order T−2. Consequently, in
proving (6.1) we may ignore the contribution of the set

Σ(A,B;T )− = {ω ∈ Σ(A,B;T ) : sA(ω) < 0} .
Set Σ(A,B;T )+ = Σ(A,B;T ) \ Σ(A,B;T )−.
Denote by Υ(A,B;T ) the set of all u ∈ T 1S that are tangents to geodesic segments

from arc AT to arc BT . This set nearly coincides with the projections of those points
(ω, s) ∈ ΣF such that ω ∈ Σ(A,B;T ) and 0 6 sA(ω) < s < sB(ω), the difference
being accounted for by the set Σ(A,B;T )−. Consequently, by equation (3.3),

λ(Σ(A, B; T )) =
∫

Σ(A,B;T )

sB − sA
sB − sA

dλ

=
∫
π−1Υ(A,B;T )

1
sB(ω)− sA(ω) dλ

∗(ω, s)×
∫

Σ
F dλ+O

(
T−2

)
=
∫

Υ(A,B;T )

1
τ(u) dµL(u)×

∫
Σ
F dλ+O

(
T−2

)
,

where τ(u) is the length of the geodesic segment from A to B on which u lies, for
any u ∈ Υ(A,B;T ).
Now we exploit the defining property of the Liouville measure µL, specifically, that

locally µL is the product of normalized surface area with the Haar measure on the
circle. For large T ,the exponential mapping v 7→ exp{v/T} maps the ball B(0, α)
in the tangent space TxS onto D(x;αT−1) nearly isometrically (after scaling by
the factor T−1), so rescaled surface area on D(x;αT−1) is nearly identical with the
pushforward of Lebesgue measure on B(0, α), scaled by T−2. Furthermore, the inverse
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images of geodesic segments across D(x;αT−1) are nearly straight line segments
crossing B(0;α); those that cross from arc AT to arc BT in ∂D(x;αT−1) will pull
back to straight line segments from arc A to arc B in ∂B(0;α). These can be
parametrized by the angle at which they meet the x−axis, as in Figure 2.1; for each
angle θ, the integral of 1/length over the region in B(0;α) swept out by line segments
crossing from arc A to arc B at angle θ is ψ(θ), as in Figure 2.1 (where the convex
region is now B(0;α)). Therefore, as T →∞,∫

Υ(A,B;T )

1
τ(u) dµL(u) ∼ T−1 1

2π area(S)

∫ π/2

−π/2
ψ(θ) dθ = T−1κβA,B/2.

�

Similar calculations can be used to show there is vanishingly small probability
that one of the first n geodesic segments p ◦ π(Fσiω) will hit both D(x;αT−1) and
D(x′;αT−1), where x 6= x′ are distinct point of S. Define H(x, x′;αT−1) to be the set
of all ω ∈ Σ such that the vertical fiber Fω over (ω, 0) in ΣF projects to a geodesic
segment that intersects both D(x;αT−1) and D(x′;αT−1).

Proposition 6.2. — For any two distinct points x, x′ ∈ S and each α > 0,

lim
T→∞

Tλ
(
H
(
x, x′;αT−1

))
= 0.

Proof. — Assume that T is sufficiently large that the closed disks D̄(x; 2αT−1)
and D̄(x′; 2αT−1) do not intersect. For any ω such that the fiber Fω projects to
a geodesic segment that enters D(x; 2αT−1) there will be unique times 0 < s0(ω)
< s1(ω) < F (ω) of entry and exit (except, as in the proof of Proposition 6.1, for a
set of size O(T−2)); for those ω such that the projection of Fω enters the smaller
disk D(x;αT−1), the sojourn time s1(ω)− s0(ω) will be at least αT−1.
Denote by Υ(x, x′;αT−1) the set of all tangent vectors u ∈ T 1S based at points in

D(x;αT−1) such that u lies on the directed geodesic segment π(Fσiω) for some se-
quence ω ∈ H(x, x′;αT−1). Since x and x′ are distinct points of S, the neighborhoods
D(x;αT−1) and D(x′;αT−1) are separated by at least dist(x, x′)/2 (for large T ), so
there is a constant C = C(x, x′, α) < ∞ such that for every point y ∈ D(x, αT−1)
the set of angles θ such that (y, θ) ∈ Υ(x, x′;αT−1) has Lebesgue measure less than
CT−1. Now

λ(H(x, x′;αT−1)) =
∫
H(x, x′;αT−1)

s1 − s0

s1 − s0
dλ

=
∫
π−1Υ(x, x′ ;αT−1)

1
s1(ω)− s0(ω) dλ

∗(ω, s)× EλF

=
∫

Υ(x, x′;αT−1)

1
τ(u) dL(u)× EλF

6 T−1L
(
Υ
(
x, x′;αT−1

))
EλF

where τ(u) is the crossing time of D(x; 2αT−1) by the geodesic with initial tangent
vector u. Using once again the fact that (normalized) Liouville measure is the
product of normalized hyperbolic area with Lebesgue angular measure, we see that
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for a suitable constant C ′ <∞,
L
(
Υ
(
x, x′;αT−1

))
6 C ′(αT−1)2 × CT−1;

thus, λ(H(x, x′;αT−1)) = O(T−2). �

7. Decomposition of the EventsNA,B = k

In this section we show that the events {ω : NA,B(ω) = k} can be approximated
by sets consisting of those sequences ω ∈ Σ whose first n letters contain exactly k
occurrence of certain “magic subwords” each of length m = (log n)2(≈ log T )2. As
in Section 6, let A,B be any two disjoint closed arcs, each with nonempty interior,
on the boundary of the ball B(0, α) in the unit tangent space TxS. We identify the
neighborhood D(x, αT−1) in S(= P) with the ball B(0, α) via the scaled exponential
mapping (cf. equation (1.2)), so the arcs A,B are identified with arcs in ∂D(x, αT−1),
denoted by AT , BT , whose arc-lengths are roughly proportional to T−1. Recall that
NA,B(ω) is the number of crossings of the neighborhood D(ω, αT−1) from boundary
arc AT to boundary arc BT by the geodesic segment

p ◦ π
(
∪n−1
i=0 Fσiω

)
,

where n = [T/EλF ], π is the map from the suspension space ΣF to T 1(S), and p is
the natural projection down from T 1(S) to S. Recall also (Section 4) that Σ(A,B;T )
is the set of all sequences ω ∈ Σ such that the geodesic segment p ◦ π(Fω) intersects
D(x, αT−1) in a geodesic segment with terminal endpoint in the boundary arc BT

that extends to a geodesic crossing from boundary arc AT to boundary arc BT .

Lemma 7.1. — The set {ω : NA,B = k} differs from the set{
ω ∈ Σ :

n−1∑
i=0

1Σ(A,B;T )(σiω) = k

}
by a set of λ−measure tending to 0 as T →∞.

Proof. — The symmetric difference of the two sets is contained in the set of all
ω ∈ Σ such that either (a) ω ∈ Σ(A,B;T ) or σn−1ω ∈ Σ(A,B;T ), or (b) at least
one of the geodesic segments p ◦ π(Fσiω), where 0 6 i < n, makes more than one
visit to the neighborhood D(x;αT−1). Propositions 5.1 and 5.2 ensure that this set
has measure → 0 as T →∞. �

Next, recall that the sequence space Σ is equipped with the metric d(ω, ω′)
= e−n(ω,ω′), where n(ω, ω′) is the minimum nonnegative integer j such that the
sequences ω, ω′ differ in the ±j entry, and that the suspension space ΣF inherits
from d an induced “taxicab” metric satisfying the inequality (3.2). Cylinder sets
Σm(ω) are open balls in Σ relative to the metric d (cf. equation (3.1)). Since the
semi-conjugacy π : ΣF → T 1S is Hölder, it follows that if ω, ω′ ∈ Σ are at distance
< ε, then the geodesics p ◦ π(φt(ω)) and p ◦ π(φt(ω′)) remain at distance < emaxF ε
for all |t| 6 maxΣ F . Thus, if one of the geodesic segments crosses from arc AT to
BT without coming sufficiently near one of the endpoints of either AT or BT , then so
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will the other; and similarly, if one stays sufficiently far away from the arcs AT , BT

then so will the other. In particular, if
(7.1) m = (log n)2(≈ (log T )2),
then for every ω′ ∈ Σm(ω) the geodesic segments p ◦ π(φt(ω))|t|6maxF and p ◦
π(φt(ω′))|t|6maxF remain at distance less than n−C logn for a suitable constant C > 0,
and hence, for every ω ∈ Σ one of the following will hold:

(i) Σm(ω) ⊂ Σ(A,B;T );
(ii) Σm(ω) ⊂ Σ(A,B;T )c; or
(iii) for every ω′ ∈ Σm(ω) the geodesic segment p ◦ π(φt(ω′))|t|6maxF will pass

within distance C ′n−C logn of one of the endpoints of arc AT or arc BT .

Proposition 7.2. — For each pairA,B of non-overlapping closed arcs of ∂B(0, α)
and each T > 1 there exist sets finite subsets J1 ⊂ J2 of Σ such that

(A) for each ω ∈ J1 the cylinder set Σm(ω) is of type (i);
(B) for each ω 6∈ J2 the cylinder set Σm(ω) is of type (ii); and
(C) the set ∪ω ∈J2\J1Σm(ω) has λ−measure less than o(n−r) for all r > 0.

Proof. — The sets J1 and J2 \ J1 are gotten by selecting representatives of each
cylinder Σm(ω) of type (i) and type (iii), respectively. What must be proved is
assertion (C).
By construction, for every ω′ not in ∪ω ∈J2Σm(ω) the geodesic segment

p ◦ π(φt(ω, 0))t6maxF

must pass within distance C ′n−C logn = C ′′T−C
′′′ log T of one of the four endpoints

of AT or BT . Proposition 5.1 implies that the normalized Liouville measure of the
set of geodesic rays that enter one of these four regions by time maxF is of order
O(T−C′′′ log T ) = O(n−C logn). �

Definition 7.3. — Given arcs A,B as in Proposition 7.2 and T > 1, define the
magic subwords for the triple (A,B;T ) to be the words

ω−mω−m+1 · · ·ωm
where ω ∈ J1.

Corollary 7.4. — The symmetric difference between the sets {ω : NA,B = k}
and the set of ω ∈ Σ with exactly k occurrences of one of the magic subwords in the
segment ω1ω2 · · ·ωn has λ−measure → 0 as T →∞.

Remark 7.5. — The set of magic subwords for a particular value of T will in
general have no clear relationship to the magic subwords for a different value of T .

Proposition 7.6. — For each T letM =MT be the set of magic subwords for
a fixed pair A,B of boundary arcs and fixed α > 0. Then

(7.2) lim
T→∞

Tλ{ω : (ω−mω−m+1 · · ·ωm) ∈M} = 1
2κβA,BEλF

where βA,B is defined by equation (2.2).

Proof. — This follows directly from Propositions 7.2 and 6.1. �
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Corollary 7.7. — If ω ∈ Σ is chosen randomly according to λ, then the proba-
bility that the initial segment ω1ω2 · · ·ω[log T ]κ contains a magic subword converges to
0 as T →∞. Similarly, the probability that the segment ω1ω2 · · ·ωn contains magic
subwords separated by fewer than (log n)κ letters converges to zero as n→∞.

Proof. — This follows directly from Propositions 5.1 and 5.2. �

8. Proof of Propositions 4.1–4.2

Proof of (4.2) for r = 1. — Consider first the case r = 1. In this case we are given
a single pair (A,B) of non-overlapping boundary arcs of ∂B(0, α); we must show
that for any integer k > 0,

(8.1) lim
n→∞

λ{ω ∈ Σ : NA,B(ω) = k} = (κβA,B/2)k
k! e−κβA,B/2,

where βA,B is defined by equation (2.2). Recall that NA,B(ω) is the number of
geodesic segments in the collection In(ω) that cross the target disk D(x;αT−1) from
arc A to arc B. By Corollary 7.4, NA,B(ω) is well-approximated by the number N ′A,B
of magic subwords in the word ω1ω2 · · ·ωn; in particular, for any k > 0, the symmetric
difference between the events {NA,B = k} and {N ′A,B = k} has λ−measure tending
to 0. Consequently, it suffices to prove that (8.1) holds when NA,B is replaced by
N ′A,B.
Recall (Section 3.3) that any Gibbs process is the natural projection of a list

process. Thus, on some probability space there exists a sequence W1,W2,W3, . . .
of independent random words of random lengths τi, such that the infinite sequence
obtained by concatenating W1,W2,W3, . . . has distribution λ, that is, for any Borel
subset B of Σ+,

P{W1 ·W2 ·W3 · · · ∈ B} = λ(B).
All but the first word W1 have the same distribution, and the lengths τi have
exponentially decaying tails (cf. inequality (3.8)). Since the magic subwords are
of length [log n]2, any occurrence of one will typically straddle a large number of
consecutive words in the sequence Wi. Thus, to enumerate occurrences of magic
subwords, we shall break the sequence {Wi}i> 1 into blocks of length m = [log n]3,
and count magic subwords block by block. Set

W̃ 1 = W1W2 · · ·Wm,

W̃ 2 = Wm+1Wm+2 · · ·W2m,

W̃ 3 = W2m+1W2m+2 · · ·W3m,

etc., and denote by τ̃ k = ∑mk
i=mk−k+1 τi the length (in letters) of the word W̃ k.

Claim 2. — For each C > Eτ2, there exists Λ(C) > 0 such that for any integer
k > 1

(8.2) P

{
k∑
i=1

τi > Ck

}
6 e−kΛ(C),
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and for all sufficiently large C <∞,

(8.3) lim
n→∞

P
{

max
k6n

τ̃ k > Cm
}

= 0.

The function C 7→ Λ(C) is convex and satisfies lim infC→∞ Λ(C)/C > 0.

Proof of Claim 2. — These estimates follow from the exponential tail decay
property (3.8) by standard results in the elementary large deviations theory, in
particular, Cramér’s theorem (cf. [DZ98, Section 2.2]) for sums of independent,
identically distributed random variables with exponentially decaying tails. The block
lengths τ̃ k are gotten by summing the lengths τi of their m constituent words
Wi; for all but the first block W̃ 1, these lengths are i.i.d. and satisfy (3.8). Hence,
Cramér’s theorem guarantees(5) the existence of a convex rate function C 7→ Λ(C)
and constants C ′ = C ′(C) < ∞ such that inequality (8.2) holds for all k > 1.
Applying this inequality with k = m = [log n]3 yields

P

{
m+1∑
i=2

τi > Cm

}
6 e−mΛ(C) = n−3Λ(C).

Cramér’s theorem also implies that Λ(C) grows at least linearly in C, so by taking
C sufficiently large we can ensure that Λ(C) > 2/3, which makes the probability
above smaller than n−2. Since there are only n blocks, it follows that the probability
that τ̃ k > Cm for one of them is smaller than n−1. �

Claim 3. — The probability that a magic subword occurs in the concatenation
of the first two blocks W̃ 1W̃ 2 converges to 0 as T →∞.

Proof of Claim 3. — The event that one of the first two blocks has length
> C[log n]3 can be ignored, by Claim 2. On the complementary event, an occurrence
of a magic subword in W̃ 1W̃ 2 would require that the magic subword occurs in the
first 2C[log n]3 letters. By Corollary 7.7, the probability of this event tends to 0 as
T →∞. �

It follows from Claim 2 and Corollary 7.7 that with probability tending to 1 as
n→∞, no block W̃ k among the first n will contain more than one magic subword. On
this event, then, the number NA,B of magic subwords that occur in the first n letters
can be obtained by counting the number of blocks W̃ k that contain magic subwords
and then adding the number of magic subwords that straddle two consecutive blocks.

Claim 4. — As n → ∞, the probability that a magic subword straddles two
consecutive blocks W̃ k, W̃ k+1 among the first n/[log n]3 blocks converges to 0.

Proof of Claim 4. — A magic subword, since it has length [log n]2, can only
straddle consecutive blocks W̃ k, W̃ k+1 if it begins in one of the last [log n]2 word Wi

of the m = [log n]3 words that constitute W̃ k. The words Wi are i.i.d. (except for

(5)The length of the initial block has a different distribution than the subsequent blocks, because
the first excursion of the list process has a different law than the rest. However, the length of the
first excursion also has an exponentially decaying tail, by Proposition 3.3, so the upper bounds
given by Cramér’s theorem still apply.

ANNALES HENRI LEBESGUE



Local geometry of random geodesics 213

W1, and by Claim 3 we can ignore the possibility that a magic subword begins in
W̃ 1W̃2), so the probability that a magic subword begins in Wi does not depend on i.
Since only [log n]2 of the [log n]3 words in each block W̃ k would produce straddles,
it follows that the expected number of magic subwords in W̃ 1W̃ 2 · · · W̃n/m is at least
[log n] times the probability that a magic subword straddles two consecutive blocks.
Therefore, the Claim 4 will follow if we can show that the expected number of magic
subwords in W̃ 1W̃ 2 · · · W̃ n/m remains bounded as T → ∞. Denote the number of
such magic subwords by N ′′A,B.
The number of letters in the concatenation W̃ 1W̃ 2 · · · W̃ n/m is ∑n

i=1 τi, which by
Claim 2 obeys the large deviation bound (8.2). Fix K <∞, and let G be the event
that∑n

i=1 τi 6 nK. On this event, N ′′A,B is bounded by the number of magic subwords
in the first nK letters of the concatenation W1W2 · · · . Since the concatenation
W1W2 · · · is, by Proposition 3.3, a version of the Gibbs process associated with the
Gibbs state λ, which by shift-invariance is stationary, it follows that the expected
number of magic subwords in the first nK letters is nK× the probability that a
magic subword begins at the very first letter of W1W2 · · · . But by Proposition 6.1,
this probability is asymptotic to T−1αβA,B EλF ; thus, for large T ,

EN ′′A,B1G 6 nKT−1αβA,BEλF = KαβA,B.

It remains to bound the contribution to the expectation from the complementary
event Gc. For this, we use the large deviation bound (8.2). On the event that∑n
i=1 τi 6 n(K + k), the count N ′′A,B cannot be more than n(K + k); hence,

EN ′′A,B1Gc 6
∞∑
k=1

n(K + k)e−nΛ(K+k).

Since Λ(C) grows at least linearly in C, this sum remains bounded provided K is
sufficiently large. �

Recall that N ′A,B is the number of magic subwords in the first n letters of the
sequence W̃ 1W̃ 2 · · · obtained by concatenating the words in the regenerative rep-
resentation. The blocks W̃ k are independent, and except for the first all have the
same distribution, with common mean length mEτ2. Let N∗A,B be the number of
magic subwords in the segment W̃ 2W̃3 · · · W̃ν , where ν = ν(n) = n/[mEτ2]. By
the central limit theorem, with probability approaching 1 the length ∑νm

i=1 τi of the
segment W̃ 2W̃3 · · · W̃ν differs by no more than

√
n log n from n, and by the same

argument as in the proof of Claim 4, the probability that a magic subword occur
within the stretch of 2

√
n log n letters surrounding the nth letter converges to 0.

Thus, as T →∞,
P
{
N ′A,B 6= N∗A,B

}
−→ 0.

By Claim 2 and Corollary 7.7, with probability approaching 1 no block W̃ k will
contain more than 1 magic subword, and by Claim 4 no magic subword will straddle
two blocks W̃ k, W̃ k+1. Therefore, with probability → 1,

N ′A,B = N∗A,B =
ν∑
k=2

Y (W̃ k),
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where Y (W̃ k) is the indicator of the event that the block W̃ k contains a magic
subword. These indicators are independent, identically distributed Bernoulli random
variables; by Proposition 7.6,

EY (W̃ k)mEτ2 ∼ T−1 1
2κβEλF

and so

E
ν∑
k=2

Y (W̃ k) −→
1
2κβA,B.

Now Proposition 2.11 implies that for any integer J > 0,

P

{
ν∑
k=2

Y (W̃ k) = J

}
−→ (κβA,B/2)J

J ! e−κβA,B/2,

proving (8.1). �

Proof of (4.2) for r > 1. — (Sketch) In general, given r > 1, we are given a
set {Ai, Bi} of pairwise non-overlapping boundary arcs of ∂B(0, α); we must show
that the counts NAi,Bi converge jointly to independent Poissons with means αβAiBi ,
respectively. The key to this is that the sets Mi of magic words for the different
pairs (Ai, Bi) are pairwise disjoint, because the arcs Ai, Bi are non-overlapping (a
geodesic segment crossing of D(x;αT−1) has unique entrance and exit points on
∂D(x, αT−1), so at most one of the pairs (Ai, Bi) can contain these).
By the same argument as in the case r = 1, the counts NAi, Bi can be replaced by

the sums

N∗Ai, Bi =
ν∑
k=2

Yi(W̃ k)

where Yi(W̃ k) is the indicator of the event that the block W̃ k contains a magic sub-
word for the pair Ai, Bi. Since the setsMi of magic subwords are non-overlapping, the
vector of these sums follows a multinomial distribution; hence, by Proposition 2.12,
the vector

(N∗Ai, Bi)16 i6 r

converges in distribution to the product of r Poisson distributions, with means
1
2καβAiBi . �

Proof of Proposition 4.2. — The argument is virtually the same as that for the
case r > 2 of Proposition 4.1; the only new wrinkle is that the sets Mi and M′

i′

of magic words for the pairs (Ai, Bi) and (A′i′ , B′i′) need not be disjoint, because it
is possible for a geodesic segment across the fundamental polygon P to enter both
D(x, αT−1) and D(x′;αT−1). However, Proposition 6.2 implies that the expected
number of such double-hits in the first n crossings of P converges to 0 as T → ∞,
and consequently the probability that there is even one double-hit tends to zero.
Thus, the magic subwords for pairs A′i′ , B′i′ that also occur as magic subwords for
pairs Ai, Bi can be deleted without affecting the counts (at least with probability
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→ 1 as T →∞), and so the counts NAi,Bi and N ′A′
i′ , B

′
i′
may be replaced by

N∗Ai, Bi =
ν∑
k=2

Yi(W̃ k) and

N∗∗A′
i′ , Bi′

=
ν∑
k=2

Y ′i′(W̃ k)

where Yi(W̃ k) and Y ′i′ are the indicators of the events that the block W̃ k contains
a magic subword for the appropriate pair (with deletions of any duplicates). Since
the adjusted sets of magic subwords are non-overlapping, the vector of these counts
N∗Ai, Bi and N

∗∗
A′
i′ , Bi′

follows a multinomial distribution, and so the convergence (4.5)
holds, by Proposition 2.12. �

9. Global Statistics

In this section we show how Theorem 1.4, which describes the “global” statistics
of the tessellation TT induced by a random geodesic segment of length T , follows
from the “local” description provided by Theorem 1.2 and the ergodicity of the
Poisson line process with respect to translations. Theorem 1.2 and Proposition 2.7
(cf. also Corollary 2.9) imply that locally – in balls D(x;αT−1), where α is large –
the empirical distributions of polygons, their angles and side lengths (after scaling by
T ) stabilize as T →∞. Since this is true in neighborhoods of all points x ∈ S, it is
natural to expect that these empirical distributions also converge globally. To prove
this, we must show that in those small regions of S where empirical distributions
behave atypically the counts are not so large as to disturb the global averages. The
key is the following proposition, which limits the numbers of polygons, edges, and
vertices in TT .

Proposition 9.1. — Let f = fT , v = vT , and e = eT be the number of polygons,
vertices and edges in the tessellation TT . With probability one, as T →∞,

lim
T→∞

vT/T
2 = κ/π,(9.1)

lim
T→∞

eT/T
2 = (2κ)/π, and(9.2)

lim
T→∞

fT/T
2 = κ/π.(9.3)

Moreover, there exists a (nonrandom) constant C = CS < ∞ such that for every
tessellation TT induced by a geodesic segment of length T ,

(9.4) vT + eT + fT 6 CT 2.

For the proof we will need to know that multiple intersection points (points of S
that a geodesic ray passes through more than twice) do not occur in typical geodesics.
We have the following:
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Lemma 9.2. — For almost every unit tangent vector v ∈ T 1S, there are no
multiple intersection points on the geodesic ray (γt(v))t> 0.

Proof. — Suppose v ∈ T 1S gives rise to triple intersection. Let γ denote a lift
of the geodesic ray (γt(v))t> 0 to the universal cover H2, we have that there must
be deck transformations A,B so that the geodesic rays Aγ and Bγ have a triple
intersection. In [EJM91], it is shown that the set of such geodesics is a positive
codimension subvariety for any fixed A,B, and therefore, a set of measure 0. Taking
the (countable) union over all possible pairs A,B, we have our result. �

Proof of Proposition 9.1. — The number vT of vertices is the number of self-
intersections of the random geodesic segment γT := (γt(·))06 t6T (unless one counts
the beginning and end points of γT as vertices, in which case the count is increased
by 2). It is an easy consequence of Birkhoff’s ergodic theorem (see [Lal14, Section 2.3]
for the argument, but beware that [Lal14] seems to be off by a factor of 4 in his
calculation of the limit) that the number of self-intersections satisfies (9.1). Following
is a brief resume of the argument.
Fix ε > 0 small, and partition the segment γT into non-overlapping geodesic

segments γiT of length ε (if necessary, extend or delete the last segment; this will
not change the self-intersection count by more than O(T )). If ε is smaller than the
injectivity radius then

(9.5) vT =
∑∑

i 6=j
1
(
γiT ∩ γ

j
T 6= ∅

)
is the number of pairs (i, j) such that γiT and γjT cross. Birkhoff’s theorem implies
that for each i, the fraction of indices j such that γjT crosses γiT converges, as T →∞,
to the normalized Liouville measure of that region Rε of T 1S where the geodesic flow
will produce a ray that crosses γiT by time ε. This implies that the limit on the left
side of (9.1) exists. To calculate the limit, let ε→ 0: if ε > 0 is small, then for each
angle θ the set of points x ∈ S such that (x, θ) ∈ Rε is approximately a rhombus of
side ε with interior angle θ. Integrating the area of this rhombus over θ, one obtains
a sharp asymptotic approximation to the normalized Liouville measure of Rε:

L(Rε) ∼ 2ε2
∫ π

0
sin θ dθ/(2π area(S)) = 2ε2κ/π.

Since the number of terms in the sum (9.5) is 1
2 [T/ε2], it follows that vT/T 2 → κ/π.

The limiting relations (9.2) and (9.3) follow easily from (9.1). With probability
one, the geodesic segment γT has no multiple intersection points, by Lemma 9.2.
Consequently, as one traverses the segment γT from beginning to end, one visits each
vertex twice, and immediately following each such visit encounters a new edge of
TT (except for the initial edge), so eT = 2vT ± 2, and hence (9.2) follows from (9.1).
Finally, by Euler’s formula, v−e+f = −χ(S), and therefore (9.3) follows from (9.1)–
(9.2).
No geodesic ray can intersect itself before time %, where % is the injectivity radius

of S, so for every geodesic segment γT to length T the corresponding tessellation
must satisfy vT 6 T 2/%2. The inequality (9.4) now follows by Euler’s formula and
the relation e = v ± 2. �
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Proof of Theorem 1.4. — We will prove only the assertion concerning the empirical
frequencies of k−gons in the induced tessellation. Similar arguments can be used
to prove that the empirical distributions of scaled side-lengths, interior angles, etc.
converge to the corresponding theoretical frequencies in a Poisson line process. Denote
by TT the tessellation of the surface S induced by a random geodesic segment of
length T .
We first give a heuristic argument that explains how Theorem 1.2, Corollary 2.9,

and Proposition 9.1 together imply the convergence of empirical frequencies. Suppose
that, for large T , the surface S could be partitioned into non-overlapping regions
Ri each nearly isometric, by the scaled exponential mapping from the tangent space
based at its center xi, to a square of side αT−1. (Of course this is not possible, because
it would violate the fact that S has non-zero scalar curvature.) The hyperbolic area
of Ri would be ∼ α2/T 2, and so the number of squares Ri in the partition would be
∼ T 2/(α2κ).
Assume that α is sufficiently large that with probability at least 1− ε, the absolute

errors in the limiting relations (2.3),(2.4), and (2.5) (for some fixed k) of Corollary 2.9
are less than ε. By Theorem 1.2, for any point x ∈ S and any α, the restriction of
the geodesic tessellation TT to the disk D(x, 2αT−1), when pulled back to the ball
B(0, 2α) of the tangent space TxS, converges in distribution, as a line process, to
the Poisson line process of intensity κ. Since this holds for every x, it follows that
for all sufficiently large T , with probability at least 1− 2ε, in all but a fraction ε of
the regions Ri the counts VT (Ri) and FT (Ri) of vertices and faces in the regions Ri

(in the tessellation TT ) and the fractions Φk,T (Ri) of k−gons will satisfy

|VT (Ri)/α2 − κ2/π| < 2ε,(9.6)
|FT (Ri)/α2 − κ2/π| < 2ε, and(9.7)
|Φk,T (Ri)− φk| < 2ε .(9.8)

Call the regions Ri where these inequalities hold good, and the others bad. Since
all but and area of size ε × area(S) is covered by good squares Ri, relations (9.7)
and (9.3) imply that the total number of faces of TT in the bad squares satisfies∑

i bad
FT (Ri) 6 4εT 2 × area(S).

Consequently, regardless of how skewed the empirical distribution of faces in the bad
regions might be, it cannot affect the overall fraction of k−gons by more than 8ε.
Since ε > 0 can be made arbitrarily small, it follows from (9.8) that

(9.9) lim
T→∞

Φk,T (S) = φk.

To provide a rigorous argument, we must explain how the partition into “squares”
Ri can be modified. Fix δ > 0 small, and let ∆ be a triangulation of S whose triangles
τ all (a) have diameters less than δ and (b) have geodesic edges. If δ > 0 is sufficiently
small, the triangles of ∆ will all be contained in coordinate patches nearly isometric,
by the exponential mapping, to disks B(0, 2δ) in the tangent space TSxτ , where
xτ is a distinguished point in the interior of τ . In each such ball B(0, 2δ), use an
orthogonal coordinate system to foliate B(0, 2δ) by lines parallel to the coordinate
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axes, and then use the exponential mapping to project these foliations to foliations
of the triangles τ ; call these foliations Fx(τ) and Fy(τ). If δ > 0 is sufficiently small
then the curves in Fx(τ) will cross curves in Fy(τ) at angles θ ∈ [π2 − ε,

π
2 + ε], where

ε > 0 is small.
The foliations Fx(τ) and Fy(τ) can now be used as guidelines to partition τ into

regions Ri(τ) whose boundaries are segments of curves in one or the other of the
foliations. In particular, each boundary ∂Ri(τ) should consist of four segments, two
from Fx(τ) and two from Fy(τ), and each should be of length ∼ αT−1; thus, for
large T each region Ri(τ) will be nearly a “parallelogram” (more precisely, the image
of a parallelogram in the tangent space TSxi(τ) at a central point xi(τ) ∈ Ri(τ))
whose interior angles are within ε of π/2. The collection of all regions Ri(τ), where
τ ranges over the triangulation ∆, is nearly a partition of S into rhombi; only at
distances O(αT−1) of the boundaries ∂τ are there overlaps. The total area in these
boundary neighborhoods is o(1) as T →∞.
Corollary 2.9, as stated, applies only to squares. However, any rhombus R whose

interior angles are within ε of π/2 can be bracketed by squares S− ⊂ R ⊂ S+ in
such a way that the area of S+ \ S− is at most Cε area(S+), for some C < ∞ not
depending on ε. Since Corollary 2.9 applies for each of the bracketing squares, it
now follows as in the heuristic argument above that with probability > 1− C ′ε, in
all but a fraction Cε of the regions Ri(τ) the inequalities (9.6), (9.7),and (9.8) will
hold. The limiting relation (9.9) now follows as before. �

10. Extensions, Generalizations, and Speculations

A. Finite-area hyperbolic surfaces with cusps.

We expect also that Theorems 1.2–1.4 extend to finite-area hyperbolic surfaces
with cusps. For this, however, genuinely new arguments would seem to be needed,
as our analysis for the compact case relies heavily on the symbolic dynamics of
Proposition 3.1 and the regenerative representation of Gibbs states (Proposition 3.3).
The geodesic flow on the modular surface has its own very interesting symbolic
dynamics (cf. for example [Ser85] and [AF82]), but this uses a countably infinite
alphabet (the natural numbers) rather than a finite alphabet. At present there seems
to be no analogue of the regenerative representation theorem (Proposition 3.3) for
Gibbs states on sequence spaces with infinite alphabets.

B. Tessellations by closed geodesics.

It is known that statistical regularities of “random” geodesics (where the initial
tangent vector is chosen from the maximal-entropy invariant measure for the geodesic
flow) mimic those of typical long closed geodesics. This correspondence holds for first-
order statistics (cf. [Bow72]), but also for second-order statistics (i.e., “fluctuations”):
see [Lal14, Lal87, Lal89]). Thus, it should be expected that Theorems 1.2–1.4 have
analogues for long closed geodesics. In particular, we conjecture the following.
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Conjecture 10.1. — Let S be a closed hyperbolic surface, and let x ∈ S be a
fixed point on S. From among all closed geodesics of length 6 T choose one – call it
γT – at random, and let AT be the intersection of γT with the ball D(x;αT−1). Then
as T → ∞ the random collection of arcs AT converge in distribution to a Poisson
line process on B(0;α) of intensity κ.
We do not expect that this will be true on a surface of variable negative curvature,

because the maximal-entropy invariant measure for the geodesic flow coincides with
the Liouville measure only in constant curvature.

C. Tessellations by several closed geodesics.

Given Conjecture 10.1, it is natural to expect that if two (or more) closed geodesics
γT , γ

′
T are chosen at random from among all closed geodesics of length 6 T , the

resulting tessellations should be independent. Thus, the intersections of these tessel-
lations with a ball D(x, αT−1) should converge jointly in law to independent Poisson
line processes of intensity κ.

Appendix A. Poisson Line Processes

Proof of Lemma 2.1. — Rotational invariance is obvious, since the angles Θn are
uniformly distributed, so it suffices to establish invariance by translations along the
x−axis. To accomplish this, we will exhibit a sequence Lm of line processes that
converge pointwise to a Poisson line process L, and show by elementary means that
each Lm is translationally invariant.
Let {(Rn,Θn)}n∈Z be the Poisson point process used in the construction (1.1)

of L. For each m = 3, 5, 7, . . . , let Am = {kπ/m}06 k<m (the restriction to odd m
prevents π/2 from occurring in Am). For each n > 1, let Θm

n = [mΘn]/m be the
nearest point in Am less than Θn. By construction, for each m the random variables
Θm
n are independent and identically distributed, with the uniform distribution on the

finite set Am. Now define Lm to be the line process constructed in the same manner
as L, but using the discrete random variables Θm

n instead of the continuous random
variables Θn. Clearly, as m→∞ the sequence Lm of line processes converges to L.
It remains to show that each of the line processes Lm is invariant by translations

along the x−axis. For this, observe that for each θk ∈ Am the thinned process Rm,k

consisting of those Rn such that Θm
n = θk is itself a Poisson point process on R of

intensity κ/m, and that these thinned Poisson point processes are mutually indepen-
dent.(6) Consequently, the line process Lm is the superposition of m independent line
processes Lkm, with k = 1, 2, · · · ,m, where Lkm is the subset of all lines in Lm that
meet the x−axis at angle π/2− θk. Since the constituent processes Lkm are indepen-
dent, it suffices to show that for each k the line process Lkm is translation-invariant.
But this is elementary: the points where the lines in Lkm meet the x−axis form a
(6)The thinning and superposition laws are elementary properties of Poisson point processes. The
thinning law follows from the superposition property; see Kingman [Kin93] for a proof of the latter.
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Poisson point process on the real line, and Poisson point processes on the real line
of constant intensity are translation-invariant. �

Proof of Corollary 2.3. — By rotational invariance, it suffices to show this for the
x−axis. Let Lm and Lkm be as in the proof of Lemma 2.1; then by an easy calculation,
the point process of intersections of the lines in Lkm with the x−axis is a Poisson
point process of intensity (κ/m) sin θk. Summing over k and then letting m → ∞,
one arrives at the desired conclusion. �

Proof of Proposition 2.5. — The hypothesis that Γ encloses a strictly convex
region guarantees that if a line intersects both A and B then it meets each in at
most one point. Denote by L{A,B} the set of all lines that intersect both A and B.
If A and B are partitioned into non-overlapping sub-arcs Ai and Bj then L{A,B}
is the disjoint union ∪i,jL{Ai, Bi}. Since the sets L{Ai, Bi} are piecewise disjoint, the
corresponding regions of the strip R× [0, π) (in the standard parametrization (1.1))
are non-overlapping, and so, by a defining property of the Poisson point process
{(Rn,Θn)}n 6 ∈Z, the counts N{Ai, Bj} are independent Poisson random variables. Since
the sum of independent Poisson random variables is Poisson, to finish the proof it
suffices to show that for arcs A,B of length < ε the random variables N{A,B} are
Poisson, with means κβA,B.
If ε > 0 is sufficiently small then any line L that intersects two boundary arcs

A,B of length 6 ε must intersect the two straight line segments Ã, B̃ connecting the
endpoints of A and B, respectively; conversely, any line that intersects both Ã, B̃
will intersect both A,B. Therefore, we may assume that the arcs A,B,Ai, Bi are
straight line segments of length 6 ε. Because Poisson line processes are rotationally
invariant, we may further assume that A is the interval [−ε/2, ε/2]× {0}.
We now resort once again to the discretization technique used in the proof of

Lemma 2.1. For each m = 3, 5, 7, . . . , let Nm
{A,B} be the number of lines in the line

process Lm that cross the segments A,B. Clearly, Nm
{A,B} → N{A,B} as m → ∞,

so it suffices to show that for each m the random variable Nm
{A,B} has a Poisson

distribution with mean µm → κβA,B.
Recall that the line process Lm is a superposition of m independent line processes
Lkm, and that for each k the lines in Lkm all meet the x−axis at a fixed angle |π/2−θk|.
Hence, Nm

{A,B} = ∑
kN

m,k
{A,B}, where N

m,k
{A,B} is the number of lines in Lkm that cross

both A and B. The random variables Nm,k
{A,B} are independent; thus, to show that

Nm
{A,B} has a Poisson distribution it suffices to show that each Nm,k

{A,B} is Poisson. By
construction, the lines in Lkm meet the line (s cos θk, s sin θk)s∈R at the points of a
Poisson point process of intensity κ/m; consequently, they meet the x−axis at the
points of a Poisson point process of intensity κ| cos θk|/m. Now a line that meets the
x−axis at angle θk will cross both A = [−ε/2, ε/2] × {0} and B if and only if its
point of intersection with the x−axis lies in the θk−shadow Jk of B on A. Therefore,
Nm,k
{A,B} has the Poisson distribution with mean κ|Jk cos θk|/m = κψA,B(θk). It follows
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that Nm
{A,B} has the Poisson distribution with mean

ENm
{A,B} =m−1

m−1∑
k=0

κ|Jk cos θk|

=m−1
m−1∑
k=0

κψA,B(θk)

−→ κ

π

∫ π/2

−π/2
ψA,B(θ) dθ. �

Proof of Corollary 2.6. — It suffices to prove this for disks of small radius, because
by the translation-invariance of L,

EV (D) ∼ 1
π%2

∫
D
EV (B(x, %)) dx = EV (B(0, %))|D|/(π%2)

as % → 0. Let γ be a chord of B(0, %), and Hγ the event that γ ∈ L ∩ B(0, %).
Conditional on Hγ, the number of intersection points on γ is Poisson with mean
2κ|γ|/π, by Corollary 2.3 and Proposition 2.5.(7) Therefore,

EV (B(0, %)) = 1
2

2κ
π
E

 ∑
γ ∈L∩B(0, %)

|γ|

 := κ

π
EΨ(L ∩B(0, %)).

(The factor of 1/2 accounts for the fact that each intersection point lies on two
chords.)
The expectation EΨ(L ∩B(∪, %)) is easily evaluated using the standard construc-

tion of the Poisson line process (Definition 1.1). The lines of L that cross B(0, %) are
precisely those corresponding to points Rn such that −% < Rn < %. For any such
Rn, the length of the chord γ = γn is |γn| = 2

√
ρ2 −R2

n. Therefore,

EΨ(L ∩B(0, %)) = κ
∫ %

r=−%
2
√
ρ2 − r2 dr = κπ%2. �

Proof of Proposition 2.7. — Let L be the Poisson line process with intensity κ,
and denote by τz the translation by z ∈ R2. It suffices to prove that for any two
bounded, continuous functions f, g : C → R,
(A.1) lim

|z|→∞
Ef(L)g(τzL) = Ef(L)Eg(L).

Since the Poisson line process is rotationally invariant, it suffices to consider only
translations τz for z = (x, 0) on the x−axis. Moreover, since continuous functions
that depend only on the restrictions of configurations to balls are dense in the space
of all bounded, continuous functions, it suffices to establish (A.1) for functions f, g
that depend only on configurational restrictions to the ball of radius r > 0 centered
at the origin.

(7)The event Hγ has probability 0, but it is the limit of the positive-probability events that L
has a line which intersects small boundary arcs centered at the endpoints of γ. The conditional
distribution of L given Hγ can be interpreted as the limit of the conditional distributions given these
approximating events. The independence assertion of Proposition 2.5 guarantees that, conditional on
Hγ , the distribution of L∩B(0, %) is the same as the unconditional distribution of (L∩B(0, %))∪{γ}.
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To prove (A.1), we will show that on some probability space there are Poisson line
processes L,L′,L′′, each with intensity κ, such that

(a) the line processes L′ and L′′ are independent;
(b) f(L) = f(L′) with probability one; and
(c) g(τzL) = g(τzL′′) with probability → 1 as |z| → ∞.

It will then follow, by translation invariance, that

|Ef(L)g(τzL)− Ef(L)Eg(L)| =|Ef(L)g(τzL)− Ef(L′)g(L′′)|
=|Ef(L)g(τzL)− Ef(L′)g(τzL′′)|
6 2‖f‖∞‖g‖∞P {g(τzL) 6= g(τzL′′)} −→ 0.

The line processes L,L′,L′′ can be built on any probability space that supports
independent Poisson point processes {R′n}n∈Z and {R′′n}n∈Z on R of intensity κ,
and independent sequences {Θ′n}n∈Z and {Θ′′n}n∈Z of random variables uniformly
distributed on the interval [−π, π]. Let L′ be the line process obtained by using
the “standard construction” (that is, the construction explained in Definition 1.1)
with the point process {R′n}n∈Z and the accompanying uniform random variables
{Θ′n}n∈Z, and let L′′ be the line process obtained by the standard construction using
the point process {R′′n}n∈Z and the random variables {Θ′′n}n∈Z. Clearly, L′ and L′′
are independent.
The line process L is constructed by splicing the marked Poisson point processes
R′ = {(R′n,Θ′n)}n∈Z and R′′ = {(R′′n,Θ′′n)}n∈Z as follows: in the interval (−r, r),
use the marked points of {(R′n,Θ′n)}n∈Z; but in R \ (−r, r), use the marked points
of {(R′′n,Θ′′n)}n∈Z. Thus, the resulting marked point process R = {(Rn,Θn)}n∈Z
consists of (i) all pairs (R′n,Θ′n) such that −r < R′n < r, and (ii) all pairs (R′′n,Θ′′n)
such that R′′n 6∈ (−r, r). By standard results in the elementary theory of Poisson
processes, the marked point process R has the same distribution as R′ and R′′, in
particular, {Rn}n∈Z is a rate-κ Poisson point process on R, and the random variables
{Θn}n∈Z are independent and uniformly distributed on [−π, π]. Let L be the Poisson
line process constructed using R.
It remains to show that the Poisson line processes L,L′,L′′ satisfy properties (b)

and (c) above. Observe first that in the standard construction (Definition 1.1), only
those pairs (Rn,Θn) such that Rn ∈ (−r, r) will produce lines that intersect the ball
B(0, r) of radius r centered at the origin. Consequently, the restrictions of L and L′
to B(0, r) are equal; since f depends only on the configuration in B(0, r), it follows
that f(L) = f(L′).
Next, consider the configurational restrictions of L and L′′ to the ball B((x, 0), r)

for x� 2r. In the standard construction, a pair (Rn,Θn) such that Rn ∈ (−r, r) will
produce a line of L that intersects B((x, 0), r) only if | tan Θn| 6 r/(x − 2r). The
probability that there is such a pair, in either R or R′′, tends to 0 as x→∞; hence,
with probability → 1, the restrictions of L and L′′ agree in B((x, 0), r), and on this
event g(L) = g(L′′). �

Proof of Corollary 2.9. — The number of lines in a Poisson line process L that
intersect a given line segment of length m has the Poisson distribution with mean
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Cκm, where C is a finite positive constant not depending on either m or κ. Conse-
quently, the probability that the number of polygons in the induced tessellation of
the plane intersecting one of the four sides of [−n, n]2 exceeds n3/2 is exponentially
small in n.
Given a line configuration L, let 1/f(L) be the area of the polygon containing the

origin in the induced tessellation. (This is well-defined and positive with probability
1.) Let A−n be the union of all polygons of the tessellation that lie entirely in the
open square (−n, n)2, and let A+

n be the union of the polygons that intersect [−n, n]2.
Then ∫

A−n
f(τzL) dz and

∫
A+
n

f(τzL) dz

count the number of polygons in A−n and A+
n , respectively; since the difference

between these is less than n3/2, except with exponentially small probability, it follows
that except with small probability∣∣∣∣∣Fn −

∫
[−n, n]2

f(τzL) dz
∣∣∣∣∣ 6 n3/2.

Hence, by the multi-parameter ergodic theorem (see, for example, [Cal53]), Fn/n2 →
Ef(L) almost surely.
The proof of the assertion regarding empirical frequencies of k− gons is similar.

If Gk is the event that the polygon containing the origin is a k−gon, then the total
number of k−gons in the region A±n is∫

A±n
(f1Gk)(τzL) dz.

Hence, the ergodic theorem implies that the number of k−gons divided by n2 con-
verges to E(f1Gk(L)), and it follows that the fraction of k−gons converges to

φk = E(f1Gk(L))
Ef(L) .

Now consider the number of vertices Vn. Because there is probability 0 that three
distinct lines of a Poisson line process meet at a point, all interior vertices are shared
by exactly 4 edges, and each edge is incident to two vertices; thus, since the number
of vertices on the boundary of the square is O(n3/2), we have En = 2Vn + O(n3/2).
By Euler’s formula, Vn − En + Fn = 1, so Vn = Fn +O(n3/2); hence,

lim
n→∞

Vn/n
2 = lim

n→∞
Nn/n

2.

The value of the limit is determined by Corollary 2.6, which implies that
EVn = 4κ2n2/π. �
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