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Abstract

Ground penetrating radar (GPR) has been used for non-destructive inspection of civil
infrastructure systems such as bridges and pipelines. Manually extracting useful data from a large
amount of non-intuitive GPR scans is tedious and error-prone. To address this challenge, a
generalizable end-to-end framework is developed and implemented to simultaneously detect and
segment object signatures in GPR scans. The proposed approach improves the Mask Region-
based Convolutional Neural Network (R-CNN) by incorporating a novel distance guided
intersection over union (DGloU) as a new loss function for detection and segmentation. The
DGloU considers the center distance between two bounding boxes and overcomes the weakness
of intersection over union (loU) in training and evaluation. In addition, a new method is proposed
to extract data points from the segmented mask patches containing both object signatures and
background noises. The extracted data points can be further processed for object localization and
characterization. Experiments were conducted using GPR scans collected from a concrete bridge
deck. The hyperbolic signatures of rebars can be accurately detected and segmented using the
proposed method. It was demonstrated that using DGloU improves the regression effect of
bounding box and mask. The improved Mask R-CNN achieved an average accuracy (AP) of 58.64%
and 47.64% for the detection and segmentation task, respectively.

Keywords
Ground Penetrating Radar (GPR); Deep Learning (DL); Civil Infrastructure; Mask R-CNN;
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1. Introduction

Ground penetrating radar (GPR), a non-destructive testing and evaluation technology, has been
widely used in civil infrastructure inspection. Examples include underground asset mapping [1-4],
rebar localization and corrosion inspection [5-7], concrete bridge deck deterioration assessment
[8-10], sinkhole detection [11,12], and construction quality control [13]. The impulse GPR
(hereafter GPR) can emit short electromagnetic (EM) pulses into the subsurface, propagating in
a shape of a cone, and receive the signals reflected from the objects that have different EM
properties from the subsurface medium [14]. The reflected signals will form a GPR scan, which is
the main source for data visualization, analysis, and interpretation. The object signatures in a
GPR scan can be of various shapes, depending on the object geometries and scanning
trajectories [15]. The most common signature in a GPR scan is of a hyperbolic shape. For
example, the signatures of underground utilities, rebars in bridge deck, sinkholes under pavement,
voids in concrete may present as hyperbolic reflections in GPR scans. Detecting and segmenting
the signatures of objects in GPR scans is an essential step to retrieve information. For instance,
estimating the depth and dimension of an underground utility line requires the extraction of data
points from the hyperbolic signature. However, given the large amount of data, manual processing
of GPR scans is labor-intensive and error-prone.
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There are two challenges in automating this process. The first challenge is the automatic detection
of object signatures in GPR scans. Due to the signal interference among multiple adjacent objects
in the subsurface, processing GPR scans are not amenable to the traditional methods such as
edge detection [16], Hough transformation [17-19], and least squares method [20]. In addition,
the distortion and incompleteness of hyperbolic signatures resulting from the subsurface objects
may further impose difficulties in recognizing the object instances. The second challenge is the
automatic segmentation of object signatures from noisy background in GPR scans. The existing
methods are not adequate to segment the complete object signatures, which may hinder
subsequent processing and interpretation. A novel method is needed to automatically detect and
segment object signatures from noisy GPR scans. Therefore, in this study, a deep learning (DL)
based framework is proposed to detect and segment object signatures, and a rule-based method
is developed to extract data points on the segmented signatures. The integration of detection and
segmentation in a unified framework will help advance the information extraction from coarse box-
level instance recognition to precise pixel-level classification.

Fig. 1 presents the proposed framework. The contribution of this work is twofold. First, we
developed a new computation for /oU, i.e. distance guided Intersection over Union (DGloU), and
incorporated it as a new metric and new loss function into the Mask R-CNN framework [21]. The
existing loU computation methods [22-23] only consider the sizes of bounding boxes (Bboxes)
and neglect their locations. The proposed method can overcome the limitation and keep the
discrepancy between predicted Bbox and real Bbox to a minimum during the training phase. Using
the enhanced Mask R-CNN framework, GPR signatures can be automatically detected and the
corresponding mask patches can be obtained. Second, we proposed a novel method to extract
data points from the detected signatures, which can streamline subsequent analyses, such as
hyperbola fitting, peak localization, and object depth and dimension estimation. Table 1 lists all
the abbreviations and notations to ease the illustration.
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Fig. 1. GPR Signature Detection and Segmentation Framework.

Table 1. Summary of abbreviations and notations.



Notation(s) or

Abbreviation

Description

AP Average Precision
Bbox Bounding Box
CD Center Distance
DL Deep Learning
EM Electromagnetic
GPR Ground Penetrating Radar
ROI Region of Interest
RPN Regional Proposal Network
loU Intersection over Union
GloU Generalized loU
DGloU Distance Guided loU
B B B Predicted Bbox, Ground Truth Bbox,
. Smallest Enclosing Bbox
AP, A%, A° Area of B?, B®, B¢
C Smallest Enclosing box of Bbox A and Bbox B
u Union of Bbox A and Bbox B
[k1,k2, k3] Coefficient matrix
Loy Loy loU loss in Bbox regression stage, in RPN stage
Lowo Loww GloU loss in Bbox regression stage, in RPN stage
Lo Looww DGloU loss in Bbox regression stage, in RPN stage
Lflag Searching to left
Rflag Searching to right
temp Step length for searching to left/right
P Initial midpoint set
p Peak of P
P! Updated set
F Final data point set for curve fitting
1
2 2. Literature Review
3 GPR has been used to detect, locate, and characterize buried objects [24-30]. Different methods
4  have been developed to process different formats of GPR data (A-scan, B-scan, and C-scan) for
5  various applications such as quality assessment, 2D target detection, and 3D mapping [31]. For
6 example, A-scans were used in [32-35], B-scans were used in [36], and C-scan were used in [37].
7  For object signature detection, numerous studies focused on processing B-scans. Existing object
8 detection methods are mainly categorized into conventional feature engineering-based methods
9 and DL-based methods. Conventional feature engineering-based methods first extract
10  handcrafted features from each patch, then the features are classified by a classifier. For example,
11 in [15], an edge detection was performed to acquire simplified object signatures, which were then
12  fed into a simple neural network. A detection technique is proposed in [38] for bridge condition
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assessment and deterioration analysis. In this method, the similarity between a GPR image patch
and a hyperbolic signature template is computed. Then the Fast Fourier Transform (FFT) was
integrated with hyperbola fitting to extract rebar peaks and signature parameters. However, the
template-based method is not reliable for detecting object signatures in the presence of clutters.
A face detection algorithm, namely Viola-Jones (VJ) [39], was first used in work [18] to pick the
regions containing hyperbolic signatures. By narrowing down the region of interest (ROI) and
using Hough transform, objects parameters such as hyperbola peak and EM wave velocity can
be obtained. The study [40] first calculated the histogram of oriented gradient (HOG) features,
and then fed these features into a support vector machine (SVM) for training. The trained model
was used to classify the regions with and without object signatures.

Recently, DL-based method has gained its momentum in analyzing GPR data. Deep network has
been used in classification tasks [41-43], box prediction tasks [44-48], and semantic segmentation
tasks [49-52]. The deep network advances the image-level prediction [44] to box-level prediction
[45], semantics-level prediction [49] and mask-level prediction [21]. As demonstrated in studies
[53-55], DL methods do not require the traditional “feature engineering” step, and can directly
extract the features from GPR scans. Moreover, revealed by a lot of studies, the deep networks
outperform traditional feature engineering under certain circumstances. The method proposed in
[36] used an object detection model to classify the buried targets and detect the target hyperbola
region. This method was integrated with the double cluster seeking estimate (DCSE) to segment
hyperbolic clusters, and with a novel column-based transverse filter points (CTFP) method to
automate the task of extracting hyperbolic data points. The DCSE algorithm, and other recent
clustering methods such as open scan clustering algorithm (OSCA) [56] and column-connection
clustering (C3) method [57] were applied to segment hyperbolic signatures for data extraction.
However, there are two limitations in the prior studies. First, there lacks a method to achieve
simultaneous detection and segmentation of object signatures in GPR scans. Second, most
existing methods are not reliable and accurate in extracting the data points from the segmented
object signatures.

3. Distance Guided /oU in Mask R-CNN

This section first presents the DGloU as a new metric to evaluate the similarity between two
Bboxes. In addition, the DGIloU is integrated into the Mask-RCNN framework as a new loss
function to enhance its performance.

3.1.  Overview of Mask R-CNN and loU Computation

The Mask R-CNN adds an additional mask prediction branch into the Faster R-CNN framework
[44]. The Mask R-CNN architecture consists of three phases. The first phase is to input an original
image into a pretrained neural network and obtain the corresponding feature map. In the second
phase, the Regional Proposal Network (RPN) generates a large amount of proposals that are not
related to the object category. The final R-CNN stage uses RolAlign to extract features for each
proposal and conducts three tasks: proposal classification, Bbox regression, and mask prediction.

As an instance level segmentation algorithm, the Mask R-CNN relies on accurate Bbox regression.
Studies have shown that /oU could help refine Bbox and proven that improving loU helps to
reduce object uncertainty and increase detection accuracy. For most object detection tasks, loU
is a well-adopted evaluation metric and is used to compare the similarity of two arbitrary shapes
and divide true positives and false positives. loU is scale invariant, and thus is leveraged to verify
the properties of object detection [61,62] and segmentation [58-61]. For axis aligned two-
dimensional (2D) Bboxes, many frameworks used a surrogate loss of /oU to conduct the task of
Bbox regression. For example, the authors in [63] introduced an /oU loss computation metric used
for Bbox prediction by regressing the boundaries information of a predicted box. Their method
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converges fast and demonstrates robust performance in accurate and efficient localization of
objects with different scales. Lachlan et al. [64] developed a bounded /oU loss for loU
maximization while keeping loU’s good convergence properties. In [23], Rezatofighi et al.
proposed a generalized version of loU (GloU) function to overcome the limitation of JoU under the
circumstance of non-overlapping bounding boxes. Considering two bounding boxes A and B, the
smallest bounding box that encloses both A and B is defined as C. C usually has the same scale
with A and B. The loU and GloU can be computed as in Eq. (1) and Eq. (2), where U is defined
as the union of A and B: U = AU B = Area , + Area, — Area

overlap *

v =408 (1)
AUB
GloU = 10U~ E=AYB _ 1, €=U 2)

3.2 Distance Guided loU

However, loU and GloU value do not fully reflect the quality of predicted Bbox. For instance, for
the simple overlapped scenario in the left part of Fig. 2, the predicted Bbox A1 has exactly same
loU and GloU as the predicted Bbox A2. However, in fact, the center position of Bbox A2 is closer
to ground truth (GT) Bbox than that of Bbox A1, because the center distance between A1/A2 and

GT is /5/445, respectively. For another non-intersected case in the right part of Fig. 2, it is
obvious that Bbox A3 is a better choice than Bbox A4. But this observation cannot be reflected
by computing loU and GloU. They have the same loU. Moreover, the GloU of Bbox A4 is higher
than that of Bbox A3. The above observations indicate that loU and GloU can only consider the
sizes but not the locations of two axis-aligned rectangles. In fact, several pairs of Bboxes with the
same degree of overlap may have different center distance and therefore have different objective
values. To solve this critical issue, we propose an extended version of GloU, namely DGloU,
which considers an additional element called center distance in GloU. Center distance information
of two boxes is important for accurate object detection. The DGloU redistributes the proportion of
three elements: loU, C excluding U and divide by C, and center distance (CD). The center
distance is computed by the 12-norm between predicted Bbox and GT Bbox. The coefficient matrix

[kl,k2,k3] represents the weights of the above elements. Algorithm 1 gives the calculation of
DGloU.

Algorithm 1: DGloU

Input : Two rectangle Bboxes: A and B
Output: DGloU

1. Find the smallest enclosing Bbox C of A and B

2. Find each center coordinate for two Bboxes: ¢, , C,
3. Compute the center distance of A and B:CD=|C,-C,|
4. Compute DGIoU:kl*IoU—kZ*C;U—k3*CD
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Al: IoU=0.1250 GloU=-0.0750 DGIoU=-0.2711
A2: ToU=0.1250 GloU=-0.0750 DGIoU=-0.2596
A3: IoU=0 GloU=-0.4000 DGIoU=-0.2883
A4: loU=0 GloU=-0.3864 DGIloU=-0.3485

Fig. 2. Similarity comparison of predicted Bbox and GT Bbox using /oU, GloU and DGloU.

To maintain the properties of GloU, we set f1 and x> to 0.9 and 0.8, respectively. The DGloU
with small x1 and %2 values cannot reflect the properties of GloU, while a large value will neglect
distance information. For ;3 , several values [0.05,0.1,0.15,0.2] are compared to select an
appropriate one for our algorithm. The variations in average precision (AP) against different %3
values for both box and mask tasks are plotted in Fig. 3. To balance the performance of box task
and mask task, we set ;3 to 0.1 for DGloU in this paper.
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Fig. 3. AP value against different k3 evaluation curve of the proposed DG/oU.

3.3. DGIOU as loss for Bbox regression

The task of detecting 2D object signatures in GPR scans can be converted into a task of
comparing two axis-aligned Bboxes. Both the intersection and the smallest enclosing object have
rectangular shapes. The center point is computed by using the mean value of two adjacent
vertices coordinate in each Bbox, which can be obtained by adding this mean value to a minimum
vertical coordinate. After obtaining the center coordinates of the two Bboxes separately, 12-norm
is used to compute their center distance. Hence, a high-quality solution is proposed to calculate
DGloU detailed in Alg. 2. Similar to the GloU loss in [23], the proposed DGloU can be directly

used as a loss into network. DGloU as loss both in final Bbox regression stage (L, ) and in
RPN stage (L, ) can be used to optimize Mask R-CNN framework. Since loU and GloU ignore

the center coincidence between two Bboxes, the training quality and convergence rate will be
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limited. Compared to the above two criteria, the proposed DGIloU has considered this important
element. It has three merits: 1) DGloU has a strong correlation with GloU; 2) DGloU can further
judge which one is the optimal solution when overlapped area levels between several predicted
Bbox and GT box are the same; 3) DGloU defines the representation of center distance as
location space and incorporates it into size space. To this end, DGloU is able to represent the
real similarity among Bboxes.

Algorithm 2: DGloU as Bbox loss and RPN loss

Input : Predicted Bbox B” and GT Bbox B? upper-left
and lower-right coordinates:

B =(x\y/oxt vl ) o BE = (xf yfxg ) -
Output: L

'DGloU

1. B”needstomeetx) >x/and,r > ,’:
x7 =min(x{’,x2p> Xy = max(xlp,xzp) ,
3¢ =min (/7 ), $ = max (v, v} )
Area of B*: 4% = (x5 —xf )x(v5 - ¥F)
3. Areaof B’ a7 =(& -& )x(3) -37)
4. Intersection ] between B” and B¢ :
x| = max(fcl”,xlg) , X0 :min(fcf,x;’)
v =max(3/,yf ), ys =min (7, 5)
/- (v =x)x(v3=31) if x>xyr >
0 otherwise.
5. Finding the coordinates of smallest enclosing box B:
x{ =min (%, xf ), x5 =max(&],x5)
i =min(3,55) > ys=max(37,5)
6. Calculating area of B*: 4" =(x;,x7)x(y5.)/)
7. Finding center coordinates of B” and B¢:
cr=(cr.cr), ¢t =(cx.c)

2P L Spo_np
Cf:(sz)C] Jr)zlp], C;J:{yz Zyl +)'>lpj

o A R RO (7 b
x 5 1 _‘ 5 N

8. Calculating center distance:
CD:\/(Cf —cr) +(c-cry

9. IoU:é ,where U= 4"+ 45 —1.

10. Glou =1ou-2=Y

c

-U

DGIoU=0.9*IoU—0.8*A -0.1*CD

11. ¢
12. Final Bbox regression loss:

Loy =1-DGIoU | L, =1-GloU, L, =1-1oU
13. RPN loss:
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LDG]oL" =1-DGIoU , L, =1-GloU , L,”U' =1-IoU

4. Data Points Extraction Method

A new method is proposed to extract data points from each segmented mask patch for following
hyperbolic fitting. Some post-processing steps are required, including thresholding and
morphological operations. First, we define three concepts: ‘target region’, ‘isolated patch’, and
‘abnormal patch’. The ‘target region’ represents the hyperbolic target signature. The ‘isolated
patch’ indicates an isolated non-target patch that is separated from the target region. The
‘abnormal patch’ represents a non-target patch that intersects with target region. Fig. 4 illustrates
the concepts.

Isolated Abnormal Target
Patch Target Patch Region
~ Region [ S >l
! - v Isolated

-~

|.--¥| Patch

(a)
Fig.4. Definitions of ‘isolated patch’, ‘abnormal patch’, and ‘target region’. (a) Example of mask
patch with isolated patch and target region; (b) Example of mask patch with isolated patch,
abnormal patch, and target region.

In the presence of isolated patch and abnormal patches, the proposed method searches and
extracts a set of data points from the obtained mask patch. This method is an extension of the
CTFP algorithm proposed in [36]. The CTFP algorithm extracts the midpoints along the hyperbolic
signature region and employs a lower pass filter to smooth these points. Since CTFP cannot
eliminate non-target patches, it is not robust when GPR signatures contain noises and clutter
such as the isolated patches and abnormal patches. The new method overcomes this limitation
and the steps for the algorithm are detailed as follows.

First, each target cluster is scanned column by column to search pixels with a value of 255
(hereafter valuable point) and store them. The midpoint of the valuable points in each column is
obtained and stored in an array P . Then the peak Y can be identified from the array P and is
stored. Next, taking the peak as the starting location, each column in the binary mask image is
traversed to left and right based on the following rules to update and save the point setin F .

Rule 1: The searching will be stopped if there are no valuable points in the current column. An
example is provided in Fig. 5. The gray cells denote valuable points. The original midpoint array
P=[L1,Y,R1,R2] is obtained. First, the searching traverses from peak ! to the left until the column
where L1 is located (hereafter L1 column). Since there are no valuable points in the column to

the left of L1 column, L1 point is retained and the searching to the left is stopped. Similarly, the
searching to the right stops until the R2 column. Finally, the updated midpoint set is saved in

F=[L1Y,R1,R2].
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Fig. 5. An example of obtaining midpoint set r =[L1,Y,R1,R2] using rule 1.

Rule 2: If searching from ! to both sides, the ordinate of midpoint in the current column is larger
than that in previous column, then the ¥ remains the same as the initial set, as shown in Fig. 6.

Fig. 6. An example of obtaining midpoint set F =[L2,L1,Y,R1,R2] using rule 2.

Rule 3: If the ordinates of all valuable pixels in current column are smaller than the midpoint in
previous adjacent column, then the search is stopped. For example, in Fig. 7, the original midpoint
setis P=[L2,L1,Y,R1,R2,R3,R4,---], and all valuable pixels in the R4 column are above the midpoint
R3. In this case, the rightward columns starting from R4 column are no longer considered (marked
as blue area). Thereby, the updated set F=[L2,L1,Y,R1,R2,R3] is obtained.

Fig. 7. An example of obtaining data point set F =[L2,L1,Y,R1,R2,R3] using rule 3.

Rule 4: If the max ordinate in current column is larger than the ordinate of the midpoint in the
previous column, a new midpoint is selected by adding 1 to the ordinate of the previous midpoint
and is recorded into the updated set P'. Thereafter, the search continues. Fig. 8 provides an

example where the initial midpoint set is P=[L2,L1,Y,R1,R2,R3,R4,R5,---], and valuable pixels in
R4 column are divided into two parts that are above and below midpoint R3. According Rule 4,

R4 will be replaced by R4’, and R5 will be replaced by R5’. The following columns are no longer
considered because all valuable pixels in next column are above R%’, according to Rule 3. The

final midpoint set F =[L2,L1,Y,R1,R2,R3,R4',R5"] is obtained.
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Fig. 8. An example of obtaining data point set F=[r2,11,Y,R1,R2,R3,R4',R5'] using Rule 4.

The pseudocode of the data point extraction method is presented in Alg. 3. By using the proposed
method, data points are extracted from each mask patch, and outliers are separated from target
region and discarded from patch. These extracted points are then fed into the subsequent
hyperbola fitting step. Only the hyperbola with a downward opening will be reserved.

Algorithm 3: Data point Extraction Method

Input : Abinary image I.

Output: The extracted point set for curve fitting.

1. Define Int remp =1. temp indicates step length of searching to
left/right.
Lflag =true , Rflag = true .
Lflag = false and Rflag = false indicate the searching towards
to left/right is stopped.

2. for every column from 1 to max _column of I do

3. find all the midpoint and store them in P .

4. find the column ¢ where the peak p of P is located.

5. end

6. while (true)

7. if c—temp > 0 then >case1-traversing to the left

8. find the valuable points in (¢ —remp) and store them in

PL .

9. if PL is empty then

10. Lflag = false end

11. else Lflag = false end

12. if c+temp <max_column of I >casel-traversing to the right

13. find the valuable points in (c+temp) and store them in
PR

14. if PR is empty then

15. Rflag = false end

16. else Rflag = false end

17.  if Lflag=true and midpoint in (c—temp) below the
first value in updated midpoint set I
>case2-traversing to the left

10
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18. if max_PL < first value in F >case3

19. Lflag = false

20. else >case4

21. store (midpoint in (c—temp) of P)+1 inF =[F;p]

22. end

23. elseif ( Lflag)

24, store midpoint in (c—temp) of P in F=[F;p]

25. end

26. if Rflag =true and midpoint in (c+temp)<last value in F
>case2-traversing to the right

27. if max_ PR > last value in F

28. store (midpoint in (c+temp) of P)+1 in F=[p;F]

29. end

30. elseif ( Rflag )

31. store midpoint value in (c+temp) of P inF =[p;F]

32. end

33. temp = temp +1

34. end

35. Output extracted data point set .

Fig. 9 compares the proposed method and the original CTFP method, demonstrating the
advantages of the proposed method. Fig. 9(a) is a typical mask region and Fig. 9(b) is the
processed binary image. Fig. 9(c1) presents obtained data points by CTFP method, which
contains some abnormal points (see purple arrow) due to the isolated patch at the top left. The
corresponding fitted curve in Fig. 9(d1) does not match well with the hyperbolic signature. In
addition, the peak of fitted curve and the apex of hyperbolic signature are not well aligned. As can
be seen from Fig. 9(c2) and (d2), the proposed method handles the non-target patch and selects
suitable data points, and the fitted curve accurately represents the hyperbolic signature.

AJATA

(a) (b) c1

Fig. 9. Performance Comparison between the proposed method and CTFP [36] method. (a) Mask
patch; (b) Binary image; (c1) Data points (red dots) extracted by CTFP; (c2) Data points extracted
by the proposed method; (d1-d2) Fitting result (peak marked as green dot).
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5. Experiments and Results

A GSSI SIR-4000 GPR system with Model 62000 Palm antenna was used to scan a concrete
bridge deck to collect B-scans (Fig. 10) to test the proposed methods. The 2GHz palm antenna
has a pulse duration of 0.5 ns. The scanning distance is 455 cm and the time window is 8 ns.
Each B-Scan has a size of 512x1676. Spatial sampling interval and time sampling interval are
0.27 cm and 0.016 ns, respectively. The distance between two adjacent B-scan is 50 cm and 95
B-scans are collected, covering an area of 4.55x47 m?. These 95 B-scans contain thousands of
annotated object instances. 78 B-scans were used in training, 9 B-scans were used in validation,
and 8 were used in the test. We used the PyTorch 1.3.0 implementations of Mask R-CNN,
released by Facebook research (https://github.com/roytseng-tw/Detectron.pytorch). The code
was implemented using a NVIDIA GTX 1060 GPU. ResNet-50 was used with feature pyramid
networks (FPN) as the backbone network and install it in Mask R-CNN, following its training
protocol on each benchmark. To obtain the training results of Mask R-CNN using loU, GloU,

DGloU losses, the comparative tests were conducted by using L, L, and L, losses in the
final Bbox refinementstageand ., ', L, , and L, lossesin RPN stage. To regularize the new
regression loss, ., L., and L, were multiplied by a factor of 10 for all experiments. Every

anchor from feature map is compared with GT Bbox to obtain positive/negative samples, in which
the threshold is set to 0.7 in the experiments.

'

IoU

ks

Flg. 10. Data collection fro concrete bridge deck.

Three on-site trials on bridge deck datasets are conducted to verify the effectiveness of the
proposed framework. The horizontal x-axis and vertical t-axis indicate GPR scanning trajectory
(cm) and the two-way travel time of EM wave (ns), respectively. The results of first experiment
are given in Fig. 11 and the hyperbolic signatures of 33 rebars were detected. The output of Mask
R-CNN consists of 3 parts — the predicted rectangle box, confidence score, and mask patch, see
Fig. 11(b). Fig. 11(c) shows the mask image on a black background with each individual instance
marked with a different color. The fitting results are obtained and visualized in Fig. 11(d).

12



QOWOWONOOOAPRWN -

—_—

11
12
13
14

AAAARAAAAARAAAAA

(c) | (d)
Fig. 11. First example of signature detection. (a) Original GPR scans; (b) Segmentation results
with predicted box, confidence, and mask patch obtained by the enhanced Mask R-CNN; (c)
Whole mask image; (d) Fitting results.

Fig. 12 presents the results of the second experiment. It can be found that the intersected targets
can also be segmented by the proposed method, even if the targets have large overlapping area.
The intermediate processing details are listed in Fig. 13. The picked patches in Fig. 13(a1-a2) are
preprocessed and the corresponding binary images are yielded [Fig. 13(b1-b2)]. The proposed
method extracts a series of data points (red dots) in Fig. 13(c1-c2), followed by the fitting curves
for every target in Fig. 13(d1-d2).

4350

100 150 200 250 300 350 400

mﬂnﬂaﬁﬁﬁaﬁﬁﬂﬂhﬁﬁhﬁﬂﬁﬂﬂﬂﬁﬁnﬂﬂ'

(c) (d)
Fig. 12. Second example of signature detection. (a) Original GPR bridge image; (b) Segmentation
results with predicted box, confidence score, and mask patch obtained by the enhanced Mask R-
CNN; (c) Whole Mask image; (d) Fitting results.
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Fig. 13. Intermediate results of the second example. (a1-a2) Examples of mask region from Fig.
12(c); (b1-b2) Preprocessed binary image; (c1-c2) Extracted data points (marked as red dots);
(d1-d2) Fitting results.

IIJ ll
ia1i

Fig. 14 shows the results of the third example with more complicated interference among the
targets. In Fig. 14(a), there are six half-hyperbolae formed by the reflection of corner strap and
are regarded as non-targets. Most of these non-targets are eliminated by Mask R-CNN but still
two redundant detections left [see in Fig. 14(b)]. One of the non-target patches is eliminated, as
illustrated by Fig. 15. The patch is eliminated because it does not conform to the hyperbolic
downward-opening feature.

300 350 400

: M\ﬂnﬁ\' _____mé‘.;mﬁhﬂ?‘-ﬁﬂ Nﬁﬁnﬁ'ﬁﬂ
ﬂﬁﬂﬂf' 5 p \ T

AN AAAANNN A A N

(©) | (d)
Fig. 14. Third example of signature detection. (a) Original GPR greyscale image; (b) Results with
predicted box, confidence, and mask patch obtained by the improved Mask R-CNN; (c) Whole

Mask image; (d) Fitting results.

1 \

(a) Mask region  (b) Binary (c) Processed (d) Extracted (e) Non-target
threshold patch  patch after data points (red fitting result
dots) by the
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operation method
Fig. 15. An example of eliminating non-target patch.

5.1 Evaluation of DGloU loss in Mask R-CNN
The proposed DGloU was evaluated both as Bbox loss and RPN loss in Mask R-CNN. RPN loss
is first applied to correct the candidate box and Bbox loss is the second correction. Mask R-CNN

was trained using L, , as Bbox regression loss and ., as RPN loss on the training dataset

for 5000 iterations. Learning rate is an important parameter with the value of 0.001. JoU thresholds
range is from 0.5 to 0.95. The best model results obtained on the validation set for Mask R-CNN

have been reported in Table 2 for box task and Table 3 for mask task. By fixing ,, , as the Bbox

regression loss in final stage, Table 2 compares the detection performance based on three
different RPN losses. The results indicate that the detection accuracy using L, , performs better
at AP and AP75 compared to the other two losses. From Table 3, it was found that the mask
accuracy improved by using ., over L, ' and L, ' losses. Particularly, comparing with ., '
the accuracy is improved to 82.91% at AP75.

IoU
Table 4 and Table 5 show the detection and segmentation results of training Mask R-CNN using
three loss combinations: ., +1 ', where each group uses the same loss

' + ' +
ToU 7 LG[UU LGIUU’ LGD[oU LGDIoU ’

in Bbox refinement stage and RPN stage. According to the comparison of three groups of losses,

Table 4 gives AP results, which indicates that combining the ., , and L, to train Mask R-

CNN can consistently improves its box and mask performance compared to the other two groups.
Moreover, especially in mask task [see in Table 5], compared with using loU or GloU,
incorporating DGloU both as Bbox loss and RPN loss can enhance the segmentation
performance of Mask R-CNN. It improves both the detection and mask segmentation accuracy.
That is because mask branches in later stages benefit from better localized Bboxes. Based the
obtained best model, Fig. 16 plots the accuracy curve and four loss curves during training.

0.8 - 0.8

—— loss_bbox
loss

loss_cls

accuracy_cls

—— loss_mask

0.4+ F0.4

0.2 4 0.2

0.0 0.0

0 1000 2000 3000 4000 5000
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Fig. 16. Train accuracy and loss distributions of the enhanced Mask R-CNN.

TABLE 2. Detection performance comparison of training Mask R-CNN using different RPN losses:

L, Ly,and L, . The results all are trained using L,;,, as Bbox loss (Task:box).
RPN loss AP AP75 APs APm
L, 0.5749  0.5325 0.6751 0.4642
Loy 0.5807 0.6352 0.6711 0.4653

Relative improv.%  1.01% 19.29% -0.59% 0.24%
Lociw 0.5864 0.6455 0.6651 0.4630
Relative improv.%  2.00% 21.22% -1.48% -0.26%

TABLE 3. Segmentation performance comparison of training Mask R-CNN using different RPN

losses: L,,, L, and L, - The results all are trained using L,;,, as Bbox loss (Task: mask).
RPN loss AP AP75 APs APm
L, 0.4280 0.1592 0.4321 0.3663
Lo 0.4282 0.1782 0.4345 0.3337

Relative improv.% 0.05% 11.93% 0.56% -8.90%
L 0.4764 0.2912 0.4834 0.3673

'DGloU

Relative improv.% 11.3% 82.91% 11.87% 0.27%

TABLE 4. Detection performance comparison of training Mask R-CNN using L, + L, , L.y +

Ly, andLyg,, + L, losses. (Task: box)
Loss and RPN loss AP AP75 APs APm
L,*L,, 0.5761 0.6335 0.6650 0.4770

Lowo ¥ Loy 0.5675 0.5723 0.6771 0.3777
Relative improv.%  -0.86% -9.66% 1.82% -20.82%
Loows ¥ Loowe, 0.5864 0.6455 0.6651 0.4630
Relative improv.% 1.79% 1.89% 0.02% -2.94%

TABLE 5. Segmentation performance comparison of training Mask R-CNN using L, + L, ,
Lo * Ly, @Nd Ly, + L, losses. (Task: mask)
Loss/Metric AP AP75 APs APm
A 0.3724  0.0829 0.3821 0.2337
Lowo ¥ Loy 0.4259  0.1559 0.4304 0.3663
Relative improv.% 14.37%  88.06% 12.64% 56.74%
+ Loposs 0.4764  0.2912 0.4834 0.3673

'GDIoU

L

‘GDIoU

Relative improv.%  27.93% 251.27%  26.51% 57.17%
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5.2 Evaluation of data points extraction method

Fig. 17 explains the eliminating process of the non-target patch when picked mask region has
more than one patch. The region [see in Fig. 17(a1-a3)] picked from whole mask image still
contains two patches after preprocessing [see in Fig. 17(b1-b3)]. Our method traverses each
patch separately and extract its data points using the proposed data points extraction method, as
shown in Fig. 17(c1-c3) and (d1-d3). The fitting results for every object patch are shown in Fig.
17(e1-e3). Because the signature of rebar presents as a downward-opening hyperbola, therefore
the patch with an upward-opening fitting curve is discarded. Even without the clustering method
as used in [36,56,57], the proposed data extraction method still has the ability to handle unwanted
interference and is robust in the presence of multi-patches.

A A

_(ai (b1) (c1) (d1) ()

) .r‘ AN

A

a)a

(d2) (e2
(a3) (b3) (c3) (d3) (e3)

Fig.17. Some fitting results based on data points extraction and elimination of non-target patch.
(a1-a3) Mask region with multiple patches; (b1-b3) Post-processed binary image; (c1-c3)
Obtained data points from isolated patch (red points); (d1-d3) Obtained data points from target
region with/without abnormal patch; (e3) Fitting result with downward opening and discarding the
non-target patch.

5.3 Comparison experiments

Performance Comparison. The box task between the Mask R-CNN and the Faster R-CNN are
compared. For baseline results, Faster R-CNN also uses the same backbone ResNet-50 and
RPN as Mask R-CNN. They are evaluated on the same field dataset and training protocol.
Table 6 represents the results of training Faster R-CNN using /oU, GloU, and DGloU losses in
the final Bbox refinement and RPN stage, respectively. Using DGloU as both Bbox regression
loss and RPN loss, Faster R-CNN outperformed the other two loss combinations and achieved
the AP of 55.08% and AP75 of 59.57%. Comparing with the evaluation results in Table 4, both
frameworks improved the detection accuracy when using the proposed DGloU as losses.
Moreover, comparing with the Faster R-CNN with DGloU, the enhanced Mask R-CNN has a
higher AP of 3.56% and AP75 of 4.98%.

TABLE 6. Detection performance of training Faster R-CNN using L, + L, , Lo + Lowy @nd Ly,
+ L, losses. (Task: box)
Loss and RPN loss AP AP75 APs APm
Lyt L, 0.5393 0.5882 0.5782 0.4611

ToU
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o Loy 0.5467  0.5413 0.5695 0.3927
Relative improv.% 1.37% -7.97% -1.50% -14.8%

Loows ¥ Loows 0.5508 0.5957 0.5760 0.4588
Relative improv.%  2.13% 1.28% -0.38% -0.50%

L

Detection Result Comparison. To further visualize the comparison of the above two frameworks,
Fig. 18 respectively shows the detection results using the Faster R-CNN framework with DGloU
on two original GPR images (Fig. 12(a) and Fig. 14(a)). Compared with the results in Fig. 12(b),
Fig. 18(a) also detected all targets, whereas there exists a redundant box indicated by red arrow.
Compared with Fig. 14(b), Fig. 18(b) omits four hyperbolic targets (marked by red rectangle), and
there are two redundant boxes (shown by red arrows). The comparative results suggest the
performance of the enhanced Faster R-CNN is inferior to the improved Mask R-CNN, and its
performance is limited in the presence of hyperbolic signatures with weak reflection.

400

(a) | (b)

Fig. 18. Detection results obtained by the Faster R-CNN with DGloU on (a) original image Fig.
12(a), and (b) original image Fig. 14(a). (Red arrow indicates redundant box and red rectangle
indicates missing target)

6. Conclusion

A DL based method is proposed to automate the detection and segmentation of object signatures
from GPR scans. Mask R-CNN is adopted as the framework. To improve its performance, DGloU
is developed and incorporated in Mask R-CNN as a new loss computation to minimize the
discrepancy between the predicted Bbox and the real Bbox in the training phase. Compared to
the conventional loU and GloU, the DGloU considers the center distance between two bounding
boxes. The experiment results demonstrated the effectiveness of using DGloU in enhancing the
performance of Mask R-CNN. The segmented patches containing object signatures and
background noises are then transformed into binary images for data points extraction. Our new
data extraction method removes the interference among adjacent object signatures and the
background. The extracted data points can be used in curve fitting to estimate object location and
dimension. Real GPR scans collected from a concrete bridge deck were used in the experiments.
The improved Mask R-CNN achieved a detection AP of 58.64% and a segmentation AP of 47.64%.

There are some limitations that could be addressed in future research. First, it requires vast
amounts of real data for training the proposed method. Also, the publicly available GPR datasets
are limited. Efforts need to be made in the future to collect and prepare GPR datasets to facilitate
the implementation of the method. Unsupervised DL models and transfer learning techniques can
also be leveraged to solve the problem of insufficient dataset. In addition, future studies can be
conducted to explore the one-shot or few-shot detection and segmentation method. Second, this
study mainly focused on detecting and segmenting rebar signatures from GPR scans. In future
research, discriminative features can be learned from data to detect and evaluate potential rebar
corrosions, which has not been achieved. Third, the proposed method has only been tested for

18



ONOO R WN -

rebar detection and localization. The scalability of the method in other challenging environments
and applications needs further investigation. Future studies could test this method for detecting
buried utilities in heterogeneous soils.
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