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Abstract 16 

Predicting workers’ trajectories on unstructured and dynamic construction sites is critical 17 

to workplace safety yet remains challenging. Existing prediction methods mainly rely on entity 18 

movement information but have not fully exploited the contextual information. This study 19 

proposes a context-augmented Long Short-Term Memory (LSTM) method, which integrates 20 

both individual movement and workplace contextual information (i.e., movements of 21 
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neighboring entities, working group information, and potential destination information) into an 22 

LSTM network with an encoder-decoder architecture, to predict a sequence of target positions 23 

from a sequence of observations. The proposed context-augmented method is validated using 24 

construction videos and the prediction accuracy achieved is 8.51 pixels in terms of final 25 

displacement error (FDE), with an observation time of 3s and prediction time of 5s—5.4% 26 

smaller than using the position-based method. Compared to conventional one-step-ahead 27 

predictions, the proposed sequence-to-sequence method predicts trajectories over multiple 28 

steps to avoid error accumulation and effectively reduces the FDE by 70%. In addition, 29 

qualitative analysis is conducted to provide insights to select appropriate prediction methods 30 

given different construction scenarios. It was found that the context-aware model leads to better 31 

performance comparing to the position-based method when workers are conducting 32 

collaborative activities. 33 

 34 

1. Introduction 35 

The construction industry is one of the most dangerous industries: it employs only 5% of 36 

the US workforce [1] but accounts for 21.1% (1008 deaths) of the total worker fatalities in 37 

2018 [2]. The struck-by accident is a major cause, leading to 804 worker fatalities (18%) in 38 

construction from 2011 to 2015 [3]. It is also a single leading cause for non-fatal injuries, 39 

accounting for 34% of cases of injuries from 2011 to 2015 [4]. To prevent struck-by accidents, 40 

previous studies [5–7] focused on determining the proximity between workers and equipment 41 

using sensing technologies and comparing the proximity to predefined thresholds to detect 42 



struck-by hazards. Low detection accuracy and reliability are the main challenges attributed to 43 

the difficulty in predicting the future movements of jobsite entities while considering the 44 

uncertainties of their movements on the unstructured and dynamic construction sites. For 45 

instance, warning systems can raise 59% false alarms due to the uncertainty in proximity 46 

analysis [8]. As a result, workers may lose confidence in and ignore the alarms, which hinders 47 

the efficacy of struck-by prevention systems. According to Luo et al. [9], the estimated response 48 

rate of proximity warning systems for generic hazards is about 0.528. Under such a situation, 49 

the accurate prediction of worker trajectory provides additional information and is critical to 50 

achieving a proactive and informative struck-by prevention system. 51 

Existing studies have created a few methods to predict trajectories of construction 52 

resources. Zhu et al. [10] proposed a novel Kalman filter to predict the movements of workers 53 

and mobile equipment using positions obtained from multiple video cameras. Dong et al. [11] 54 

and Rashid et al. [12] modeled the worker movements as a Markov process to predict their 55 

trajectories based on historical records. However, one main challenge in the trajectory 56 

prediction of construction entities is the low accuracy over large time horizons because of two 57 

interrelated reasons. First, it is insufficient to only consider the previous movements of 58 

individual entities when predicting their future trajectories. Since multiple entities co-exist on 59 

the construction site, forming various working groups to accomplish different activities [13], 60 

their behavior will be influenced by each other and the specific activities they are involved in. 61 

To accurately predict worker trajectory, such contextual information must be incorporated. 62 

Second, due to the complex and dynamic jobsite context, it is not adequate to capture the 63 



worker movement using a pre-defined model with hand-crafted features that may only fit 64 

particular scenarios. 65 

A few recent studies [14,15] attempted to predict the construction entity trajectory through 66 

a data-driven approach given the advances in deep learning techniques. Despite the promise of 67 

deep learning, the rich contextual information regarding working groups and involved activities 68 

on construction jobsites have not been fully exploited to better predict worker’s trajectory under 69 

various construction scenarios. Towards that end, this study proposes a long short-term memory 70 

(LSTM)-based, context-augmented deep learning model that integrates both individual 71 

movement information and contextual information, including movements of neighboring 72 

entities, working group information, and potential destination information. In addition, the 73 

proposed method adopts a sequence-to-sequence (seq2seq) neural network architecture that 74 

allows the elimination of error accumulation in prediction trajectories over multiple time steps. 75 

The remainder of the paper is outlined as follows. Section 2 describes related studies and 76 

limitations. Section 3 introduces the proposed method for context-aware trajectory prediction. 77 

Section 4 describes the experiments used to evaluate the technical approaches and analyzes the 78 

results. Section 5 summarizes the study, highlights the contribution, and discusses the future 79 

direction. 80 

2. Review of Related Studies 81 

In this section, related studies on proximity-based struck-by prevention and trajectory 82 

prediction are reviewed and their limitations are outlined. 83 



2.1. Related Studies on Proximity-based Struck-by Prevention 84 

Struck-by accident is one of the leading causes of construction fatalities and has attracted 85 

increasing research interest. Many studies developed prevention mechanisms to provide alerts 86 

when workers and equipment are too close to each other, as shown in Table 1. Most of them 87 

compare the proximity information detected via various real-time locating systems (RTLS) 88 

with a pre-defined threshold or statistical hazard zones and provide early warnings when the 89 

distance is less than the threshold [5–7,16]. But these approaches only focus on proximity at a 90 

snapshot while overlooking the dynamic nature of workers and equipment. Another group of 91 

studies [17–21] integrates proximity with more risk factors (e.g., equipment workspace, blind 92 

spot information, velocity) to determine the hazard zone. These approaches consider the 93 

dynamic and complexity of construction work. However, current approaches detect struck-by 94 

hazards and take actions “just” before potential accidents might happen with limited prediction 95 

ability, which has a large chance of interrupting normal operation and making incorrect 96 

warnings. Therefore, there is a critical need for accurate prediction of worker trajectory, which 97 

paves the way for a proactive and informative struck-by prevention mechanism. 98 

 99 

Table 1 Related studies on proximity-based struck-by prevention 100 

Factors used to detect struck-by-hazards Hazard zone modeling Reference 

Proximity Pre-defined threshold [5–7] 

Proximity considering sensor accuracy Statistical hazard zones [16] 

Proximity and equipment workspace  
Line segment intersection 

algorithm 
[17] 

Proximity, blind spot information, and 

velocity  
Network-based model  [18] 

Proximity and crowdedness  Fuzzy inference method [19] 

Proximity, direction, and velocity Rule-based model [20,21] 



2.2. Related Studies on Trajectory Prediction 101 

Trajectory prediction is an essential yet challenging task in the computer vision community 102 

and has been increasingly studied in applications such as pedestrian behavior analysis due to 103 

the emergence of autonomous vehicles. There are typically three types of approaches in 104 

trajectory prediction, i.e., Bayesian filtering, probabilistic planning, and data-driven 105 

approaches. Table 2 summarizes related studies on trajectory prediction, including the features 106 

and models used for prediction as well as the application scenarios. 107 

 108 

Table 2 Related studies on trajectory prediction 109 

Category Input Features Model Application Scenario(s) Reference 

Bayesian 

filtering 

Position, velocity, acceleration Kalman Filter 

Movement of construction 

workers and equipment/ 

Moving objects 

[10,22–24] 

Position, velocity, acceleration 

considering different motion 

states (walking and stop) 

Switching Linear 

Dynamical System 

Pedestrian behavior 

[25] 

Latent segments of trajectories 
Hidden Markov 

Model 

Construction worker 

movement 
[12] 

Position and change of moving 

direction with two states 

(walking and working) 

Markov Model 

Construction worker 

movement [11] 

Probabilistic 

planning 

Positions considering the 

environment (e.g. obstacles) 

Markov Decision 

Process 

Pedestrian behavior [26,27] 

Position, speed, orientation 

considering the semantic map 

and goals 

Jump Markov 

Process 

Pedestrian behavior [28] 

Position, speed, orientation 

considering goals and social 

force 

Joint Sampling 

Markov Decision 

Process 

Human motion [29] 

Data-Driven 

approaches 

Position 
Three stacked 

layers of LSTM 

Pedestrian behavior 
[30] 

Position and occupancy map Social-LSTM 
Human motion in 

crowded space 
[31] 

Position, occupancy map, and Social-Scene- Pedestrian/human motion [32,33] 



scene features LSTM in crowded space 

Position considering the social 

interaction via social pooling 

layer 

Social Generative 

Adversarial 

Network (GAN) 

Movement of construction 

workers and equipment [15] 

Position, occupancy map and 

entity type 

Encoder-decoder 

LSTM 

Movement of construction 

workers and equipment 
[14] 

 110 

Bayesian filtering methods [10–12,22–25] explicitly model the movement dynamics as 111 

mathematical models, such as Kalman/Particle Filters and Hidden Markov Models, and are 112 

traditionally applied to predict trajectories. However, these approaches often result in 113 

physically impossible locations (e.g., behind walls, within obstacles). Additionally, Bayesian 114 

filtering methods rely on simplified models and hand-crafted states with parameters estimated 115 

from historical records/observations, which may only fit particular scenarios and simple 116 

movements. Probabilistic planning methods [26–29] treat entities as intelligent agents who 117 

actively plan their motion/path to achieve a goal. The problem is formulated as a path planning 118 

or optimal control task, such as the Markov decision process (MDP). The optimal policy is 119 

determined by maximizing some inherent reward functions. These approaches can incorporate 120 

context information, such as a semantic map and social force, but they still use hand-crafted 121 

features to model states and reward functions that are suitable to particular settings. 122 

Recently, with the advances in deep learning techniques, the data-driven approach 123 

[14,15,30–33] has been increasingly used given that it does not require explicitly modeling 124 

movement dynamics and that it can be generalized to various scenarios. The problem is usually 125 

formulated as a time-series regression problem. Traditionally, only past movements of 126 

individual entities are used as inputs to predict future trajectory [30], which is insufficient to 127 



capture human behavior under different scenarios, especially when human behavior is 128 

influenced by the environment. Recent studies in the computer vision community have 129 

recognized the significance of context information and considered various contextual features 130 

to predict pedestrian trajectory. For instance, Alahi et al. [31] created a social-LSTM model 131 

and proved that the pedestrian trajectory can be better predicted by incorporating the interaction 132 

among multiple pedestrians. Xue et al. [32] and Syed and Morris [33] incorporated the 133 

occupancy map and scene features in the trajectory prediction.  134 

Very few studies have incorporated the contextual information in trajectory prediction in 135 

the construction domain. Kim et al. [15] applied a hyper-parameter tuned Social GAN to predict 136 

trajectories of construction entities in 5s. Tang et al. [14] developed an LSTM network that 137 

integrates entity type (i.e., worker and equipment) and occupancy maps of the construction site 138 

to predict entity trajectory in up to 2s. Despite these pilot studies, the trajectory was predicted 139 

only in one specific job setting with entities conducting a specific activity. There remains a 140 

critical need to exploit the contextual cues that are effective to predict the entity trajectory 141 

under general construction jobsite scenarios. To close this gap, this study proposes an LSTM-142 

based, context-augmented model that integrates both individual movement information and 143 

contextual information, including movements of neighboring entities, relationship with 144 

neighboring entities (i.e., within one group or not in one group), and potential destination, to 145 

accurately predict the trajectory of construction workers. 146 

3. Methodology 147 

In this study, a context-aware LSTM-based method has been designed to predict worker 148 



trajectories using visual data that contain rich contextual information. Entity movement and 149 

contextual information are incorporated in the LSTM-based seq2seq neural network for 150 

trajectory prediction. Figure 1 illustrates the overall framework. This method consists of two 151 

major steps: Step 1—contextual information formulation and Step 2—LSTM-based seq2seq 152 

trajectory prediction.  153 

In the first step, contextual information regarding the interaction between the entity and 154 

its nearest neighbor, and the potential destination is considered. Specifically, the contextual 155 

information is represented by three features, the neighbor position, the relationship with the 156 

neighbor (i.e., group/not a group), and the distance from potential destination. In our previous 157 

studies [13,34], it was found that the interactions among construction entities can be modeled 158 

using positional and attentional cues and further used to reason about the construction working 159 

group and corresponding group activity. This forms the technical foundations to formulate the 160 

contextual features in this study. In the second step, the above features are concatenated and 161 

fed into an LSTM encoder that encodes the information regarding both entity movements and 162 

jobsite contexts during the observation time. The encoded information is then fed into an LSTM 163 

decoder that generates a sequence of estimated positions during the prediction period. In this 164 

way, the proposed method takes into account the construction job contextual information and 165 

avoids the error accumulation when predicting trajectory over multiple time steps. 166 

 167 



 168 

Figure 1 Overall Framework 169 

 170 

3.1. Problem Formulation 171 

Construction sites are complex and dynamic, where multiple entities coexist and form 172 

different working groups to collaborate on various activities. Figure 2 illustrates a real 173 

construction scenario with potential struck-by hazard, where three workers (in blue dotted 174 

bounding boxes) are guiding the bulldozer (in yellow dashed bounding box) to roll over a path 175 

while two workers (in red solid bounding boxes) are walking across the workplace. Their 176 

moving directions, indicated by the arrows, present a potential conflict with the bulldozer. As 177 

construction workers may be distracted by their allocated tasks and surrounding noises, they 178 

may fail to recognize the approach of other entities. Therefore, given the current positions of 179 

construction entities and the jobsite context, it is important to predict entity future movements 180 

so that the potential collision between entities can be proactively detected and avoided. 181 



 182 

Figure 2 Construction scenario with potential struck-by hazard 183 

 184 

Construction videos are used as the data source for trajectory prediction given its 185 

increasing availability on jobsites and its capability of providing rich contextual information. 186 

Entity position is captured by the mid-bottom point of its bounding box on the 2D image plane. 187 

As a result, at any time step t, the ith entity on the jobsite is represented by its pixel coordinates 188 

on the image plane, i.e., ( ),i i

t tx y . The inputs are the observation of site dynamics from time 189 

step 1 to time step obsT , including trajectories of all entities, i.e., ( )1: 1:

1: 1:,
obs obs

N N

T Tx y , and the jobsite 190 

contexts, i.e., 
1: obs

context

Tf , where N is the total number of entities in the scene, and the subscript 191 

represents the trajectory or context during the specific time period. The objective is to predict 192 

the future trajectory of target entity i from time step 1obsT +   to obs predT +  , denoted as 193 

( )
1 1: :,

obs obs pred obs obs pred

i i

T T T Tx y
+ + + +

. Inspired by [15], the prediction time is set as 5s assuming it would be 194 

enough for entities to take action. The observation time is set as 3s. The ratio of prediction and 195 

observation time will also vary in the experiments to further analyze the influence of prediction 196 

time. 197 

Different from previous studies [14,31] which only observe entity positions and implicitly 198 



incorporate the interactions among entities using hidden states learned from deep neural 199 

networks, this study explicitly models the contextual information 
1: obs

context

Tf   (including entity 200 

interaction and potential destination) on the jobsite, as detailed in Section 3.2. Note that it is 201 

assumed the visual data are first preprocessed to obtain entity positions and contextual features, 202 

consistent with most of the related studies [14,15,31,32]. 203 

3.2. Contextual Information Formulation 204 

Construction entities (including both workers and equipment) interact with each other, 205 

constituting working groups to accomplish assigned tasks. It is expected that the worker’s 206 

behavior will be influenced by other entities as well as the involved construction activity. The 207 

rationale is that construction workers tend to avoid obstacles to prevent potential collisions, 208 

while staying close to their co-workers or group members to conduct the activity 209 

collaboratively. Meanwhile, the worker’s movement is typically within the workspace 210 

specified by their involved activity, which indicates their potential destination. The specific 211 

contextual features considered in this study include neighbor position, group relationship with 212 

the neighbor, and distance to potential destination. 213 

3.2.1. Neighbor position 214 

It is not uncommon that the positions of other entities in the scene are incorporated to 215 

reflect their interactions with the target entity when predicting its trajectory. A conventional 216 

approach is to construct an occupancy map of the scene or within a certain area of the target 217 

entity to represent the existence of other entities [14,31]. The main drawback is that if the grid 218 

size is large, resulting in coarse occupancy map, the dynamic changes of entity positions cannot 219 



be effectively reflected, especially when entity movement is not substantial across consecutive 220 

time steps, such as on construction sites; if the grid size is small, resulting in fine occupancy 221 

map, only a few grids will be occupied by entities, which leads to very sparse occupancy map, 222 

i.e., most values are zero.  223 

In contrast, this study directly uses neighbor position information as one contextual feature. 224 

Note that, only the position of the entity’s nearest neighbor is considered in order to ensure the 225 

same dimensional features in different scenarios. It is reasonable as entities are more likely to 226 

be affected by others who are spatially closer to them. Figure 3 illustrates an example of entity 227 

locations in the image coordinate system, where the positions of construction entities are 228 

represented by the pixel coordinates of the mid-bottom points of their bounding boxes. At any 229 

time step t, positions of all entities (from 1 to N) are observed, denoted as ( ), , 1...k k

t tx y k N . 230 

Then, the distance between any two of the entities is calculated as the Euclidian distance 231 

between their pixel coordinates. As a result, the position of the nearest neighbor of Entity i can 232 

be easily denoted as ( ) ( ), , argmin , , 1... ,j j i k i k

t t t t t tx y j x x y y k N k i= − −   . The locations of 233 

construction entities can be automatically obtained using vision-based object tracking methods 234 

created in some existing studies [35,36]. However, in this study, in order to exclude the impact 235 

of the possible errors in object tracking, the construction images are manually annotated to 236 

draw the bounding boxes and extract the pixel coordinates. 237 



 238 

Figure 3 Pixel coordinates of construction entities (Entity i is the target, j is its nearest 239 

neighbor) 240 

 241 

3.2.2. Group relationship with neighbor 242 

In addition to the neighbor position, the relationship between an entity and its neighbor in 243 

terms of whether they belonging to the same working group also influences entity movement. 244 

For instance, workers tend to avoid entities that are not in the same group to prevent potential 245 

conflict, while they tend to have similar movement patterns with their co-workers. However, 246 

such scenarios are not differentiated, and the group information has been overlooked in current 247 

studies. The group relationship between an entity and its nearest neighbor is considered as a 248 

second contextual feature. Two entities are considered belonging to one working group if they 249 

are interacting with each other during the construction, and the group relationship feature is set 250 

as “1”. Otherwise, they are considered not belonging to the same group with feature value being 251 

“0”. 252 

The working group is identified by integrating positional and attentional cues via an 253 

LSTM-based method created in our previous study [13]. The workflow is as follows. 254 



1. Spatial and attentional states of construction entities from construction videos are 255 

represented as numerical values, as shown in Figure 4 (a). The spatial state refers to an 256 

entity’s real-time position on the image plane, represented by the pixel coordinates of the 257 

central point of the bounding box. The attentional state refers to the direction of an entity’s 258 

visual attention, captured by head pose, body orientation, and body pose. Specifically, the 259 

worker’s head yaw and body orientation are categorized into eight discrete classes: north 260 

(N) – 1, south (S) – 2, east (E) – 3, west (W) – 4, northeast (NE) – 5, northwest (NW) – 6, 261 

southeast (SE) – 7, and southwest (SW) – 8, as shown in Figure 4(b) and (c). The head 262 

pitch is categorized into three discrete classes: looking up (U) – 2, looking horizontally (H) 263 

– 1, and looking down (D) – 0, as shown in Figure 4(d). Note that the equipment is 264 

simplified as rigid objects, and the main cab is treated as its “head”. Thus, for equipment, 265 

the body orientation is identical to the head yaw and the head pitch always remains 266 

horizontal. 267 

 268 

 269 

Figure 4 Construction entity state representation: (a) Example of spatial and attentional 270 

state, (b) head yaw, (c) body orientation, (d) head pitch 271 

 272 

2. Positional and attentional cues are computed from the spatial and attentional states of two 273 

entities to model their interaction, which are critical features for working group 274 



identification. Five positional cues are modeled: 1) distance relationship—modeled as the 275 

topological relationship between the bounding boxes of two entities using the 9-276 

Intersection model [37] (see Figure 5(a)), where numerical value for each relationship is 277 

assigned based on topological distance [38].; 2) directional relationship—modeled as eight 278 

regions to measure the relative direction between two entities based on the project-based 279 

model [39] (see Figure 5(b)); 3) difference in speed—computed as 280 

, ( ) / ( , )i j i j i j

t t t t tv abs v v max v v = − , where 
i

tv is the speed of entity i at time t, computed as 281 

( ) ( )
2 2

1 1

i i i i i

t t t t tv x x y y+ += − + −  ; 4) difference in moving direction—computed as 282 

, min{ ( ),8 ( )}i j i j i jabs abs     = − − − , where 
i  is the moving direction of entity i, 283 

represented as the numerical values in Figure 5(b), and 5) difference between moving 284 

direction and relative direction—computed similarly to the previous cue but measures the 285 

degree of entity i moving towards entity j. 286 

 287 

Figure 5 Numerical representation of topological and directional relationships between 288 

two entities: (a) topological relation, (b) directional relation 289 

 290 

In addition, six attentional cues are modeled: 1) difference between head yaw and relative 291 



direction—to measure the gaze exchange between two entities, where head yaw is 292 

represented based on Figure 4(b) and relative direction is represented using Figure 5(b). 2) 293 

difference in head yaw—to measure the joint attention of two entities, 3) difference 294 

between head yaw and moving direction, 4) difference between head yaw and body 295 

orientation—both 3) and 4) are used to model the change of visual attention of an individual 296 

entity, 5) head pitch, and 6) body pose—both 5) and 6) are special cues on construction 297 

jobsites to reflect worker’s visual attention, where the head pitch is modeled as Figure 4(d), 298 

and body pose is considered as either standing – “1” or bending – “2” for workers. 299 

3. The above positional and attentional cues are concatenated into time-series features and fed 300 

into an LSTM network followed by a two-node fully connected layer for working group 301 

identification. The readers are referred to [13] for the detailed method. 302 

3.2.3. Distance to potential destination 303 

On construction sites, worker behavior is goal-based and purposeful, motivated by their 304 

involved activities. It is expected that the worker will inherently move towards the potential 305 

destination. Thus, the distance between worker’s current position and the potential destination 306 

is treated as a third contextual feature, illustrated in the construction image in Figure 1, where 307 

the red bounding box represents the target entity, and the “star” sign represents the destination. 308 

It is assumed the destination is time-invariant during a short period of time. Given time step t, 309 

the distance from the target to the destination is used as a contextual feature to incorporate the 310 

temporal dynamics, denoted as ( ) ( ), ,i i i dest i dest

t t t tx y x x y y  = − −  , where ( ),i i

t tx y   is the 311 

entity location, ( ),dest destx y  is the pixel coordinates of the destination. This study simplifies the 312 



destination as prior knowledge to examine its influence on worker trajectory prediction. In 313 

practice, the potential destination can be inferred from the involved activity and the 314 

corresponding workspace, where ongoing activity can be automatically learned from visual 315 

data and workspace can be acquired from site layout or building information model. 316 

3.3. LSTM-based Sequence-to-sequence (seq2seq) Trajectory Prediction 317 

LSTM network [40] is a typical recurrent neural network (RNN) and can be used to model 318 

temporal dependency among sequential features. It has been successfully applied to many 319 

sequential problems such as natural language translation and activity recognition. Figure 6 320 

illustrates a typical LSTM network that takes time-series features 1 2{ , ,..., }nx x x  as input. The 321 

LSTM network consists of several cells ordered sequentially, each of which has the same 322 

structure with three gates, i.e., input gate, forget gate, and output gate, to control the information 323 

flow within the cell. At time step t, the cell state is determined by both the input of the current 324 

time step and the output from the previous time step, updated using Equation 1. 325 

 326 

 327 
Figure 6 LSTM network and LSTM cell 328 

 329 
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Where tx  is the input, , ,t t ti f o  are the input gate, forget gate, and output gate at time t 331 

respectively. th is the hidden state with N hidden units (N=25 in this study) and is also the 332 

output of this cell, and tc  is the cell state. tg  is the input modulation that adds information 333 

to the cell state.   is the sigmoid function and   represents element-wise multiplication. 334 

Wxi, Wxf, Wxo, Wxc, Vhi, Vhf, Vho, Whc, bi, bf, bo, bc, are the learnable parameters for each LSTM 335 

cell that control the level of information transferred from previous time steps as well as the 336 

level of information taken from the current time step. 337 

Recently, LSTM network has been widely used in data-driven trajectory prediction. As 338 

shown in Figure 7, a conventional approach [30,31] is that 1) in the training process, the model 339 

is fed with time-series inputs and trained to output one-step prediction; and 2) in the inference 340 

process, the observations from time step 1 to Tobs are fed into the trained model and the position 341 

in the next time step Tobs+1 is estimated. Then, the estimated position at time Tobs+1 is used as 342 

input along with observations from time 2 to Tobs, to predict for time Tobs+2, which happens 343 

recursively till Tobs+pred. Under such a case, the model only predicts one step each time and the 344 

predicted result is used as inputs recursively in order to generate a sequence of positions over 345 

multiple time steps. This practice leads to large error accumulation. 346 



 347 

Figure 7 Conventional LSTM-based recursive approach for multi-step prediction 348 

 349 

To solve this problem, this study adopts the LSTM encoder-decoder architecture, which 350 

allows the generation of a sequence with arbitrary length from a given sequence and was first 351 

introduced in machine translation tasks [41]. Figure 8 illustrates the proposed model. In this 352 

method, the entity position during observation time and the corresponding contextual features 353 

(discussed in Section 3.2) are concatenated into a 7-dimensional feature vector, denoted by 354 

 _ , _ , _ , _ , _ , _ ,t obj x obj y dis x dis y neighbor x neighbor y group=X  , where first two dimensions 355 

represent object (target) positions in x and y directions; third and fourth dimensions represent 356 

the distance from the destination in x and y directions; fifth and sixth dimensions represent 357 

neighbor positions; and the last dimension indicates the group information. This feature vector 358 

describes the object position and the jobsite context at any given time. The time-series feature 359 

is constructed by chaining a series of time-variant feature vectors over a time period, denoted 360 

by 
2{ , , ,..., }t t t t t t T+ +  +X X X X , where t is the starting time, t  is the temporal resolution and 361 

T is the time duration of observation. In this study, features that represent position and distance 362 



information are in pixels with the range depending on image size, while the group information 363 

is binary (either 0 or 1). The time-series features are normalized to the range [0, 1] in data 364 

processing to ensure the same scale of the features, and serve as the inputs of LSTM encoder. 365 

The encoder outputs an encoded vector (i.e., the hidden state of the final encoder LSTM 366 

cell) that encapsulates the information from the observed movements and jobsite context. The 367 

encoded vector is used to initialize the states in LSTM decoder which allows the integration of 368 

previous information for better prediction of future trajectory. The hidden state of each LSTM 369 

cell in the decoder is considered as the output of the corresponding time step, which is further 370 

fed into a dense layer with two nodes. The dense layer essentially performs a linear regression, 371 

resulting in estimated positions from time Tobs+1 to Tobs+pred.  372 

 373 

Figure 8 Context-aware LSTM-based seq2seq model 374 

 375 

Similar to Saleh et al. [30], the network is trained by minimizing one of the most commonly 376 

used loss functions, i.e., mean squared error (MSE) loss function [42], using Adam optimizer 377 



[43]. The MSE is computed as ( )
2

1

1 ˆ
N

i i

i

MSE Y Y
N =

= − , where N is the size of training data, ˆ
iY  378 

and iY  are the predicted and actual ith trajectory. 379 

4. Implementation and Results 380 

4.1. Implementation 381 

The dataset used to test the proposed method is introduced and the implementation details 382 

are described. Two evaluation metrics are also explained to assess the prediction performance. 383 

4.1.1. Data Description 384 

To demonstrate the proposed method, ten construction videos were collected from three 385 

projects: a hospital construction project from the publicly-available website – YouTube [44], 386 

and two building projects videotaped by the authors, respectively. The videos consist of a total 387 

of 84 workers in different construction scenarios, conducting various activities in different 388 

working groups. All videos were down-sampled to 2fps, similar to other studies [31,32] on 389 

pedestrian trajectory prediction using surveillance video. Figure 9 illustrates some images from 390 

the dataset.  391 

 392 

 393 
Figure 9 Sample images: (a)-(b) from hospital project, (c) from building project 1, (d) 394 

from building project 2 395 

 396 



4.1.2. Data Preparation 397 

Visual data were pre-processed to extract entity positions and contextual features, which 398 

are then used as inputs to train and test the proposed method. First, all entities (workers and 399 

equipment) are manually annotated using bounding boxes with pixel coordinates of the mid-400 

bottom points representing their positions on the images. Second, the nearest neighbor of each 401 

worker is identified by computing the distances between any two entities. It is noted that 402 

although neighboring entities may include both workers and equipment, only workers are 403 

considered as target entities for trajectory prediction because of the data constraint—most of 404 

our dataset involves only workers. However, the proposed method can be easily extended to 405 

equipment by training a different model using equipment movement data. As the movement 406 

patterns for workers and equipment are expected to be different, it is better to treat them 407 

separately [14]. In future study, we will implement the proposed method for equipment 408 

trajectory prediction by extending the dataset with more equipment movements. 409 

Third, the group information is manually labeled based on a period of observations. Two 410 

entities are considered belonging to one working group if they are interacting during the 411 

construction, and are labeled as “1”. Otherwise, they are considered working independently, 412 

labeled as “0”. As explained in Section 3.2.2, this information can be automatically obtained 413 

from positional and attentional cues using the method created in our previous study [13]. Note 414 

that it is also possible to use construction planning and schedules to extract group information. 415 

However, in reality, workers may not always follow what is planned due to the complexity and 416 

uncertainty of construction work and identifying the working group in an automatic approach 417 



provides real-time information. In this study, we use manually annotated group information to 418 

exclude the possible errors in an automatic approach and focus on evaluating the influence of 419 

contextual information. A promising method is to integrate the planned and the actual 420 

information to determine the workspace and group work. 421 

Finally, the potential destination of workers, simplified as prior knowledge in this study, 422 

is determined as their final position in the scene, based on which the dynamic distance from 423 

worker to the potential destination is computed in both x and y directions. Because the focus of 424 

this study is trajectory prediction by integrating position and contextual information, 425 

preprocessed higher-level information (i.e., extracted location and contextual features) is used 426 

to exclude the impact from possible errors caused by automatic worker localization and group 427 

identification. This practice also aligns with relevant studies on trajectory prediction in both 428 

construction and other domains [14,15,31]. 429 

As a result, a total of 241 trajectories with various lengths were obtained for 84 workers. 430 

The length of observation was set as 3s (i.e., 6 frames) and prediction length as 5s (i.e., 10 431 

frames), which is consistent with relevant studies ([31,32]) on pedestrian trajectory prediction. 432 

Correspondingly, the 241 trajectories were trimmed into tracks using a sliding window with a 433 

fixed length of 8s (i.e., 16 frames). To augment the dataset, the sliding window starts from 434 

every other frame of the original trajectory, resulting in 3640 tracks (tracks that are less than 435 

16 frames were excluded).  436 

4.1.3. Implementation Details 437 

The proposed method is implemented using Keras library on top of Tensorflow platform, 438 



on a desktop with 3.6GHz Intel i9-9900K CPU, 32GB, and NVIDIA GeForce GTX 2080 Ti 439 

GPU. The dataset is randomly split into training set (80%), validation set (10%), and testing 440 

set (10%). The network is trained with Adam optimizer [43], with a learning rate of 0.001, 441 

batch size of 20, and dropout of 0.5. In the experiments, different combinations of the above 442 

hyperparameters, as well as the number of hidden units, were used and the optimal ones that 443 

result in the highest accuracy in validation set were selected. To prevent overfitting, early 444 

stopping criterion is used, i.e., if the total loss on validation set does not decrease for 100 epochs, 445 

then the model will be terminated and the checkpoint that leads to the smallest loss on the 446 

validation set will be saved; otherwise, the model will stop after 1000 epochs. Moreover, the 447 

model is trained on the training set, evaluated on the validation set for early stopping and 448 

optimal hyperparameter selection, and tested on the testing set to assess the performance of the 449 

proposed method. 450 

4.1.4. Evaluation Metrics 451 

Two evaluation metrics – final displacement error (FDE) and average displacement error 452 

(ADE) – are selected because they are the most widely used evaluation metrics in trajectory 453 

prediction studies in the construction domain [14,15] as well as other applications such as 454 

pedestrian analysis [31–33]. FDE is the MSE between the final predicted location and the final 455 

actual location of all testing data, computed as 1
ˆ

N i i

T Ti
y y

FDE
N

=
−

=


, where N is data size, 456 

ˆ i
Ty  is the final predicted location for ith data, and 

i

Ty  is the final actual location for ith data. It 457 

measures the accuracy in predicting an entity’s final location, which is critical in predicting the 458 

proximity between two entities and detecting potential collisions. ADE is the MSE over all 459 



locations of predicted trajectories and the actual trajectories, computed as 460 
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, where predT  is the prediction duration. It measures how close the 461 

predicted and actual trajectories are and is critical to ensure the accuracy of the overall 462 

predicted trajectory. 463 

In this study, the entity position is captured by the mid-bottom point of its bounding box 464 

on the 2D image plane. Therefore, the predicted positions and ground truth positions are 465 

represented in pixel coordinates, resulting in FDE and ADE in pixels values. The 2D pixel 466 

coordinates on the image plane can be projected onto the world plane (i.e., ground plane) via a 467 

projective transformation (i.e., homography). To compute the transformation matrix between 468 

two planes, at least four pairs of corresponding points are needed in both planes using the Direct 469 

Linear Transformation (DLT) algorithm [45]. In this work, because the construction videos are 470 

collected from different sources including public website, the actual point locations on the 471 

jobsites are not available, and thus the FDE and ADE in pixels are used for evaluation. In our 472 

future study, the dataset will be expanded to include videos with known ground control points 473 

to predict the trajectory in the world coordinate system. 474 

4.2. Results 475 

The result of the proposed method is compared with that obtained using two other LSTM-476 

based models: (1) a baseline model that recursively predicts trajectory based on object positions; 477 

and (2) a seq2seq model that predicts trajectory over multiple time steps simultaneously based 478 

on object positions. Table 3 lists the differences in three models. 479 

 480 



Table 3 Three LSTM-based models for comparison 481 

Model Input features Rationale for multi-step 

forecasting 

Position (recursive) Time-series positions The model can only predict one-step 

ahead, and achieve multi-step 

prediction by conducting inference 

process recursively (see Figure 7)  

Position (seq2seq) Time-series positions Encoder-decoder architecture to 

enable multi-step forecasting (see 

Figure 8) 

Position+Context (seq2seq) 

(proposed in this study) 

Time-series positions 

and contextual features 

 482 

Figure 10 illustrates two example results of trajectory prediction. The proposed method 483 

results in the predicted trajectory being the closest to the ground truth. The position-based 484 

seq2seq model leads to a trajectory with a slightly larger discrepancy compared to the proposed 485 

method. In contrast, the position-based recursive model has the largest discrepancy from the 486 

ground truth trajectory due to the error accumulation. 487 

 488 

Figure 10 Example results of trajectory prediction 489 

 490 

4.2.1. Quantitative Prediction Results 491 

Table 4 lists the quantitative results from the three models. The recursive approach leads 492 

to much larger errors in both FDE and ADE compared to the seq2seq approaches, which proves 493 

that the seq2seq model is an effective way to avoid error accumulation when predicting 494 



trajectory over multiple time steps. More specifically, the position-based seq2seq model results 495 

in a 68.2% and 41.9% reduction in FDE and ADE, respectively, and the proposed context-496 

augmented seq2seq model leads to reduction of 70.0% and 41.6%, compared to the recursive 497 

model. The context-augmented model results in smaller FDE but a slightly larger ADE 498 

compared to the position-based model. This is because by incorporating contextual information, 499 

especially the potential destination information, the model is inherently trained to adapt more 500 

to the long-term goal, rather than accurate prediction of each step. It is reasonable because the 501 

final displacement is more critical in predicting the struck-by hazard in safety management. 502 

 503 

Table 4 Quantitative results from three models  504 

Model FDE (pixel) ADE (pixel) 

Position (recursive) 28.32 15.41 

Position (seq2seq) 9.00 8.95 

Position +Context (seq2seq) 8.51 9.00 

 505 

4.2.2. Qualitative Analysis 506 

The results from two seq2seq models, i.e., position-based seq2seq model and context-507 

augmented seq2seq model, are analyzed qualitatively to evaluate the impact of contextual 508 

information and identify the scenarios, under which integrating contextual information leads 509 

to better performance. Specifically, for each testing data, predicted trajectories obtained using 510 

context-aware and position-based methods are plotted against the ground truth trajectories that 511 

are manually annotated. Then, the scenarios are categorized based on whether or not context-512 

aware method perform better than position-based method by visually inspecting each plot, 513 

examining the overall trend in the plot, and checking back with the corresponding construction 514 



videos. Some representative plots are shown in this section to illustrate the main findings. 515 

It was found that when workers are walking continuously and not involved in specific 516 

collaborating activities, contextual information does not have a significant influence and both 517 

models result in relatively accurate prediction, as shown in Figure 11. On the other hand, if the 518 

target is collaborating with others or involved in certain activities, incorporating contextual 519 

information leads to better prediction (see Figure 12 Context-augmented model leads to better 520 

prediction). In Figure 12 Context-augmented model leads to better prediction(a), the target 521 

intends to move towards his co-worker, who is working at the left-bottom corner of the image. 522 

With contextual information, especially the position and the relationship with the nearest 523 

neighbor, the context-aware model accurately predicts the behavior of the target moving 524 

towards his neighbor, resulting in a path closer to the actual trajectory. In contrast, the position-525 

based model only considers individual movement patterns and is more likely to end up with a 526 

near-linear trajectory, which is farther from the actual trajectory. In Figure 12(b), the target is 527 

conducting road paving activity with a roller and other co-workers. Although there remains 528 

some discrepancy with the actual trajectory, the context-aware model accurately predicts the 529 

trend of worker movement, whereas the position-based model predicts the movement in the 530 

opposite direction.  531 



 532 

Figure 11 Two seq2seq models lead to similar results under moving scenarios 533 

 534 

Figure 12 Context-augmented model leads to better prediction 535 



In some cases, however, the proposed method may fail. Figure 13(a) illustrates when the 536 

status of target significantly changes during prediction time (e.g., from stationary to moving 537 

and vice versa), the movement cannot be accurately predicted. In addition, it is also very 538 

challenging when workers are conducting activities within a limited workspace without 539 

substantial movement, as shown in Figure 13(b). 540 

 541 

 542 
Figure 13 Examples when context-augmented model fails 543 

 544 

To sum up, when the target is continuously moving but not making interactions with other 545 

entities, the context information is mainly related to target’s positions, and thus the proposed 546 

context-augmented seq2seq model results in similar accuracy with the position-based seq2seq 547 

model. When there are interactions between targets and the surrounding entities, e.g., the target 548 

is collaborating with others or involved in certain activities, there is rich contextual information 549 



about the target’s group relationship with the nearest neighbor, the neighbor’s position, and the 550 

distance to the destination. By incorporating this context information, the model is provided 551 

with additional features and thus achieves better prediction compared to the position-based 552 

model. On the other hand, a sudden change of target (e.g., from stationary to moving) during 553 

the prediction time would lead to the failure of both models. This is because, essentially, the 554 

seq2seq model is using a sequence of movements to predict the next sequence, while a sudden 555 

change will break the pattern learned in the observed sequence. Additionally, when workers are 556 

conducting activities within a limited workspace without substantial movement, it is very 557 

challenging for the models to differentiate a sequence of movements from near-stationary status 558 

and make accurate predictions. 559 

4.2.3. Influence of Prediction Time 560 

To evaluate the influence of prediction time on different methods, this study examines the 561 

prediction performance with respect to various ratios of prediction to observation length within 562 

the 8-s track prepared in the dataset. Specifically, the partition of observation time and 563 

prediction time varies as 7s/1s, 6s/2s, 5s/3s, 4s/4s, 3s/5s (used in the previous experiment), and 564 

2s/6s. The results are illustrated in Figure 14. It is not surprising that both FDE and ADE 565 

increase as the ratio of prediction to observation increases for all three prediction models, which 566 

further proves the challenge in long-term trajectory prediction (i.e., when prediction time is no 567 

less than observation time).  568 

From Figure 14(a), the context-aware model generally results in a smaller FDE compared 569 

to the position-based model, especially when the length of prediction is no less than the length 570 



of observation—the FDE of the context-aware model is 8.4%, 5.4%, and 2.4% smaller than 571 

that of the position-based model when the ratio of prediction to observation time is 1, 1.67, and 572 

3, respectively. The two models lead to compatible ADE based on Figure 14(b). From Figure 573 

14(c), the discrepancy between FDE and ADE for the position-based recursive model becomes 574 

much larger as the increase of the ratio, compared to those in two seq2seq models (Figure 14(a) 575 

and (b)). It proves the advantage of seq2seq architecture in mitigating the error accumulation 576 

for long-term trajectory prediction. In the comparison of position-based and context-aware 577 

seq2seq models, the FDEs for both models are compatible in short-term prediction (i.e., when 578 

the ratio is less than 1). However, the context-aware method leads to lower FDE in long-term 579 

prediction. 580 

 581 

Figure 14 Influence of prediction time on different models 582 

5. Conclusions and Discussion 583 

Predicting workers’ trajectories on unstructured and dynamic construction sites has great 584 

potential to improve workplace safety. It provides rich information and is critical to pro-585 

actively prevent struck-by accidents, which has been a major cause of construction fatalities 586 

and a single leading cause for non-fatal injuries. This study proposed an LSTM model 587 

augmented by jobsite contextual information for construction worker trajectory prediction 588 

considering both individual movement information and jobsite contextual information. The 589 



contextual information is represented as movements of neighboring entities, working group 590 

information, and potential destination information. Experiments were conducted using videos 591 

collected from three different construction projects. The results show that the newly created 592 

method leads to a smaller final displacement error than the model relying solely on target 593 

movements, especially in long-term prediction when the length of prediction is no less than 594 

that of observation. The adopted sequence-to-sequence network architecture also significantly 595 

improves the performance in both final displacement error and average displacement error by 596 

eliminating error accumulation over multiple time steps. 597 

In addition, qualitative analysis was conducted to identify scenarios when incorporating 598 

contextual information is worthwhile. It was found that when workers are conducting 599 

collaborative activities within an area, incorporating contextual information leads to better 600 

results. The context-aware prediction model should be selected when the construction scenario 601 

involves multiple entities collaborating on group activities. Both context-aware and position-602 

based methods lead to relatively accurate predicted trajectories when workers move 603 

continuously and are not involved in collaborating activities. However, in such case, the 604 

position-based method is favorable. Although in this study, the training time for two models is 605 

almost the same (about 3s per epoch), with more data in the future, the position-based method 606 

is expected to be less computational expensive considering the fewer features involved in 607 

training the model. Moreover, extracting contextual information involves much more complex 608 

computing process and may introduce additional errors. Both models may fail when entity 609 

states change significantly. In such case, it is not reliable to directly predict worker’s trajectory 610 



and more information (e.g., activity type, entity posture) may be needed. As an exploratory 611 

study that integrates jobsite context in the prediction of workers’ movements, the results and 612 

findings are obtained based on the limited construction scenarios. More construction videos in 613 

different scenarios need to  be incorporated to further validate the proposed methods. 614 

This study contributes to the body of knowledge by creating a novel context-augmented 615 

deep learning method for construction worker trajectory prediction. The proposed method not 616 

only considers spatial interaction between the target and neighboring entities, but also 617 

innovatively incorporate the semantic relationship between entities (i.e., whether or not within 618 

a working group) and the long-term goal (i.e., the potential destination). The results show that 619 

integrating the above contextual information outperforms the position-based prediction, 620 

especially for long-term prediction when prediction time is no less than observation time. The 621 

proposed context-aware trajectory prediction forms the base for a proactive struck-by 622 

prevention mechanism. In addition to the early warning when two entities are expected to get 623 

too close, the predicted trajectory also provides information to actively plan a safe path to avoid 624 

collisions while ensuring the smooth operation. 625 

As construction videos are used as the data source for trajectory prediction, cameras are 626 

recommended to be installed on height to mitigate the occlusion, while maintaining adequate 627 

resolutions of entities in the image at the same time. In this study, construction videos are in 628 

two resolutions—1920 x 1080, and 1280 x 720, with average worker size around 60 x 120 and 629 

equipment size around 450 x 350. In practice, when monitoring construction operations on the 630 

complex jobsites, several cameras are needed to ensure the desired coverage and the optimal 631 



camera placement are determined by considering both camera coverage and total cost [46,47]. 632 

Moreover, to transfer pixel coordinates into world coordinates (e.g., in meters) on the jobsite, 633 

at least four ground control points (with known world coordinates) are needed to establish 634 

projective transformation between image plane and ground plane using DLT algorithm. 635 

There remain a few limitations that deserve further research efforts. First, due to the 636 

availability of construction data, especially the annotated data, the data size used in the 637 

experiment is relatively small and thus poses a potential limitation to the representativeness of 638 

the proposed method. For possible application and adoption of the proposed approach, 639 

scenarios where workers have distinguishable movements and interactions with surrounding 640 

entities are recommended for better prediction results. To further justify the model performance, 641 

more construction videos will be collected and annotated to expand the existing construction 642 

dataset and statistical tests will be conducted. Besides, transfer learning can be adopted to 643 

leverage the public dataset in other domains (e.g., crowds datasets [48,49]) to overcome the 644 

limitation in the availability of annotated construction datasets. Second, this study used 645 

preprocessed worker position and contextual information to train the neural network. In 646 

practice, due to the complexity and dynamics in the construction operation, such information 647 

may not be acquired with perfect accuracy. In future study, we will work on automating the 648 

entire process and further exploit on how possible errors in feature estimation will influence 649 

the trajectory prediction performance. Third, only nearest neighbor was considered in the 650 

contextual information to reduce the feature dimension when training on small dataset. In 651 

future study, occupancy map will be adopted to capture all neighbors within an area to 652 



incorporate more comprehensive jobsite context. Forth, the potential destination is simplified 653 

as prior knowledge to examine its influence on trajectory prediction. Future study will focus 654 

on developing new methods to infer worker destination based on their involved activities and 655 

the corresponding workspaces. 656 
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