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Abstract

Given integers g, n > 0 satisfying 2 − 2g − n < 0, let Mg,n be the moduli space of connected,
oriented, complete, finite area hyperbolic surfaces of genus g with n cusps. We study the global
behavior of the Mirzakhani function B :Mg,n → R>0 which assigns to X ∈Mg,n the Thurston
measure of the set of measured geodesic laminations on X of hyperbolic length 6 1. We improve
bounds of Mirzakhani describing the behavior of this function near the cusp ofMg,n and deduce that
B is square-integrable with respect to the Weil–Petersson volume form. We relate this knowledge
of B to statistics of counting problems for simple closed hyperbolic geodesics.

2010 Mathematics Subject Classification: 30F60 (primary); 32G15 (secondary)

1. Introduction

In [15], Mirzakhani gave a precise description of the growth of the number
of simple closed geodesics of length 6 L of a fixed topological type on
an arbitrary connected, orientable, complete, finite area hyperbolic surface as
L →∞. Fix integers g, n > 0 satisfying 2− 2g − n < 0. Let Tg,n and Mg,n be
the Teichmüller and moduli spaces of connected, oriented, complete, finite area
hyperbolic surfaces of genus g with n cusps. Fix a connected, oriented surface Sg,n

of genus g with n punctures and let Modg,n be its mapping class group. Given a
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rational multicurve γ on Sg,n and a hyperbolic surface X ∈ Mg,n , Mirzakhani
considered for every L > 0 the counting function

s(X, γ, L) := #{α ∈ Modg,n · γ | `α(X) 6 L}, (1)

where `γ (X) > 0 denotes the hyperbolic length of the unique geodesic
representative of γ in X . The following theorem, corresponding to [15, Theorem
1.1], shows that s(X, γ, L) behaves asymptotically like a polynomial of degree
6g − 6+ 2n when L →∞.

THEOREM 1.1 [15, Theorem 1.1]. For any X ∈ Mg,n and any rational
multicurve γ on Sg,n ,

lim
L→∞

s(X, γ, L)
L6g−6+2n

= nγ (X),

where nγ (X) :Mg,n → R>0 is a continuous proper function.

Mirzakhani’s understanding of the asymptotics of s(X, γ, L) goes even deeper:
she provides an explicit description of the dependency of the leading coefficient
nγ (X) on the rational multicurve γ and the hyperbolic surface X . More precisely,
let MLg,n be the space of measured geodesic laminations on Sg,n and µThu be the
Thurston measure on MLg,n . Consider the function B :Mg,n → R>0 given by

B(X) := µThu({λ ∈MLg,n | `λ(X) 6 1}),

where `λ(X) > 0 denotes the hyperbolic length of the measured geodesic
lamination λ on X . The following proposition corresponds to [15, Proposition
3.2 and Theorem 3.3].

PROPOSITION 1.2 [15, Proposition 3.2 and Theorem 3.3]. The function
B : Mg,n → R>0 is continuous, proper, and integrable with respect to the
Weil–Petersson volume form on Mg,n .

Let µ̂wp be the measure induced by the Weil–Petersson volume form on Mg,n .
We consider the normalization constant

bg,n :=

∫
Mg,n

B(X) dµ̂wp(X) <∞.

The last result needed to describe the leading coefficient nγ (X) is the following
proposition, corresponding to [15, Corollary 5.2].
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Square-integrability of the Mirzakhani function 3

PROPOSITION 1.3 [15, Corollary 5.2]. For any rational multicurve γ on Sg,n , the
integral

P(L , γ ) :=
∫
Mg,n

s(X, γ, L) dµ̂wp(X)

is a polynomial of degree 6g− 6+ 2n in L > 0 with nonnegative coefficients and
whose leading coefficient

c(γ ) := lim
L→∞

P(L , γ )
L6g−6+2n

is a positive rational number.

The following theorem, corresponding to [15, Theorem 1.2], describes the
dependency of the leading coefficient nγ (X) on the rational multicurve γ and
the hyperbolic surfaces X .

THEOREM 1.4 [15, Theorem 1.2]. For every rational multicurve γ on Sg,n and
every X ∈Mg,n ,

nγ (X) =
c(γ ) · B(X)

bg,n
.

The constant c(γ ) ∈ Q>0 is usually referred to as the frequency of γ or, more
precisely, as the frequency of rational multicurves of the same topological type as
γ . Note that ∫

Mg,n

ηγ (X) dµ̂wp(X) = c(γ ).

We will refer to the function B :Mg,n → R>0 as the Mirzakhani function.
Recently (see [7]), Eskin, Mirzakhani, and Mohammadi improved Theorem

1.1 by obtaining a power saving error term for the asymptotics. Their methods
are very different from Mirzakhani’s original work and rely on the exponential
mixing rate of the Teichmüller geodesic flow.

The Mirzakhani function plays a crucial role in the study of the moduli space
Mg,n from the perspective of hyperbolic geometry:

(1) As seen in Theorem 1.4, B(X) describes the dependency on the hyperbolic
metric X of the leading coefficient of the asymptotics of counting problems
for simple closed hyperbolic geodesics.

(2) The bundle π : P1Mg,n →Mg,n of length 1 measured geodesic laminations
over moduli space carries a unique (up to scaling) Lebesgue class measure
ν invariant and ergodic with respect to the earthquake flow. We refer to ν as
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the Mirzakhani measure. The pushforward π∗ν is absolutely continuous with
respect to the Weil–Petersson measure µ̂wp and its density is precisely given
by the Mirzakhani function B :Mg,n → R>0, i.e., π∗ν = B(X) dµ̂wp(X);
see [14] for details.

(3) The function B :Mg,n → R>0 is the asymptotic distribution with respect to
the Weil–Petersson measure µ̂wp of random hyperbolic surfaces constructed
in the following way. Fix a pair of pants decomposition P := {γ1, . . . ,

γ3g−3+n} of Sg,n . Let L > 0 be arbitrary. Pick uniformly at random a point
from the simplex of vectors (`i)

3g−3+n
i=1 ∈ R3g−3+n with positive entries

satisfying `1 + · · · + `3g−3+n 6 L . Consider the pairs of pants in the
decomposition induced by P on Sg,n as hyperbolic pairs of pants with cuff
lengths given by `(γi) = `i for all i = 1, . . . , 3g − 3 + n. Choose twist
parameters 0 6 τi < `i uniformly at random for every i = 1, . . . , 3g− 3+ n
and glue the hyperbolic pairs of pants according to these twist parameters
to get a random hyperbolic surface on Mg,n . Let µ̂L

P,∗ be the probability
measure on Mg,n describing such random hyperbolic surface. Then, as
L →∞,

µ̂L
P,∗→

B(X) dµ̂wp

bg,n
.

Several other similar constructions, for instance, choosing lengths uniformly
at random from the codimension 1 simplex of vectors (`i)

3g−3+n
i=1 ∈ R3g−3+n

with positive entries satisfying `1, . . . , `3g−3+n = L or considering simple
closed multicurves more general than a pair of pants decomposition, exhibit
the same behavior. These results are all consequences of the ergodicity of the
earthquake flow with respect to the Mirzakhani measure ν on P1Mg,n; see
[11] and [2] for details.

It is also interesting to note that bg,n , the integral of B with respect to the
Weil–Petersson measure µ̂wp on Mg,n , corresponds to the Masur–Veech measure
of the principal stratum of QMg,n , the moduli space of connected, integrable,
meromorphic quadratic differentials of genus g with n marked points; see [14,
Theorem 1.4] or [1, Corollary 1.4] for details.

Aside from Mirzakhani’s original understanding of the function B :Mg,n→ R,
roughly described in Proposition 1.2, not much is known about the behavior of the
Mirzakhani function, both locally and globally. The main purpose of this paper is
to strengthen our understanding of the global behavior of the Mirzakhani function
and to describe in more depth its connections to the statistics of counting problems
for simple closed hyperbolic geodesics.

Main results. The goal of the first part of this paper is to better understand the
global behavior of the Mirzakhani function. Consider the function R : R>0→ R>0
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Square-integrability of the Mirzakhani function 5

given by

R(x) :=
1

x · |log(x)|
. (2)

The following bounds coarsely describe the behavior of the Mirzakhani function
near the cusp in terms of the lengths of short simple closed hyperbolic geodesics.

THEOREM 1.5. For all sufficiently small ε > 0, there are constants C1,C2 > 0
such that for all X ∈Mg,n ,

C1 ·
∏

γ : `γ (X)6ε

R(`γ (X)) 6 B(X) 6 C2 ·
∏

γ : `γ (X)6ε

R(`γ (X)),

where the products range over all simple closed geodesics γ in X of length 6 ε.

REMARK 1.6. In Theorem 1.5 and Proposition 1.9, the values of ε > 0 considered
are small enough so that on any hyperbolic surface, no two simple closed
geodesics of length 6 ε intersect. In particular, the products involved in the
statements of these results range over a finite collection of pairwise disjoint simple
closed geodesics.

The lower bound in Theorem 1.5 and a weaker upper bound are proved in [15,
Proposition 3.6]. Our proof of Theorem 1.5 follows the same ideas as the proof of
[15, Proposition 3.6] but using more precise estimates.

As a direct consequence of Theorem 1.5, we obtain the following result.

THEOREM 1.7. The Mirzakhani function B :Mg,n → R>0 is square-integrable
with respect to the Weil–Petersson measure µ̂wp on Mg,n , i.e.,

ag,n :=

∫
Mg,n

B(X)2 dµ̂wp(X) <∞.

Let mg,n := µ̂wp(Mg,n). Theorem 1.7 states that the random variable

B :Mg,n → R>0

defined on the probability space (Mg,n, µ̂wp/mg,n) has finite second moment. In
particular, one can consider its variance

Var(B(X)) := E(B(X)2)− E(B(X))2 =
ag,n

mg,n
−

b2
g,n

m2
g,n

<∞.

The focus of the second part of this paper is to relate the newly acquired
knowledge of the global behavior of the Mirzakhani function to the statistics of
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counting problems for simple closed hyperbolic geodesics. We are interested in
studying the asymptotic behavior of the covariances of the counting functions
s(X, γ, L) defined onMg,n for different integral multicurves γ on Sg,n as L→∞.
To this end, and inspired by the definition of the frequencies c(γ ) in Proposition
1.3, for every pair of integral multicurves γ1, γ2 on Sg,n , we define their joint
frequency c(γ1, γ2) to be the limit

c(γ1, γ2) := lim
L→∞

1
L12g−12+4n

∫
Mg,n

s(X, γ1, L) · s(X, γ2, L) dµ̂wp(X). (3)

The main result of the second part of this paper is the following theorem, which
establishes the existence of the joint frequencies c(γ1, γ2) and provides a formula
relating them to the frequencies c(γ1) and c(γ2) through the constants bg,n and
ag,n .

THEOREM 1.8. For any pair of integral multicurves γ1, γ2 on Sg,n , the limit in the
definition (3) of c(γ1, γ2) exists and, moreover,

c(γ1, γ2) =
ag,n

b2
g,n

· c(γ1) · c(γ2).

A key ingredient in the proof of Theorem 1.8 is the following bound, interesting
in its own right; this bound is obtained through similar methods as the upper
bound in Theorem 1.5.

PROPOSITION 1.9. For all sufficiently small ε > 0, there exist constants C > 0
and L0 > 0 such that for all L > L0, all X ∈Mg,n , and all integral multicurves
η on Sg,n ,

s(X, η, L)
L6g−6+2n

6 C ·
∏

γ : `γ (X)6ε

R(`γ (X)),

where the product ranges over all simple closed geodesics γ in X of length 6 ε.

It turns out that the constants bg,n and ag,n can be recovered from the
frequencies c(γ ) and the joint frequencies c(γ1, γ2), respectively. More precisely,
let MLg,n(Z) be the set of all integral multicurves on Sg,n . Following the ideas
introduced in the proof of [15, Theorem 5.3], we obtain the following formulas.

THEOREM 1.10. For any integers g, n > 0 such that 2− 2g − n < 0,

bg,n =
∑

γ∈MLg,n(Z)/Modg,n

c(γ ),
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Square-integrability of the Mirzakhani function 7

ag,n =
∑

γ1,γ2∈MLg,n(Z)/Modg,n

c(γ1, γ2).

Consider the probability space (Mg,n, µ̂wp/mg,n). According to Proposition
1.3, the expected value of the counting function s(X, γ, L)

E(γ, L) := E(s(γ, X, L)) =
1

mg,n
·

∫
Mg,n

s(X, γ, L) dµ̂wp(X)

is a polynomial of degree 6g − 6+ 2n in the variable L with leading coefficient

E(γ ) := lim
L→∞

E(γ, L)
L6g−6+2n

=
c(γ )
mg,n

.

According to Theorem 1.8, the covariance of the counting functions s(X, γ1, L)
and s(X, γ2, L)

Cov(γ1, γ2, L) := Cov(s(X, γ1, L), s(X, γ2, L))

=
1

mg,n
·

∫
Mg,n

s(X, γ1, L) · s(X, γ2, L) dµ̂wp(X)

= −
1

m2
g,n

·

(∫
Mg,n

s(X, γ1, L) dµ̂wp(X)

)

×

(∫
Mg,n

s(X, γ2, L) dµ̂wp(X)

)
behaves asymptotically, as L →∞, like a polynomial of degree 12g − 12 + 4n
in L with leading coefficient

Cov(γ1, γ2) := lim
L→∞

Cov(γ1, γ2, L)
L12g−12+4n

=
c(γ1, γ2)

mg,n
−

c(γ1) · c(γ2)

m2
g,n

.

Theorem 1.8 establishes the following relation:

Cov(γ1, γ2) =
Var(B(X))
E(B(X))2

· E(γ1) · E(γ2).

Theorem 1.10 shows

E(B(X)) =
∑

γ∈MLg,n(Z)/Modg,n

E(γ ),

Var(B(X)) =
∑

γ1,γ2∈MLg,n(Z)/Modg,n

Cov(γ1, γ2).
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Organization of the paper. In Section 2, we present the background material
necessary to understand the proofs of the main results. In Section 3, we discuss the
global behavior of the Mirzakhani function and present the proofs of Theorems
1.5 and 1.7. In Section 4, we discuss the connections between the newly acquired
knowledge of the global behavior of the Mirzakhani function and the statistics of
counting problems for simple closed hyperbolic geodesics; we prove Proposition
1.9 and Theorems 1.8 and 1.10. In Section 5, we present a series of open questions
that arise naturally from the work in this paper.

2. Background material

Notation. Let g, n > 0 be integers such that 2 − 2g − n < 0. For the rest
of this paper, Sg,n will denote a connected, oriented, smooth surface of genus
g with n punctures (and negative Euler characteristic). For g > 0, we will also
use the notation Sg := Sg,0. Unless otherwise specified, when applied to simple
closed curves or measured geodesic laminations, the word length will always
mean hyperbolic length.

Teichmüller and moduli spaces of hyperbolic surfaces. The Teichmüller space
of Sg,n , denoted Tg,n , is the space of all marked oriented, complete, finite area
hyperbolic structures on Sg,n up to isotopy. More precisely, Tg,n is the space of
pairs (X, φ), where X is an oriented, complete, finite area hyperbolic surface
and φ : Sg,n → X is an orientation-preserving diffeomorphism, modulo the
equivalence relation (X, φ1) ∼ (X, φ2) if and only if there exists an orientation-
preserving isometry I : X1 → X2 isotopic to φ2 ◦ φ

−1
1 .

Given a marked hyperbolic surface (X, φ) ∈ Tg,n and a simple closed curve γ
on Sg,n , we will denote by `γ (X) > 0 the hyperbolic length of the unique geodesic
representative of φ(γ ) on X ; we usually omit the markings in the notation and
simply say that this is the length of the geodesic representative of γ on X . Given
a pair of pants decomposition P := {γ1, . . . , γ3g−3+n} of Sg,n , the length functions
`i := `γi : Tg,n → R>0 can be complemented with twist parameters τi : Tg,n → R
to obtain a set of coordinates (`i , τi)

3g−3+n
i=1 ∈ (R>0 × R)3g−3+n for Tg,n . Any such

set of coordinates is called a set of Fenchel–Nielsen coordinates of Tg,n adapted
to P ; see [8, Section 10.6] for more details.

We denote the mapping class group of Sg,n by Modg,n . The mapping class
group of Sg,n acts properly discontinuously on Tg,n by change of marking. The
quotient Mg,n := Tg,n/Modg,n is the moduli space of oriented, complete, finite
area hyperbolic structures on Sg,n .

The Weil–Peterson volume form. The Teichmüeller space Tg,n can be endowed
with a (3g−3+n)-dimensional complex structure. This complex structure admits
a natural Kähler Hermitian structure. The associated symplectic formωwp is called

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.49
Downloaded from https://www.cambridge.org/core. Univ of Washington, on 13 Apr 2021 at 02:16:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.49
https://www.cambridge.org/core


Square-integrability of the Mirzakhani function 9

the Weil–Petersson symplectic form. The Weil–Petersson volume form is the top
exterior power vwp :=

1
(3g−3+n)!

∧3g−3+n
ωwp. The Weil–Petersson measure on Tg,n

is the measure µwp induced by vwp. The Weil–Petersson measure µ̂wp on Mg,n is
the local pushforward of µwp under the quotient map Tg,n →Mg,n; see [9] for
more details.

In [18], Wolpert obtained the following expression for ωwp, valid for any set of
Fenchel–Nielsen coordinates (`i , τi)

3g−3+n
i=1 ∈ (R>0×R)3g−3+n of Tg,n , commonly

known as Wolpert’s magic formula:

ωwp =

3g−3+n∑
i=1

d`i ∧ dτi .

In particular, the Weil–Petersson volume form vwp can be expressed in Fenchel–
Nielsen coordinates as follows:

vwp =

3g−3+n∏
i=1

d`i ∧ dτi .

The collar lemma. The following theorem, commonly known as the collar
lemma, shows that short geodesics on hyperbolic surfaces admit wide embedded
collar neighborhoods; see [8, Section 13.5] for details.

THEOREM 2.1. Let γ be a simple closed geodesic on a hyperbolic surface X.
Then Nγ := {x ∈ X : d(x, γ ) 6 w(`γ (X))} is an embedded annulus, where
w : R>0 → R>0 is the function given by

w(x) := arcsinh

(
1

sinh
(

x
2

)) .
One can check that

lim
x→0+

w(x)
|log(x)|

= 1.

In particular,
lim

x→0+
w(x) = +∞,

i.e., short simple closed geodesics develop wide collars. As a consequence, one
can find a universal constant ε > 0 such that on any hyperbolic surface X , no two
simple closed geodesics of length 6 ε intersect.

The Bers constant. In [3], Bers proved that every connected, orientable, closed
hyperbolic surface X of genus g > 2 admits a pair of pants decomposition
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F. Arana-Herrera and J. S. Athreya 10

P := {γ1, . . . , γ3g−3} satisfying

`γi (X) 6 Lg, ∀i = 1, . . . , 3g − 3,

where Lg > 0 is a constant depending only on g. The best possible constant with
such property is commonly known as the Bers’ constant of Sg. The following
nonoptimal version of Bers’ theorem allows punctures and will be enough for our
purposes; see [6, Section 5] and [8, Section 12.4.2] for more details.

THEOREM 2.2. Let X ∈ Tg,n be a marked hyperbolic structure and γ1, . . . , γk be
pairwise disjoint, pairwise nonisotopic simple closed curves on Sg,n satisfying

`γi (X) 6 1, ∀i = 1, . . . , k.

Such a collection of curves can be completed to a pair of pants decomposition

P := {γ1, . . . , γk, γk+1, . . . , γ3g−3+n}

of Sg,n satisfying

`γi (X) 6 Lg,n, ∀i = 1, . . . , 3g − 3+ n,

where Lg,n > 1 is a constant depending only on g and n.

Measured geodesic laminations and singular measured foliations. A geodesic
lamination λ on a complete, finite area hyperbolic surface X diffeomorphic to
Sg,n is a set of disjoint simple, complete geodesics whose union is a compact
subset of X . A measured geodesic lamination is a geodesic lamination carrying
an invariant transverse measure fully supported on the lamination. We can
understand measured geodesic laminations by lifting them to a universal cover
H2
→ X . A nonoriented geodesic on H2 is specified by a set of distinct points

on the boundary at infinity ∂∞H2
= S1. It follows that measured geodesic

laminations on diffeomorphic hyperbolic surfaces may be compared by passing
to the boundary at infinity of their universal covers. Thus, the space of measured
geodesic laminations on X depends only on the underlying topological surface
Sg,n .

We denote the space of measured geodesic laminations on Sg,n by MLg,n . It
can be topologized by embedding it into the space of geodesic currents on Sg,n . By
taking geodesic representatives, integral multicurves on Sg,n can be interpreted as
elements of MLg,n; we denote them by MLg,n(Z). Given any marked hyperbolic
structure (X, φ) ∈ Tg,n , there is a unique continuous affine extension of the
length function `·(X) : MLg,n(Z) → R>0 to the set of all measured geodesic
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Square-integrability of the Mirzakhani function 11

laminations on Sg,n; we also denote such an extension by `·(X) :MLg,n → R>0.
For more details on the theory of measured geodesic laminations, see [4, 5] and
[10, Section 8.3].

The Thurston measure. The space of measured geodesic laminations MLg,n

admits a (6g − 6 + 2n)-dimensional piecewise integral linear structure induced
by train track charts. The integer points of this structure are precisely the integral
multicurves MLg,n(Z)⊆MLg,n . For each L > 0, consider the counting measure
µL on MLg,n given by

µL
:=

1
L6g−6+2n

∑
γ∈MLg,n(Z)

δ 1
L ·γ
. (4)

As L →∞, this sequence of counting measures converges to a nonzero, locally
finite measure µThu on MLg,n , called the Thurston measure. This measure is
Modg,n-invariant and belongs to the Lebesgue measure class. It also satisfies the
following scaling property: µThu(t · A) = t6g−6+2n

·µThu(A) for every measurable
set A ⊆MLg,n and every t > 0.

Dehn–Thurston coordinates. Let N := 3g − 3+ n and P := {γ1, . . . , γN } be a
pants decomposition of Sg,n . The following theorem, originally due to Dehn, gives
an explicit parametrization of the set of integral multicurves on Sg,n in terms of
their intersection numbers m i and their twisting numbers ti with respect to the
curves γi in P ; see [17, Section 1.2] for details.

THEOREM 2.3. There is a parametrization of MLg,n(Z) by an additive
semigroup Λ ⊆ (Z>0 × Z)N . The parameters (m i , ti)

N
i=1 ∈ (Z>0 × Z)N belong to

Λ if and only if the following conditions are satisfied:

(1) For each i = 1, . . . , N, if m i = 0, then ti > 0.

(2) For each complementary region R of Sg,n\P , the parameters m i whose
indices correspond to curves γi of P bounding R add up to an even number.

We refer to any parametrization as in Theorem 2.3 as a set of Dehn–Thurston
coordinates of MLg,n(Z) adapted to P and to the additive semigroupΛ⊆ (Z>0×

Z)N as the parameter space of such parametrization. By the work of Thurston (see
8.3.9 in [10] for details), any set of Dehn–Thurston coordinates of MLg,n(Z)
extends to a parametrization of the whole space MLg,n of measured geodesic
laminations on Sg,n in the following sense.

THEOREM 2.4. Any set of Dehn–Thurston coordinates (m i , ti)
N
i=1 of MLg,n(Z)

with parameter space Λ ⊆ (Z>0 × Z)N can be extended to a parametrization of
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F. Arana-Herrera and J. S. Athreya 12

MLg,n by the set

Θ :=
{
(m i , ti) ∈ (R>0 × R)N

| m i = 0⇒ ti > 0, ∀i = 1, . . . , N
}
.

We refer to any parametrization as in Theorem 2.4 as a set of Dehn–Thurston
coordinates of MLg,n adapted to P and to the set Θ ⊆ (R>0 × R)N as the
parameter space of such parametrization. For any such parametrization, the action
of the full right Dehn twist along the cuff γi of P on MLg,n can be described in
coordinates as ti 7→ ti + m i , leaving the other parameters constant.

Note that the additive semigroup Λ ⊆ (Z>0 × Z)N has index 22g−3+n . Indeed,
there is one even condition imposed on Λ for every complementary region of
Sg,n\P , of which there are 2g − 2 + n in total, and one of these conditions is
redundant. It follows that the Thurston measure µThu on MLg,n corresponds to
2−(2g−3+n) times the standard Lebesgue measure on Θ .

Mirzakhani’s integration formulas. We briefly review Mirzakhani’s integration
formulas; see [12, 13] and [15] for details or [19] for a unified discussion. We will
need to consider moduli spaces of hyperbolic surfaces with geodesic boundary.
Let g, n > 0 be integers such that 2 − 2g − n < 0 and b := (b1, . . . , bn) ∈ Rn

be a vector with nonnegative entries. We denote by Mg,n(b) the moduli space of
connected, oriented, complete, finite area hyperbolic surfaces of genus g with
n labeled geodesic boundary components of lengths b1, . . . , bn; if bi = 0 for
some i ∈ {1, . . . , n}, we interpret the corresponding boundary component as a
cusp. Just as in the case of surfaces without boundary, these moduli spaces carry
natural Weil–Petersson volume forms. The following result, corresponding to [15,
Theorem 4.2], describes the behavior of the total Weil–Petersson volume of these
moduli spaces as a function of the lengths b1, . . . , bn of the boundary components.

THEOREM 2.5 [15, Theorem 4.2]. Let g, n > 0 be integers such that 2 − 2g −
n < 0. For vectors b := (b1, . . . , bn) ∈ Rn with nonnegative entries, the total
Weil–Petersson volume

Vg,n(b1, . . . , bn) := Volwp(Mg,n(b))

of the moduli space Mg,n(b) is a polynomial in b2
1, . . . , b2

n of degree 3g − 3+ n,
all of whose coefficients are positive, and which has rational leading coefficients.

Moduli spaces as the ones described above can also be defined for topological
surfaces with several connected components; they correspond (up to taking finite
covers) to the product of the moduli spaces of the components of the surface.
The volume polynomial of the corresponding moduli space is (up to a rational
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Square-integrability of the Mirzakhani function 13

multiplicative factor) the product of the volume polynomials of the moduli spaces
of the components of the surface.

Consider an ordered topological multicurve γ := (γ1, . . . , γk) on Sg,n . We
denote by Sg,n(γ ) the topological surface obtained by cutting Sg,n along γ ; it
can have several connected components. For any vector (x1, . . . , xk) ∈ Rn with
nonnegative entries, we denote by Mg,n(γ, x) the moduli space of all oriented,
complete, finite volume hyperbolic structures on Sg,n(γ ) with geodesic boundary
components whose lengths are given by x1, . . . , xk according to which curve γi

the boundary component comes from. We also denote by Vg,n(γ, x) the total
Weil–Petersson volume of the moduli space Mg,n(γ, x).

Given an ordered topological multicurve γ = (γ1, . . . , γk) on Sg,n and positive
weights a := (a1, . . . , ak) ∈ Rn , we denote by a · γ the unordered weighted
multicurve on Sg,n given by

a · γ = a1γ1 + · · · + akγk .

The following theorem, corresponding to [15, Theorem 4.1], gives a formula for
the integral

P(L , a · γ ) :=
∫
Mg,n

s(X, a · γ, L) dµ̂wp(X)

in terms of the volume polynomial Vg,n(γ, x) of the moduli spaces Mg,n(γ, x)
associated with the surface obtained by cutting Sg,n along γ .

THEOREM 2.6 [15, Theorem 4.1]. For any ordered topological multicurve
γ := (γ1, . . . , γk) on Sg,n and any positive weights a := (a1, . . . , ak) ∈ Rk , the
integral over Mg,n of s(X, a · γ, L) is given by

P(L , a · γ ) = κ(γ, a) ·
∫

a·x6T
Vg,n(γ, x) x · dx,

where x = x1 · · · xk , dx = dx1 · · · dxk , and κ(γ, a) ∈ Q>0 is a constant depending
only on γ and a and taking only finitely many values as a varies.

Proposition 1.3 follows from Theorems 2.5 and 2.6.

3. Square-integrability of the Mirzakhani function

Notation. For the rest of this paper, N := 3g− 3+ n will denote the number of
connected components of a pair of pants decomposition of Sg,n .
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F. Arana-Herrera and J. S. Athreya 14

The Mirzakhani function near the cusp. Let us first review Mirzakhani’s
original description of the behavior of the function B : Mg,n → R>0 near the
cusp. Recall the definition of the function R : R>0 → R>0 in (2):

R(x) =
1

x · |log(x)|
.

The following bounds, which describe the values of B(X) for points X ∈Mg,n

near the cusp in terms of the lengths of short simple closed geodesics, are a direct
consequence of [15, Proposition 3.6].

PROPOSITION 3.1. For all sufficiently small ε > 0, there are constants
C1,C2 > 0 such that for all X ∈Mg,n ,

C1 ·
∏

γ : `γ (X)6ε

R(`γ (X)) 6 B(X) 6 C2 ·
∏

γ : `γ (X)6ε

1
`γ (X)

.

where the products range over all simple closed geodesics γ in X of length 6 ε.

Theorem 1.5 corresponds to the following improvement of the upper bound in
Proposition 3.1.

THEOREM 3.2. For all sufficiently small ε > 0, there is a constant C > 0 such
that for all X ∈Mg,n ,

B(X) 6 C ·
∏

γ : `γ (X)6ε

R(`γ (X)).

where the product ranges over all simple closed geodesics γ in X of length 6 ε.

The proof of Theorem 3.2 follows similar arguments as the ones given by
Mirzakhani in the proof of Proposition 3.1; more precise estimates are considered
when working with the Thurston measure.

Let us introduce some of the relevant terminology and tools used by
Mirzakhani in the proof of Proposition 3.1. Fix a pair of pants decomposition
P := {γ1, . . . , γN } of Sg,n and let (m i , ti)

N
i=1 be a set of Dehn–Thurston

coordinates of MLg,n(Z) adapted to P ; we denote by Λ ⊆ (Z>0 × Z)N

its parameter space and by (m i(γ ), ti(γ ))
N
i=1 the coordinates of any integral

multicurve γ ∈MLg,n(Z). Given an integral multicurve γ ∈MLg,n(Z) and a
marked hyperbolic structure X ∈ Tg,n , we define the combinatorial length of γ
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Square-integrability of the Mirzakhani function 15

on X with respect to the pants decomposition P to be

LP(X, γ ) :=
N∑

i=1

(m i(γ ) · w(`γi (X))+ |ti(γ )| · `γi (X)), (5)

where w : R>0 → R>0 is the function

w(x) := arcsinh

(
1

sinh
(

x
2

))
describing the width of the hyperbolic collar neighborhoods introduced
in Theorem 2.1. This definition depends on the choice of Dehn–Thurston
coordinates considered.

Given L > 0, a pair of pants decomposition P := {γ1, . . . , γN } of Sg,n , and a
marked hyperbolic structure X ∈ Tg,n , we say that P is L-bounded on X if

`γi (X) 6 L , ∀i = 1, . . . , N .

The main tool used by Mirzakhani in the proof of Proposition 3.1 is the
following length comparison lemma, which corresponds to [15, Proposition 3.5].

LEMMA 3.3 [15, Proposition 3.5]. Fix L > 0. There is a constant C > 0
(depending on L) such that for every X ∈ Tg,n and every pair of pants
decomposition P of Sg,n which is L-bounded on X, there is a set of Dehn–
Thurston coordinates (m i , ti)

N
i=1 of MLg,n(Z) adapted to P such that for every

integral multicurve γ ∈MLg,n(Z), the following bounds hold:

1
C
· LP(X, γ ) 6 `γ (X) 6 C · LP(X, γ ).

Recall that any set of Dehn–Thurston coordinates (m i , ti)
N
i=1 of MLg,n(Z)with

parameter space Λ ⊆ (Z>0 × Z)N can be extended to give a parametrization of
the space MLg,n of measured geodesic laminations on Sg,n by the set

Θ :=
{
(m i , ti) ∈ (R>0 × R)N

| m i = 0⇒ ti > 0,∀i = 1, . . . , N
}
. (6)

In particular, it is possible to define the combinatorial length of any measured
geodesic lamination λ ∈MLg,n using (5); we will also denote such combinatorial
length by LP(X, λ).

Recall that for every X ∈ Tg,n , the hyperbolic length function
`·(X) : MLg → R>0 is homogeneous with respect to positive scalings. As
any parametrization of MLg,n by Dehn–Thurston coordinates is homogeneous
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F. Arana-Herrera and J. S. Athreya 16

with respect to positive scalings, it follows directly from the definition (5) that any
combinatorial length function LP(X, ·) : MLg,n → R>0 is also homogeneous
with respect to positive scalings. In particular, Lemma 3.3 also holds for weighted
multicurves. As weighted multicurves are dense in MLg,n and as both the
hyperbolic and combinatorial length functions are continuous, we deduce the
following corollary.

COROLLARY 3.4. Fix L > 0. There is a constant C > 0 (depending on L) such
that for every X ∈ Tg,n and every pair of pants decomposition P of Sg,n which is
L-bounded on X, there is a set of Dehn–Thurston coordinates (m i , ti)

N
i=1 of

MLg,n adapted to P such that for every measured geodesic lamination λ ∈
MLg,n , the following bounds hold:

1
C
· LP(X, λ) 6 `λ(X) 6 C · LP(X, λ).

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let 0 < ε < 1 be small enough so that on any hyperbolic
surface, no two simple closed geodesics of length 6 ε intersect. Consider an
arbitrary hyperbolic surface X ∈Mg,n . After choosing an arbitrary marking, we
can consider X as a point in Tg,n . Let {γ1, . . . , γk} be the set of all simple closed
curves on Sg,n having length 6 ε on X . Note that the choice of ε > 0 forces
these simple closed curves to be pairwise disjoint; in particular, 0 6 k 6 N .
By Theorem 2.2, we can complete the collection {γ1, . . . , γk} to a pair of pants
decomposition

PX := {γ1, . . . , γk, γk+1, . . . , γN }

of Sg,n satisfying
`γi (X) 6 Lg,n, ∀i = 1, . . . , N ,

where Lg,n > 1 is a constant depending only on g and n. In other words, PX is
Lg,n-bounded on X .

Consider the subsets BX , BX,PX ⊆MLg,n given by

BX := {λ ∈MLg,n | `X (λ) 6 1},
BX,PX := {λ ∈MLg,n | LPX (X, λ) 6 1},

where the set of Dehn–Thurston coordinates used to define LPX (X, ·) is the one
given by Corollary 3.4. It follows from Corollary 3.4 that

BX ⊆ C · BX,PX
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Square-integrability of the Mirzakhani function 17

for some constant C > 0 depending only on g, n, and Lg,n . Using the scaling
properties of the Thurston measure, we deduce

B(X) = µThu(BX ) 6 µThu(C · BX,PX ) = C2N
· µThu(BX,PX ).

This reduces our problem to computing µThu(BX,PX ).
We compute µThu(BX,PX ) explicitly using Dehn–Thurston coordinates. Recall

that, as explained in the discussion following Theorem 2.4, for any set of
Dehn–Thurston coordinates (m i , ti)

N
i=1 of MLg,n with parameter space Θ as

in (6), the Thurston measure µThu on MLg,n corresponds to 2g−N times the
standard Lebesgue measure on Θ , which we denote by Leb. It follows that

µThu(BX,PX ) = 2g−N
· Leb(AX,PX ),

where

AX,PX :=

{
(m i , ti) ∈ Θ

∣∣∣∣ N∑
i=1

(m i · w(`γi (X))+ |ti | · `γi (X)) 6 1

}
.

To compute Leb(AX,PX ), after multiplying by 2N , we can restrict ourselves to the
region m i , ti > 0. We are now computing the volume of the unit simplex in R2N

under the diagonal linear transformation

m i 7→
1

`γi (X)
· m i , ti 7→

1
w(`γi (X))

· ti .

The volume of the unit simplex in R2N is 1
(2N )! . Multiplying by the determinant of

our linear transformation, we obtain

Leb(AX,PX ) =
2N

(2N )!
·

N∏
i=1

1
`γi (X) · w(`γi (X))

.

Recall
lim

x→0+

w(x)
|log(x)|

= 1.

As a consequence, for every sufficiently small 0 < ε < 1 and every 0 < x < ε,

w(x) >
1
2
· |log(x)|.

In particular, for every i ∈ {1, . . . , k}, we can bound

1
`γi (X) · w(`γi (X))

6 2 · R(`γi (X)).
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F. Arana-Herrera and J. S. Athreya 18

Consider the function H : R>0 → R>0 defined as

H(x) :=
1

x · w(x)
.

Given ε > 0 sufficiently small, let M > 0 be the maximum attained by H on the
compact interval [ε, Lg,n]. For every i ∈ {k + 1, . . . , N }, we can bound

1
`γi (X) · w(`γi (X))

6 M.

Putting everything together, we deduce

B(X) 6
C2N
· 2g+k

· M N−k

(2N )!
·

k∏
i=1

R(`X (γi)),

finishing the proof.

REMARK 3.5. The proof of Theorem 3.2 shows that how sufficiently small the
values of ε > 0 considered need to be is independent of g and n. The arguments
in our proof can also be used to establish the lower bound given by Mirzakhani in
[15, Proposition 3.5].

Square-integrability of the Mirzakhani function. Fix 0 < ε < 1 small enough
according to Theorem 3.2. It follows from Theorem 3.2 that the integrability
properties of the function F :Mg,n → R>0 given by

F(X) :=
∏

γ : `γ (X)6ε

R(`X (γ )), (7)

where the product ranges over all simple closed geodesics γ in X of length 6 ε,
are inherited by the Mirzakhani function. Motivated by this idea, we prove the
following result.

PROPOSITION 3.6. The function F : Mg,n → R>0 defined in (7) is square-
integrable with respect to the Weil–Petersson volume form on Mg,n , i.e.,∫

Mg,n

F(X)2 dµ̂wp(X) < +∞.

Proof. For every k ∈ {0, . . . , N }, let Mk,ε
g,n ⊆ Mg,n be the subset of all

the hyperbolic surfaces in Mg,n with exactly k simple closed geodesics of
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Square-integrability of the Mirzakhani function 19

length 6 ε (by Mumford’s compactness criterion, see 12.4 in [8] for instance,
M0,ε

g,n is compact). It is enough for our purposes to show that for every k ∈ {0,
. . . , N }, the following integral is finite:∫

Mk,ε
g,n

F(X)2 dµ̂wp(X).

Fix k ∈ {0, . . . , N }. Let Lg,n > 1 be as in Theorem 2.2. As a consequence
of Theorem 2.2 and of the fact that there are only finitely many pair of pants
decompositions of Sg,n up to the action of the mapping class group, we see
that Mk,ε

g,n can be covered by finitely many subsets of Tg,n which in appropriate
Fenchel–Nielsen coordinates (`i , τi)

N
i=1 ∈ (R>0 × R)N are given by

Ak,ε
g,n :=

(`i , τi)
N
i=1 ∈ (R>0 × R)N 0 6 τi < `i , ∀i = 1, . . . , N ,

0 < `i 6 ε, ∀i = 1, . . . , k,
ε < `i 6 Lg,n, ∀i = k + 1, . . . , N .


Let Ak,ε

g,n ⊆ Tg,n be one of these subsets. It is enough for our purposes to show that∫
Ak,ε

g,n

F̃(X)2 dµwp(X) < +∞,

where F̃ : Tg,n → R>0 denotes the lift of F to Tg,n .
Using Wolpert’s magic formula, we compute∫

Ak,ε
g,n

F̃(X)2 dµwp(X) =
∫

Ak,ε
g,n

k∏
i=1

1
`2

i · log(`i)2
dτ1 · · · dτN d`1 · · · d`N

=

(
k∏

i=1

∫ ε

0

∫ `i

0

1
`2

i · log(`i)2
dτi d`i

)

·

(
N∏

i=k+1

∫ Lg,n

ε

∫ `i

ε

dτi d`i

)
.

Direct computations show∫ ε

0

∫ `i

0

1
`2

i · log(`i)2
dτi d`i =

−1
log(ε)

< +∞,∫ Lg,n

ε

∫ `i

0
dτi d`i =

L2
g,n − ε

2

2
< +∞.
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F. Arana-Herrera and J. S. Athreya 20

It follows that ∫
Ak,ε

g,n

F̃(X)2 dµwp(X) < +∞,

completing the proof.

As a direct consequence of Theorem 3.2 and Proposition 3.6, we deduce the
following.

THEOREM 3.7. The Mirzakhani function B :Mg,n → R>0 is square-integrable
with respect to the Weil–Petersson volume form on Mg,n , i.e.,

ag,n :=

∫
Mg,n

B(X)2 dµ̂wp(X) < +∞.

REMARK 3.8. Using the lower bound in Proposition 3.1 and computations
similar to the ones in the proof of Proposition 3.6, one can show
B /∈ L2+ε(Mg,n, µ̂wp) for every ε > 0.

4. Statistics of counting problems for simple closed geodesics

Joint frequencies. Let γ1, γ2 ∈MLg,n(Z) be a pair of integral multicurves on
Sg,n . Recall the definition of their joint frequency c(γ1, γ2) given in (3):

c(γ1, γ2) := lim
L→∞

1
L12g−12+4n

∫
Mg,n

s(X, γ1, L) · s(X, γ2, L) dµ̂wp(X). (8)

We now prove Theorem 1.8, which we restate here for convenience.

THEOREM 4.1. For every pair of integral multicurves γ1, γ2 ∈ MLg,n(Z), the
limit in the definition (8) of c(γ1, γ2) exists and, moreover,

c(γ1, γ2) =
ag,n

b2
g,n

· c(γ1) · c(γ2).

To prove Theorem 4.1, we make use of the following upper bound, similar in
spirit to the one in Theorem 3.2.

PROPOSITION 4.2. For all sufficiently small ε > 0, there exist constants C > 0
and L0 > 0 such that for all L > L0, all X ∈Mg,n , and all η ∈MLg,n(Z),

s(X, η, L)
L6g−6+2n

6 C ·
∏

γ : `γ (X)6ε

R(`X (γ )),

where the product ranges over all simple closed geodesics γ in X of length 6 ε.
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Square-integrability of the Mirzakhani function 21

Proof. We proceed as in the proof of Theorem 3.2. Let 0< ε < 1 be small enough
so that on any hyperbolic surface, no two simple closed geodesics of length 6 ε

intersect. Consider an arbitrary hyperbolic surface X ∈Mg,n . After choosing an
arbitrary marking, we can consider X as a point in Tg,n . Let {γ1, . . . , γk} be the set
of all simple closed curves on Sg,n having length 6 ε on X . Note that the choice
of ε > 0 forces these simple closed curves to be pairwise disjoint; in particular,
0 6 k 6 N . By Theorem 2.2, we can complete the collection {γ1, . . . , γk} to a
pair of pants decomposition

PX := {γ1, . . . , γk, γk+1, . . . , γN }

of Sg,n satisfying
`γi (X) 6 Lg,n, ∀i = 1, . . . , N ,

where Lg,n > 1 is a constant depending only on g and n. In other words, PX is
Lg,n-bounded on X .

Fix η ∈MLg,n(Z). For every L > 0, we consider the counting functions

s(X, η, L) := #{α ∈ Modg,n · η | `X (α) 6 L},
S(X, η, L) := #{α ∈ Modg,n · η | LPX (X, α) 6 L},

where the set of Dehn–Thurston coordinates used to define LPX (X, ·) is the one
given by Lemma 3.3. It follows from Lemma 3.3 that for every L > 0,

s(X, η, L) 6 S(X, η,C L),

where C > 0 is a constant depending only on g, n, and Lg,n . This reduces our
problem to giving appropriate upper bounds for the values of S(X, η,C L) across
all L > L0, with L0 > 0 depending only on g, n, and Lg,n .

We bound the values of S(X, η,C L) by using Dehn–Thurston coordinates. Let
(m i , ti)

N
i=1 be the set of Dehn–Thurston coordinates of MLg,n(Z) used to define

the combinatorial length LPX (X, ·) above and letΛ⊆ (Z>0×Z)N be its parameter
space. We denote byΛη ⊆ Λ the set of all parameters inΛ that represent integral
multicurves in Modg,n · η. Note that for every L > 0,

S(X, η,C L) = #

{
(m i , ti) ∈ Λη

∣∣∣∣ N∑
i=1

(m i · w(`γi (X))+ |ti | · `γi (X)) 6 C L

}
.

One can bound S(X, η,C L) by the standard Lebesgue measure of the box

B N
C L :=


(xi , yi)

N
i=1 ∈ (R>0 × R)N 0 6 xi <

C L
w(`γi (X))

+ 1,∀i = 1, . . . , N ,

0 6 |yi | 6
C L
`γi (X)

+ 1,∀i = 1, . . . , N .

,
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F. Arana-Herrera and J. S. Athreya 22

but this does not give an upper bound of the desired order when `γi (X)� C L �
w(`γi (X)) for some i ∈ {1, . . . , N }. Roughly speaking, in the regime 0 < a �
1� b, the area of the thin rectangle R ⊆ R2 with vertices (0, b), (0,−b), (a, b),
and (a,−b) is not a good approximation for the number of integer points in R.
There is a simple way to get around this difficulty though.

We make the following key observation: given L > 0, if w(`γi (X)) > C L
for some i ∈ {1, . . . , N }, then none of the integral multicurves counted by the
function S(X, η,C L) intersect γi ; in terms of Dehn–Thurston coordinates, m i = 0
for all such integral multicurves. Points in Λ with i th coordinates of the form (0,
ti) and ti > 0 represent integral multicurves on Sg,n one of whose topological
components is γi , with weight ti . As η has at most 3g − 3 + n topological
components, there are at most 3g − 2 + n distinct possible values such ti can
take when describing curves in the mapping class group orbit of η. Indeed, every
mapping class takes none or exactly one of the topological components of η to γi ,
so ti can only be zero or one of the weights of the topological components of η.

Given L > 0, relabel the γi ’s so that w(`γi (X)) 6 C L for all i ∈ {1, . . . , t} and
w(`γi (X)) > C L for all i ∈ {t + 1, . . . , N }; the index t ∈ {0, . . . , N } depends
on L . Clearly, t = N for all big enough L , but how big L needs to be for such
condition to hold depends on X . As we are looking for an upper bound uniform
across all big enough values of L , it is important to keep track of the index t . In
this context, we consider the truncated counting function

Bt(X,C L)

:= #

{
(m i , ti) ∈ (Z>0 × Z)t

∣∣∣∣ t∑
i=1

(m i · w(`γi (X))+ |ti | · `γi (X)) 6 C L

}
.

It follows from the key observation above that

S(X, η,C L) 6 (3g − 2+ n)N−t
· Bt(X,C L).

Let L0 := Lg,n/C so that `γi (X) 6 C L for all i ∈ {1, . . . , N } and all L > L0.
Fix L > L0 and let t ∈ {0, . . . , N } be as in the previous paragraph. The conditions

w(`γi (X)) 6 C L , `γi (X) 6 C L , ∀i = 1, . . . , t (9)

will allow us to get an upper bound of the desired order for Bt(X,C L).
Considering the collection of disjoint unit cubes centered at points counted by
Bt(X,C L), we get the upper bound

Bt(X,C L) 6 Leb(B t
C L),
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Square-integrability of the Mirzakhani function 23

where Leb(B t
C L) denotes the standard Lebesgue measure of the box

B t
C L :=

{
(xi , yi)

t
i=1 ∈ (R>0 × R)t − 1

2 6 xi <
C L

w(`γi (X))
+

1
2 , ∀i = 1, . . . , t,

0 6 |yi | 6
C L
`γi (X)
+

1
2 , ∀i = 1, . . . , t.

}
.

A direct calculation together with the conditions in (9) give

Leb(B t
C L) =

t∏
i=1

(
C L

w(`γi (X))
+ 1

)
·

(
2C L
`γi (X)

+ 1
)
6

t∏
i=1

6 · C2
· L2

`γi (X) · w(`γi (X))
.

Putting things together, we deduce

s(X, η, L) 6 (3g − 2+ n)N−t
· 6t
· C2t
· L2t
·

t∏
i=1

1
`γi (X) · w(`γi (X))

. (10)

Note that

lim
x→0+

1
x · w(x)

= +∞.

As a consequence, we can find δ > 0 such that for all 0 < x < δ,

1
x · w(x)

> 1.

Note also that w : R>0 → R>0 is an orientation reversing homeomorphism.
Therefore, we can find L1 > 0 such that for all L > L1, if w(`γi (X)) > C L
for some i ∈ {1, . . . , N }, then `γi (X) < δ. In particular, given L > L1 and
t ∈ {0, . . . , N } as above, every i ∈ {t + 1, . . . , N } satisfies `γi (X) < δ, and so we
can bound

1 6
1

`γi (X) · w(`γi (X))
.

It follows from (10) that under the condition L > max{L0, L1, 1}, we have

s(X, η, L) 6 (3g − 2+ n)N
· 6N
· C2N

· L2N
·

N∏
i=1

1
`γi (X) · w(`γi (X))

,

where we assume without loss of generality that C > 1.
Proceeding just as in the last part of the proof of Theorem 3.2, one can get an

upper bound for s(X, η, L) depending only on the simple closed curves γ with
`γ (X) 6 ε. This finishes the proof.
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REMARK 4.3. For every X ∈ Mg,n and every L > 0, consider the counting
function

b(X, L) := #{α ∈MLg,n(Z) | `X (α) 6 L}.

No upper bound as the one in Proposition 4.2 can be given for these counting
functions. Indeed, the thin rectangle phenomenon described in the proof of
Proposition 4.2 can be used to show that b(·, L) /∈ L2(Mg,n, µ̂wp) for every L > 0,
in contrast with Proposition 3.6.

REMARK 4.4. Fix γ ∈ MLg,n(Z). Given X ∈ Mg,n , Theorems 1.1 and 1.4
ensure

lim
L→∞

bg,n

c(γ )
·

s(X, γ, L)
L6g−6+2n

= B(X).

Fix 0 < ε < 1 small enough according to Proposition 4.2. By Proposition 4.2, we
can find a constant C > 0 depending only on g and n such that for all big enough
L > 0 and all X ∈Mg,n ,

bg,n

c(γ )
·

s(X, γ, L)
L6g−6+2n

6 C · F(X), (11)

where F :Mg,n → R>0 is the function defined in (7). Taking L →∞ in (11), we
deduce

B(X) 6 C · F(X)

for all X ∈Mg,n . This argument yields an alternative proof of Theorem 3.2.

REMARK 4.5. Remark 3.8 and the arguments in Remark 4.4 show that the upper
bound in Proposition 4.2 cannot be improved to attain more integrability of the
bounding function if we want the bound to hold uniformly for all big enough
L > 0.

Theorem 4.1 now easily follows from Theorems 1.1 and 1.4, Proposition 4.2,
and the dominated convergence theorem.

Proof of Theorem 4.1. By Theorems 1.1 and 1.4, we have

lim
L→∞

s(X, γi , L)
L6g−6+2n

=
c(γi) · B(X)

bg,n

for every X ∈Mg,n and every i ∈ {1, 2}. It follows that

lim
L→∞

s(X, γ1, L) · s(X, γ2, L)
L12g−12+4n

=
c(γ1) · c(γ2)

b2
g,n

· B(X)2.
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Square-integrability of the Mirzakhani function 25

for every X ∈Mg,n . Fix 0 < ε < 1 small enough according to Proposition 4.2.
By Proposition 4.2, we have

s(X, γ1, L) · s(X, γ2, L)
L12g−12+4n

6 C · F(X)2

for all big enough L > 0 and all X ∈Mg,n , where C > 0 is a constant depending
only on g and n, and F :Mg,n → R>0 is the function defined in (7). Proposition
3.6 shows that F2

∈ L1(Mg,n, µ̂wp). By the dominated convergence theorem, the
limit in the definition (8) of c(γ1, γ2) exists and, moreover,

c(γ1, γ2) =
c(γ1) · c(γ2)

b2
g,n

·

∫
Mg,n

B(X)2 dµ̂wp(X) =
ag,n

b2
g,n

· c(γ1) · c(γ2).

This finishes the proof.

Recovering bg,n and ag,n from frequencies and joint frequencies. Theorem
5.3 of [15] establishes the following relation between the constant bg,n and the
frequencies c(γ ).

THEOREM 4.6. For any integers g, n > 0 such that 2− 2g − n < 0,

bg,n =
∑

γ∈MLg,n(Z)/Modg,n

c(γ ).

The authors feel the need to include a proof of Theorem 4.6 as some details,
most likely known to Mirzakhani herself, are omitted in [15]. Our proof relies
on the following rough estimate, which separates the dependence of the counting
function s(X, a · γ, L) on the hyperbolic structure X ∈ Mg,n and the weight
parameters a ∈ Nk .

LEMMA 4.7. Let X ∈Mg,n and γ := (γ1, . . . , γk) with 1 6 k 6 N be an ordered
unweighted multicurve on Sg,n . There exist constants C = C(X) > 0 and L0 > 0
such that for all a := (a1, . . . , ak) ∈ Nk and all L > L0, the following bound
holds:

s(X, a · γ, L)
L6g−6+2n

6 C ·
k∏

i=1

1
a2

i

.

Proof. The following proof makes strong use of Mirzakhani’s integration
formulas, in particular, of Theorem 2.6; we refer the reader to the statement
of such theorem for the notation used throughout the rest of this proof. Let
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F. Arana-Herrera and J. S. Athreya 26

a := (a1, . . . , ak) ∈ Nk and L > 0 be arbitrary. According to Theorem 2.6,∫
Mg,n

s(X, a · γ, L) dµ̂wp(X) = κ(γ, a) ·
∫

a·x6L
Vg,n(γ, x) x · dx.

For all i ∈ {1, . . . , k}, consider the change of variables ui := ai xi so that
dui = ai dxi . It follows from the change of variables formula that∫

a·x6L
Vg,n(γ, x) x · dx =

k∏
i=1

1
a2

i

·

∫
1·u6L

Vg,n(γ,u/a) u · du,

where u = u1 · · · uk , du = du1 · · · duk , and u/a = (u1/a1, . . . , uk/ak). As a
consequence of Theorem 2.5, the function Vg,n(γ, x) is a polynomial in x with
nonnegative coefficients. It follows that (since each ai > 1)

Vg,n(γ,u/a) 6 Vg,n(γ,u)

for all u ∈ Rk with nonnegative entries. In particular,∫
1·u6L

Vg,n(γ,u/a) u · du 6
∫

1·u6L
Vg,n(γ,u) u · du.

By Theorem 2.6,

P(L , 1 · γ ) :=
∫
Mg,n

s(X, 1 · γ, L) dµ̂wp(X) =
∫

1·u6L
Vg,n(γ,u) u · du.

Putting everything together, we deduce∫
Mg,n

s(X, a · γ, L) dµ̂wp(X) 6 κ(γ, a) ·
k∏

i=1

1
a2

i

· P(L , 1 · γ ). (12)

Let X ∈Mg,n and L > 0 be arbitrary. We denote by UX (1) ⊆Mg,n the closed
ball of radius 1 centered at X in the quotient symmetric Thurston metric. By
definition, Y ∈ UX (1) if and only if there is a choice of markings for X and Y
(allowing us to consider them as points in Tg,n) such that for all λ ∈MLg,n , the
following bounds hold:

e−1 6
`X (λ)

`Y (λ)
6 e.

In particular, if Y ∈ UX (1), then

s(X, a · γ, L) 6 s(Y, a · γ, eL).
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Square-integrability of the Mirzakhani function 27

This observation gives the following rough bound:

s(X, a · γ, L) · µ̂wp(UX (1)) =
∫
Mg

1UX (1)(Y ) · s(X, a · γ, L) dµ̂wp(Y )

6
∫
Mg

1UX (1)(Y ) · s(Y, a · γ, eL) dµ̂wp(Y )

6
∫
Mg

s(Y, a · γ, eL) dµ̂wp(Y )

6 κ(γ, a) ·
k∏

i=1

1
a2

i

· P(eL , 1 · γ ),

where the last inequality follows from (12). Note µ̂wp(UX (1)) > 0 because UX (1)
is a neighborhood of X and µ̂wp has full support on Mg,n . We deduce

s(X, a · γ, L)
L2N

6 κ(γ, a) ·
e6g−6+2n

µ̂wp(UX (1))
·

P(eL , 1 · γ )
(eL)6g−6+2n

·

k∏
i=1

1
a2

i

.

By Proposition 1.3,

lim
L→∞

P(eL , 1 · γ )
(eL)6g−6+2n

= c(1 · γ ) > 0.

Let L0 > 0 be big enough so that

P(eL , 1 · γ )
(eL)6g−6+2n

6 2 · c(1 · γ )

for all L > L0. It follows that

s(X, a · γ, L) 6 κ(γ, a) ·
2 · e6g−6+2n

· c(1 · γ )
µ̂wp(UX (1))

·

k∏
i=1

1
a2

i

for all L > L0. As κ(γ, a) takes only finitely many values when a ranges over Nk

(see Theorem 2.6), this finishes the proof.

We are now ready to prove Theorem 4.6.

Proof of Theorem 4.6. As in Remark 4.3, for every X ∈Mg,n and every L > 0,
we consider the counting function

b(X, L) := #{α ∈MLg,n(Z) | `X (α) 6 L}.
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F. Arana-Herrera and J. S. Athreya 28

By the definition of the Thurston measure, see the paragraph following (4), for
every X ∈Mg,n we have

lim
L→∞

b(X, L)
L6g−6+2n

= B(X).

It follows that we can write

bg,n :=

∫
Mg,n

B(X) dµ̂wp(X) =
∫
Mg,n

lim
L→∞

b(X, L)
L6g−6+2n

dµ̂wp(X).

Fix X ∈Mg,n . Note that we can decompose b(X, L) as the sum of the counting
functions s(X, γ, L) with γ ranging over all mapping class group orbits of
integral multicurves on Sg,n:

b(X, L) =
∑

γ∈MLg,n(Z)/Modg,n

s(X, γ, L).

Let Cg,n be the finite set of all topological types of unweighted multicurves
on Sg,n . For every γ := {γ1, . . . , γk} ∈ Cg,n , choose an arbitrary ordering
of its components; we will also denote the corresponding ordered topological
multicurve by γ := (γ1, . . . , γk). We write

b(X, L) =
∑
γ∈Cg,n

∑
a∈Nk

s(X, a · γ, L).

As the outside sum in this equality is finite, we deduce

lim
L→∞

b(X, L)
L6g−6+2n

=

∑
γ∈Cg,n

lim
L→∞

∑
a∈Nk

s(X, a · γ, L)
L6g−6+2n

. (13)

We now exchange the limit in the right-hand side of this equality with the infinite
inside sum by using the dominated convergence theorem. By Theorems 1.1 and
1.4, for every a ∈ Nk , we have

lim
L→∞

s(X, a · γ, L)
L6g−6+2n

=
c(a · γ ) · B(X)

bg,n
.

Lemma 4.7 provides constants C > 0 and L0 > 0 such that for all
a := (a1, . . . , ak) ∈ Nk and all L > L0,

s(X, a · γ, L)
L6g−6+2n

6 C ·
k∏

i=1

1
a2

i

.
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Square-integrability of the Mirzakhani function 29

Note that ∑
a∈Nk

k∏
i=1

1
a2

i

= ζ(2)k < +∞,

so the dominated convergence theorem applies. We deduce

lim
L→∞

∑
a∈Nk

s(X, a · γ, L)
L6g−6+2n

=

∑
a∈Nk

c(a · γ ) · B(X)
bg,n

for every γ ∈ Cg,n . It follows from (13) that

lim
L→∞

b(X, L)
L6g−6+2n

=

∑
γ∈Cg,n

∑
a∈Nk

c(a · γ ) · B(X)
bg,n

=

∑
γ∈MLg,n(Z)/Modg,n

c(γ ) · B(X)
bg,n

.

This equality holds for every X ∈Mg,n , so we have∫
Mg,n

lim
L→∞

b(X, L)
L6g−6+2n

dµ̂wp(X) =
∫
Mg,n

∑
γ∈MLg,n(Z)/Modg,n

c(γ ) · B(X)
bg,n

dµ̂wp(X).

Fubini’s theorem for nonnegative functions gives∫
Mg,n

∑
γ∈MLg,n(Z)/Modg,n

c(γ ) · B(X)
bg,n

dµ̂wp(X)

=

∑
γ∈MLg,n(Z)/Modg,n

∫
Mg,n

c(γ ) · B(X)
bg,n

dµ̂wp(X).

By the definition of bg,n ,∫
Mg,n

c(γ ) · B(X)
bg,n

dµ̂wp(X) = c(γ ).

Putting everything together, we conclude

bg,n =
∑

γ∈MLg,n(Z)/Modg,n

c(γ ),

finishing the proof.

Directly from Theorems 4.1 and 4.6, we obtain an analogous relation between
the constant ag,n and the joint frequencies c(γ1, γ2); this finishes the proof of
Theorem 1.10.
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THEOREM 4.8. For any integers g, n > 0 such that 2− 2g − n < 0,

ag,n =
∑

γ1,γ2∈MLg,n(Z)/Modg,n

c(γ1, γ2).

Proof. By Theorem 4.1, we have

c(γ1, γ2) =
ag,n

b2
g,n

· c(γ1) · c(γ2)

for every γ1, γ2 ∈MLg,n(Z). Theorem 4.6 shows

bg,n =
∑

γ∈MLg,n(Z)/Modg,n

c(γ ).

It follows that ∑
γ1,γ2∈MLg,n(Z)/Modg,n

c(γ1, γ2)

=

∑
γ1,γ2∈MLg,n(Z)/Modg,n

ag,n

b2
g,n

· c(γ1) · c(γ2)

=
ag,n

b2
g,n

·

 ∑
γ1∈MLg,n(Z)/Modg,n

c(γ1)

 ·
 ∑
γ2∈MLg,n(Z)/Modg,n

c(γ2)


=

ag,n

b2
g,n

· bg,n · bg,n

= ag,n,

finishing the proof.

5. Open questions

Computing ag,n and joint frequencies. In [15, Theorem 5.3], Mirzakhani gives
formulas for the frequencies c(γ ) and the constant bg,n in terms of leading
coefficients of Weil–Petersson volume polynomials of moduli spaces of complete,
finite volume hyperbolic surfaces with geodesic boundary. As such polynomials
can be computed recursively (see [12, Section 5]), this provides an algorithmic
procedure for computing the frequencies c(γ ) and the constant bg,n .
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QUESTION 5.1. For any pair of integers g, n > 0 such that 2 − 2g − n < 0,
provide an algorithmic procedure for computing

ag,n :=

∫
Mg,n

B(X)2 dµ̂wp(X).

QUESTION 5.2. For any pair of integral multicurves γ1, γ2 ∈MLg,n(Z), provide
an algorithmic procedure for computing

c(γ1, γ2) := lim
L→∞

1
L12g−12+4n

∫
Mg,n

s(X, γ1, L) · s(X, γ2, L) dµ̂wp(X).

Note that by Theorems 1.8 and 1.10 and the work of Mirzakhani cited above,
Questions 5.1 and 5.2 are essentially equivalent.

Relating ag,n to moduli spaces of quadratic differentials. Recall that bg,n ,
the integral of B with respect to the Weil–Petersson measure µ̂wp on Mg,n ,
corresponds to the Masur–Veech measure of the principal stratum of QMg,n ,
the moduli space of connected, integrable, meromorphic quadratic differentials
of genus g with n marked points.

QUESTION 5.3. Is there a meaningful interpretation of the integral

ag,n :=

∫
Mg,n

B(X)2 dµ̂wp(X)

in terms of the moduli space QMg,n?

Large genus asymptotics. For every pair of integers g, n > 0 satisfying
2− 2g− n < 0, consider the probability space (Mg,n, µ̂wp/mg,n), where mg,n :=

µ̂wp(Mg,n); each moduli space Mg,n has a different Weil–Petersson measure, but
we denote them all by µ̂wp. Each one of these moduli spaces carries a Mirzakhani
function Bg,n :Mg,n → R>0. For a fixed n > 0, we are interested in the behavior
of Bg,n as g→∞.

QUESTION 5.4. What are the asymptotics of Var(Bg,n(X)) as g→∞?

Answering Question 5.4 could provide a meaningful insight on the behavior
in the large genus regime of the dependency with respect to the hyperbolic
structure of the leading coefficient of the asymptotics of counting problems for
simple closed geodesics. Indeed, by Theorems 1.1 and 1.4, such a dependency is
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precisely given by Bg,n , and Chebyshev’s inequality shows that for every a > 0,

P(|Bg,n(X)− E(Bg,n(X))| > a) 6
Var(Bg,n(X))

a2
.

Inspired by Mirzakhani’s work on the geometry of random hyperbolic surfaces
of large genus sampled according to the probability measures µ̂wp/mg,n (see
[16]), it would be very interesting to know more about the geometry of random
hyperbolic surfaces of large genus sampled according to the probability measures
Bg,n(X) dµ̂wp(X)/bg,n . In particular, the following question seems especially
interesting.

QUESTION 5.5. For ε > 0 small enough, what are the asymptotics as g →
∞ of the probability that a random hyperbolic surface sampled according to
Bg,n(X) dµ̂wp(X)/bg,n exhibits a simple closed geodesic of length 6 ε?
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