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Refractive index confidence explorer (RICE): A tool for propagating
uncertainties through complex refractive index retrievals from
aerosol particles

Alexander L. Frie† and Roya Bahreini

Department of Environmental Sciences, University of California, Riverside, California, USA

ABSTRACT
Accurate and precise retrievals of aerosol complex refractive indices (m) are essential to con-
straining the direct radiative effect of atmospheric aerosols. Despite this, there is no generally
accepted method for constraining the uncertainty in full-distribution aerosol complex refractive
index retrievals. This is in part due to condition-dependent and solution-dependent uncertain-
ties which propagate through retrievals. Here, the Refractive Index Confidence Explorer (RICE), a
program written in WaveMetrics Igor Pro, is presented. RICE applies a Monte Carlo-like method
to propagate uncertainties through a full size distribution inverse Mie method (FD-IMM) for m
retrievals. The m retrieval and RICE uncertainty analysis use absorption coefficients, scattering
coefficients, aerosol size distributions, and measurement uncertainties as inputs. RICE iteratively
tests a series of m values for their ability to produce the retrieved m under perturbed condi-
tions. Perturbations account for uncertainties in optical, particle size, and particle number con-
centration measurements. RICE then uses these data to calculate semi-empirical probability
distributions which are used to provide confidence intervals for the real (n) and imaginary (k)
components of m. RICE provides measurement by measurement uncertainty estimations ena-
bling estimation of uncertainty even when conditions are highly dynamic, like those associated
with field measurements. When RICE is applied to idealized test cases and external data, uncer-
tainty is shown to be dynamic in relation to the value of the retrieved m (solution) and the
nature of the particle size distribution (measurement condition). Within these cases, m uncer-
tainties were shown to be large for the upper end of n and k values explored here (i.e., n¼ 1.8
and k¼ 0.5, at 375nm) under uncertainty conditions typical of modern particle and optical
measurement technologies, suggesting FD-IMM’s usefulness may be limited by instrumental
uncertainties under some measurement conditions. However, FD-IMM retrievals may still pro-
vide reasonable estimates of m when n <�1.6 and k< 0.1.
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1. Introduction

The largest uncertainties in modern climate models are
aerosol direct and indirect effects (Intergovernmental
Panel on Climate Change 2014). Aerosol direct effects
occur when a suspended particle scatters or absorbs
solar radiation, causing, in conjunction with the albedo
of the underlying scene (e.g., surface or cloud albedo)
cooling or heating at the top of the atmosphere (TOA)
and affecting the global radiation budget, local cloud
cover, weather, and surface temperatures (Bond et al.
2013; Ramanathan and Carmichael 2008; Perrone,
Tafuro, and Kinne 2012; Chylek and Wong 1995). The
magnitude of aerosols’ direct radiative forcing is partially
controlled by particle concentration, size distribution,
vertical distribution, and complex refractive index (m).

Therefore, if global climate models are to be improved,
the uncertainty of measurements of these parameters
must be constrained. Here, we present the Refractive
Index Confidence Explorer (RICE), a new method to
constrain uncertainties in determination of m from aero-
sol particles.

The complex refractive index is a compositionally
controlled and wavelength dependent measure of how
a material interacts with radiation (Hecht 2002). A
material’s m is composed of a real component (n) and
an imaginary component (k) (Equation (1.1)).

m ¼ nþ ik (1.1)

Within a bulk material, the real component
describes the phase velocity of radiation, and the
imaginary component describes the absorption of
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radiation, i.e., the physical conversion of radiation
into thermal energy. For particles, the relationship
between m and optical effects are complicated. When
radiation interacts with a particle, it can maintain its
original trajectory, have its direction changed (scatter-
ing), or transform into thermal energy (absorption).
Because aerosol scattering can redirect solar radiation
back to space, in the context of the Earth’s atmos-
phere, scattering is a cooling process. Conversely,
absorption increases the thermal energy of the air par-
cels surrounding the particles, leading to atmospheric
heating. Actual net radiative effects of particles are
also determined by the particle location in the atmos-
phere and its size (Pilinis, Pandis, and Seinfeld 1995).

Since m is fixed for a given substance at a given
wavelength, it can be used to predict the optical prop-
erties of aerosol particles of a given substance. In fact,
many models predict aerosol radiative effects by com-
bining compositionally dependent m values, size dis-
tribution estimates, and a model of particle-radiation
interactions, such as Mie theory (Balzarini et al. 2015;
Myhre et al. 2013; Wang et al. 2014). The use of
measured m values to predict aerosol particles optical
properties in models makes it essential to understand
the accuracy and precision of m measurements.

This work specifically aims to provide a tool for
analyzing the precision of a method for retrieving m
in-situ from an aerosol. These m retrievals rely heavily
on assumptions of aerosol homogeneity and spher-
icity. Special care should be taken when applying the
methods discussed below to an aerosol with non-
homogenous particle compositions and/or containing
non-spherical particles. In these cases, the retrievals
may be referred to as, “effective m”, which is the m
value that produces the observed optical properties if
the particles were homogeneous and spherical, but not
the true m of the material constituting the particles.
Such values may be used to infer chemical or mor-
phological composition changes in aerosols but
shouldn’t be used to extrapolate to optical properties
of non-spherical aerosols with similar compositions.

Although m values of the major aerosol compo-
nents have been studied for decades,(Toon, Pollack,
and Khare 1976) m values of many aerosol compo-
nents, and particularly organic aerosols (OA), are
uncertain. OA account for a large fraction of fine
atmospheric aerosols (Q. Zhang et al. 2007; Murphy
et al. 2006) and are known to play a significant role
in the Earth’s radiative budget (Y. Zhang et al. 2017).
Despite this, the m of a given OA at a specific wave-
length is difficult to characterize due to complexity of
OA composition and the uncertainties associated with

in-situ measurement techniques of m (Moise, Flores,
and Rudich 2015). To increase certainty in the radia-
tive effects of OA, and other aerosols, how uncertain-
ties propagate through m measurement techniques
must be understood.

By assuming particle sphericity, inter-, and intra-
particle homogeneity, and that all particles share the
same m, Inverse Mie Methods (IMMs) can apply Mie
theory to describe the optical behavior of aerosols
(Bohren and Huffman 1983; Mie 1908). It should be
noted that shape, intra-, and inter-particle inhomo-
geneity present sources of error from IMMs not
accounted for by RICE. Mie theory is an analytical
solution to the Maxwell equations that describes radi-
ation scattering and absorption by spherical or cylin-
drical particles. Mie theory is particularly useful when
particle diameters are on the same scale as the radi-
ation wavelength, as they are with submicron aerosols,
because Raleigh and geometric optics do not provide
accurate representations of these interactions.

Simply stated, IMMs compare predicted scattering
and absorption coefficients of aerosol particles at dif-
ferent test m values, obtained using Mie theory and
the particle size distributions, to the observed scatter-
ing and absorption coefficients of the aerosol particles.
The test m which best predicts the observed scattering
and absorption coefficients is then selected as the
“retrieved” m (mr). If all assumptions of IMMs are
known to be met, the retrieved value is reported as
the m of the aerosol particles. If all the assumptions
of Mie theory are not met, as is often the case in field
studies, mr values have been reported as the equiva-
lent or effective m (Zhao et al. 2020; Jur�anyi and
Weller 2019; Lee et al. 2011). This does not apply to
all field studies; for example, aged secondary organic
aerosol systems generally conform to IMM
assumptions.

One commonly used IMM is size-selected (SS-
IMM), where multiple monodisperse distributions
from the same aerosol population are sampled
(Mason et al. 2012; Miles et al. 2011; Zarzana, Cappa,
and Tolbert 2014). The applicability of SS-IMMs to
field and chamber datasets is somewhat limited due to
the need for high concentrations of particles at mul-
tiple predetermined diameters and the time required
to sample multiple mono-disperse distributions from
an aerosol population. Another IMM, which can
retrieve m quick enough for field applications, is the
full distribution inverse Mie method (FD-IMM). The
FD-IMM method uses a size distribution measured
over a large range of particle diameters (e.g., sub-
micrometer range) and its corresponding optical
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properties to retrieve m on a time scale of several
minutes. The rate of retrieval is currently limited by
the collection rate of size distribution data. Variations
on FD-IMM have been recently applied under a var-
iety of field and chamber conditions (Bluvshtein et al.
2016; Bluvshtein et al. 2017; Denjean et al. 2014;
Denjean, Formenti, Picquet-Varrault, Camredon, et al.
2015; Denjean, Formenti, Picquet-Varrault, Pangui,
et al. 2015; De Haan et al. 2017; Dingle et al. 2019;
Jiang et al. 2019). Within these studies, the FD-IMM
methodology varies; for example, Dingle et al. applied
a chi squared based—and Jiang et al. applied a differ-
ence based-minimization methodology.

FD-IMM and SS-IMMs discussed above generally
rely on integrated optical properties (i.e., there is no
accounting for the directionality of scattering). Other
IMMs investigate m though the observations of the
phase function (angle dependence of scattering) of
population of particles and comparison with the
expected phase function, generated by Mie theory
(Hovenier et al. 2003; Barkey, Paulson, and Chung
2007). These methods have some advantages over FD-
IMMs and SS-IMMs in that they directly observe the
forward and back scattering of population of particles.
If Mie and IMM assumptions are known to be true,
retrievals from any of these methods can be used to
predict the scattering phase function of particles.

Methods currently applied to estimate uncertainties
associated with m retrievals include repeated measure-
ment of a standard material or a sample (Lambe et al.
2013), estimating a maximum and minimum (hereafter
min-max) bound by mathematically considering the
extremes of analytical uncertainties (Dingle et al. 2019;
Jiang et al. 2019), determining possible minimum and
maximum solutions with the PyMieScatt package which
graphically investigates bounds (Sumlin, Heinson, and
Chakrabarty 2018; Sumlin et al. 2017), or a combination
of these methods (Nakayama et al. 2010, 2018, 2015).
The uncertainty of an IMM, and FD-IMM, depends on
the uncertainty in analytical measurements of absorption
coefficients, scattering coefficients, particle diameters,
and particle number concentrations. In light of this,
Monte-Carlo methods and uncertainty sensitivity analy-
ses have also been recently applied to help constrain the
uncertainties in IMMs (Cotterell et al. 2020; Radney and
Zangmeister 2018).

Estimating IMM uncertainty is complicated by solu-
tion-dependent uncertainty (solution being the retrieved
m of the aerosol) and condition-dependent uncertainty
(condition being the state of the optical measurement
instrument or the shape of the measured particle size
distribution) (Radney and Zangmeister 2018). An

example system with no solution-dependent uncertainty
is a meter stick: no matter the value measured, the
uncertainty will be the smallest unit of a measure on the
stick. Conversely, many systems, such as a nephelom-
eter, often report their uncertainty as a value relative to
the magnitude of the solution (i.e., 5%, in the detectable
range), so the uncertainty can be estimated for any
measurement magnitude by knowing only the solution.
Since the m relates to particle optical properties in a
complex manor, different retrieved m (i.e., solutions)
will have differing uncertainties even in the case of iden-
tical measurement conditions. Condition-dependent
uncertainty can be thought of as that dependent on the
measurement conditions, including instrumental uncer-
tainties or the unique size distribution used in a
retrieval. For a case with a fixed m, m retrievals from
two compositionally identical aerosols with different par-
ticle size distributions may have different uncertainties
due to the complex relationship between m, particle
diameter, and aerosol optical properties. In reality, there
is an interplay between these uncertainty drivers, and
thus each retrieval of m has unique uncertainty condi-
tions. The uniqueness of each retrieval means traditional
methods of uncertainty estimation, such as the repeated
measurement of a known standard or mathematical
propagation of analytical uncertainties, should not be
applied to FD-IMM measurements. Due to this, there is
not a generally accepted method of propagating uncer-
tainties through FD-IMM.

In this work, we demonstrate a stochastic modeling
tool which semi-empirically estimates the uncertainties
associated with mr by FD-IMM. This tool, RICE, seeks
to provide a method of estimating the uncertainty
associated with each discrete m retrieval, by actively
accounting for both solution- and condition-depend-
ent uncertainties. RICE performs this task by itera-
tively testing a series of m values for the probability
they yield the mr under the known analytical uncer-
tainty conditions, assuming random gaussian uncer-
tainties. Using this approach, RICE semi-empirically
estimates concrete and statistically meaningful values
(i.e., confidence intervals) for m components in aero-
sol-relevant m ranges and under typical uncertainty
conditions. It should be noted that RICE does not
account for errors caused by violating the major
assumptions of IMMs (e.g., particle sphericity and
homogeneous intra- and inter-particle composition),
instead RICE assesses the precision of these IMM
methods, not the accuracy. In this work, RICE is
demonstrated using uncertainties similar to those
found in current aerosol microphysical measurements
and evaluated over a range of m values and
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representative size distributions. The RICE code is
freely available as part of this publication and has
been included in the online supplementary informa-
tion (SI). Additionally, the code can be accessed at
https://github.com/FrieCookies/RICE.

2. Description of RICE

In this section the theory and structure of RICE is
presented. First, the FD-IMM around which RICE is
built is detailed (Section 2.1). Second, the major steps
of the RICE analysis are described at a high level
(Section 2.2.1). Third, the major steps of RICE are
explained in detail (Sections 2.2.2–2.2.6).

2.1. Basic complex refractive index retrieval

Complex refractive index retrievals discussed hereafter
are based upon Mie Theory scattering and absorption
by a homogeneous sphere, as described in detail by
Bohren and Huffman (1983) (Figure 1). For a given
size distribution and potential m (mtest), the theoret-
ical optical coefficients (ßscattheoðmtestÞ, ßabstheoðmtestÞÞ are
calculated (Equation (2.1)):

ßscattheoðmtestÞ ¼
Xi¼end

i¼1

Qscat dpðiÞ, k,mtest
� �� NðiÞ

�
p� dpðiÞ

2
� �

4
(2.1a)

ßabstheoðmtestÞ ¼
Xi¼end

i¼1

Qabs dpðiÞ, k,mtest
� �� NðiÞ

�
p� dpðiÞ

2
� �

4
(2.1b)

where Qscat and Qabs are the size dependent scattering
and absorption efficiencies of a particle as calculated
using Mie theory. Optical efficiencies relate the
amount of radiation attenuated by each process to the
particle diameter (dp) at a given wavelength (kÞ and
m. N(i) is the number concentration of particles within
each size bin; dp(i) is the representative particle diam-
eter of a size bin. The results are summed from the
smallest bin diameter to the largest. Before inputting
N data into an m retrieval, or RICE, it is important
that the data be corrected for presence of multiply
charge particles which otherwise could potentially lead

Figure 1. General schematic of an m retrieval used within RICE. Secondary filters, (two large black boxes) help ensure outputs are
reasonable given the analytical uncertainties and input mtest list. rscat and rabs are, respectively, the relative uncertainty associated
with the measurement of the scattering and absorption coefficients. Larger version included in the supplement as Figure S1.
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to erroneous results (Zarzana, Cappa, and Tolbert
2014; Mason et al. 2012; Miles et al. 2011).

To retrieve mr (Figure 1 and SI Figure
S1), ßscattheoðmtestÞ and ßabstheoðmtestÞ are compared to the
observed values (ßscatobs , ßabsobs) through a merit par-
ameter over a range of possible m (mtest). The range
of mtests for the retrieval is chosen manually, prior to
input into RICE, which determines mtest iteratively. In
this work, before mr is determined, mtest are first fil-
tered with “reasonability test” thresholds, which are
based on the measurement uncertainties and the range
of mtest values. These thresholds ensure that the theor-
etical optical coefficients which yield the lowest merit
parameter are not unreasonably different from the
observations. The first is based on the principle that
95% of true values should be within ±2r of the
observed value, assuming gaussian errors. The second
limits the tolerance for theoretical absorption and
scattering coefficients to be different from the obser-
vations, using the theoretical optical coefficients calcu-
lated with the input mtest to prevent overweighting of
either observations. For ßscattheoðmtestÞ, the first thresh-
old is set at ßscatobs�ð162rscatÞ (where rscat is the rela-
tive instrumental uncertainty associated with ßscatobs ,
defined as one relative standard deviation) and the
second at half the maximum relative ßscattheoðmtestÞ dif-
ference between theoretical scattering coefficients

using consecutive ntest values, i.e., max(
ßni�ßnði�1Þ

2�ßni ) (k

held constant). For ßabstheoðmtestÞ, the first threshold is
set at ßabsobs�ð162rabsÞ (where rabs is relative instru-
mental uncertainty associated with ßabsobs , defined as

one relative standard deviation) and the second at half
the maximum relative ßabstheoðmtestÞ difference between
theoretical absorption coefficients using consecutive

ktest values, i.e., max(
ßki�ßkði�1Þ

2�ßki Þ (n held constant).

After filtering, a merit parameter is calculated for
each mtest and the mtest with the smallest merit param-
eter is chosen as mr. Different merit parameters have
been used for m retrievals. Examples include the
summed difference (D, Equation (2.2)) and chi
squared (v2, Equation (2.3)) (Denjean, Formenti,
Picquet-Varrault, Camredon, et al. 2015; Denjean,
Formenti, Picquet-Varrault, Pangui, et al. 2015;
Denjean et al. 2014; De Haan et al. 2017; Bluvshtein
et al. 2017; Bluvshtein et al. 2016; Jiang et al. 2019;
Dingle et al. 2019; Lambe et al. 2013):

D ¼ j ßscatobs � ßscattheoð Þj þ j ßabsobs � ßabstheoð Þj
(2.2)

v2 ¼ ßscatobs � ßscattheo
rscatmeas � ßscatobs

� �2

þ ßabsobs � ßabstheo
rabsmeas � ßabsobs

� �2

(2.3)

Where rscatmeas and rabsmeas are the relative standard
deviations associated with the averaging of ßscat and
ßabs measurements during the time period of a size
distribution measurement. For this work, v2 is used as
the merit parameter, but RICE is also able to analyze
uncertainties associated with D:

Figure 2. General schematic of RICE for a single mr value. Larger version included in the supplement as Figure S2. �All mtrue val-
ues are used as mtest values for these calculations.
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2.2. RICE procedure

RICE is a tool which estimates the uncertainties
within the FD-IMM. The goal of RICE is to constrain
which m (mtrue¼ntrueþiktrue) could have yielded the
retrieved m (mr ¼ nr þ ikr) under the given uncer-
tainty conditions. RICE defines the mtrue as the m
which would accurately reproduce the observed
optical properties if instrumental measurements were
perfect and all particles were compositionally homoge-
neous and internally mixed spheres. As an example, if
the retrieved value (mr) was 1.48þ 0.001i, RICE deter-
mines the probability that a given mtrue, say
1.5þ 0.002i, yielded mr by simulating perturbed cases
where mtrue was observed after accounting for the
actual instrumental uncertainties. Then, by asking this
question of many values of mtrue, the probability dis-
tribution of mtrue which potentially had solutions of
mr can be obtained.

The output are the bounds of a statistically relevant
range (e.g., 95% confidence interval) of mtrue values
which could have produced the given mr under the
measurement conditions. RICE calculates the mtrue

probability distribution through the following steps
(Figure 2 and SI Figure S2). Prior to applying RICE,
the user must run the FD-IMM retrieval that is also
included with RICE to obtain mr; this requires the
size distribution and optical coefficient observations as
described in Section 2.1

1. The operator supplies (1) the retrieved m (mr),
(2) an observed size distribution, and (3) the rela-
tive instrumental uncertainties associated with the
measurements of ßscat , ßabs, dp, and N (i.e., rscat,
rabs, rdp, rN, respectively).

2. RICE establishes a trial ntrue and ktrue sampling
space around the input mr (Section 2.2.1). This
sampling space contains discrete numbers of mtrue

values in a matrix of size (iþ 1) � (jþ 1) where i
and j are even numbers respectively equal to the
number of discrete ntrue and ktrue around the nr
and kr being investigated.

3. Within the established sampling space, RICE uses
the input uncertainties to randomly perturb size
distributions and predicted theoretical optical
properties for each mtrue 10 times. Then, using
these perturbed optical parameters as inputs,
RICE performs m retrievals with the discrete mtrue

values as possible solutions (i.e., mtrue values are
used as mtest in the FD-IMM) (Section 2.2.2).

4. From these retrievals, the number of iterations
each mtrue retrieved the target mr is determined.
Treating n and k independently, RICE uses these
results to estimate the probability that the m of
the aerosol population was mtrue if mr was
retrieved (P(mtruejmr)) (Section 2.2.3):

P ntruejnrð Þ ¼ Nnr jntrue
Nnr

(2.4)

Where Nnr jntrue is the number of times nr was
retrieved for a given ntrue in step 3 and Nnr is the
total number of times any ntrue retrieved nr. The
analogous analysis is also performed for
P ktruejkrð Þ: RICE then fits the resulting cumulative
probability distribution (Section 2.2.4). If the
resulting fit is not satisfactory using quality indi-
cators described in Section 2.2.4, RICE changes
the sampling space and repeats steps 2� 4. If the
fit is satisfactory, then RICE increases the number
of mtrue tested and increases the number of times

Figure 3. Example cumulative probability distribution and the associated sigmoidal fit parameters. nwidth, nstep, n0.5, Max, P0, and
Height are annotated.
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each mtrue is tested from 10 to �100 to calculate
the final intervals.

5. RICE then calculates the cumulative probability
distributions for P ntruejnrð Þ and P ktruejkrð Þ and fits
the distributions (Section 2.2.5). These fits are
then used to calculate confidence intervals.

2.2.1. Sampling space determination
To ensure RICE’s solution is based off mtrue values
that could yield mr, an appropriate sampling space
must be determined around mr. The half-width of the
initial trial sampling space around mr (nwidth, kwidth) is
established using the following equations:

nwidth ¼ nr � 1ð Þ � rscat þ rdp þ rNð Þ=2 (2.5a)

kwidth ¼ ðkrÞ � ðrabs þ rdp þ rNÞ=2 (2.5b)

Considering this sampling space, discrete ntrue and
ktrue values are chosen within the nr ± nwidth and kr ±
kwidth space. These values are chosen at equal intervals
of nstep and kstep around mr (horizontal location of
red dots in Figure 3 show the placement of ntrue).

nstep ¼ nwidth

floor
ffiffiffiffiffi
i�j

p
2

� �� � (2.6a)

kstep ¼ kwidth

floor
ffiffiffiffiffi
i�j

p
2

� �� � (2.6b)

Where i is the number of n and j the number of k
to be tested around mr.

2.2.2. Perturbed m retrieval
For each sampling space and final confidence interval
determination, RICE performs the following calcula-
tions I times for each mtrue (Figure 4), where each I is
a perturbed retrieval with randomly perturbed input,
driven by the provided observation uncertainties. The

value of I depends on the stage of RICE analysis.
During the sampling space determination, I is low (10
for this work) but it is increased when determining
the final interval (100 for this work). These values
were chosen in an effort to minimize computational
effort while maintaining a statistically robust set of
results. RICE results for alternate I are presented in
the SI (Table S1).

First, in each perturbation, all dp and N value asso-
ciated with a size distribution are randomly perturbed
(by the same relative value for dp bin and a unique
value for each bin for N) using the Igor Pro’s
(WaveMetrics, Lake Oswego, OR, USA) Gaussian
noise (gnoise) function and the associated uncertain-
ties (rdp and rN, respectively). This creates a possible
“true” size distribution for each iteration. Values of dp

’

and N’ are then used to calculate optical coefficients
for each discrete mtrue value using Mie theory as high-
lighted in Figure 1 and supporting information S1
(Section 2.1). It should be noted that, to decrease ana-
lysis time, only particle size bins which contribute to
>¼1% of ßabs or ßscat at the center mtrue (mr) or the
most extreme tested mtrue (largest and smallest n and
k) values are used by RICE.

The calculated optical coefficients are then adjusted
using the gnoise function to simulate the observation
of the “true” optical properties observed under the
expected analytical uncertainties (ß0scatðmtrueÞ and

ß0absðmtrueÞ). ß
0
scatðmtrueÞ and ß0absðmtrueÞ are considered as

the “observed” optical coefficients for an inverse Mie
calcuation as detailed in Figure 1 and SI Figure S1
(Section 2.1). This Mie calculation is performed using
the original size distribution parameters (dp and N)
and all the mtrue values as possible solutions (mtest).
Note that values of m retrieved using the perturbed
inputs are described here as mr’ to avoid confusion

Figure 4. General schematic of the perturbed refractive index calculation RICE uses to determine each mr’. The resulting mr
’ is a

function of both the specific iteration and mtrue.
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with the value being investigated, mr. At the end of
each iteration, each mtrue value is associated with a
resulting mr’.

2.2.3. Semi-empirical probability distribution
determination

After I iterations, a matrix (nr’ vs. kr’) is created for
each mtrue which describes the number of times mtrue

yielded any mr
’ with the sum of the number of all ele-

ments in the matrix equal to I minus values which fell
outside of the reasonability criteria. This matrix is
then normalized by I and empirically describes the
probability each mr’ was retrieved if mtrue was the
actual m (P(mr’jmtrue)) under the given uncertainty
conditions. From this normalized matrix the probabil-
ity of retrieving the target mr if m¼mtrue (P(mrjmtrue))
can be extracted. This value is determined for each
mtrue and used to create a second matrix which con-
tains P(mrjmtrue) for all mtrue. This second matrix is
normalized to I so the sum of the number of elements
of the matrix will be one since RICE assumes the
sampling space contains all possible m values which
could have yielded mr. Since all mtrue values were
tested an equal I numbers of times, comparison of the
empirical probabilities over different mtrue is appropri-
ate. From this matrix, the probabilities are summed
for each ntrue and ktrue, independently, so confidence
intervals can be calculated independently. Next, RICE
interpolates the probability associated with the
untested mtrue values which lie between the tested val-
ues as described in Section 2.2.4.

2.2.4. Fitting: Sampling space analysis
Sigmoidal fits, using the Igor Pro’s CurveFit (Sigmoid)
function, are used to analyze the appropriateness of
the mtrue sampling space and to calculate the final
confidence interval. For these analyses, sigmoidal fits
of the cumulative probably distributions of ntrue and
ktrue are used (Figure 3, Equation (2.7)).

CPnr ntrueð Þ ¼ P0 þ Max

1þ exp
n0:5�ntrue

rateð Þ
� � (2.7a)

CPkr ktrueð Þ ¼ P0 þ Max

1þ exp
k0:5�ktrue

rateð Þ
� � (2.7b)

Where CPnr ntrueð Þ is the cumulative probability that
a given ntrue and any values below it retrieved nr; n0.5
is the location of the 50th percentile of the probability;
P0 is the lower asymptote of the cumulative probabil-
ity distribution; Max is the upper asymptote of the
cumulative probability distribution. Analogous defini-
tions apply to parameters in Equation (2.7b) for k.

While establishing the sampling space, the custom
parameters height and idle are used to check the
appropriateness of the space.

Height ¼ Max� P0 (2.8)

Height is used to ensure that all probable mtrue val-
ues lie within the sampling space. If height is greater
than 1.05, RICE expands nwidth or kwidth to nwidth�
height or kwidth�height, respectively. The maximum
sampling space expansion allowed by for a given sam-
pling space analysis is 125% of the previous sampling
space width.

If height is less than 1.05, RICE checks the second
quantity, idle. Idle is used to ensure that enough data
is included in the RICE result to ensure a good fit by
making sure too many probability bins are not empty
(i.e., mtrue never yielded mr). Idle is defined as the
fraction of ntrue or ktrue that never yielded mr. If idle
is greater than 0.65 but less than 0.75, nwidth or kwidth
is reduced by 10%; if idle is greater than 0.75, nwidth
or kwidth is reduced by 20%.

If RICE adjusts the sampling space, RICE reruns
with the new inputs and the lower I condition
(Section 2.2, Step 2). If RICE does not adjust the sam-
pling space (i.e., idle and height are acceptable), the
final RICE analysis is performed using a larger I (100
for this work) and an increased number of mtrue as
described in Section 2.2, step 4.

2.2.5. Fitting: Confidence interval determination
Using the final cycle from the RICE, which has a
larger I and larger number of mtrue than the spin up

Table 1. Geometric mean, geometric standard deviations, and number concentrations of each sample size distribution.
Characteristics RFH RFL UH UL CC CS LS

Mode 1 Geo. Mean (nm) 190 128 104 191 233 253 80
Geo. SD 1 1.53 1.66 1.9 1.53 1.04 1.16 1.33

Number Conc. 1 (cm�3) 5214 785 2189 457 47500 5601 10000
Mode 2 Geo. Mean (nm) 92 61 33.8 55 148

Geo. SD 2 1.63 1.39 1.9 1.53 1.04
Number Conc. 2 (cm�3) 5213 406 7642 1705 8171

Mode 3 Geo Mean (nm) 12 12 9.7 17.5
Geo. SD 3 1.82 1.82 1.9 1.65

Number Conc. 3 (cm�3) 1090 849 9750 3581
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cycles (Section 2.2, step 4 and Section 2.2.4) RICE cal-
culates a final confidence interval for mr using a sig-
moidal fit of the cumulative probability distribution
(Figure 3). The sigmoidal fit used to calculate the con-
fidence interval is slightly different than that used to
check the sampling space: for the confidence interval
calculation, Max is fixed at 1 and P0 at 0, because
negative and >1 probabilities are impossible. This
assumes all probable mtrue are sampled. If any ntrue or
ktrue values are at their minimum physical boundaries
(1 or 0, respectively), then RICE fixes P0 to the prob-
ability observed at the nearest ntrue or ktrue above the
lowest limit.

From this fit, a confidence interval, based on the
user-defined confidence level, can be calculated. In the
following analysis, the ±2r space (95% confidence
interval) is reported. Furthermore, in all the graphs
included in this work, 95% confidence interval refers
to the 2r value.

2.2.6. Flags
Although RICE is designed to isolate a single, repro-
duceable, estimate of the uncertainty in an FD-IMM
m retrieval, due to the probabilistic nature of RICE
and the complex nature of particle-radiation interac-
tions, there are scenarios were RICE may be unable to
determine a solution. In order to identify these cases,
a series of flags are built into RICE.

The first flag (space-n or -k) attempts to identify
situations were RICE has identified an inappropriate
sampling space which did not include all possible ntrue
and/or ktrue. Space- is based on the height of the sig-
moidal fit of the final result; when calculating space-,
Max and P0 are not fixed as they are in the confi-
dence interval calculation. The space- flag is deter-
mined as follows:

height < 1:05 : space ¼ 0

1:05 < height < 1:125 : space ¼ 1

1:125 < height < 1:2 : space ¼ 2

height > 1:2 : space ¼ 3

Solutions with a space- flag of 2 or 3 should be
interpreted cautiously. Ideally, the inputs should be
analyzed by RICE again, but if RICE keeps returning
a 2 or 3 for space-flag, the conditions may not have a
stable solution determinable by RICE.

The second flag, count, attempts to identify solu-
tions where a low number of iterations contributed to
the final probability distributions. In the ideal situ-
ation (Count¼ 0), the number of mtrue instances
which give mr should be� I if solutions are well dis-
tributed among the mr

’ values and a few solutions are

being excluded by the reasonability criteria described
in Section 2.1. Count is set to 1 if the number of val-
ues contributing to the probability distribution is less
than half of I. In this case, it is possible that RICE has
too large or too small nwidth or kwidth, or that the
probability distribution does not follow the assump-
tions that are needed for RICE to provide a robust
solution. Solutions with count values of 1 should not
be reported.

3. Demonstration and validation

3.1. Test cases

To demonstrate the ability of RICE to constrain
uncertainties over a range of analysis conditions,
RICE was used to estimate the uncertainty, in tripli-
cate, of idealized m retrievals from 7 size distributions
at 12m values at one wavelength. In these test cases,
Mie theory was used to simulate optical properties at
an m for a given size distribution. Next, these results
were analyzed by RICE under hypothetical uncertainty
conditions (described below). Values of tested n were
1.4, 1.6, and 1.8. Values of tested k were 0.001, 0.01,
0.1, 0.5.

Size distributions were chosen to represent a variety
of conditions. These distributions are labeled Rainforest
High (RFH), Rain Forest Low (RFL), Urban High (UH),
Urban Low (UL), Literature Simulation (LS), Chamber
Simple (CS), and Chamber Complex (CC). RFH and
RFL, respectively, correspond to the dry and wet diurnal
averages for aerosols within the Amazon (Rissler et al.
2006). UH and UL correspond to size distributions
reported near Helsinki, Finland under high pollution and
low pollution conditions (Hussein et al. 2004). LS corre-
sponds to the simulated size distribution used to test a
new broadband RI retrieval method (Bluvshtein et al.
2016). CS and CC are based on chamber experiments
performed at UC Riverside (Dingle et al. 2019). The UL
size distribution is most similar to a typical urban size
distribution with multiple, well-defined modes.

Geometric mean, geometric standard deviation, and
number concentration (N) for each distribution are
found in Table 1. These values were used to generate
lognormal aerosol size distributions for the calculations.

Uncertainty conditions used in this analysis were
based on the reported uncertainties of number con-
centration, size, and optical measurements found
within the literature. Values used in this analysis are
N± 10%, dp ± 3%, ßabs ± 5%, ßscat ± 5%. These uncer-
tainty levels are the same as those used by Bluvshtein
et al. (2016) to analyze the effect of uncertainty in
an IMM.
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Tests were performed at 375 nm, a wavelength rep-
resenting the UV region of the solar spectrum and
often used for aerosol optical measurements (Dingle
et al. 2019; Jiang et al. 2019; Veihelmann, Konert, and
van der Zande 2006; Widmann et al. 2005; Sumlin
et al. 2018; 2017; Nakayama et al. 2018). The use of a
UV wavelength is particularly appropriate as the
absorption of BrC, which is a subject of many OA m
estimation studies, is significantly enhanced in the UV
and near-UV range.

3.2. RICE performance within test cases

To analyze the behavior of RICE and m uncertainties
over a range of m values and size distributions, 84 test
cases were analyzed in triplicate (Section 3.1). Of these
cases, 28 were flagged in at least one of the triplicate
runs with the space-n or space-k flag and no runs
were flagged with the count flag. Of these flagged
cases, 18 were observed when k¼ 0.5, suggesting that
there are distinct analysis regions (in this case, aero-
sols with high k) where the requirements of RICE are
not met. When applying RICE, the output of a flag by
RICE indicates that the specific case might not be an
ideal application of RICE.

In the triplicate runs, RICE uncertainty intervals
displayed good internal reproducibility; the average
relative standard deviation of RICE confidence inter-
val width was 9.8 ± 4.1% for n and 8.2 ± 4.5% for k for
all non-flagged runs and 15.7 ± 15.0% for n and
12.6 ± 12.1% for k for all runs which produced confi-
dence intervals (i.e., fitting didn’t fail). Note, the
aforementioned values are measures of RICE reprodu-
cibility, not the confidence interval width, and do not
reflect the magnitude of the uncertainties in mr. This
suggests that a single RICE analysis should provide a
reliable estimation of the magnitude of the uncertainty
of mr. Some variability between RICE runs is expected
because RICE is a stochastic analysis of uncertainties.

In general, the uncertainty of a RICE result (as
measured by the standard deviation of triplicate runs
and presence of space- flags) was higher at larger k
values or larger n values. This suggests, that in some
regions, the assumptions RICE uses about the shape
of the probability distribution and near neighbors
being the mostly likely solutions for mr may begin to
fail. Fortunately, at the tested wavelength, these RI
ranges are outside of what has been commonly
observed for OA, where RICE is most likely to be
applied (Moise, Flores, and Rudich 2015; Laskin,
Laskin, and Nizkorodov 2015). Aerosols with higher k
values likely already violate the assumptions of IMMs

Figure 5. Chamber Simple (CS) and Urban Low (UL) size distri-
butions used as test cases for RICE (a) and resulting averaged
95% confidence intervals for various n (b) and k (c) values
with bars representing one standard deviation of triplicate
RICE runs. Larger bars indicate less reproducible results by
RICE. Confidence intervals are displayed as half their width, i.e.,
the value typically reported as ± the mean. For example, the
blue circle in the first column of panel b is located at �0.09
on the y axis and indicates that for the UL size distribution
with an m of 1.4þ 0.1i, the n 95% confidence interval
is �1.4 ± 0.09.
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due to the likelihood that such aerosols contain black
carbon, which when fresh, does not conform to Mie
theory’s sphericity assumption. Thus, due to the limi-
tations of IMMs, RICE should not be applied to black
carbon dominated mixtures. Due to its inability to
account for complex morphologies, the FD-IMM
applied here can only retrieve the “effective” complex
refractive index of mixtures that violate the particle
sphericity and composition homogeneity assumptions
(Mack et al. 2010; Levin et al. 2010). For all RICE
results, but especially if m is outside of the range typ-
ical for OA and common inorganic salts (n¼�1.3–1.7,
k¼�0–0.1), attention should be paid for the flags out-
put by RICE to ensure robustness. Additionally, it is
best practice to run RICE in triplicate to ensure the
interval is repeatedly produced by RICE. For all analy-
ses, attention should be paid to the space- and count
flags and caution should be used when reporting data
with space- flags while data should not be reported if
it has count flags.

3.3. Test case uncertainty results

By applying RICE to a range of size distributions and
mr values, the complex behavior of m uncertainty,
including condition- and solution-dependent uncer-
tainty, and the ability of RICE to constrain these
uncertainties are clearly demonstrated. Here the
results from CS and UL size distributions will be dis-
cussed in additional detail (Figure 5). The results
from other test cases are included in the SI (Figures
S3 and S4).

The solution-dependent uncertainty of m retrievals
for CS and UL can be observed in the RICE results.
Solution dependent uncertainty is influenced only by
changes in the target value (m). For example, gener-
ally, as nr or kr increased, higher levels of uncertainty
were observed for the same size distribution cases
(Figures 5b–c). This demonstrates that the value of
the m solution influences the uncertainty.
Additionally, the effect of k magnitude on n’s uncer-
tainty is observed when n is low (1.4) and k is high

(0.5) (Figure 5b). This effect demonstrates the solution
dependence of FD-IMM calculations and validates the
need for methods of constraining solution-dependent
uncertainties.

The condition-dependent uncertainties within FD-
IMM can also be observed within CS and UL RICE
results. This uncertainty is observed by RICE when iso-
lating distinct confidence intervals for aerosol popula-
tions with the same m but different size distributions.
RICE’s ability to account for condition-dependent
uncertainty is especially clear for the n¼ 1.6 test cases
(Figure 5b), where the n confidence intervals for UL
were, respectively, 0.05, 0.08, 0.04, and 0.07 larger than
those for CS at k¼ 0.001, 0.01, 0.1, and 0.5. This dem-
onstrates that even with the same m and uncertainty
conditions, the shape of the size distribution (i.e., condi-
tion dependent variability) can dramatically influence
the uncertainty of m retrievals. Additional examples of
condition dependent uncertainty can be observed for
the other tested size distributions, included in SI
(Figures S3–S4). It is interesting to note that for the sit-
uations tested here, solution-dependent uncertainty
effects were generally larger than condition-dependent
uncertainty effects.

3.4. Retrieval validation and RICE application to
an external dataset

To validate the retrieval algorithm that RICE is based
upon, and demonstrate the applicability of RICE to
external dataset, RICE was also applied to aerosolized
ammonium sulfate and nigrosin measurement data
published by Radney and Zangmeister (2018). This
dataset contains size distribution and the accompany-
ing optical measurements from mixtures of, and pure,
ammonia sulfate and nigrosin aerosol at 660 nm. The
data used for comparison were the “set-average “data
for full distribution refractive index retrievals from
averaged repeated measurements of similar composi-
tions and size distributions. The m retrieval algorithm
used by RICE was used to retrieve m from these data
and then RICE was applied to these results. The m

Table 2. Results of refractive index retrieval and RICE uncertainty analysis of data reported by Radney and Zangmeister (2018).
Current
retrieval

Literature
retrieval

RICE uncertainty
(95% confidence interval)

Literature
uncertainty (68%) RICE Flags

Input
uncertainty

faction AS; dp mode n k n k n k n k space-n space-k rscat (%) rabs (%)

wAS ¼ 1 147 nm 1.48 0.012 1.48 0.01 (0.06/-0.084) (0.002/-0.003) (0.05/-0.05) (0.01/-0.01) 0 0 11 82
wAS ¼ 1 113 nm 1.48 0.002 1.48 0.002 (0.065/-0.066) (0.017/-0.001) (0.05/-0.06) (0.002/-0.002) 0 3 1 101
wAS ¼ 0.75 118 nm 1.46 0.065 1.46 0.07 (0.065/-0.097) (0.014/-0.019) (0.04/-0.04) (0.02/-0.01) 0 0 5 8
wAS ¼ 0.75 140 nm 1.52 0.036 1.52 0.036 (0.094/-0.092) (0.009/-0.008) (0.01/-0.01) (0.003/-0.002) 0 0 2 8
wAS ¼ 0.5 132 nm 1.63 0.058 1.63 0.058 (0.092/-0.113) (0.01/-0.013) (0.03/-0.03) (0.003/-0.003) 0 0 2 6
wAS ¼ 0 115 nm 1.71 0.177 1.71 0.18 (0.14/-0.134) (0.045/-0.046) (0.17/-0.2) (0.03/-0.03) 0 0 6 6
wAS ¼ 0 128 nm 1.79 0.203 1.79 0.20 (0.178/-0.151) (0.05/-0.044) (0.14/-0.15) (0.03/-0.03) 0 0 3 3

Sampled aerosols were a mixture of ammonium sulfate and nigrosin; the weight fraction of ammonium sulfate is indicated by wAS.
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retrievals were performed using mtest with values of k
ranging from 0 to 0.3 at 0.001 intervals and n ranging
from 1 to 2 at 0.01 intervals using the v2

merit parameter.
Retrievals very closely matched the values published

in Radney and Zangmeister (2018) (Table 2).
Additionally, the retrievals for pure materials were close
to their literature values. The m retrieved for ammo-
nium sulfate was 1.48þ 0.012i and 1.48þ 0.002i, similar
to previous published values at 660nm of n¼ 1.52
(Toon, Pollack, and Khare 1976). The m of nigrosin was
retrieved at 1.71þ 0.177i and 1.79þ 0.203i, which are
similar to previously reported measurements at 660nm
of 1.70 (± 0.02) þ 0.28 (± 0.01)i (Radney and
Zangmeister 2015), 1.812 (± 0.0068) þ 0.2461 (±
0.0031)i (Bluvshtein, Flores, et al. 2017). These retrievals
indicate that the core m retrieval code of RICE functions
similarly to other packages being applied in the aerosol
science community.

After retrieval of m, the retrieved m uncertainty was
analyzed by RICE. Measurement uncertainties were
based on those published in Radney and Zangmeister
(2018). The 1r uncertainties used, respectively for ßext
and ßabs, as 2.5Mm�1 and 5.7Mm�1 as calculated from
reported values (either as 1/3 the LOD or the reported
1r), respectively. Since ßscat was not reported directly, it
was calculated by difference of extinction and absorption
coefficients. Instrumental uncertainties were propagated
by taking the square root of the sum of squared errors
to obtain rscat. Relative uncertainty was input individu-
ally for each data point; rabs ranged from 81% to 3%

and rscat ranged from 11% to 1.3%. Uncertainty in
diameter and number concentration measurements were
2.7% and 10%, respectively. These uncertainty values,
and mr values were input into RICE

The confidence intervals determined by RICE and
RICE flagged runs are displayed in Table 2. RICE 95%
confidence intervals were generally larger than the 1r
uncertainties reported by Radney and Zangmeister
(2018), which is reasonable given the different uncer-
tainty ranges and the additional sources of uncertainty
incorporated into RICE. Among all RICE intervals,
there was only a single space-k flag, for a pure ammo-
nium sulfate retrieval (Table 2). This flag likely
occurred due to the combined occurrence of high rabs
and a very low k value, making fitting difficult.
Overall, this validation case demonstrates the ability
of RICE to produce confidence intervals from third
party data with relative simplicity.

3.2. Comparison to Min-Max method

Due to the computational expense of RICE (�10min
per retrieval on a desktop), it would be useful to be
able to apply a quicker tool to estimate the uncer-
tainty in an FD-IMM calculation. The min-max
method is one strategy that has been previously
applied to gauge uncertainty in m retrievals (Dingle
et al. 2019; Jiang et al. 2019). To evaluate the useful-
ness of this method, the uncertainty intervals for the
test cases were also calculated using the min-max
method. The min-max calculates an uncertainty

Figure 6. Comparison of RICE determined confidence intervals to intervals determined via the min-max method for (a) n and (b)
k. Min max intervals are displayed as half their width and RICE confidence intervals are displayed as half their width, i.e., the value
typically reported as ± the mean.
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interval by reperforming m retrievals using extreme
input parameters. For example, to achieve the “max”
k, the quantities (ßabs_obs þrabs� ßabs_obs), (ßscat_obs -
rscat� ßscat_obs), and (dp – rdp�dp) would respectively
be substituted for ßabs_obs, ßscat_obs, and dp.

The min-max based uncertainty results of CS and
UL test cases are compared to the corresponding
RICE confidence intervals in Figure 6. In general, the
min-max method captures the scale of k uncertainty
over the multiple orders of magnitude tested.
Unfortunately, the min-max method has more diffi-
culty constraining n which generally varies within a
smaller space for aerosols (�1.4–1.8). Relative differ-
ences between min-max and RICE intervals were up
to 72% for n and 16% for k, with the largest discrep-
ancies observed at high n or k values.

These comparisons suggest that the Min-Max
method generally underestimates m uncertainties and
is not able to accurately constrain the uncertainties,
especially in n.

3.3. Applications and implications

In this work, we have demonstrated RICE, a tool to
propagate analytical, condition-, and solution-depend-
ent uncertainties through FD-IMMs. RICE can repro-
ducibly estimate confidence intervals for n and k
while accounting for these complex uncertainties. The
application of RICE to m retrievals will provide a
clearer, and more accurate estimation of uncertainties.
Additionally, RICE could be specifically applied in
serving the following goals:

1. RICE can be used to determine uncertainties in
field calculated effective m values, where measure-
ment conditions are dynamic. RICE’s ability to
account for datapoint-by-datapoint uncertainty
means that changing m values and size distribu-
tions can be accounted for.

2. RICE can also be used to probe condition-
dependent uncertainties to determine the most
confident m measurement conditions. In practice,
this could mean using RICE to investigate size
distribution’s shape influences on uncertainties,
potentially leading to best practices for uncer-
tainty management in FD-IMM.

3. Additional uncertainty treatments could also be
applied within RICE. For example, non-uniform
uncertainty treatments could be explored by making
simple modifications to the RICE code. These add-
itional refinements could include size-dependent

size distribution uncertainty or magnitude-depend-
ent optical coefficient uncertainty.

4. RICE could be applied to reanalyze m retrievals pre-
viously reported to constrain uncertainties on his-
toric measurements (provided availability of
analytical uncertainty estimates and primary data).

RICE provides a tool for the improved understand-
ing of the limitations of aerosol m retrievals and a
more accurate understanding of the uncertainties
associated with the global climate forcing of aerosols.
It is also of note that the obtained m uncertainty
intervals were quite large for both simulated test cases
and external data validation cases. These results indi-
cate a strong need to apply a robust uncertainty ana-
lysis technique such as RICE when using IMMs to
assess reliability of the retrieved m and quantify the
true uncertainties associated with these values.
Additionally, these results suggest FD-IMM applica-
tions would benefit from reduction in uncertainties of
instrumental measurements used as inputs into IMMs.
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