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Abstract 11 
Ground penetrating radar (GPR) has been used for non-destructive inspection of civil 12 
infrastructure systems such as bridges and pipelines. Manually extracting useful data from a large 13 
amount of non-intuitive GPR scans is tedious and error-prone. To address this challenge, a 14 
generalizable end-to-end framework is developed and implemented to simultaneously detect and 15 
segment object signatures in GPR scans. The proposed approach improves the Mask Region-16 
based Convolutional Neural Network (R-CNN) by incorporating a novel distance guided 17 
intersection over union (DGIoU) as a new loss function for detection and segmentation. The 18 
DGIoU considers the center distance between two bounding boxes and overcomes the weakness 19 
of intersection over union (IoU) in training and evaluation. In addition, a new method is proposed 20 
to extract data points from the segmented mask patches containing both object signatures and 21 
background noises. The extracted data points can be further processed for object localization and 22 
characterization. Experiments were conducted using GPR scans collected from a concrete bridge 23 
deck. The hyperbolic signatures of rebars can be accurately detected and segmented using the 24 
proposed method. It was demonstrated that using DGIoU improves the regression effect of 25 
bounding box and mask. The improved Mask R-CNN achieved an average accuracy (AP) of 58.64% 26 
and 47.64% for the detection and segmentation task, respectively.  27 
 28 
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 32 
1. Introduction 33 
Ground penetrating radar (GPR), a non-destructive testing and evaluation technology, has been 34 
widely used in civil infrastructure inspection. Examples include underground asset mapping [1-4], 35 
rebar localization and corrosion inspection [5-7], concrete bridge deck deterioration assessment 36 
[8-10], sinkhole detection [11,12], and construction quality control [13]. The impulse GPR 37 
(hereafter GPR) can emit short electromagnetic (EM) pulses into the subsurface, propagating in 38 
a shape of a cone, and receive the signals reflected from the objects that have different EM 39 
properties from the subsurface medium [14]. The reflected signals will form a GPR scan, which is 40 
the main source for data visualization, analysis, and interpretation. The object signatures in a 41 
GPR scan can be of various shapes, depending on the object geometries and scanning 42 
trajectories [15]. The most common signature in a GPR scan is of a hyperbolic shape. For 43 
example, the signatures of underground utilities, rebars in bridge deck, sinkholes under pavement, 44 
voids in concrete may present as hyperbolic reflections in GPR scans. Detecting and segmenting 45 
the signatures of objects in GPR scans is an essential step to retrieve information. For instance, 46 
estimating the depth and dimension of an underground utility line requires the extraction of data 47 
points from the hyperbolic signature. However, given the large amount of data, manual processing 48 
of GPR scans is labor-intensive and error-prone. 49 
 50 
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There are two challenges in automating this process. The first challenge is the automatic detection 1 
of object signatures in GPR scans. Due to the signal interference among multiple adjacent objects 2 
in the subsurface, processing GPR scans are not amenable to the traditional methods such as 3 
edge detection [16], Hough transformation [17-19], and least squares method [20]. In addition, 4 
the distortion and incompleteness of hyperbolic signatures resulting from the subsurface objects 5 
may further impose difficulties in recognizing the object instances. The second challenge is the 6 
automatic segmentation of object signatures from noisy background in GPR scans. The existing 7 
methods are not adequate to segment the complete object signatures, which may hinder 8 
subsequent processing and interpretation. A novel method is needed to automatically detect and 9 
segment object signatures from noisy GPR scans. Therefore, in this study, a deep learning (DL) 10 
based framework is proposed to detect and segment object signatures, and a rule-based method 11 
is developed to extract data points on the segmented signatures. The integration of detection and 12 
segmentation in a unified framework will help advance the information extraction from coarse box-13 
level instance recognition to precise pixel-level classification. 14 
 15 
Fig. 1 presents the proposed framework. The contribution of this work is twofold. First, we 16 
developed a new computation for IoU, i.e. distance guided Intersection over Union (DGIoU), and 17 
incorporated it as a new metric and new loss function into the Mask R-CNN framework [21]. The 18 
existing IoU computation methods [22-23] only consider the sizes of bounding boxes (Bboxes) 19 
and neglect their locations. The proposed method can overcome the limitation and keep the 20 
discrepancy between predicted Bbox and real Bbox to a minimum during the training phase. Using 21 
the enhanced Mask R-CNN framework, GPR signatures can be automatically detected and the 22 
corresponding mask patches can be obtained. Second, we proposed a novel method to extract 23 
data points from the detected signatures, which can streamline subsequent analyses, such as 24 
hyperbola fitting, peak localization, and object depth and dimension estimation. Table 1 lists all 25 
the abbreviations and notations to ease the illustration. 26 

 27 
Fig. 1. GPR Signature Detection and Segmentation Framework. 28 

 29 
Table 1. Summary of abbreviations and notations. 30 
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Notation(s) or 
Abbreviation 

Description 

 AP Average Precision 

Bbox Bounding Box 

CD Center Distance  

DL Deep Learning 

EM Electromagnetic 

GPR Ground Penetrating Radar 

ROI Region of Interest 

RPN Regional Proposal Network 

IoU Intersection over Union 

GIoU Generalized IoU 

DGIoU Distance Guided IoU 

pB , gB , cB  
Predicted Bbox, Ground Truth Bbox,  
Smallest Enclosing Bbox 

pA , gA , cA  Area of pB , gB , cB  

C Smallest Enclosing box of Bbox A and Bbox B 

U Union of Bbox A and Bbox B 

 1, 2, 3k k k  Coefficient matrix 

IoUL ,
'

IoUL  IoU loss in Bbox regression stage, in RPN stage 

GIoUL ,
'

GIoUL  GIoU loss in Bbox regression stage, in RPN stage 

DGIoUL ,
'

DGIoUL  DGIoU loss in Bbox regression stage, in RPN stage 

Lflag  Searching to left 

Rflag  Searching to right 

temp  Step length for searching to left/right 

P  Initial midpoint set 

p  Peak of P  

'P  Updated set 

F  Final data point set for curve fitting 

 1 
2. Literature Review 2 
GPR has been used to detect, locate, and characterize buried objects [24-30]. Different methods 3 
have been developed to process different formats of GPR data (A-scan, B-scan, and C-scan) for 4 
various applications such as quality assessment, 2D target detection, and 3D mapping [31]. For 5 
example, A-scans were used in [32-35], B-scans were used in [36], and C-scan were used in [37]. 6 
For object signature detection, numerous studies focused on processing B-scans. Existing object 7 
detection methods are mainly categorized into conventional feature engineering-based methods 8 
and DL-based methods. Conventional feature engineering-based methods first extract 9 
handcrafted features from each patch, then the features are classified by a classifier. For example, 10 
in [15], an edge detection was performed to acquire simplified object signatures, which were then 11 
fed into a simple neural network. A detection technique is proposed in [38] for bridge condition 12 
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assessment and deterioration analysis. In this method, the similarity between a GPR image patch 1 
and a hyperbolic signature template is computed. Then the Fast Fourier Transform (FFT) was 2 
integrated with hyperbola fitting to extract rebar peaks and signature parameters. However, the 3 
template-based method is not reliable for detecting object signatures in the presence of clutters. 4 
A face detection algorithm, namely Viola-Jones (VJ) [39], was first used in work [18] to pick the 5 
regions containing hyperbolic signatures. By narrowing down the region of interest (ROI) and 6 
using Hough transform, objects parameters such as hyperbola peak and EM wave velocity can 7 
be obtained. The study [40] first calculated the histogram of oriented gradient (HOG) features, 8 
and then fed these features into a support vector machine (SVM) for training. The trained model 9 
was used to classify the regions with and without object signatures. 10 
 11 
Recently, DL-based method has gained its momentum in analyzing GPR data. Deep network has 12 
been used in classification tasks [41-43], box prediction tasks [44-48], and semantic segmentation 13 
tasks [49-52]. The deep network advances the image-level prediction [44] to box-level prediction 14 
[45], semantics-level prediction [49] and mask-level prediction [21]. As demonstrated in studies 15 
[53-55], DL methods do not require the traditional “feature engineering” step, and can directly 16 
extract the features from GPR scans. Moreover, revealed by a lot of studies, the deep networks 17 
outperform traditional feature engineering under certain circumstances. The method proposed in 18 
[36] used an object detection model to classify the buried targets and detect the target hyperbola 19 
region. This method was integrated with the double cluster seeking estimate (DCSE) to segment 20 
hyperbolic clusters, and with a novel column-based transverse filter points (CTFP) method to 21 
automate the task of extracting hyperbolic data points. The DCSE algorithm, and other recent 22 
clustering methods such as open scan clustering algorithm (OSCA) [56] and column-connection 23 
clustering (C3) method [57] were applied to segment hyperbolic signatures for data extraction. 24 
However, there are two limitations in the prior studies. First, there lacks a method to achieve 25 
simultaneous detection and segmentation of object signatures in GPR scans. Second, most 26 
existing methods are not reliable and accurate in extracting the data points from the segmented 27 
object signatures.  28 
 29 
3. Distance Guided IoU in Mask R-CNN 30 
This section first presents the DGIoU as a new metric to evaluate the similarity between two 31 
Bboxes. In addition, the DGIoU is integrated into the Mask-RCNN framework as a new loss 32 
function to enhance its performance. 33 
 34 
3.1. Overview of Mask R-CNN and IoU Computation 35 
The Mask R-CNN adds an additional mask prediction branch into the Faster R-CNN framework 36 
[44]. The Mask R-CNN architecture consists of three phases. The first phase is to input an original 37 
image into a pretrained neural network and obtain the corresponding feature map. In the second 38 
phase, the Regional Proposal Network (RPN) generates a large amount of proposals that are not 39 
related to the object category. The final R-CNN stage uses RoIAlign to extract features for each 40 
proposal and conducts three tasks: proposal classification, Bbox regression, and mask prediction. 41 
 42 
As an instance level segmentation algorithm, the Mask R-CNN relies on accurate Bbox regression. 43 
Studies have shown that IoU could help refine Bbox and proven that improving IoU helps to 44 
reduce object uncertainty and increase detection accuracy. For most object detection tasks, IoU 45 
is a well-adopted evaluation metric and is used to compare the similarity of two arbitrary shapes 46 
and divide true positives and false positives. IoU is scale invariant, and thus is leveraged to verify 47 
the properties of object detection [61,62] and segmentation [58-61]. For axis aligned two-48 
dimensional (2D) Bboxes, many frameworks used a surrogate loss of IoU to conduct the task of 49 
Bbox regression. For example, the authors in [63] introduced an IoU loss computation metric used 50 
for Bbox prediction by regressing the boundaries information of a predicted box. Their method 51 
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converges fast and demonstrates robust performance in accurate and efficient localization of 1 
objects with different scales. Lachlan et al. [64] developed a bounded IoU loss for IoU 2 
maximization while keeping IoU’s good convergence properties. In [23], Rezatofighi et al. 3 
proposed a generalized version of IoU (GIoU) function to overcome the limitation of IoU under the 4 
circumstance of non-overlapping bounding boxes. Considering two bounding boxes A and B, the 5 
smallest bounding box that encloses both A and B is defined as C. C usually has the same scale 6 
with A and B. The IoU and GIoU can be computed as in Eq. (1) and Eq. (2), where U is defined 7 

as the union of A and B: 
A B overlapU A B Area Area Area= = + − . 8 

                                                                                
A B

IoU
A B

=                                                                      (1) 9 

C A B C U
GIoU IoU IoU

C C

− −
= − = −                                                      (2) 10 

 11 
3.2  Distance Guided IoU 12 
However, IoU and GIoU value do not fully reflect the quality of predicted Bbox. For instance, for 13 
the simple overlapped scenario in the left part of Fig. 2, the predicted Bbox A1 has exactly same 14 
IoU and GIoU as the predicted Bbox A2. However, in fact, the center position of Bbox A2 is closer 15 
to ground truth (GT) Bbox than that of Bbox A1, because the center distance between A1/A2 and 16 

GT is 5 / 4.5 , respectively. For another non-intersected case in the right part of Fig. 2, it is 17 

obvious that Bbox A3 is a better choice than Bbox A4. But this observation cannot be reflected 18 
by computing IoU and GIoU. They have the same IoU. Moreover, the GIoU of Bbox A4 is higher 19 
than that of Bbox A3. The above observations indicate that IoU and GIoU can only consider the 20 
sizes but not the locations of two axis-aligned rectangles. In fact, several pairs of Bboxes with the 21 
same degree of overlap may have different center distance and therefore have different objective 22 
values. To solve this critical issue, we propose an extended version of GIoU, namely DGIoU, 23 
which considers an additional element called center distance in GIoU. Center distance information 24 
of two boxes is important for accurate object detection. The DGIoU redistributes the proportion of 25 
three elements: IoU, C excluding U and divide by C, and center distance (CD). The center 26 
distance is computed by the l2-norm between predicted Bbox and GT Bbox. The coefficient matrix 27 

 1, 2, 3k k k  represents the weights of the above elements. Algorithm 1 gives the calculation of 28 

DGIoU.  29 

Algorithm 1: DGIoU 

Input   : Two rectangle Bboxes: A and B 
Output: DGIoU  

1. Find the smallest enclosing Bbox C of A and B 
2. Find each center coordinate for two Bboxes: 

AC   , 
BC  

3. Compute the center distance of A and B:
A BCD C C= −  

4. Compute 1 2 3
C U

DGIoU k IoU k k CD
C

−
=  −  −   

 30 
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 1 
 2 

Fig. 2. Similarity comparison of predicted Bbox and GT Bbox using IoU, GIoU and DGIoU. 3 
 4 

To maintain the properties of GIoU, we set 1k  and 2k  to 0.9 and 0.8, respectively. The DGIoU 5 

with small 1k  and 2k  values cannot reflect the properties of GIoU, while a large value will neglect 6 

distance information. For 3k , several values [0.05,0.1,0.15,0.2] are compared to select an 7 

appropriate one for our algorithm. The variations in average precision (AP) against different 3k  8 

values for both box and mask tasks are plotted in Fig. 3. To balance the performance of box task 9 
and mask task, we set 3k  to 0.1 for DGIoU in this paper. 10 

 11 

 12 
Fig. 3. AP value against different k3 evaluation curve of the proposed DGIoU. 13 

 14 
3.3. DGIOU as loss for Bbox regression 15 
The task of detecting 2D object signatures in GPR scans can be converted into a task of 16 
comparing two axis-aligned Bboxes. Both the intersection and the smallest enclosing object have 17 
rectangular shapes. The center point is computed by using the mean value of two adjacent 18 
vertices coordinate in each Bbox, which can be obtained by adding this mean value to a minimum 19 
vertical coordinate. After obtaining the center coordinates of the two Bboxes separately, l2-norm 20 
is used to compute their center distance. Hence, a high-quality solution is proposed to calculate 21 
DGIoU detailed in Alg. 2. Similar to the GIoU loss in [23], the proposed DGIoU can be directly 22 

used as a loss into network. DGIoU as loss both in final Bbox regression stage (
DGIoUL ) and in 23 

RPN stage ( '

DGIoUL ) can be used to optimize Mask R-CNN framework. Since IoU and GIoU ignore 24 

the center coincidence between two Bboxes, the training quality and convergence rate will be 25 
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limited. Compared to the above two criteria, the proposed DGIoU has considered this important 1 
element. It has three merits:  1) DGIoU has a strong correlation with GIoU; 2) DGIoU can further 2 
judge which one is the optimal solution when overlapped area levels between several predicted 3 
Bbox and GT box are the same; 3) DGIoU defines the representation of center distance as 4 
location space and incorporates it into size space. To this end, DGIoU is able to represent the 5 
real similarity among Bboxes.  6 
 7 

Algorithm 2: DGIoU as Bbox loss and RPN loss 

Input  : Predicted Bbox pB and GT Bbox gB  upper-left 
and lower-right coordinates: 

( )1 1 2 2, , ,p p p p pB x y x y=  , ( )1 1 2 2, , ,g g g g gB x y x y= . 

Output: 
DGIoUL   

1. pB needs to meet 2 1

p px x and
2 1

p py y : 

( )1 1 2
ˆ min ,p p px x x= , ( )2 1 2

ˆ max ,p p px x x= , 

( )1 1 2
ˆ min ,p p py y y= , ( )2 1 2

ˆ max ,p p py y y=  

2. Area of gB : ( ) ( )2 1 2 1

g g g g gA x x y y= −  −   

3. Area of pB  : ( ) ( )2 1 2 1
ˆ ˆ ˆ ˆp p p p pA x x y y= −  −  

4. Intersection I between pB and gB : 

( )1 1 1
ˆmax ,I p gx x x= , ( )2 2 2

ˆmin ,I p gx x x=  

( )1 1 1
ˆmax ,I p gy y y= , ( )2 2 2

ˆmin ,I p gy y y=  

( ) ( )2 1 2 1 2 1 2 1,

0 .

I I I I I I I Ix x y y if x x y y
I

otherwise

 −  −  
= 


  

5. Finding the coordinates of smallest enclosing box cB : 

( )1 1 1
ˆmin ,c p gx x x= ， ( )2 2 2

ˆmax ,c p gx x x=  

( )1 1 1
ˆmin ,c p gy y y= ， ( )2 2 2

ˆmax ,c p gy y y=  

6. Calculating area of cB : ( ) ( )2 1 2 1, ,c c c c cA x x y y=   

7. Finding center coordinates of pB  and gB : 

( ),p p p

x yC C C= , ( ),g g g

x yC C C=  

2 1

1

ˆ ˆ
ˆ

2

p p

p p

x

x x
C x

 −
= + 
 

,  2 1

1

ˆ ˆ
ˆ

2

p p

p p

y

y y
C y

 −
= + 
 

 

2 1

1
2

g g

g g

x

x x
C x

 −
= + 
 

, 2 1

1
2

g g

g g

y

y y
C y

 −
= + 
 

 

8. Calculating center distance: 

( ) ( )
2 2

g p g p

x x y yCD C C C C= − + −
  

9. 
I

IoU
U

=  , where .p gU A A I= + −   

10. 
c

c

A U
GIoU IoU

A

−
= −  

11. 
0.9 0.8* 0.1

c

c

A U
DGIoU IoU CD

A

−
=  − − 

  
12. Final Bbox regression loss: 

1DGIoUL DGIoU= − , 1GIoUL GIoU= − , 1IoUL IoU= −   

13. RPN loss:  
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' 1DGIoUL DGIoU= − , ' 1GIoUL GIoU= − , ' 1IoUL IoU= −  

 1 
4. Data Points Extraction Method 2 
A new method is proposed to extract data points from each segmented mask patch for following 3 
hyperbolic fitting. Some post-processing steps are required, including thresholding and 4 
morphological operations. First, we define three concepts: ‘target region’, ‘isolated patch’, and 5 
‘abnormal patch’. The ‘target region’ represents the hyperbolic target signature. The ‘isolated 6 
patch’ indicates an isolated non-target patch that is separated from the target region. The 7 
‘abnormal patch’ represents a non-target patch that intersects with target region. Fig. 4 illustrates 8 
the concepts.  9 

                    10 
(a)                                                              (b) 11 

Fig.4. Definitions of ‘isolated patch’, ‘abnormal patch’, and ‘target region’. (a) Example of mask 12 
patch with isolated patch and target region; (b) Example of mask patch with isolated patch, 13 
abnormal patch, and target region. 14 
 15 
In the presence of isolated patch and abnormal patches, the proposed method searches and 16 
extracts a set of data points from the obtained mask patch. This method is an extension of the 17 
CTFP algorithm proposed in [36]. The CTFP algorithm extracts the midpoints along the hyperbolic 18 
signature region and employs a lower pass filter to smooth these points. Since CTFP cannot 19 
eliminate non-target patches, it is not robust when GPR signatures contain noises and clutter 20 
such as the isolated patches and abnormal patches. The new method overcomes this limitation 21 
and the steps for the algorithm are detailed as follows.  22 
 23 
First, each target cluster is scanned column by column to search pixels with a value of 255 24 
(hereafter valuable point) and store them. The midpoint of the valuable points in each column is 25 
obtained and stored in an array P . Then the peak Y  can be identified from the array P  and is 26 
stored. Next, taking the peak as the starting location, each column in the binary mask image is 27 
traversed to left and right based on the following rules to update and save the point set in F . 28 
 29 
Rule 1: The searching will be stopped if there are no valuable points in the current column. An 30 
example is provided in Fig. 5. The gray cells denote valuable points. The original midpoint array 31 

[ 1, , 1, 2]P L Y R R=  is obtained. First, the searching traverses from peak Y  to the left until the column 32 

where L1 is located (hereafter L1 column). Since there are no valuable points in the column to 33 
the left of L1 column, L1 point is retained and the searching to the left is stopped. Similarly, the 34 
searching to the right stops until the R2 column. Finally, the updated midpoint set is saved in 35 

 1, , 1, 2F L Y R R= . 36 
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 1 
Fig. 5. An example of obtaining midpoint set  1, , 1, 2F L Y R R=  using rule 1. 2 

 3 

Rule 2: If searching from Y  to both sides, the ordinate of midpoint in the current column is larger 4 

than that in previous column, then the F  remains the same as the initial set, as shown in Fig. 6.  5 

 6 
Fig. 6. An example of obtaining midpoint set  2, 1, , 1, 2F L L Y R R=  using rule 2. 7 

 8 
Rule 3: If the ordinates of all valuable pixels in current column are smaller than the midpoint in 9 
previous adjacent column, then the search is stopped. For example, in Fig. 7, the original midpoint 10 
set is [ 2, 1, , 1, 2, 3, 4, ]P L L Y R R R R= , and all valuable pixels in the R4 column are above the midpoint 11 

R3. In this case, the rightward columns starting from R4 column are no longer considered (marked 12 

as blue area). Thereby, the updated set  2, 1, , 1, 2, 3F L L Y R R R=  is obtained. 13 

 14 
Fig. 7. An example of obtaining data point set  2, 1, , 1, 2, 3F L L Y R R R=  using rule 3. 15 

 16 
Rule 4: If the max ordinate in current column is larger than the ordinate of the midpoint in the 17 
previous column, a new midpoint is selected by adding 1 to the ordinate of the previous midpoint 18 

and is recorded into the updated set 'P . Thereafter, the search continues. Fig. 8 provides an 19 

example where the initial midpoint set is  2, 1, , 1, 2, 3, 4, 5,P L L Y R R R R R= , and valuable pixels in 20 

R4 column are divided into two parts that are above and below midpoint R3. According Rule 4, 21 
R4 will be replaced by R4’, and R5 will be replaced by R5’. The following columns are no longer 22 
considered because all valuable pixels in next column are above R5’, according to Rule 3. The 23 

final midpoint set  2, 1, , 1, 2, 3, 4', 5'F L L Y R R R R R=  is obtained.  24 
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 1 
Fig. 8. An example of obtaining data point set  2, 1, , 1, 2, 3, 4', 5'F L L Y R R R R R=  using Rule 4. 2 

 3 
The pseudocode of the data point extraction method is presented in Alg. 3. By using the proposed 4 
method, data points are extracted from each mask patch, and outliers are separated from target 5 
region and discarded from patch. These extracted points are then fed into the subsequent 6 
hyperbola fitting step. Only the hyperbola with a downward opening will be reserved. 7 
  8 

Algorithm 3: Data point Extraction Method 

Input   : A binary image I . 

Output: The extracted point set for curve fitting. 

1. Define Int 1temp = . temp  indicates step length of searching to 

left/right. 

Lflag true= , Rflag true= . 

Lflag false=  and Rflag false=  indicate the searching towards 

to left/right is stopped. 

2. for every column from 1 to _max column  of I do 

3.        find all the midpoint and store them in P . 

4.        find the column c  where the peak p  of P is located.  

5. end 

6. while (true) 

7.     if   0c temp−   then             ▷case1-traversing to the left 

8.           find the valuable points in ( )c temp−  and store them in    

PL . 

9.          if  PL  is empty then 

10.                Lflag false=  end 

11.      else Lflag false=  end 

12.     if _   c temp max column of I+   ▷case1-traversing to the right 

13.            find the valuable points in ( )c temp+  and store them in   

PR . 

14.            if PR  is empty then 

15.                Rflag false=  end 

16.     else Rflag false=  end 

17.      if Lflag true=  and midpoint in ( )c temp−  below the   

first value in updated midpoint set F    

▷case2-traversing to the left 
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18.            if _    max PL first value  in F                     ▷case3 

19.                Lflag false=   

20.            else                                                      ▷case4 

21.                 store (midpoint  in ( )c temp−  of ) 1P +  in  ;F F p=   

22.            end 

23.       elseif ( Lflag )      

24.             store midpoint  in ( )c temp−  of P  in  ;F F p=  

25.       end 

26.       if Rflag true=  and midpoint  in ( )  lastc temp value+   in F                

▷case2-traversing to the right 

27.            if _  >  max PR last value  in F  

28.                 store (midpoint  in ( )c temp+  of ) 1P +  in  ;F p F=    

29.            end 

30.       elseif ( Rflag )     

31.             store  midpoint value  in ( )c temp+  of P  in  ;F p F=  

32.       end 

33.      1temp temp= +   

34. end 

35. Output extracted data point set F . 

 1 
Fig. 9 compares the proposed method and the original CTFP method, demonstrating the 2 
advantages of the proposed method. Fig. 9(a) is a typical mask region and Fig. 9(b) is the 3 
processed binary image. Fig. 9(c1) presents obtained data points by CTFP method, which 4 
contains some abnormal points (see purple arrow) due to the isolated patch at the top left. The 5 
corresponding fitted curve in Fig. 9(d1) does not match well with the hyperbolic signature. In 6 
addition, the peak of fitted curve and the apex of hyperbolic signature are not well aligned. As can 7 
be seen from Fig. 9(c2) and (d2), the proposed method handles the non-target patch and selects 8 
suitable data points, and the fitted curve accurately represents the hyperbolic signature. 9 
 10 
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(c2) 

 
(d2) 

Fig. 9. Performance Comparison between the proposed method and CTFP [36] method. (a) Mask 11 
patch; (b) Binary image; (c1) Data points (red dots) extracted by CTFP; (c2) Data points extracted 12 
by the proposed method; (d1-d2) Fitting result (peak marked as green dot). 13 
 14 
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5. Experiments and Results 1 
A GSSI SIR-4000 GPR system with Model 62000 Palm antenna was used to scan a concrete 2 
bridge deck to collect B-scans (Fig. 10) to test the proposed methods. The 2GHz palm antenna 3 
has a pulse duration of 0.5 ns. The scanning distance is 455 cm and the time window is 8 ns. 4 
Each B-Scan has a size of 512 1676 . Spatial sampling interval and time sampling interval are 5 

0.27 cm and 0.016 ns, respectively. The distance between two adjacent B-scan is 50 cm and 95 6 
B-scans are collected, covering an area of 4.55 47  m2. These 95 B-scans contain thousands of 7 

annotated object instances. 78 B-scans were used in training, 9 B-scans were used in validation, 8 
and 8 were used in the test. We used the PyTorch 1.3.0 implementations of Mask R-CNN, 9 
released by Facebook research (https://github.com/roytseng-tw/Detectron.pytorch). The code 10 
was implemented using a NVIDIA GTX 1060 GPU. ResNet-50 was used with feature pyramid 11 
networks (FPN) as the backbone network and install it in Mask R-CNN, following its training 12 
protocol on each benchmark. To obtain the training results of Mask R-CNN using IoU, GIoU, 13 

DGIoU losses, the comparative tests were conducted by using 
IoUL , 

GIoUL and 
DGIoUL  losses in the 14 

final Bbox refinement stage and '

IoUL , '

GIoUL  and '

DGIoUL  losses in RPN stage. To regularize the new 15 

regression loss, 
IoUL , 

GIoUL  and 
DGIoUL  were multiplied by a factor of 10 for all experiments. Every 16 

anchor from feature map is compared with GT Bbox to obtain positive/negative samples, in which 17 
the threshold is set to 0.7 in the experiments. 18 

 19 

  20 
Fig. 10. Data collection from concrete bridge deck. 21 

 22 
Three on-site trials on bridge deck datasets are conducted to verify the effectiveness of the 23 
proposed framework. The horizontal x-axis and vertical t-axis indicate GPR scanning trajectory 24 
(cm) and the two-way travel time of EM wave (ns), respectively. The results of first experiment 25 
are given in Fig. 11 and the hyperbolic signatures of 33 rebars were detected. The output of Mask 26 
R-CNN consists of 3 parts – the predicted rectangle box, confidence score, and mask patch, see 27 
Fig. 11(b). Fig. 11(c) shows the mask image on a black background with each individual instance 28 
marked with a different color. The fitting results are obtained and visualized in Fig. 11(d). 29 
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(c) (d) 

Fig. 11. First example of signature detection. (a) Original GPR scans; (b) Segmentation results 1 
with predicted box, confidence, and mask patch obtained by the enhanced Mask R-CNN; (c) 2 
Whole mask image; (d) Fitting results. 3 
 4 
Fig. 12 presents the results of the second experiment. It can be found that the intersected targets 5 
can also be segmented by the proposed method, even if the targets have large overlapping area. 6 
The intermediate processing details are listed in Fig. 13. The picked patches in Fig. 13(a1-a2) are 7 
preprocessed and the corresponding binary images are yielded [Fig. 13(b1-b2)]. The proposed 8 
method extracts a series of data points (red dots) in Fig. 13(c1-c2), followed by the fitting curves 9 
for every target in Fig. 13(d1-d2). 10 
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Fig. 12. Second example of signature detection. (a) Original GPR bridge image; (b) Segmentation 11 
results with predicted box, confidence score, and mask patch obtained by the enhanced Mask R-12 
CNN; (c) Whole Mask image; (d) Fitting results. 13 
 14 
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Fig. 13. Intermediate results of the second example. (a1-a2) Examples of mask region from Fig. 1 
12(c); (b1-b2) Preprocessed binary image; (c1-c2) Extracted data points (marked as red dots); 2 
(d1-d2) Fitting results. 3 
 4 
Fig. 14 shows the results of the third example with more complicated interference among the 5 
targets. In Fig. 14(a), there are six half-hyperbolae formed by the reflection of corner strap and 6 
are regarded as non-targets. Most of these non-targets are eliminated by Mask R-CNN but still 7 
two redundant detections left [see in Fig. 14(b)]. One of the non-target patches is eliminated, as 8 
illustrated by Fig. 15. The patch is eliminated because it does not conform to the hyperbolic 9 
downward-opening feature. 10 
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Fig. 14. Third example of signature detection. (a) Original GPR greyscale image; (b) Results with 11 
predicted box, confidence, and mask patch obtained by the improved Mask R-CNN; (c) Whole 12 
Mask image; (d) Fitting results. 13 
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open-close 
operation 

proposed 
method 

Fig. 15. An example of eliminating non-target patch. 1 
 2 
5.1 Evaluation of DGIoU loss in Mask R-CNN 3 
The proposed DGIoU was evaluated both as Bbox loss and RPN loss in Mask R-CNN. RPN loss 4 
is first applied to correct the candidate box and Bbox loss is the second correction. Mask R-CNN 5 

was trained using 
DGIoUL  as Bbox regression loss and '

DGIoUL  as RPN loss on the training dataset 6 

for 5000 iterations. Learning rate is an important parameter with the value of 0.001. IoU thresholds 7 
range is from 0.5 to 0.95. The best model results obtained on the validation set for Mask R-CNN 8 

have been reported in Table 2 for box task and Table 3 for mask task. By fixing 
DGIoUL  as the Bbox 9 

regression loss in final stage, Table 2 compares the detection performance based on three 10 

different RPN losses. The results indicate that the detection accuracy using '

DGIoUL  performs better 11 

at AP and AP75 compared to the other two losses. From Table 3, it was found that the mask 12 

accuracy improved by using '

DGIoUL  over '

IoUL  and '

GIoUL  losses. Particularly, comparing with '

IoUL , 13 

the accuracy is improved to 82.91% at AP75. 14 
 15 
Table 4 and Table 5 show the detection and segmentation results of training Mask R-CNN using 16 
three loss combinations: 

IoUL + '

IoUL , 
GIoUL + '

GIoUL , 
GDIoUL + '

GDIoUL , where each group uses the same loss 17 

in Bbox refinement stage and RPN stage. According to the comparison of three groups of losses, 18 

Table 4 gives AP results, which indicates that combining the 
DGIoUL  and '

DGIoUL  to train Mask R-19 

CNN can consistently improves its box and mask performance compared to the other two groups. 20 
Moreover, especially in mask task [see in Table 5], compared with using IoU or GIoU, 21 
incorporating DGIoU both as Bbox loss and RPN loss can enhance the segmentation 22 
performance of Mask R-CNN. It improves both the detection and mask segmentation accuracy. 23 
That is because mask branches in later stages benefit from better localized Bboxes. Based the 24 
obtained best model, Fig. 16 plots the accuracy curve and four loss curves during training. 25 

 26 
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Fig. 16. Train accuracy and loss distributions of the enhanced Mask R-CNN. 1 

 2 
TABLE 2. Detection performance comparison of training Mask R-CNN using different RPN losses: 3 

'

IoUL , '

GIoUL and '

DGIoUL . The results all are trained using DGIoUL  as Bbox loss (Task:box). 4 

RPN loss AP AP75 APs APm 

'

IoUL  0.5749 0.5325 0.6751 0.4642 

'

GIoUL  0.5807 0.6352 0.6711 0.4653 

Relative improv.% 1.01% 19.29% -0.59% 0.24% 
'

DGIoUL  0.5864 0.6455 0.6651 0.4630 

Relative improv.% 2.00% 21.22% -1.48% -0.26% 

 5 
TABLE 3. Segmentation performance comparison of training Mask R-CNN using different RPN 6 

losses: '

IoUL , '

GIoUL  and '

DGIoUL . The results all are trained using DGIoUL  as Bbox loss (Task: mask). 7 

RPN loss AP AP75 APs APm 

'

IoUL  0.4280 0.1592 0.4321 0.3663 

'

GIoUL  0.4282 0.1782 0.4345 0.3337 

Relative improv.% 0.05% 11.93% 0.56% -8.90% 
'

DGIoUL  0.4764 0.2912 0.4834 0.3673 

Relative improv.% 11.3% 82.91% 11.87% 0.27% 

 8 

TABLE 4. Detection performance comparison of training Mask R-CNN using IoUL + '

IoUL , GIoUL +9 

'

GIoUL  and DGIoUL + '

DGIoUL losses. (Task: box) 10 

Loss and RPN loss AP AP75 APs APm 

IoUL + '

IoUL  0.5761 0.6335 0.6650 0.4770 

GIoUL + '

GIoUL  0.5675 0.5723 0.6771 0.3777 

Relative improv.% -0.86% -9.66% 1.82% -20.82% 

DGIoUL + '

DGIoUL  0.5864 0.6455 0.6651 0.4630 

Relative improv.% 1.79% 1.89% 0.02% -2.94% 

 11 

TABLE 5. Segmentation performance comparison of training Mask R-CNN using IoUL + '

IoUL , 12 

GIoUL + '

GIoUL  and DGIoUL + '

DGIoUL losses. (Task: mask) 13 

Loss/Metric AP AP75 APs APm 

IoUL + '

IoUL  0.3724 0.0829 0.3821 0.2337 

GIoUL + '

GIoUL  0.4259 0.1559 0.4304 0.3663 

Relative improv.% 14.37% 88.06% 12.64% 56.74% 

GDIoUL + '

GDIoUL  0.4764 0.2912 0.4834 0.3673 

Relative improv.% 27.93% 251.27% 26.51% 57.17% 

 14 
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5.2 Evaluation of data points extraction method 1 
Fig. 17 explains the eliminating process of the non-target patch when picked mask region has 2 
more than one patch. The region [see in Fig. 17(a1-a3)] picked from whole mask image still 3 
contains two patches after preprocessing [see in Fig. 17(b1-b3)]. Our method traverses each 4 
patch separately and extract its data points using the proposed data points extraction method, as 5 
shown in Fig. 17(c1-c3) and (d1-d3). The fitting results for every object patch are shown in Fig. 6 
17(e1-e3). Because the signature of rebar presents as a downward-opening hyperbola, therefore 7 
the patch with an upward-opening fitting curve is discarded. Even without the clustering method 8 
as used in [36,56,57], the proposed data extraction method still has the ability to handle unwanted 9 
interference and is robust in the presence of multi-patches. 10 

 11 
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Fig.17. Some fitting results based on data points extraction and elimination of non-target patch. 12 
(a1-a3) Mask region with multiple patches; (b1-b3) Post-processed binary image; (c1-c3) 13 
Obtained data points from isolated patch (red points); (d1-d3) Obtained data points from target 14 
region with/without abnormal patch; (e3) Fitting result with downward opening and discarding the 15 
non-target patch. 16 
 17 
5.3 Comparison experiments 18 
Performance Comparison. The box task between the Mask R-CNN and the Faster R-CNN are 19 
compared. For baseline results, Faster R-CNN also uses the same backbone ResNet-50 and 20 
RPN as Mask R-CNN. They are evaluated on the same field dataset and training protocol. 21 
Table 6 represents the results of training Faster R-CNN using IoU, GIoU, and DGIoU losses in 22 
the final Bbox refinement and RPN stage, respectively. Using DGIoU as both Bbox regression 23 
loss and RPN loss, Faster R-CNN outperformed the other two loss combinations and achieved 24 
the AP of 55.08% and AP75 of 59.57%. Comparing with the evaluation results in Table 4, both 25 
frameworks improved the detection accuracy when using the proposed DGIoU as losses. 26 
Moreover, comparing with the Faster R-CNN with DGIoU, the enhanced Mask R-CNN has a 27 
higher AP of 3.56% and AP75 of 4.98%.  28 
 29 

TABLE 6. Detection performance of training Faster R-CNN using IoUL +
'

IoUL , GIoUL +
'

GIoUL  and DGIoUL30 

+
'

DGIoUL losses. (Task: box) 31 

Loss and RPN loss AP AP75 APs APm 

IoUL + '

IoUL  0.5393 0.5882 0.5782 0.4611 
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GIoUL + '

GIoUL  0.5467 0.5413 0.5695 0.3927 

Relative improv.% 1.37% -7.97% -1.50% -14.8% 

DGIoUL + '

DGIoUL  0.5508 0.5957 0.5760 0.4588 

Relative improv.% 2.13% 1.28% -0.38% -0.50% 

 1 
Detection Result Comparison. To further visualize the comparison of the above two frameworks, 2 
Fig. 18 respectively shows the detection results using the Faster R-CNN framework with DGIoU 3 
on two original GPR images (Fig. 12(a) and Fig. 14(a)). Compared with the results in Fig. 12(b), 4 
Fig. 18(a) also detected all targets, whereas there exists a redundant box indicated by red arrow. 5 
Compared with Fig. 14(b), Fig. 18(b) omits four hyperbolic targets (marked by red rectangle), and 6 
there are two redundant boxes (shown by red arrows). The comparative results suggest the 7 
performance of the enhanced Faster R-CNN is inferior to the improved Mask R-CNN, and its 8 
performance is limited in the presence of hyperbolic signatures with weak reflection. 9 
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Fig. 18. Detection results obtained by the Faster R-CNN with DGIoU on (a) original image Fig. 10 
12(a), and (b) original image Fig. 14(a). (Red arrow indicates redundant box and red rectangle 11 
indicates missing target) 12 
 13 
6. Conclusion 14 
A DL based method is proposed to automate the detection and segmentation of object signatures 15 
from GPR scans. Mask R-CNN is adopted as the framework. To improve its performance, DGIoU 16 
is developed and incorporated in Mask R-CNN as a new loss computation to minimize the 17 
discrepancy between the predicted Bbox and the real Bbox in the training phase. Compared to 18 
the conventional IoU and GIoU, the DGIoU considers the center distance between two bounding 19 
boxes. The experiment results demonstrated the effectiveness of using DGIoU in enhancing the 20 
performance of Mask R-CNN. The segmented patches containing object signatures and 21 
background noises are then transformed into binary images for data points extraction. Our new 22 
data extraction method removes the interference among adjacent object signatures and the 23 
background. The extracted data points can be used in curve fitting to estimate object location and 24 
dimension. Real GPR scans collected from a concrete bridge deck were used in the experiments. 25 
The improved Mask R-CNN achieved a detection AP of 58.64% and a segmentation AP of 47.64%. 26 
 27 
There are some limitations that could be addressed in future research. First, it requires vast 28 
amounts of real data for training the proposed method. Also, the publicly available GPR datasets 29 
are limited. Efforts need to be made in the future to collect and prepare GPR datasets to facilitate 30 
the implementation of the method. Unsupervised DL models and transfer learning techniques can 31 
also be leveraged to solve the problem of insufficient dataset. In addition, future studies can be 32 
conducted to explore the one-shot or few-shot detection and segmentation method. Second, this 33 
study mainly focused on detecting and segmenting rebar signatures from GPR scans. In future 34 
research, discriminative features can be learned from data to detect and evaluate potential rebar 35 
corrosions, which has not been achieved. Third, the proposed method has only been tested for 36 
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rebar detection and localization. The scalability of the method in other challenging environments 1 
and applications needs further investigation. Future studies could test this method for detecting 2 
buried utilities in heterogeneous soils. 3 
 4 
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