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Abstract. The space of deformations of the integer Heisenberg group under the action of
Aut(H(R)) is a homogeneous space for a non-reductive group. We analyze its structure
as a measurable dynamical system and obtain mean and variance estimates for Heisen-
berg lattice point counting in measurable subsets of R3; in particular, we obtain a random
Minkowski-type theorem. Unlike the Euclidean case, we show there are necessary geomet-
ric conditions on the sets that satisfy effective variance bounds.
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1. Introduction

Minkowski’s theorem in the geometry of numbers shows that in any sufficiently
large convex centrally symmetric open setin R” there are non-zero integral points.
The asymptotic count of the number of such points is well understood in terms of
the volume of the set, but the optimal error term is hard to obtain and can depend
sensitively on the regularity of the boundary.

Itis an old idea that to understand a particular instance of a complicated system,
it is beneficial to understand its typical behavior. From the classical viewpoint of
the ‘metric theory of equidistribution’, Z" is one of many lattices in R”, and their
average behavior is easier to grasp than the individual point counting stories each
lattice has to tell. In the more modern conception of homogeneous dynamics, Z"
is a point in the space of unimodular lattices in R", a finite volume homogeneous
space of SL(n, R). Thus, we can formulate questions about the average count of
lattice points and their variance for a given set, with respect to the Haar probability
measure on this space.

The first steps in that program were taken by Siegel [9] who considered aver-
aged lattice point counting over unimodular lattices and gave a mean value for-
mula. Subsequently, Rogers [7] studied higher moments of functions on the space
of lattices and obtained a variance bound in R” with n > 3.

Rogers’s work was used by W. Schmidt in [8] to show that for a nested family
of Borel sets in R” with unbounded finite volumes, almost all lattices have the
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expected number of lattice points with explicit discrepancy bounds. The hardest
part in Schmidt’s work was the case n = 2 where most of Rogers’s identities were
not applicable: there was no variance bound in R? to rely upon and he had to work
‘by hand’ using classical estimates from analytic number theory and the action of
SL(2, Z) on pairs of integer vectors.

The issue of a variance bound was also treated by Randol [6] who obtained
Rogers-type variance estimates for primitive lattice point counting in disks using
the spectral decomposition of L2(SL(2,R)/ SL(2,7Z)). Using Randol’s results
and a deeper analysis of the Siegel operator (defined in [9]) for SL(2, R), Athreya-
Margulis obtained in [1] a variance estimate for primitive lattice point counting
allowing arbitrary Borel sets in R2.

The results above provide significant information on the average behavior of
Euclidean lattices. A natural subsequent question that arises involves lattices in
non-abelian groups. The recent work of Garg, Nevo and Taylor [3] addresses the
lattice point count of Z2"*! in large centered balls in certain norms homogeneous
with respect to the dilations of the (2n 4 1)— dimensional Heisenberg group.

The present work provides variance bounds for random lattices in the case
of the 3-dimensional Heisenberg group. We will see that even in this modest
excursion outside the abelian world, the average behavior of lattices is much
more erratic than the Euclidean case. In particular, we show in Proposition 5.1
that very simple sets S C R3 have no useful variance bound for the number of
primitive points of a random Heisenberg lattice in S. On the other hand, we also
provide a natural class of sets for which optimal variance bounds exist and discuss
extensions (see eg. Corollary 4.14).

Our main technique is to realize the space of Heisenberg lattices as a fiber
bundle over the space of Euclidean lattices, use the action of the automorphism
group of H(R) on it and relate it to the action of SL.(2, R) on the space of Euclidean
lattices. Since the space of Heisenberg lattices embeds into the space X3 of
Euclidean lattices in R3, our results can also be seen as looking at orbits in X3
of certain lower dimensional subgroups of SL(3, R).

1.1. Heisenberg group. The real Heisenberg group H(IR) has R? as the under-
lying manifold with the smooth addition law (see Section 2 for details)

r r’ r+r'
()

t t’ t+t +rs’ —sr
With this law Z> becomes a discrete subgroup denoted by H(Z) which will be
taken to have co-volume 1 with respect to the Lebesgue (Haar) measure on R3. Let
Xu be the orbit of Z3 under the action of the connected component of the identity
of the automorphism group of H(R) preserving volume Autf' (H(R)) (this is a
connected Lie group whose structure we describe in Section 2). This set has the
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structure of a finite volume homogeneous space with the projected Haar measure
from AutfL (H(R)).

Our work involves the following class of sets: consider a Borel set A C R? of
finite measure greater than 1. The epsilon-plate over A at level z is the set

AZ:=1(2,0,0)+ A x[0,€) C R3.

A point [ = (m,n, k) (where k, the third coordinate, is the central direction) in
a Heisenberg lattice gZ> is called primitive if gcd(m,n) = 1 (this is the correct
analogue of primitivity in H(Z) as we shall see in Section 2).

The main result provides the following average deviation bound for primitive
lattice point count.

Theorem 1.1 (See Corollary 4.13). Let ung be the projected Haar measure on
the space of Heisenberg lattices Xy that are deformations of the standard lattice
H(Z) and m the Lebesgue measure in R3. Suppose 0 < € < 1. We have

C
> rym(47)) < 1)

m(A7)
£(2)

MH(A € Xu: ‘#(Ag N Aprim) —

where C is an absolute constant.

Combining these results with standard analytic manipulations we get variance
bounds for sets built up from a moderate number of plates. However, there is a
gap between the sets for which we get bounds and those for which we prove there
is no such bound. This reflects the limitations of our knowledge of Euclidean
lattice point distribution in R2. Despite this, regarding features of Heisenberg
lattices that come genuinely from the action of the Heisenberg group, the results
of sections 3 and 4 provide a comprehensive picture and one that generalizes to
higher dimensional Heisenberg groups.

In subsequent work we plan to treat those higher dimensional groups com-
bining an analysis of lattice point distribution of symplectic Euclidean lattices in
R?" and the semi-direct product structure of the corresponding Aut(H). We hope
that the present paper will also serve as an accessible introduction to the more
technical results to follow.

In the next section we provide all the relevant definitions and illustrate the
differences between Euclidean and Heisenberg lattices.

2. The space of Heisenberg lattices

In this expository section we describe the structure of the space of Heisenberg
lattices.
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Definition 2.1. The three dimensional real Heisenberg group H(R) is defined to
be the group with underlying set R (written as column vectors) and addition law

r r’ r+r'
t t t+t +rs’ —sr’

The integer Heisenberg group H(Z) is the discrete subgroup H(R) N Z3.

Remark 2.2. The standard symplectic form appears in the addition formula for
H(R); any other bilinear form would give rise to a Heisenberg group whose
structure would be determined by the antisymmetric part of the form. See [2]
for the reduction and more general Heisenberg groups.

Proposition 2.3. Lebesgue measure in R3 is a Haar measure for H(R). The
group H(Z) is a lattice in H(R) with a fundamental domain [0, 1)3. The group
of automorphisms of H(R) that preserve volume and orientation is the group
Aut;r (R) =: Aut consisting of matrices of the form

~ SL(2,R) x R?

[ RSN
o x>
—< =

where )
L a - X 2
g = (c d) e SL2,R) and v:= (y) € R”.

We abbreviate these elements by
g v
0 1)

The group Aut;r (R) acts on H(R) by

g v\ (! g7 (%)
(5 1)'(?) = (- ) @

where g* = (g 1) is the inverse transpose. In terms of matrix multiplication, the

action is
G0
s .
0 1 ;

Proof. All the assertions can be found in [2, 1.2 - 1.3]. The action there is of
the transpose of the group we have by simple matrix-column multiplication. Our
group acts by taking inverse transpose (landing us in the group used by Auslander)
and performing matrix-column multiplication. O
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Remark 2.4. The choice of group representation for Aut] may seem odd; we
made this choice because we need to take quotients on the right and it is easier
to see the fiber bundle structure of the automorphism group from the upper
semidirect product when we take right quotients. Whenever no confusion can
arise, we freely switch to the lower one and its matrix action on column vectors
rather than passing through the inverse transpose.

We turn to our main object of study:

Definition 2.5. Normalize the Haar (Lebesgue) measure m of H(R) so that the
co-volume of H(Z) is 1. The space of H(Z)-deformations is defined to be the
orbit Autf’ (R) - H(Z). It can be identified with the quotient

Xu = Aut] (R)/Autf (Z)

where the last group is the group of Z-points of the automorphism group (this is
the stabilizer of H(Z)).

This is essentially the space of all Heisenberg lattices of co-volume 1. A full
description of all lattices in H(R) is given in [2, I.2]. Note that not all lattices in
H(R) are isomorphic as groups to H(Z); those that are, are isomorphic through
an ambient automorphism of H(R). This crucial rigidity result, among other
important facts about nilpotent groups, can be found in [5].

The next two facts describe the topological and measure theoretic relations
between Xy and the space of unimodular lattices in R? (denoted by X).

Proposition 2.6. The space Xy has an equivariant fiber bundle structure over X
with compact fiber over g SL(2, Z) equal to R?/gZ>.

Corollary 2.7. Let uy be the unique probability measure on Xy invariant under
Aut. Then dun(gn) = dug(g) xdug(x) where dug (g) is the projection of Haar
measure on the space of Euclidean lattices X that gives measure 1 to SL(2,7Z)
and dg (x) the probability Haar measure on the toral fiber.

Remark 2.8. Finally observe that Xig < X3 as topological spaces. This inclusion
identifies Xy with a subset of Euclidean lattices, with the following caveat: when
we consider the two spaces not simply as topological spaces but as orbit spaces
with a common action on R3, we need to modify the inclusion as Xg < X by
where the last space is given by the inverse transpose automorphism of SL(3, R).

3. Lattice points in measurable sets

Let A C H(R) be measurable. Pick a Heisenberg lattice L at random from Xg
using the Haar measure. What can we say about AN L? It turns out that the answer
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has two parts: one involves the projection of L in the R? plane orthogonal to the
center of H(R) and the other the vertical distribution over each lattice point in
the projection. There are no ‘slanted lines’ in the central direction for Heisenberg
lattices.

The corresponding question for Euclidean lattices has a very elegant answer
that we will use extensively. The following result is one of the main points of [1]:

Theorem 3.1 ([1, Theorem 2.2]). Let n > 2. There exists C, > 0 such that if
A C R" has m(A) > 0,

Cn
m;(AeX,,.AﬂA:Q))Sm(A). 3)

Here pg is the probability Haar measure on Euclidean n-lattices X, and m
is Lebesgue measure. In fact, the computation in [1, Section 4.2] implies the
following stronger statement for Euclidean lattices in R?:

Theorem 3.2. Let A C R? with m(A) > 0. Then for all r > 0,

m(A) C
ME(A € X, ‘#(A N i) = 757 | > er(A)) <. &)

In order to derive these theorems, the authors made extensive use of the Theta
transform of compactly supported functions.

Definition 3.3. Let L. = g7Z" be a Euclidean lattice in R”. Given a function ¢ in
LY(R"), the theta transform is

Op(L) = f(})

AELprim
where A ranges over primitive points in L. When ¢ = x4, we write ©®¢ = O4.
We next give a version of the theta transform adapted to our needs.

Definition 3.4. Let L = gZ3 be a Heisenberg lattice. An element of L is called
primitive if A = g(k, [, m) with the greatest common divisor gcd(k,/) = 1.

Definition 3.5. Given a function ¢ in L' (R?) let

OMp(L) =>" f()

A€ Lprim

where A ranges over primitive points in L. The operator @H: ¢ — @H¢ is called
the nil-theta transform of ¢. When ¢ = y4, we write @H¢ = @E.
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For characteristic functions of Borel sets, the Theta transform has the following
properties that we will use repeatedly:

Proposition 3.6. Let ¢ = y4 with A a bounded Borel set such that there exists a
neighborhood U of R? containing 0 such that A N (U x R) = @. Then the Theta
transform ®U¢ is a bounded Borel function with compact support on Xq.

Proof. The Borel property is clear. For a Heisenberg lattice L to intersect A, its
projection in R? must intersect A9 = mga(A), i.e. we must have ® x40 7 0. Ao
being a bounded set that does not meet a neighborhood of the origin shows, via
the Mahler Compactness Criterion ([4, Chapter XIII, §1]) that ® x4, has compact
support C in X.

Therefore the closure of the set of Heisenberg lattices giving a non-zero ®fll
is a subset of a torus bundle over the compact set C and therefore is compact.

Finally, whenever ¢ < ¥ we have @H¢ < OHy so if ¥ is a continuous
function whose support is compact and contains A, we have ®}1{ < ©Hy . Since
®Hy is continuous (continuity is proven as in loc. cit.) with compact support, it
is bounded, and therefore so is O, O

The nil-theta transform of characteristic functions counts lattice points in sets
like its Euclidean counterpart. However, a result as uniform as Theorem 3.1 cannot
hold in the Heisenberg setting:

Proposition 3.7. Let wqy be the projection in H(R) fo the first two coordinates.
Let A C H(R) have positive measure. The following inequality holds:

HH(L € Xg: AN L =0) > up(A € X:mga(A) N A = 0). ®))

Proof. The action (2) transforms the flat part of the lattice by an element of
SL(2, R) and then translates the third component of each lattice point accordingly
along the central direction. Suppose the projection of A does not intersect a
lattice A. Then A cannot intersect any lift of A, since lifts are determined by
values of the third coordinate over the flat part. Thus the entire torus of lattices in
Xu over A misses A, giving the inequality. O

In particular, we can increase the measure of A indefinitely keeping mq,(A)
fixed; in the extreme cases of Theorem 3.1 (which are attained), for some C > 0

we have
C

 mCra(4)
We see that even if m(A) itself becomes large, the probability of missing a

Heisenberg lattice remains bounded below by the inverse of the measure of the
projection.

pH(A € X @ ma(A) N A = 0)
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This discrepancy originates in the way Heisenberg lattices sit in the space of
all Euclidean 3-lattices: all Heisenberg lattices project to 2-lattices in the plane
without tilting across the central direction. This phenomenon can be illustrated
by the following extreme example:

Example 3.8. For § > 0 and N > 1 large, define T'(§, N) to be the cylindrical
punctured tube
T(,N)=(D(0,8)\(0,0)) x [-N, N]

in R3. Consider a compact subset C C X of measure ug(C) = 1 — €. Then by
the compactness criterion on the space of lattices, all lattices in C have vectors of
length at least 2§ = /€. Then

ua(L € Xg: LNT(,N)=0)
> ug(A € X: AN D(,5) = 0)
> ue(C) =1-e.

On the other hand, the measure of 7'(§, N) can become arbitrarily large no matter
how small § is, by increasing N.

This is in stark contrast to the situation for Euclidean 3-lattices: starting
from Z3, we can reach the tube with an infinitesimally small shear; the points
(0,0,n) € 7> will immediately tilt to intersect 7(§, N).

The following question arises from this discussion: given a set 4 in H(IR) and
knowledge of the statistics of lattice points on wga(A4), how can we deduce the
statistics of Heisenberg lattice points on A? The next two sections are devoted to
the answer.

4. Level distribution of lattices

Definition 4.1. Let A C R? be measurable with positive measure, ¢ > 0 and
z:=(0,0,z) with z € R. Let

AZ=z+ Ax|0,¢)

be the level-z e-plate over A. Consider a Heisenberg lattice L = ggH(Z). The
set
{#(L N AZ):e € (0,1)}

is called the z-level distribution of L € Xg. From now on we assume 0 < € < 1.

Remark 4.2. The definition above captures significant information for character-
izing lattice statistics given the statistics of the projection, because lattices above
a given Euclidean lattice only differ in the vertical deviation of lattice points from
the integer lattice.
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Proposition 4.3 ([1, Proof of Theorem 2.2]). For A C R? of positive measure
m(A) = a, we have the variance estimate

H@A—%Hz < 16a. (6)

We now begin the study of moments of ®filz. The following proposition gives
the Siegel formula. Since some intermediate formulas will be used in the L2

estimate, we give a quick proof.

Proposition 4.4. We have

m(A)e
t@)

[ et dune) - ™

Xu
Proof. We have gz = xaxz+[0.0- If gm0 = (§ ’f), write

®ZI§ (gHH(Z)prim) = Z XA(g*nq)Xz—i-[O,e) (k — xt- g* : n_&)
(’_h’k)EH(Z)prim

which splits as

@fllé (guZ’) = Z xa(g*n) Z Xz+l0,0(k — X' - g* 1)
mez? kez

prim

=>4 m) Y qpo.0k —z — %" - g* i) ®

fﬁeZz keZ

prim
= > xalg* mI({z + X' - g* i} < e).
mez?

prim

We want to integrate the last expression over the fiber first, then over the base,
using Corollary 2.7,

/ O (¢uH (Z)prim) djin(gm)

Xu
®)
=/ ZXA(g*n?)( /1({z +3 gty <e) dx) duE(g).
X r;lGZIZ)rim R2/g7?
Now perform the change of variables X = gu in the inner integral and use

detg = 1 to simplify to

/1({2 +u' -m} < e€)du.

R2/72
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Since SL(2, Z) is transitive on primitive vectors, all the toral integrals must have
the same value which we now compute.

The map S(uy) = z + uym; + uam, (mod gZ?) is measure preserving, so
splitting the integral over the torus in (9), we get

/ /I(S_l([O, €))duy duy = €.

R/Z R/Z
The outer integral in (9) is
m(A)

/ Ox(Mdn(A) =7

X

using the Siegel formula [9, page 341] for Euclidean lattices, and our normaliza-
tion of X. 0

Now we need some preparations for dealing with the second moment of @EZ.
€

Definition 4.5. Fix an integer D. Consider the space of pairs of coprime integer
vectors

- > 2 2
Mp ={m = (m,n) € Zprim X Zprim

:detm = D}. (10)

The diagonal action of SL(2, Z), y(m, i) = (ym, yn) leaves invariant the deter-
minant of m, so it stabilizes each Mp. The space of SL(2, Z) orbits of the set
Mp C 72, x 72, of determinant D pairs is denoted by M) = SL(2, Z)\Mp.

prim prim

Definition 4.6. Let m = (m,my) € Z? and z € R. Define the map Sj;: T? — T
by
Sq;W1,uz) =z + mpuy + moup  (mod 1).

Denote the pullback of [0, €) by S into T2 by
Ci(e) := Srgl([O, e]) c T2

2
prim’

Cory, 7 (€, 2) = pp2/72(Cz(€) N C5(€))

where 1272 is the probability Haar measure on the 2-torus.

Finally, for m,7 in Z define the correlation of

Next, we turn to the second moment of ®fllz.
€

Proposition 4.7. We have the following identity:

18P dun(L) = [ xateinate Corgate. ) dum(e). (11
Xu

2

X m,n eZprim
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Proof. Using notation as in Proposition 4.4 and the expression (8) for the inte-
grand, expand the square:

O (L) =) xalg*m) xalg*ii)
ma1({z 4+ X g*m) < o1({z + ¥ gt} < €).
Let
Wi (8. %) =1({z + X' g*m} < )1({z + X' g*in} < e).

Once again integrating and changing variables, we get

/w,;,ﬁ(g,fc)dx = /1({2 +u'my < e)l({z +u'n} < €)du.
]RZ/gz2 ]RZ/ZZ

Since this expression is invariant under g — gy, the result follows from the
definition of Cj; (€). O

Remark 4.8. The correlation Cory, ;; (€, z) is a ‘correction factor’ that weighs the
double sum in (11). Therefore, the study now reduces to the distribution of the
values of Corj j;(€,z). Whenever m = yn are in the same SL(2, Z)-orbit, the
corresponding correlations must be the same. Thus one can write Cory, ; (€, z) =
Corg (€, z) for the common value of the correlation over an orbit O € M g . The
idea is to look for a simple pair m in the orbit where the correlation is easy to
compute.

The next lemma describes the structure of the above set; the proof can be found
in [8, Lemma 6] or worked out by hand.

Lemma 4.9. The structure of M g is as follows:
(1) if D=0, then M g has two elements represented by =+ ( } );

Q) if D = &£1, then M g is a singleton represented by the identity matrix
(diag(—1, 1) respectively);

3) if|D| > 1, then Mg consists of (D) distinct orbits, represented by (lk) ‘1’)
where k runs through a complete set of residues modulo D.

Using this lemma, we can show:

Proposition 4.10. The correlation Cory (¢, z) is equal to €2 when © € Mp with
D # 0 and equal to e when D = 0 and O = +1, 0 when O = —1.

Proof. When D = 0 with equal parity, choose m = (1 3); then

Corp(e,z) = uRz/Zz(S_l([O,e])) =
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as in Proposition 4.4. For opposite parity, the two intervals [0,¢) + Z and

(—¢,0] + Z are disjoint so their pullback under S has empty intersection.

When D # 0, for any (2 ) compute

/1({2 ity < Ol({z +ii'7i) < €) du

R2/7?

= / / 1{z + Duy + kuz} < e)l({z + uz} <€) duy du,

R/Z R/Z

:/1({Z+M2} <e)/1({z+Du1 + kuy} < €)duy dusy;

R/Z R/Z

the inner integrand is the pullback of [0, €) by a (measure preserving) affine map
of the form Du; + 7 giving integral € independent of u,, and then the remaining

factor contributes another €.

O

We now come to the main result of this section, the analog of Theorem 4.3 for

Heisenberg lattices.

Theorem 4.11. Let AZ be an epsilon-plate over A of measure m(A) > 1. We have

ot - S = gt o

Proof. Write
A AN 2
| Ag—émé))ﬂ — ok ||%—(E';(g)))

and use (11) to expand

() ||2—/ > xalg*m) xa(g*ii) Corz, (€. 2) dum(g):;
X m,nez?

prim

by Proposition 4.10 the integrand on the right hand side becomes

€Y xalgm) xa(g*i) + €Y ya(g*m) xa(g*i);

meMy, + meMp, D#0

now add and subtract the sum over M, weighted by €2 to get

(€—€3) > xa(g*m)ya(g*m) + € > xa(g*m)xa(g*ii)

meMy, + meM

12)
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for the integrand; recall detm = 0 and parity preservation implies m = 7.
Integrating the two parts separately, we get

IR 2 = (e - 2)/®XA(L)duE(L)+e /|®A(L)|2duE(L)

which simplifies to

O5L13 = (e - ) [ OxaL) dpnL) + 1043

X
_ (e=€e»)m(4)
a £(2)

using y4 = )(fl and the Siegel formula [9] for Euclidean 2-lattices (recall our

normalization of X). Now we subtract the constant term and absorb it into the
second summand to get

+€%[104]13

g €m(A) (e — 62)m(A) 5 m(A) |2
H®A€ 0 H 2 '€ HG)A - WH (13)
Applying Theorem 4.3 and gathering €2 terms together, we obtain
em(A) em(A) 2
ok - o) H Fo) 20 mA), (14)
O

Theorem 4.11 immediately implies the analogues of Theorems 3.1 and 3.2 for
the plate distribution.

Corollary 4.12. We have the following bound on the probability of a Heisenberg
lattice missing a plate AZ:

pa(A € Xp: AN A =0) < (15)

m(AZ)
Corollary 4.13. The average discrepancy of lattice points in a plate AZ satisfies
the Chebyshev inequality

C

e B

r2’

m(Ag)
£(2)
From this information, we can obtain discrepancy estimates from sets built out

of plates in a controlled number of steps. We illustrate this with the example of a
stout cylinder:

MH(A € Xu: ‘#(Ai N Aprim) — (16)

Corollary 4.14. Let C = A x I withm(A) > 1 and |I| < m(A)2~. Then

uaa (A € Xu: [#(C 01 Aprim) — 51 =3

a7
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5. High discrepancy sets

Here we construct a wide variety of sets for which an estimate like the one in
Corollary 4.13 cannot hold; the argument is an extension of Example 3.8. The
point of the following proposition is to show that firstly high discrepancy sets
need not be anchored to any specific point like the origin, and secondly do not
need to have an approximately cylindrical shape (although they will be built out
of cylinders).

Proposition 5.1. Let B(0, R) be a large ball in R? centered at the origin and fix
€ > 0. Let
Zo = (Z* + B(0,€)) N B(0, R)

be a thickening of the standard lattice inside the fixed ball. There exist Borel sets
S C R? such that:
(1) S has arbitrarily large measure,

(2) for any cylinder C and €' > 0,

m(CAS) > m(S)'~¢,

(3) maat(S) = A is an arbitrary Borel set of positive measure in B(0, R) \ Z,
and

(4) the inequality
ua(A e Xg:SNA=0)>6§

holds, where § depends only on €.

Proof. Let U be a neighborhood of the identity in SL(2, R) such that
(UZ*) N B(0,R) C Z

and ug(U) = § its measure.

Generally to meet requirements 1, 3 and 4 we can pick an arbitrary Borel
A C B(0,R) \ Z, of positive measure, partition it into finitely or countably
many disjoint Borel sets A; of positive measure and over each set erect a cylinder
C; = A; x I; of any desired height to form S so that

> | Lilm(A;) = m(S)

is arbitrarily large and distributed in an arbitrary way over the bases A4;.

To meet the second requirement, observe that all that matters in the computa-
tion is the measures of the A; and the placements of the cylinders over them. Thus
we can visualize the A; as disjoint horizontal intervals on the real line arranged in
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decreasing size and the /; as vertical intervals at prescribed level and of prescribed
height.

Choose a large finite partition of 4 into k = m(A)" parts so that each 4;
has measure approximately %m(A) and choose segments /7 = [1,2], I, = [2, 4],
I3 = [4,8] and so on. Then m(S) ~ km(A) and by controlling k¥ we can make
m(S) as large as possible. Note that the top of the cylinder over A; is at#; ~ 2/ *1,

A cylinder that will minimize the difference C A S will necessarily have base
inside A, so we may assume that C = (| ier Aj)x I where the union is over some
sub-collection of the partition. Assume C contains precisely / of the £ cylinders,
with [ > 1.

Then C is based on at least / and at most (/ + 2) of the 4;. Let r + 1 be
the smallest index so that the cylinder over A,4; is contained in C. In order
to minimize the difference, the optimal cylinder has to be based on all 4; for
Jj=r+1,...,r+1 (foreach j > r + 1 skipped, the gains from removing C;
are offset by the fact that indices are shifted at least one place, doubling the cost
of the cylinder over A,; this beats the gain because the measure of A4, is at least
twice the measure of 4;).

For this configuration, the height of the cylinder is ¢, ; — ¢, = 2" ! — 2" and
the base has measure m(A4)2~" (1 — 27); thus its measure is m(A)2’. In contrast,
the measure of S N C is within (/ & 2)m(A). Therefore,

m(SAC) > m(A)@2 -1 —-2).
If I > log, (k) we get our result. If / < log, (k), then
m(SAC)=>m(S)—m(C NS)>m(A)(k—1)

which again gives the result.
Finally, by the discussion preceding Example 3.8 we know that

HHA € Xg:SNA =) > ug(A e X:ANA=0)>ug(U) =4.

Since our choice of U depended only on €, we are done. |
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