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Abstract

Given integers g, n > 0 satisfying 2 — 2g — n < 0, let M, , be the moduli space of connected,
oriented, complete, finite area hyperbolic surfaces of genus g with n cusps. We study the global
behavior of the Mirzakhani function B: M, , — Ry, which assigns to X € M., the Thurston
measure of the set of measured geodesic laminations on X of hyperbolic length < 1. We improve
bounds of Mirzakhani describing the behavior of this function near the cusp of M, , and deduce that
B is square-integrable with respect to the Weil-Petersson volume form. We relate this knowledge
of B to statistics of counting problems for simple closed hyperbolic geodesics.

2010 Mathematics Subject Classification: 30F60 (primary); 32G15 (secondary)

1. Introduction

In [15], Mirzakhani gave a precise description of the growth of the number
of simple closed geodesics of length < L of a fixed topological type on
an arbitrary connected, orientable, complete, finite area hyperbolic surface as
L — oo. Fix integers g, n > 0 satisfying 2 —2g —n < 0. Let 7, , and M, , be
the Teichmiiller and moduli spaces of connected, oriented, complete, finite area
hyperbolic surfaces of genus g with n cusps. Fix a connected, oriented surface S, ,
of genus g with n punctures and let Mod, , be its mapping class group. Given a
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rational multicurve y on S, , and a hyperbolic surface X € M, ,, Mirzakhani
considered for every L > 0 the counting function

$(X,y, L) i=#a € Modg,, - y | L.(X) < L}, (1)

where ¢,(X) > 0 denotes the hyperbolic length of the unique geodesic
representative of y in X. The following theorem, corresponding to [15, Theorem
1.1], shows that s(X, y, L) behaves asymptotically like a polynomial of degree
6g — 6+ 2n when L — oo.

THEOREM 1.1 [15, Theorem 1.1]. For any X € M,, and any rational
multicurve y on S, ,,
s(X,y,L)
L—oo ] 68—6+2n :ny(X)’

where n,, (X): M, , — R. is a continuous proper function.

Mirzakhani’s understanding of the asymptotics of s(X, y, L) goes even deeper:
she provides an explicit description of the dependency of the leading coefficient
n, (X) on the rational multicurve y and the hyperbolic surface X. More precisely,
let ML, , be the space of measured geodesic laminations on S, , and jtth, be the
Thurston measure on ML, ,,. Consider the function B: M, , — R. given by

B(X) := pm(fr € MLy, | 6:(X) < 1)),

where ¢,(X) > 0 denotes the hyperbolic length of the measured geodesic
lamination A on X. The following proposition corresponds to [15, Proposition
3.2 and Theorem 3.3].

PROPOSITION 1.2 [15, Proposition 3.2 and Theorem 3.3]. The function
B: M,, — R., is continuous, proper, and integrable with respect to the
Weil—Petersson volume form on M, .

Let /’IWP be the measure induced by the Weil-Petersson volume form on M, ,.
We consider the normalization constant

ben :=/ B(X) dfiyy(X) < c0.
Mg.n

The last result needed to describe the leading coefficient n,, (X) is the following
proposition, corresponding to [15, Corollary 5.2].
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Square-integrability of the Mirzakhani function 3

PROPOSITION 1.3 [15, Corollary 5.2]. For any rational multicurve y on S, ,, the
integral

P(L,y) 1=/ s(X, v, L) ditwp(X)
Mg.n
is a polynomial of degree 6g — 6 +2n in L > 0 with nonnegative coefficients and
whose leading coefficient

P(L,y)

)= I Tee

is a positive rational number.

The following theorem, corresponding to [15, Theorem 1.2], describes the
dependency of the leading coefficient n, (X) on the rational multicurve y and
the hyperbolic surfaces X.

THEOREM 1.4 [15, Theorem 1.2]. For every rational multicurve y on S, , and
every X € My,
c(y) - B(X)
n,(X) = ——.
bgn

The constant c(y) € Q. is usually referred to as the frequency of y or, more
precisely, as the frequency of rational multicurves of the same topological type as
y. Note that

/ le(X) dﬁwp(X) = C(V)
Mg
We will refer to the function B: M, , — R. as the Mirzakhani function.

Recently (see [7]), Eskin, Mirzakhani, and Mohammadi improved Theorem
1.1 by obtaining a power saving error term for the asymptotics. Their methods
are very different from Mirzakhani’s original work and rely on the exponential
mixing rate of the Teichmiiller geodesic flow.

The Mirzakhani function plays a crucial role in the study of the moduli space
M, ,, from the perspective of hyperbolic geometry:

(1) As seen in Theorem 1.4, B(X) describes the dependency on the hyperbolic
metric X of the leading coefficient of the asymptotics of counting problems
for simple closed hyperbolic geodesics.

(2) Thebundle 7 : P' M, , — M,, of length 1 measured geodesic laminations
over moduli space carries a unique (up to scaling) Lebesgue class measure
v invariant and ergodic with respect to the earthquake flow. We refer to v as
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the Mirzakhani measure. The pushforward m,v is absolutely continuous with
respect to the Weil-Petersson measure [, and its density is precisely given
by the Mirzakhani function B: M,, — R.o, i.e., m,v = B(X) diwp(X);
see [14] for details.

(3) The function B: M, , — R. is the asymptotic distribution with respect to
the Weil-Petersson measure i, of random hyperbolic surfaces constructed
in the following way. Fix a pair of pants decomposition P := {y, ...,
V3g—34n) Of S, . Let L > 0 be arbitrary. Pick uniformly at random a point
from the simplex of vectors (Ki)?i]_3+" € R3¥73*" with positive entries
satisfying € + -+ + £3,_34, < L. Consider the pairs of pants in the
decomposition induced by P on S, , as hyperbolic pairs of pants with cuff
lengths given by £(y;) = £; foralli = 1,...,3g — 3 + n. Choose twist
parameters 0 < 7; < ¢; uniformly at random foreveryi =1,...,3g—3+n
and glue the hyperbolic pairs of pants according to these twist parameters
to get a random hyperbolic surface on M, ,. Let ﬁ%’* be the probability
measure on M, , describing such random hyperbolic surface. Then, as

L — oo, =R
L B(X)diw

P,*
ben

Several other similar constructions, for instance, choosing lengths uniformly
at random from the codimension 1 simplex of vectors (£;);5;""" € R¥%~3*"
with positive entries satisfying ¢4, ..., €3,_31, = L or considering simple
closed multicurves more general than a pair of pants decomposition, exhibit
the same behavior. These results are all consequences of the ergodicity of the
earthquake flow with respect to the Mirzakhani measure v on P' M, ,; see

[11] and [2] for details.

It is also interesting to note that b, ,, the integral of B with respect to the
Weil-Petersson measure ﬁwp on M, ,, corresponds to the Masur—Veech measure
of the principal stratum of QM, ,, the moduli space of connected, integrable,
meromorphic quadratic differentials of genus g with n marked points; see [14,
Theorem 1.4] or [1, Corollary 1.4] for details.

Aside from Mirzakhani’s original understanding of the function B: M, , — R,
roughly described in Proposition 1.2, not much is known about the behavior of the
Mirzakhani function, both locally and globally. The main purpose of this paper is
to strengthen our understanding of the global behavior of the Mirzakhani function
and to describe in more depth its connections to the statistics of counting problems
for simple closed hyperbolic geodesics.

Main results. The goal of the first part of this paper is to better understand the
global behavior of the Mirzakhani function. Consider the function R: R.y — R.¢
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Square-integrability of the Mirzakhani function 5

given by
1

0 3 Togtol

2

The following bounds coarsely describe the behavior of the Mirzakhani function
near the cusp in terms of the lengths of short simple closed hyperbolic geodesics.

THEOREM 1.5. For all sufficiently small € > 0, there are constants Ci, C, > 0
such that for all X € Mg,

- [ rReG)<KBX) <G ] R, X,

vy (X)<e vy (X)<e

where the products range over all simple closed geodesics y in X of length < e.

REMARK 1.6. In Theorem 1.5 and Proposition 1.9, the values of € > 0 considered
are small enough so that on any hyperbolic surface, no two simple closed
geodesics of length < € intersect. In particular, the products involved in the
statements of these results range over a finite collection of pairwise disjoint simple
closed geodesics.

The lower bound in Theorem 1.5 and a weaker upper bound are proved in [15,
Proposition 3.6]. Our proof of Theorem 1.5 follows the same ideas as the proof of
[15, Proposition 3.6] but using more precise estimates.

As a direct consequence of Theorem 1.5, we obtain the following result.

THEOREM 1.7. The Mirzakhani function B: M, — R., is square-integrable
with respect to the Weil—Petersson measure [iy, on M ,, ie.,

g n ;=/ B(X)? diyp(X) < 00.
M

g.n
Let m,, 1= wy(M, ). Theorem 1.7 states that the random variable
B: Mg,n — R>0

defined on the probability space (M, ,, [wp/ M, ,) has finite second moment. In
particular, one can consider its variance

2

b
Var(B(X)) := E(B(X)?) — E(B(X))? = 2 _ 28 _ o
Mgy M2,

The focus of the second part of this paper is to relate the newly acquired
knowledge of the global behavior of the Mirzakhani function to the statistics of
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counting problems for simple closed hyperbolic geodesics. We are interested in
studying the asymptotic behavior of the covariances of the counting functions
s(X, y, L) defined on M, , for different integral multicurves y on S, , as L — oo.
To this end, and inspired by the definition of the frequencies c¢(y) in Proposition
1.3, for every pair of integral multicurves y;, y, on S, ,, we define their joint
frequency c(y,, y») to be the limit

1 ~
c(yi, ) = 11 W/ (X, 1, L) - s(X, y2, L) dtwp(X). 3)

g.n

The main result of the second part of this paper is the following theorem, which
establishes the existence of the joint frequencies c(yy, y») and provides a formula
relating them to the frequencies c(y;) and c(y») through the constants b, , and
Qg n.

THEOREM 1.8. For any pair of integral multicurves y, y, on S, ,, the limit in the
definition (3) of c(yy, y») exists and, moreover,

c(y, o) = cc(n) - c(y).

b2

A key ingredient in the proof of Theorem 1.8 is the following bound, interesting
in its own right; this bound is obtained through similar methods as the upper
bound in Theorem 1.5.

PROPOSITION 1.9. For all sufficiently small € > 0, there exist constants C > 0
and Ly > O such that forall L > Ly, all X € Mg,n, and all integral multicurves
non Sy,
s(X,n, L)
=TT

<c- I re,@,

vty (X)<e
where the product ranges over all simple closed geodesics y in X of length < €
It turns out that the constants b,, and a,, can be recovered from the
frequencies c(y) and the joint frequencies c(y,, y»), respectively. More precisely,

let ML, ,(Z) be the set of all integral multicurves on S, ,. Following the ideas
introduced in the proof of [15, Theorem 5.3], we obtain the following formulas.

THEOREM 1.10. For any integers g, n > 0 such that2 —2g —n < 0,

bew = > e,

VEML‘rth (Z)/MOdg,n
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Square-integrability of the Mirzakhani function 7

Agn = >, c(y1, v2).

Y1 ’VZEM‘C’)ZJI (Z)/MOdg,n

Consider the probability space (M, ,, [wp/ M, ). According to Proposition
1.3, the expected value of the counting function s(X, y, L)

E(y.L) :=E(s(y,X,L)) = ~/M s(X, v, L) ditwpy(X)

g.n on

is a polynomial of degree 6g — 6 + 2n in the variable L with leading coefficient

. E(y,L) <y
E(y) = LILHJO L6s—6+2n mg‘n‘

According to Theorem 1.8, the covariance of the counting functions s(X, y;, L)
and s(X, y», L)

Cov(y1, y2, L) := Cov(s(X, y1, L), s(X, y2, L))

1 ~
= / (X, 1, L) - s(X, y2, L) dbwp(X)
Men JM,,
1 —~
=T s(X, Yis L)d,uwp(X)
mg,n Mg,rl

X (/ s(X, 2, L) dﬁwp(X))
M

behaves asymptotically, as L — oo, like a polynomial of degree 12g — 12 + 4n
in L with leading coefficient

Cov(y1, y2, L) _ cvi.v2) ey - C()/z).

Covinra) = i =i Mg m2,
Theorem 1.8 establishes the following relation:
Cov(yi, v2) = % -E(y1) - E(y2).
Theorem 1.10 shows
EBX)= )  E@),
yeMLy u(Z)/Mody
Var(B(X)) = > Cov(y1. v2).

Y1, V2EMLg 1 (Z)/Modg
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Organization of the paper. In Section 2, we present the background material
necessary to understand the proofs of the main results. In Section 3, we discuss the
global behavior of the Mirzakhani function and present the proofs of Theorems
1.5 and 1.7. In Section 4, we discuss the connections between the newly acquired
knowledge of the global behavior of the Mirzakhani function and the statistics of
counting problems for simple closed hyperbolic geodesics; we prove Proposition
1.9 and Theorems 1.8 and 1.10. In Section 5, we present a series of open questions
that arise naturally from the work in this paper.

2. Background material

Notation. Let g, n > 0 be integers such that 2 — 2¢g — n < 0. For the rest
of this paper, S,, will denote a connected, oriented, smooth surface of genus
g with n punctures (and negative Euler characteristic). For g > 0, we will also
use the notation S, := S, o. Unless otherwise specified, when applied to simple
closed curves or measured geodesic laminations, the word length will always
mean hyperbolic length.

Teichmiiller and moduli spaces of hyperbolic surfaces. The Teichmiiller space
of S,,, denoted 7, ,, is the space of all marked oriented, complete, finite area
hyperbolic structures on S, , up to isotopy. More precisely, 7, , is the space of
pairs (X, ¢), where X is an oriented, complete, finite area hyperbolic surface
and ¢: S,, — X is an orientation-preserving diffeomorphism, modulo the
equivalence relation (X, ¢) ~ (X, ¢,) if and only if there exists an orientation-
preserving isometry I : X; — X, isotopic to ¢, o d)l‘l.

Given a marked hyperbolic surface (X, ¢) € 7, , and a simple closed curve y
on S, ,, we will denote by £, (X) > 0 the hyperbolic length of the unique geodesic
representative of ¢(y) on X; we usually omit the markings in the notation and
simply say that this is the length of the geodesic representative of y on X. Given
a pair of pants decomposition P := {y1, ..., ¥3,-31x} 0f S », the length functions
¢ =4, T,, — R.( can be complemented with twist parameters 7;: 7, , — R
to obtain a set of coordinates (¢;, t,-)fif“" € (R.o x R)**73 for T, ,. Any such
set of coordinates is called a set of Fenchel-Nielsen coordinates of 7, , adapted
to P; see [8, Section 10.6] for more details.

We denote the mapping class group of S,, by Mod, ,. The mapping class
group of S, , acts properly discontinuously on 7, , by change of marking. The
quotient M, , := T, ,/Mod, , is the moduli space of oriented, complete, finite
area hyperbolic structures on S, ,,.

The Weil—Peterson volume form. The Teichmiieller space 7, , can be endowed
with a (3g —3 4 n)-dimensional complex structure. This complex structure admits
anatural Kéhler Hermitian structure. The associated symplectic form w,, is called
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Square-integrability of the Mirzakhani function 9

the Weil-Petersson symplectic form. The Weil-Petersson volume form is the top
exterior POwer vy, = m N wyp. The Weil-Petersson measure on 7 ,
is the measure (i, induced by v,,. The Weil-Petersson measure /iy, on M, , is
the local pushforward of s, under the quotient map 7, , — M, ,; see [9] for
more details.

In [18], Wolpert obtained the following expression for w,,, valid for any set of
Fenchel-Nielsen coordinates (¢;, ri)?i T3+" € (R.o x R)*7# of 7, ,, commonly
known as Wolpert’s magic formula:

3¢g—3+n

o= Y dtrdT.
i=1

In particular, the Weil-Petersson volume form v,,, can be expressed in Fenchel—-
Nielsen coordinates as follows:

3g—34+n

vp= [[ dt rdr.
i=1

The collar lemma. The following theorem, commonly known as the collar
lemma, shows that short geodesics on hyperbolic surfaces admit wide embedded
collar neighborhoods; see [8, Section 13.5] for details.

THEOREM 2.1. Let y be a simple closed geodesic on a hyperbolic surface X.
Then N, := {x € X:d(x,y) < w, (X))} is an embedded annulus, where
w: R.y — R is the function given by

1

w(x) := arcsinh m

One can check that
w(x)

im —— =
—0" [log(x)]

In particular,
lir(r)l+ w(x) = 400,

i.e., short simple closed geodesics develop wide collars. As a consequence, one
can find a universal constant € > 0 such that on any hyperbolic surface X, no two
simple closed geodesics of length < € intersect.

The Bers constant. In [3], Bers proved that every connected, orientable, closed
hyperbolic surface X of genus g > 2 admits a pair of pants decomposition
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P={y,..., V3¢—3) satisfying
ZV;(X)ngy Vl:l,,3g—3,

where L, > 0 1is a constant depending only on g. The best possible constant with
such property is commonly known as the Bers’ constant of S,. The following
nonoptimal version of Bers’ theorem allows punctures and will be enough for our
purposes; see [6, Section 5] and [8, Section 12.4.2] for more details.

THEOREM 2.2. Let X € T, , be a marked hyperbolic structure and yy, . . ., y be
pairwise disjoint, pairwise nonisotopic simple closed curves on S, , satisfying

,(X) <1, Vi=1,... k.
Such a collection of curves can be completed to a pair of pants decomposition

P = {Vla s Vi Vit oo o Vag—3+n}
of S, satisfying
0, (X)<L,,, VYi=1,...,38—3+n,

where L, , > 11is a constant depending only on g and n.

Measured geodesic laminations and singular measured foliations. A geodesic
lamination A on a complete, finite area hyperbolic surface X diffeomorphic to
S,.» 1s a set of disjoint simple, complete geodesics whose union is a compact
subset of X. A measured geodesic lamination is a geodesic lamination carrying
an invariant transverse measure fully supported on the lamination. We can
understand measured geodesic laminations by lifting them to a universal cover
H? — X. A nonoriented geodesic on H? is specified by a set of distinct points
on the boundary at infinity 9°H?> = S'. It follows that measured geodesic
laminations on diffeomorphic hyperbolic surfaces may be compared by passing
to the boundary at infinity of their universal covers. Thus, the space of measured
geodesic laminations on X depends only on the underlying topological surface
Sen-

We denote the space of measured geodesic laminations on S, , by ML, ,. It
can be topologized by embedding it into the space of geodesic currents on S, ,. By
taking geodesic representatives, integral multicurves on S, , can be interpreted as
elements of ML, ,; we denote them by ML, ,(Z). Given any marked hyperbolic
structure (X, ¢) € 7, ,, there is a unique continuous affine extension of the
length function £.(X): ML, ,(Z) — R., to the set of all measured geodesic
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Square-integrability of the Mirzakhani function 11

laminations on S, ,; we also denote such an extension by £.(X): ML, , — R.,.
For more details on the theory of measured geodesic laminations, see [4, 5] and
[10, Section 8.3].

The Thurston measure. The space of measured geodesic laminations ML, ,
admits a (6g — 6 + 2n)-dimensional piecewise integral linear structure induced
by train track charts. The integer points of this structure are precisely the integral
multicurves ML, ,(Z) € ML, ,.Foreach L > 0, consider the counting measure
u* on ML, , given by

1
L. E :
Ho= 68—6+2n 5%')/‘ )
yeMLg,(Z)

As L — oo, this sequence of counting measures converges to a nonzero, locally
finite measure pt, on ML, ,, called the Thurston measure. This measure is
Mod, ,-invariant and belongs to the Lebesgue measure class. It also satisfies the
following scaling property: iy, (t - A) = %72 . i1y, (A) for every measurable
set A € ML, , and every ¢ > 0.

Dehn—Thurston coordinates. Let N :==3g —3+nand P :={y;,...,yy} bea
pants decomposition of S, ,,. The following theorem, originally due to Dehn, gives
an explicit parametrization of the set of integral multicurves on S, , in terms of
their intersection numbers m; and their twisting numbers #; with respect to the
curves y; in P; see [17, Section 1.2] for details.

THEOREM 2.3. There is a parametrization of ML, ,(Z) by an additive
semigroup A C (L x Z)". The parameters (m;, ;)Y € (Z> x Z)" belong to
A if and only if the following conditions are satisfied:

(1) Foreachi =1,...,N,ifm; =0, thent; > 0.

(2) For each complementary region R of S,,\'P, the parameters m; whose
indices correspond to curves y; of P bounding R add up to an even number.

We refer to any parametrization as in Theorem 2.3 as a set of Dehn—Thurston
coordinates of ML, ,(Z) adapted to P and to the additive semigroup A C (Zx( X
Z)" as the parameter space of such parametrization. By the work of Thurston (see
8.3.9 in [10] for details), any set of Dehn—Thurston coordinates of ML, ,(Z)
extends to a parametrization of the whole space ML, , of measured geodesic
laminations on S, , in the following sense.

THEOREM 2.4. Any set of Dehn—Thurston coordinates (m;, t;)"_, of ML, ,(Z)
with parameter space A C (Z=o x Z)" can be extended to a parametrization of

Downloaded from https://www.cambridge.org/core. Univ of Washington, on 13 Apr 2021 at 02:16:46, subject to the Cambridge Core terms
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.49


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.49
https://www.cambridge.org/core

F. Arana-Herrera and J. S. Athreya 12

ML, , by the set
O :={mi, 1) € Rsog xR |mj =0=12>0,Vi=1,...,N}.

We refer to any parametrization as in Theorem 2.4 as a set of Dehn—Thurston
coordinates of ML, , adapted to P and to the set @ C (R x R)" as the
parameter space of such parametrization. For any such parametrization, the action
of the full right Dehn twist along the cuff y; of P on ML, , can be described in
coordinates as #; — t; + m;, leaving the other parameters constant.

Note that the additive semigroup A C (Zso x Z)" has index 22¢73*". Indeed,
there is one even condition imposed on A for every complementary region of
S¢.»\P, of which there are 2g — 2 + n in total, and one of these conditions is
redundant. It follows that the Thurston measure (i, on ML, , corresponds to
2-(28=3+1) times the standard Lebesgue measure on ©.

Mirzakhani’s integration formulas. We briefly review Mirzakhani’s integration
formulas; see [12, 13] and [15] for details or [19] for a unified discussion. We will
need to consider moduli spaces of hyperbolic surfaces with geodesic boundary.
Let g, n > 0 be integers such that2 —2¢g —n < Oand b := (by,...,b,) € R”
be a vector with nonnegative entries. We denote by M, , (b) the moduli space of
connected, oriented, complete, finite area hyperbolic surfaces of genus g with
n labeled geodesic boundary components of lengths by, ..., b,; if b; = 0 for
some i € {l,...,n}, we interpret the corresponding boundary component as a
cusp. Just as in the case of surfaces without boundary, these moduli spaces carry
natural Weil-Petersson volume forms. The following result, corresponding to [15,
Theorem 4.2], describes the behavior of the total Weil-Petersson volume of these
moduli spaces as a function of the lengths by, .. ., b, of the boundary components.

THEOREM 2.5 [15, Theorem 4.2]. Let g,n > 0 be integers such that 2 — 2g —
n < 0. For vectors b := (b, ...,b,) € R" with nonnegative entries, the total
Weil—Petersson volume

Ven(by, ..., by) := Voly, (M, , (b))

of the moduli space M, ,(b) is a polynomial in b?, ..., b? of degree 3g — 3 + n,
all of whose coefficients are positive, and which has rational leading coefficients.

Moduli spaces as the ones described above can also be defined for topological
surfaces with several connected components; they correspond (up to taking finite
covers) to the product of the moduli spaces of the components of the surface.
The volume polynomial of the corresponding moduli space is (up to a rational
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Square-integrability of the Mirzakhani function 13

multiplicative factor) the product of the volume polynomials of the moduli spaces
of the components of the surface.

Consider an ordered topological multicurve y := (y1,..., %) on S, ,. We
denote by S, ,(y) the topological surface obtained by cutting S, , along y; it
can have several connected components. For any vector (xy, ..., x;) € R" with

nonnegative entries, we denote by M, ,(y, X) the moduli space of all oriented,
complete, finite volume hyperbolic structures on S, ,(y) with geodesic boundary
components whose lengths are given by xy, ..., x; according to which curve y;
the boundary component comes from. We also denote by V, ,(y, X) the total
Weil-Petersson volume of the moduli space M, ,(y, X).

Given an ordered topological multicurve y = (y1, ..., ¥) on S, , and positive
weights a := (a;,...,a) € R", we denote by a - y the unordered weighted
multicurve on §, ,, given by

a-y=ay1+---+aV.

The following theorem, corresponding to [15, Theorem 4.1], gives a formula for
the integral

P(L,a~y) §=/ s(X,a-)/, L)dﬁwp(x)
Mgn

in terms of the volume polynomial V, ,(y, x) of the moduli spaces M, ,(y, X)
associated with the surface obtained by cutting S, , along y.

THEOREM 2.6 [15, Theorem 4.1]. For any ordered topological multicurve
Y = (Y1, ..., Y&) on S, , and any positive weights a := (ay, ..., a;) € R*, the
integral over M, , of s(X,a -y, L) is given by

P(L,a-y)=«(y,a) / Veu(y, X) X - dX,
ax<T

where X = x| - - - Xy, dX =dx; - - - dxy, and k (y, a) € Q. is a constant depending
only on y and a and taking only finitely many values as a varies.

Proposition 1.3 follows from Theorems 2.5 and 2.6.

3. Square-integrability of the Mirzakhani function

Notation. For the rest of this paper, N := 3g — 3 4+ n will denote the number of
connected components of a pair of pants decomposition of S ,,.
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The Mirzakhani function near the cusp. Let us first review Mirzakhani’s
original description of the behavior of the function B: M, , — R., near the
cusp. Recall the definition of the function R: R.; — R_( in (2):

1
Rx)= ———.
x - [log(x)|
The following bounds, which describe the values of B(X) for points X € M, ,
near the cusp in terms of the lengths of short simple closed geodesics, are a direct
consequence of [15, Proposition 3.6].

PROPOSITION 3.1. For all sufficiently small € > 0, there are constants
Cy, C; > 0 such that for all X € M,

1
- [l rRe,x»<BX) <G ]

yi by (X)<e iy (X)<e &(X)
where the products range over all simple closed geodesics y in X of length < €.

Theorem 1.5 corresponds to the following improvement of the upper bound in
Proposition 3.1.

THEOREM 3.2. For all sufficiently small € > 0, there is a constant C > 0 such
that for all X € M,,,

B(X) < C- ]_[ R(£,(X)).

7L (X)<e
where the product ranges over all simple closed geodesics y in X of length < €.

The proof of Theorem 3.2 follows similar arguments as the ones given by
Mirzakhani in the proof of Proposition 3.1; more precise estimates are considered
when working with the Thurston measure.

Let us introduce some of the relevant terminology and tools used by
Mirzakhani in the proof of Proposition 3.1. Fix a pair of pants decomposition
P = {y.....yn} of S, and let (m;, )X, be a set of Dehn-Thurston
coordinates of ML, ,(Z) adapted to P; we denote by A C (Zso x Z)V
its parameter space and by (m;(y), ;(y))Y., the coordinates of any integral
multicurve y € ML, ,(Z). Given an integral multicurve y € ML, ,(Z) and a
marked hyperbolic structure X € 7, ,, we define the combinatorial length of y
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Square-integrability of the Mirzakhani function 15

on X with respect to the pants decomposition P to be

N

Lp(X,y) = Z(mi()/) cw(ly, (X)) + 6:(y)] - £, (X)), &)

i=1

where w: R,y — R, is the function

) 1
w(x) := arcsinh <m)

describing the width of the hyperbolic collar neighborhoods introduced
in Theorem 2.1. This definition depends on the choice of Dehn-Thurston
coordinates considered.

Given L > 0, a pair of pants decomposition P := {y, ..., yy} of S, ,, and a
marked hyperbolic structure X € 7, ,, we say that P is L-bounded on X if

6,(X)<L, Vi=1,...,N.

The main tool used by Mirzakhani in the proof of Proposition 3.1 is the
following length comparison lemma, which corresponds to [15, Proposition 3.5].

LEMMA 3.3 [15, Proposition 3.5]. Fix L > 0. There is a constant C > 0
(depending on L) such that for every X € T,, and every pair of pants
decomposition P of S, , which is L-bounded on X, there is a set of Dehn—
Thurston coordinates (m;, ;)Y of ML, ,(Z) adapted to P such that for every

integral multicurve y € ML, ,(Z), the following bounds hold:

1
o LrX.y) <60 <C-Lp(X.y).

Recall that any set of Dehn-Thurston coordinates (m;, ;)Y of ML, ,(Z) with

parameter space A € (Zs x Z)" can be extended to give a parametrization of
the space ML, , of measured geodesic laminations on S, , by the set

O :={(mi. 1) e Reo xR |m;=0=142>0,Vi=1,....,N}. (6

In particular, it is possible to define the combinatorial length of any measured
geodesic lamination A € ML, , using (5); we will also denote such combinatorial
length by Lp (X, A).

Recall that for every X € 7T,, the hyperbolic length function
L(X): ML, — R., is homogeneous with respect to positive scalings. As
any parametrization of ML, , by Dehn-Thurston coordinates is homogeneous
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with respect to positive scalings, it follows directly from the definition (5) that any
combinatorial length function Ly (X, -): ML,, — R. is also homogeneous
with respect to positive scalings. In particular, Lemma 3.3 also holds for weighted
multicurves. As weighted multicurves are dense in ML, , and as both the
hyperbolic and combinatorial length functions are continuous, we deduce the
following corollary.

COROLLARY 3.4. Fix L > 0. There is a constant C > 0 (depending on L) such
that for every X € Ty, and every pair of pants decomposition P of S, , which is
L-bounded on X, there is a set of Dehn-Thurston coordinates (m;,t,)Y., of
ML, , adapted to P such that for every measured geodesic lamination A €
ML, ,, the following bounds hold:

1
C Lp(X,2) < 6(X) < C-Lp(X, A).

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let 0 < € < 1 be small enough so that on any hyperbolic
surface, no two simple closed geodesics of length < ¢ intersect. Consider an
arbitrary hyperbolic surface X € M, ,. After choosing an arbitrary marking, we
can consider X as a point in 7 ,. Let {1, ..., y} be the set of all simple closed
curves on S, , having length < € on X. Note that the choice of € > 0 forces
these simple closed curves to be pairwise disjoint; in particular, 0 < k < N.
By Theorem 2.2, we can complete the collection {yy, ..., 4} to a pair of pants
decomposition

PX = {ylv"'iyka )/k+1,~--,J/N}

of §, , satisfying
0, (X)<Lg,, VYi=1,...,N,

where L,, > 1 1is a constant depending only on g and n. In other words, Py is
L, ,-bounded on X.
Consider the subsets By, Bx p, € ML, , given by

BX = {)V € Mﬁg,n | ZX()") < 1}7
Bypy = (k€ MLy, | Lp (X, 2) < 1},

where the set of Dehn—Thurston coordinates used to define Lp, (X, -) is the one
given by Corollary 3.4. It follows from Corollary 3.4 that

Bx € C - Bxp,
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Square-integrability of the Mirzakhani function 17

for some constant C > 0 depending only on g, n, and L, ,. Using the scaling
properties of the Thurston measure, we deduce

B(X) = prni(Bx) < wrna(C - Bx.py) = C*N - pirnu(Bx py)-

This reduces our problem to computing ftrn, (Bx py)-

We compute pwr,(Bx p,) explicitly using Dehn—Thurston coordinates. Recall
that, as explained in the discussion following Theorem 2.4, for any set of
Dehn-Thurston coordinates (m;, ;)Y of ML,, with parameter space © as
in (6), the Thurston measure w,, on ML, , corresponds to 25~V times the
standard Lebesgue measure on &, which we denote by Leb. It follows that

Wrna(Bx py) = 257" - Leb(Ax py).

where

Axpy = {(mi, IRNC

N
Z(mi “w(, (X)) + 6] - £,(X) < 1¢.
i=1

To compute Leb(Ay p,), after multiplying by 2V, we can restrict ourselves to the
region m;, t; > 0. We are now computing the volume of the unit simplex in R*¥
under the diagonal linear transformation
1 1
* m,, tl H - . tl'
2,.(X) w(ly, (X))

m; —

The volume of the unit simplex in R?" is (2;1\0' Multiplying by the determinant of
our linear transformation, we obtain

N N 1

LCb(AX,Px) = (ZN)' ' 1:[ EV:(X) . IU(E)/; (X)) '

i=1

Recall
w(x)

1m =
~0° [log(x))]

As a consequence, for every sufficiently small 0 < € < 1 andevery 0 < x < €,

1
w(x) > 3 [log(x)].

In particular, for every i € {1, ..., k}, we can bound

1
£y, (X)) - w(ty, (X))

<2 R(L,(X)).
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Consider the function H: R,y — R. defined as

Given € > 0 sufficiently small, let M > 0 be the maximum attained by H on the
compact interval [€, L, ,]. Forevery i € {k + 1, ..., N}, we can bound

1 <M
£y, (X) - w(ty, (X))

Putting everything together, we deduce

C2N stk pgN—k K
B(X) < JTREx .
i=1

2N)!
finishing the proof. O

REMARK 3.5. The proof of Theorem 3.2 shows that how sufficiently small the
values of € > 0 considered need to be is independent of g and n. The arguments
in our proof can also be used to establish the lower bound given by Mirzakhani in
[15, Proposition 3.5].

Square-integrability of the Mirzakhani function. Fix 0 < € < 1 small enough
according to Theorem 3.2. It follows from Theorem 3.2 that the integrability
properties of the function F: M, , — R., given by

F(X):= [ RUx», (7

v (X)<e

where the product ranges over all simple closed geodesics y in X of length < €,
are inherited by the Mirzakhani function. Motivated by this idea, we prove the
following result.

PROPOSITION 3.6. The function F: M,, — R., defined in (7) is square-
integrable with respect to the Weil—Petersson volume form on M, ,, i.e.,

/ F(X)? dtyy(X) < +00.
Mg.n

Proof. For every k € {0,..., N}, let ./\/l’;; C M,, be the subset of all
the hyperbolic surfaces in M, , with exactly k simple closed geodesics of

Downloaded from https://www.cambridge.org/core. Univ of Washington, on 13 Apr 2021 at 02:16:46, subject to the Cambridge Core terms
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.49


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.49
https://www.cambridge.org/core

Square-integrability of the Mirzakhani function 19

length < € (by Mumford’s compactness criterion, see 12.4 in [8] for instance,
Mg’; is compact). It is enough for our purposes to show that for every k € {0,
., N}, the following integral is finite:

[ Foramgon.
M

Fix k € {0,..., N}. Let L,, > 1 be as in Theorem 2.2. As a consequence
of Theorem 2.2 and of the fact that there are only finitely many pair of pants
decompositions of S,, up to the action of the mapping class group, we see
that M’;; can be covered by finitely many subsets of 7, , which in appropriate
Fenchel-Nielsen coordinates (¢;, ri)f.\’: , € (R x R)" are given by

(elﬁtl)l 1e (R>O XR)N Tl <£17 Vi —1 v
A’;:;:: 0<£,<e,\7’1_1,...,k,
e</li<Lgy, Vi=k+1,...,N

Let A’; ¢ C 7T, be one of these subsets. It is enough for our purposes to show that

/ FO?dpp(X) < +o0,
Ak

R

where F: Ten = R. denotes the lift of F to 7 ,.
Using Wolpert’s magic formula, we compute

J..

g.n

k
1
FX0? g (X) = / [t dv - duydey - -dey
noj— Zi : log(gi)z

k
ldzi
(U// ¢ log(6)? logw)z a )
( [/ dg)
Direct computations show

e 1
f / 2—2d1’,'d£[=—<+00,
o Jo £ -log(t:) log(e)
Lgn 0 L2 _ 62
/ / dT,' dgl =& < —+00.
€ 0 2
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It follows that
/ F(X)?dpyp(X) < +00,
Ak,é

g.n

completing the proof. O

As a direct consequence of Theorem 3.2 and Proposition 3.6, we deduce the
following.

THEOREM 3.7. The Mirzakhani function B: M, , — R., is square-integrable
with respect to the Weil—Petersson volume form on My ,, i.e.,

Agpi= f B(X)? dlyp(X) < +o0.
M

gn

REMARK 3.8. Using the lower bound in Proposition 3.1 and computations
similar to the ones in the proof of Proposition 3.6, one can show
B ¢ L**“(M, ., Iiy,) for every € > 0.

4. Statistics of counting problems for simple closed geodesics

Joint frequencies. Let y, y, € ML, ,(Z) be a pair of integral multicurves on
S, . Recall the definition of their joint frequency c(y1, y») givenin (3):

. 1 ~
c(yi, y2) == Lll_)noloW/M (X, y1, L) - s(X, y2, L) ditwp (X)) (8)
gn

We now prove Theorem 1.8, which we restate here for convenience.

THEOREM 4.1. For every pair of integral multicurves y,, y, € ML, ,(Z), the
limit in the definition (8) of c(yi, y») exists and, moreover,

Ag pn

c(y, ) = bT ~c(yr) - c(y).

g.n

To prove Theorem 4.1, we make use of the following upper bound, similar in
spirit to the one in Theorem 3.2.

PROPOSITION 4.2. For all sufficiently small € > 0, there exist constants C > 0
and Lo > 0 such that for all L > Ly, all X € M, ,, and all n € ML, ,(Z),

s(X,n, L)
W <C- 1_[ R(x(y)),

vl (X)<e

where the product ranges over all simple closed geodesics y in X of length < €.
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Proof. We proceed as in the proof of Theorem 3.2. Let 0 < € < 1 be small enough
so that on any hyperbolic surface, no two simple closed geodesics of length < €
intersect. Consider an arbitrary hyperbolic surface X € M, ,. After choosing an
arbitrary marking, we can consider X as a point in ’7;,,[. Let{y1, ..., y«} be the set
of all simple closed curves on S, , having length < € on X. Note that the choice
of € > 0 forces these simple closed curves to be pairwise disjoint; in particular,
0 < k < N. By Theorem 2.2, we can complete the collection {yy, ..., ¥} to a
pair of pants decomposition

Px :={v1, .o\ Vo Vit1s -+ YN}

of S, , satisfying
,(X)<L,,, VYi=1,...,N,

where L,, > 1 is a constant depending only on g and n. In other words, P is
L, ,-bounded on X.
Fix n € ML, ,(Z). For every L > 0, we consider the counting functions

s(X,n, L) :=#la € Modg, - n | £x () < L},
S(X,n, L) :=#{a e Mod,,, - n | Lp, (X, ) < L},

where the set of Dehn—Thurston coordinates used to define Lp, (X, -) is the one
given by Lemma 3.3. It follows from Lemma 3.3 that for every L > 0,

s(X,n, L) < S(X,n, CL),

where C > 0 is a constant depending only on g, n, and L, ,. This reduces our
problem to giving appropriate upper bounds for the values of S(X, n, CL) across
all L > Lo, with Ly > 0 depending only on g, n, and L, ,.

We bound the values of S(X, , CL) by using Dehn—Thurston coordinates. Let
(m;, ;)Y be the set of Dehn—Thurston coordinates of ML, ,(Z) used to define
the combinatorial length Lp, (X, -) above and let A € (Z>¢xZ)" be its parameter
space. We denote by A, € A the set of all parameters in A that represent integral
multicurves in Mod, , - . Note that for every L > 0,

S(X,n,CL) = #{(m,»,t,-) €A,

N
D mi - w(, (X)) + 4] - £,(X)) < CL
i=1

One can bound S(X, n, CL) by the standard Lebesgue measure of the box

N N CL i
X, ¥y, € Reo xRV 0Ly < ———=+1,Vi=1,...,N,
- w(ly, (X))
Be, = CL ’
0< |y < +1,vVi=1,...,N.
£,(X)
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but this does not give an upper bound of the desired order when £, (X) < CL <
w(¥,, (X)) for some i € {1,..., N}. Roughly speaking, in the regime 0 < a <
1 < b, the area of the thin rectangle R C R? with vertices (0, b), (0, —b), (a, b),
and (a, —b) is not a good approximation for the number of integer points in R.
There is a simple way to get around this difficulty though.

We make the following key observation: given L > 0, if w(£,,(X)) > CL
for some i € {1,..., N}, then none of the integral multicurves counted by the
function S(X, n, CL) intersect y;; in terms of Dehn—Thurston coordinates, m; = 0
for all such integral multicurves. Points in A with ith coordinates of the form (0,
1;) and t; > O represent integral multicurves on S, , one of whose topological
components is y;, with weight ;. As n has at most 3g — 3 4+ n topological
components, there are at most 3g — 2 + n distinct possible values such #; can
take when describing curves in the mapping class group orbit of . Indeed, every
mapping class takes none or exactly one of the topological components of 1 to y;,
so t; can only be zero or one of the weights of the topological components of 7.

Given L > 0, relabel the y;’s so that w(€,, (X)) < CL foralli € {1, ..., ¢} and
w(, (X)) > CLforalli e {t+1,...,N}; theindex ¢t € {0,..., N} depends
on L. Clearly, t = N for all big enough L, but how big L needs to be for such
condition to hold depends on X. As we are looking for an upper bound uniform
across all big enough values of L, it is important to keep track of the index ¢. In
this context, we consider the truncated counting function

B:(X,CL)

= # (mi, l‘,') € (Z>0 X Z)t

D mi - w(l, (X)) + 16l - £,(X) <CL .
i=1

It follows from the key observation above that
S(X,n,CL) < Bg—2+n)"".B,(X,CL).

LetLy:=L,,/Csothat£,(X) < CLforalli € {1,...,N}andall L > L.
Fix L > Lopandlet? € {0, ..., N} be as in the previous paragraph. The conditions

w(t, (X)) <CL, £,(X)<CL, Vi=1,.. .1 )

will allow us to get an upper bound of the desired order for B,(X,CL).
Considering the collection of disjoint unit cubes centered at points counted by
B,(X, CL), we get the upper bound

B/(X,CL) < Leb(B¢,),
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where Leb(BY,) denotes the standard Lebesgue measure of the box

1 CL 1 .
B (X,', yi);:l € (R>o X R)l -3 < X < w(ly, (X)) + 29 Vi = 1, R
cL = 0< Iyl <L+ 1 vi=1 t
X yl AN lyi(X) 2° _ PEEICIREPEY 20

A direct calculation together with the conditions in (9) give
t t

D cL 20L 6-C*. L
Leb(B¢,) = ]_[ (m + 1) . (ﬂy(—X) + 1) < 1_[ £,(X) - w, (X))

i=1 i=1

Putting things together, we deduce

t
s(X.n, L) < Bg—2+m" 76 -1

i=1

1
£y (X) - w(€y, (X))

(10)

Note that

m ——— = +0Q.
x>0+ x - w(x)

As a consequence, we can find § > 0 such that forall 0 < x < 4,

1

x-wkx) ~

Note also that w: R,y — R_y is an orientation reversing homeomorphism.
Therefore, we can find L; > 0 such that for all L > L, if w({,,(X)) > CL
for some i € {1,..., N}, then ¢,,(X) < 4. In particular, given L > L, and
t€{0,..., N}asabove,everyi € {t+1,..., N} satisfies £,,(X) < §, and so we

can bound
1

1< .
£y, (X)) - w(ty, (X))

It follows from (10) that under the condition L > max{L,, L, 1}, we have

1
w(y, (X))

N
S(Xon L)< Gg—24m)" 6"V LV ]
i=1 £y (X) -

where we assume without loss of generality that C > 1.

Proceeding just as in the last part of the proof of Theorem 3.2, one can get an
upper bound for s(X, n, L) depending only on the simple closed curves y with
£,(X) < e. This finishes the proof. ]
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REMARK 4.3. For every X € M,, and every L > 0, consider the counting
function
b(X, L) :=#ae ML, ,(Z) | lx(@) < L}.

No upper bound as the one in Proposition 4.2 can be given for these counting
functions. Indeed, the thin rectangle phenomenon described in the proof of
Proposition 4.2 can be used to show that b(-, L) ¢ Lz(./\/lg,,,, Iyp) forevery L > 0,
in contrast with Proposition 3.6.

REMARK 4.4. Fix y € ML, ,(Z). Given X € M,,, Theorems 1.1 and 1.4

ensure
ben s(X,y,L) _

i M T

Fix 0 < € < 1 small enough according to Proposition 4.2. By Proposition 4.2, we
can find a constant C > 0 depending only on g and n such that for all big enough
L >0andall X € M,,,

bg,n S(X’ )/, L)
C()/) ’ [, 08—6+2n

< C-F(X), an

where F: M, , — R. is the function defined in (7). Taking L — oo in (11), we
deduce
B(X)<C- -F(X)

for all X € M, ,. This argument yields an alternative proof of Theorem 3.2.
REMARK 4.5. Remark 3.8 and the arguments in Remark 4.4 show that the upper
bound in Proposition 4.2 cannot be improved to attain more integrability of the

bounding function if we want the bound to hold uniformly for all big enough
L >0.

Theorem 4.1 now easily follows from Theorems 1.1 and 1.4, Proposition 4.2,
and the dominated convergence theorem.

Proof of Theorem 4.1. By Theorems 1.1 and 1.4, we have

li S(Xv Vi,L) _ C(Vz)B(X)
1m =
0, TLoe—6i2n b

g.n

for every X € M, , and every i € {1, 2}. It follows that

li S(X, yl:L)'s(Xv )/2,L) _ C(J/l)'c()’z)
1m =

L—oo L 128—12+4n bg ;

- B(X)~.
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for every X € M, ,. Fix 0 < € < 1 small enough according to Proposition 4.2.
By Proposition 4.2, we have

S(X? Vl» L) : S(X? y29 L)
[ 128—12+4n

< C-F(X)*

for all big enough L > 0 and all X € M, ,, where C > 0 is a constant depending
only on g and n, and F: M, , — R. is the function defined in (7). Proposition
3.6 shows that F? € L'(M oo ﬁwp). By the dominated convergence theorem, the
limit in the definition (8) of ¢(y;, ) exists and, moreover,

C( ) * C( ) o~ a N
ctnoym) = Lo [ BOO? g (X) = T en) - ).
8g.n Mg.n g.n
This finishes the proof. O

Recovering b, , and a,, from frequencies and joint frequencies. Theorem
5.3 of [15] establishes the following relation between the constant b, , and the
frequencies c(y).

THEOREM 4.6. For any integers g,n > 0 such that2 —2g —n < 0,

bg,n = Z C()/)

yeMLg x(Z)/Modg

The authors feel the need to include a proof of Theorem 4.6 as some details,
most likely known to Mirzakhani herself, are omitted in [15]. Our proof relies
on the following rough estimate, which separates the dependence of the counting
function s(X,a - y, L) on the hyperbolic structure X € M, , and the weight
parameters a € N,

LEMMA4.7. Let X € ./\/lg,n andy .= (Y1, ..., V) with1 < k < N be an ordered

unweighted multicurve on S, ,. There exist constants C = C(X) > 0 and Ly > 0

such that for all a := (ay, ...,a;) € N* and all L > L, the following bound
holds:

X,a-y, L 1

sX.a-y, L) <C- 1_[ —

[,68—6+2n . aiZ
i=

Proof. The following proof makes strong use of Mirzakhani’s integration
formulas, in particular, of Theorem 2.6; we refer the reader to the statement
of such theorem for the notation used throughout the rest of this proof. Let
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a:=(aj,...,a) € N and L > 0 be arbitrary. According to Theorem 2.6,

J.

For all i € {1,...,k}, consider the change of variables u; := a;x; so that
du; = a;dx;. It follows from the change of variables formula that

s(X,a-y, L) dily(X) :K(y,a)-/ Ven(y, X) X - dX.
ax<L

g.n

k
1
V,n(y,X)X'dX= _/ V,n(V,u/a)u'dU,
/ang ¢ ll:! agz 1u<L ¢

where u = uy---uy, du = duy---duy, and u/a = (u,/a, ..., ur/ay). As a
consequence of Theorem 2.5, the function V, ,(y, X) is a polynomial in x with
nonnegative coefficients. It follows that (since each a; > 1)

Ven(y,u/a) <V, (y,u)

for all u € R* with nonnegative entries. In particular,

/ Vg,n(V? u/a) u-du < / Vg,n(yv ll) u-du.
lugL

1lu<L

By Theorem 2.6,

P(L,1-y) ::/

S(Xa 1. Vs L) dﬁwp(X) = / Vg,n(y’ u) u-du.
Mg

lugL

Putting everything together, we deduce

J.

Let X € M, , and L > 0 be arbitrary. We denote by Ux (1) < M, , the closed
ball of radius 1 centered at X in the quotient symmetric Thurston metric. By
definition, ¥ € Ux(1) if and only if there is a choice of markings for X and Y
(allowing us to consider them as points in 7, ,) such that for all A € ML, ,, the
following bounds hold:

k
. 1
s(Xa-y, D dfw() <k, [ P@ 1y (2)
i=1 ¢

g.n

In particular, if Y € Ux(1), then
S(Xva' Y, L) g S(Yva' V’eL)-
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This observation gives the following rough bound:

s(X,a-y, L)-ﬁwp(Ux(l))=/ Lyyy(¥) - s(X,a-y, L) ditwy(Y)
M

g

< / Loy, (V) - s(Y,a- v, eL) dfiny(¥)

g

< / S(Y’ a-y, eL) dﬁWP(Y)
M

g

k
1
< ,a-ll—-P L,1-vy),
<«k(y,a) 3 22 (e Y)

where the last inequality follows from (12). Note iy, (Ux (1)) > 0 because Ux (1)
is a neighborhood of X and i, has full support on M, ,. We deduce

s(X,a-y,L) €086+ Pl 1-y) o 1
— o Sk, = ' 6g9—6+2 l_[_z
L Hwp(Ux (1)) (eL)%s=0F2n = 1
By Proposition 1.3,
P(eL,1-vy)
Let Ly > 0 be big enough so that
P(eL,1-
u <2-¢(d-y)

(eL)6g76+2n

for all L > L. It follows that

s(X,a-y,L) <«(y,a)-

2. 08—06+2n C(l . )/) ﬁ 1
ﬁwp(UX(l)) i=1 ai2

forall L > L. As k(y, a) takes only finitely many values when a ranges over N*
(see Theorem 2.6), this finishes the proof. ]

We are now ready to prove Theorem 4.6.

Proof of Theorem 4.6. As in Remark 4.3, for every X € M, , and every L > 0,
we consider the counting function

b(X,L):=#ae ML, ,(Z) | tx(x) < L}.
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By the definition of the Thurston measure, see the paragraph following (4), for
every X € M, , we have

. b(X,L)
lim ———

L—oo ],68—6+2n

= B(X).

It follows that we can write

by, = B(X) dlyp(X) = Jim DXL 41X
S (0 it (X) = M L M, Tos—6+2n Pup(X).

Fix X € M, ,. Note that we can decompose b(X, L) as the sum of the counting
functions s(X, y, L) with y ranging over all mapping class group orbits of
integral multicurves on S, ,:

b(X,L) = Z s(X,y,L).

yeMLyg ,(Z)/Mody

Let C,, be the finite set of all topological types of unweighted multicurves
on S,,. For every y := {y,..., %} € C,,, choose an arbitrary ordering
of its components; we will also denote the corresponding ordered topological
multicurve by y := (y1, ..., ¥x). We write

b(X.L)y= > Y s(X.a-y. L)
y€Cqn acNk
As the outside sum in this equality is finite, we deduce
. bX,L) s(X,a-y,L)
Lh_,nolo [ 6s—6+2n Z L_)OOZ [65—6+2m (13)

y€Cqn aeNk

We now exchange the limit in the right-hand side of this equality with the infinite
inside sum by using the dominated convergence theorem. By Theorems 1.1 and
1.4, for every a € N¥, we have

. s(X,a-y,L) c(a-y)-B(X)
lim = .
L—>o00 [ 68—6+2n bg,n

Lemma 4.7 provides constants C > 0 and L, > 0 such that for all
a:=(ay,...,a) € N‘andall L > Lo,

s(X,a-y, L) 1
[.68—6+2n <C- l—[ ;'
i=1 i

Downloaded from https://www.cambridge.org/core. Univ of Washington, on 13 Apr 2021 at 02:16:46, subject to the Cambridge Core terms
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.49


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.49
https://www.cambridge.org/core

Square-integrability of the Mirzakhani function 29

Note that

Z]‘[ s =@ < +oo,

aeNk i=1 4

so the dominated convergence theorem applies. We deduce

fim 3287 D) g @) B
L—00 [ 08—6+2n b
aeNk aeNK gn
for every y € C, . It follows from (13) that
b(X,L) c@a- )/) BX) _ c(y) - B(X)
lim Z Z Z _

— 6g— 6+2n
L= L y€Cq.n aeNk yeMLy x(Z)/Mody bg*”
This equality holds for every X € M, ,, so we have
b(X,L) Ja c(y) - B(X)
LlLoo L6g 6+42n 'uWP(X) = Z b WP(X)
Men Men ye MLy 1 (Z)/Mody g:n
Fubini’s theorem for nonnegative functions gives

-B(X
/ 3 c(y)b ( )dﬁwp(X)
M

&n ye MLy 4 (Z)/Mody , 8.1
Z c(y) - B(X )

Mg bgv”

dwp (X).

14 EMﬁgﬁ (Z)/MOdg,n

By the definition of b, ,,

-B(X)
/ LB 4030 = e,
Mg g.n

Putting everything together, we conclude

bea= Y. <),

yEM Ly (Z)/Modg
finishing the proof. 0

Directly from Theorems 4.1 and 4.6, we obtain an analogous relation between
the constant a,, and the joint frequencies c(y1, y»); this finishes the proof of
Theorem 1.10.

Downloaded from https://www.cambridge.org/core. Univ of Washington, on 13 Apr 2021 at 02:16:46, subject to the Cambridge Core terms
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.49


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.49
https://www.cambridge.org/core

F. Arana-Herrera and J. S. Athreya 30

THEOREM 4.8. For any integers g, n > 0 such that2 —2g —n < 0,

Agn = Z C(Vlv VZ)‘

V1,126 MLy n(Z)/Modg

Proof. By Theorem 4.1, we have

ag,n

c(y, ) = =R c(n) - c(y2)

g.n
for every yi, y» € ML, ,(Z). Theorem 4.6 shows
ben = Z c(y).
yeMLg n(Z)/Modg

It follows that

Z c(yi, ¥2)

Y1 -V2€M£g.n (Z)/MOdg.n

Agn
= > 2o e - e(r2)

ylvVZEM‘cgﬁ (Z)/M()dg,n 8.1

= 2. > |- Yo e

8:n yleMﬁg,n(Z)/MOdg.n VZEMLg.n(Z)/MOdg,n
a
_ %
= 9% by by
8.n
= ag,na
finishing the proof. O

5. Open questions

Computing a, , and joint frequencies. In [15, Theorem 5.3], Mirzakhani gives
formulas for the frequencies c(y) and the constant b, , in terms of leading
coefficients of Weil-Petersson volume polynomials of moduli spaces of complete,
finite volume hyperbolic surfaces with geodesic boundary. As such polynomials
can be computed recursively (see [12, Section 5]), this provides an algorithmic
procedure for computing the frequencies c¢(y) and the constant b, ,,.
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QUESTION 5.1. For any pair of integers g,n > 0 such that 2 — 2g — n < 0,
provide an algorithmic procedure for computing

Agp = /M B(X)* diLyp(X).

&g.n

QUESTION 5.2. For any pair of integral multicurves y;, y, € ML, ,(Z), provide
an algorithmic procedure for computing

c(y, o) = Lll_flgo m /M s(X, v, L) - s(X, 2, L) dtyp(X).
gon

Note that by Theorems 1.8 and 1.10 and the work of Mirzakhani cited above,
Questions 5.1 and 5.2 are essentially equivalent.

Relating a,, to moduli spaces of quadratic differentials. Recall that b, ,,
the integral of B with respect to the Weil-Petersson measure iy, on M,,,
corresponds to the Masur—Veech measure of the principal stratum of QM, ,,
the moduli space of connected, integrable, meromorphic quadratic differentials
of genus g with n marked points.

QUESTION 5.3. Is there a meaningful interpretation of the integral

Agn = /M B(X)2 dﬁwp(X)

&:n

in terms of the moduli space QM ,,?

Large genus asymptotics. For every pair of integers g,n > 0 satisfying
2 —2g —n < 0, consider the probability space (M, ,, flwp/M, ), Where my , 1=
Hywp(M, ,); each moduli space M, , has a different Weil-Petersson measure, but
we denote them all by 7&,. Each one of these moduli spaces carries a Mirzakhani
function B, ,: M, , — R.,. For a fixed n > 0, we are interested in the behavior
of B, , as g — o0.

QUESTION 5.4. What are the asymptotics of Var(B, ,(X)) as g — 00?

Answering Question 5.4 could provide a meaningful insight on the behavior
in the large genus regime of the dependency with respect to the hyperbolic
structure of the leading coefficient of the asymptotics of counting problems for
simple closed geodesics. Indeed, by Theorems 1.1 and 1.4, such a dependency is
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precisely given by B, ,, and Chebyshev’s inequality shows that for every a > 0,

< Var(B,..(X))

P(| B, (X) — E(B, (X)) > a) =

Inspired by Mirzakhani’s work on the geometry of random hyperbolic surfaces
of large genus sampled according to the probability measures [iy,/mg, (see
[16]), it would be very interesting to know more about the geometry of random
hyperbolic surfaces of large genus sampled according to the probability measures
By (X) dtwp(X) /b, .. In particular, the following question seems especially
interesting.

QUESTION 5.5. For € > 0 small enough, what are the asymptotics as g —
oo of the probability that a random hyperbolic surface sampled according to
By 2 (X) dtywy(X) /b, , exhibits a simple closed geodesic of length < €?
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