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Abstract

Predicting workers’ trajectories on unstructured and dynamic construction sites is critical
to workplace safety yet remains challenging. Existing prediction methods mainly rely on entity
movement information but have not fully exploited the contextual information. This study
proposes a context-augmented Long Short-Term Memory (LSTM) method, which integrates

both individual movement and workplace contextual information (i.e., movements of
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neighboring entities, working group information, and potential destination information) into an
LSTM network with an encoder-decoder architecture, to predict a sequence of target positions
from a sequence of observations. The proposed context-augmented method is validated using
construction videos and the prediction accuracy achieved is 8.51 pixels in terms of final
displacement error (FDE), with an observation time of 3s and prediction time of 5s—35.4%
smaller than using the position-based method. Compared to conventional one-step-ahead
predictions, the proposed sequence-to-sequence method predicts trajectories over multiple
steps to avoid error accumulation and effectively reduces the FDE by 70%. In addition,
qualitative analysis is conducted to provide insights to select appropriate prediction methods
given different construction scenarios. It was found that the context-aware model leads to better
performance comparing to the position-based method when workers are conducting

collaborative activities.

1. Introduction

The construction industry is one of the most dangerous industries: it employs only 5% of
the US workforce [1] but accounts for 21.1% (1008 deaths) of the total worker fatalities in
2018 [2]. The struck-by accident is a major cause, leading to 804 worker fatalities (18%) in
construction from 2011 to 2015 [3]. It is also a single leading cause for non-fatal injuries,
accounting for 34% of cases of injuries from 2011 to 2015 [4]. To prevent struck-by accidents,
previous studies [5—7] focused on determining the proximity between workers and equipment

using sensing technologies and comparing the proximity to predefined thresholds to detect
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struck-by hazards. Low detection accuracy and reliability are the main challenges attributed to
the difficulty in predicting the future movements of jobsite entities while considering the
uncertainties of their movements on the unstructured and dynamic construction sites. For
instance, warning systems can raise 59% false alarms due to the uncertainty in proximity
analysis [8]. As a result, workers may lose confidence in and ignore the alarms, which hinders
the efficacy of struck-by prevention systems. According to Luo et al. [9], the estimated response
rate of proximity warning systems for generic hazards is about 0.528. Under such a situation,
the accurate prediction of worker trajectory provides additional information and is critical to
achieving a proactive and informative struck-by prevention system.

Existing studies have created a few methods to predict trajectories of construction
resources. Zhu et al. [10] proposed a novel Kalman filter to predict the movements of workers
and mobile equipment using positions obtained from multiple video cameras. Dong et al. [11]
and Rashid et al. [12] modeled the worker movements as a Markov process to predict their
trajectories based on historical records. However, one main challenge in the trajectory
prediction of construction entities is the low accuracy over large time horizons because of two
interrelated reasons. First, it is insufficient to only consider the previous movements of
individual entities when predicting their future trajectories. Since multiple entities co-exist on
the construction site, forming various working groups to accomplish different activities [13],
their behavior will be influenced by each other and the specific activities they are involved in.
To accurately predict worker trajectory, such contextual information must be incorporated.

Second, due to the complex and dynamic jobsite context, it is not adequate to capture the
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worker movement using a pre-defined model with hand-crafted features that may only fit
particular scenarios.

A few recent studies [14,15] attempted to predict the construction entity trajectory through
a data-driven approach given the advances in deep learning techniques. Despite the promise of
deep learning, the rich contextual information regarding working groups and involved activities
on construction jobsites have not been fully exploited to better predict worker’s trajectory under
various construction scenarios. Towards that end, this study proposes a long short-term memory
(LSTM)-based, context-augmented deep learning model that integrates both individual
movement information and contextual information, including movements of neighboring
entities, working group information, and potential destination information. In addition, the
proposed method adopts a sequence-to-sequence (seq2seq) neural network architecture that
allows the elimination of error accumulation in prediction trajectories over multiple time steps.

The remainder of the paper is outlined as follows. Section 2 describes related studies and
limitations. Section 3 introduces the proposed method for context-aware trajectory prediction.
Section 4 describes the experiments used to evaluate the technical approaches and analyzes the
results. Section 5 summarizes the study, highlights the contribution, and discusses the future
direction.
2. Review of Related Studies

In this section, related studies on proximity-based struck-by prevention and trajectory

prediction are reviewed and their limitations are outlined.
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2.1. Related Studies on Proximity-based Struck-by Prevention

Struck-by accident is one of the leading causes of construction fatalities and has attracted
increasing research interest. Many studies developed prevention mechanisms to provide alerts
when workers and equipment are too close to each other, as shown in Table 1. Most of them
compare the proximity information detected via various real-time locating systems (RTLS)
with a pre-defined threshold or statistical hazard zones and provide early warnings when the
distance is less than the threshold [5—7,16]. But these approaches only focus on proximity at a
snapshot while overlooking the dynamic nature of workers and equipment. Another group of
studies [17-21] integrates proximity with more risk factors (e.g., equipment workspace, blind
spot information, velocity) to determine the hazard zone. These approaches consider the
dynamic and complexity of construction work. However, current approaches detect struck-by
hazards and take actions “just” before potential accidents might happen with limited prediction
ability, which has a large chance of interrupting normal operation and making incorrect
warnings. Therefore, there is a critical need for accurate prediction of worker trajectory, which

paves the way for a proactive and informative struck-by prevention mechanism.

Table 1 Related studies on proximity-based struck-by prevention

Factors used to detect struck-by-hazards Hazard zone modeling Reference
Proximity Pre-defined threshold [5-7]
Proximity considering sensor accuracy Statistical hazard zones [16]

Line segment intersection

Proximity and equipment workspace [17]

algorithm
Proximity, blind spot inft ti d
roxgnlty, e spotThiormation, an Network-based model [18]
velocity
Proximity and crowdedness Fuzzy inference method [19]

Proximity, direction, and velocity Rule-based model [20,21]
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2.2. Related Studies on Trajectory Prediction

Trajectory prediction is an essential yet challenging task in the computer vision community

and has been increasingly studied in applications such as pedestrian behavior analysis due to

the emergence of autonomous vehicles. There are typically three types of approaches in

trajectory prediction, i.e., Bayesian filtering, probabilistic planning, and data-driven

approaches. Table 2 summarizes related studies on trajectory prediction, including the features

and models used for prediction as well as the application scenarios.

Table 2 Related studies on trajectory prediction

Data-Driven

approaches

layers of LSTM

Category Input Features Model Application Scenario(s) | Reference
Movement of construction
Position, velocity, acceleration | Kalman Filter workers and equipment/ [10,22-24]
Moving objects
Position, velocity, acceleration o ) Pedestrian behavior
o . . Switching Linear
) considering different motion ] [25]
Bayesian . Dynamical System
) states (walking and stop)
filtering - -
. i Hidden Markov Construction worker
Latent segments of trajectories [12]
Model movement
Position and change of moving Construction worker
direction with two states Markov Model movement [11]
(walking and working)
Positions considering the Markov Decision Pedestrian behavior [26,27]
environment (e.g. obstacles) Process
Position, speed, orientation Jump Markov Pedestrian behavior [28]
Probabilistic | considering the semantic map Process
planning and goals
Position, speed, orientation Joint Sampling Human motion [29]
considering goals and social Markov Decision
force Process
» Three stacked Pedestrian behavior
Position [30]

Position and occupancy map

Social-LSTM

Human motion in

crowded space

[31]

Position, occupancy map, and

Social-Scene-

Pedestrian/human motion

[32,33]
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scene features LSTM in crowded space

Position considering the social | Social Generative Movement of construction

interaction via social pooling Adversarial workers and equipment [15]
layer Network (GAN)

Position, occupancy map and Encoder-decoder Movement of construction [14]
entity type LST™M workers and equipment

Bayesian filtering methods [10-12,22-25] explicitly model the movement dynamics as
mathematical models, such as Kalman/Particle Filters and Hidden Markov Models, and are
traditionally applied to predict trajectories. However, these approaches often result in
physically impossible locations (e.g., behind walls, within obstacles). Additionally, Bayesian
filtering methods rely on simplified models and hand-crafted states with parameters estimated
from historical records/observations, which may only fit particular scenarios and simple
movements. Probabilistic planning methods [26—29] treat entities as intelligent agents who
actively plan their motion/path to achieve a goal. The problem is formulated as a path planning
or optimal control task, such as the Markov decision process (MDP). The optimal policy is
determined by maximizing some inherent reward functions. These approaches can incorporate
context information, such as a semantic map and social force, but they still use hand-crafted
features to model states and reward functions that are suitable to particular settings.

Recently, with the advances in deep learning techniques, the data-driven approach
[14,15,30-33] has been increasingly used given that it does not require explicitly modeling
movement dynamics and that it can be generalized to various scenarios. The problem is usually
formulated as a time-series regression problem. Traditionally, only past movements of

individual entities are used as inputs to predict future trajectory [30], which is insufficient to
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capture human behavior under different scenarios, especially when human behavior is
influenced by the environment. Recent studies in the computer vision community have
recognized the significance of context information and considered various contextual features
to predict pedestrian trajectory. For instance, Alahi et al. [31] created a social-LSTM model
and proved that the pedestrian trajectory can be better predicted by incorporating the interaction
among multiple pedestrians. Xue et al. [32] and Syed and Morris [33] incorporated the
occupancy map and scene features in the trajectory prediction.

Very few studies have incorporated the contextual information in trajectory prediction in
the construction domain. Kim et al. [15] applied a hyper-parameter tuned Social GAN to predict
trajectories of construction entities in 5s. Tang et al. [14] developed an LSTM network that
integrates entity type (i.e., worker and equipment) and occupancy maps of the construction site
to predict entity trajectory in up to 2s. Despite these pilot studies, the trajectory was predicted
only in one specific job setting with entities conducting a specific activity. There remains a
critical need to exploit the contextual cues that are effective to predict the entity trajectory
under general construction jobsite scenarios. To close this gap, this study proposes an LSTM-
based, context-augmented model that integrates both individual movement information and
contextual information, including movements of neighboring entities, relationship with
neighboring entities (i.e., within one group or not in one group), and potential destination, to
accurately predict the trajectory of construction workers.

3. Methodology

In this study, a context-aware LSTM-based method has been designed to predict worker
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trajectories using visual data that contain rich contextual information. Entity movement and
contextual information are incorporated in the LSTM-based seq2seq neural network for
trajectory prediction. Figure 1 illustrates the overall framework. This method consists of two
major steps: Step 1—contextual information formulation and Step 2—LSTM-based seq2seq
trajectory prediction.

In the first step, contextual information regarding the interaction between the entity and
its nearest neighbor, and the potential destination is considered. Specifically, the contextual
information is represented by three features, the neighbor position, the relationship with the
neighbor (i.e., group/not a group), and the distance from potential destination. In our previous
studies [13,34], it was found that the interactions among construction entities can be modeled
using positional and attentional cues and further used to reason about the construction working
group and corresponding group activity. This forms the technical foundations to formulate the
contextual features in this study. In the second step, the above features are concatenated and
fed into an LSTM encoder that encodes the information regarding both entity movements and
jobsite contexts during the observation time. The encoded information is then fed into an LSTM
decoder that generates a sequence of estimated positions during the prediction period. In this
way, the proposed method takes into account the construction job contextual information and

avoids the error accumulation when predicting trajectory over multiple time steps.
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Step 1. Contextual Information Formulation Step 2. LSTM-based Seq2seq Trajectory Prediction

Object
position
------- - Position at Position at
! time T time T pred
Distance from |1 obs obs+pre
destination ! e -—-
1 LSTM |, LSTM  , LSTM |
Neighbor ! (encoder) :_ (decoder) (decoder) :
position T, bemmmmmmmmmmmmmmee
1
| Group/mon- |
1

| group
L

Figure 1 Overall Framework

3.1. Problem Formulation

Construction sites are complex and dynamic, where multiple entities coexist and form
different working groups to collaborate on various activities. Figure 2 illustrates a real
construction scenario with potential struck-by hazard, where three workers (in blue dotted
bounding boxes) are guiding the bulldozer (in yellow dashed bounding box) to roll over a path
while two workers (in red solid bounding boxes) are walking across the workplace. Their
moving directions, indicated by the arrows, present a potential conflict with the bulldozer. As
construction workers may be distracted by their allocated tasks and surrounding noises, they
may fail to recognize the approach of other entities. Therefore, given the current positions of
construction entities and the jobsite context, it is important to predict entity future movements

so that the potential collision between entities can be proactively detected and avoided.
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Figure 2 Construction scenario with potential struck-by hazard

Construction videos are used as the data source for trajectory prediction given its
increasing availability on jobsites and its capability of providing rich contextual information.
Entity position is captured by the mid-bottom point of its bounding box on the 2D image plane.
As aresult, at any time step ¢, the i entity on the jobsite is represented by its pixel coordinates
on the image plane, i.e., (xf, yf ) The inputs are the observation of site dynamics from time

step 1 to time step 7,

obs »

including trajectories of all entities, i.e., (xllj;’b iz, ) , and the jobsite

contexts, i.e., £

, where N is the total number of entities in the scene, and the subscript

represents the trajectory or context during the specific time period. The objective is to predict

the future trajectory of target entity i from time step 7, to T, denoted as

bs+pred >

obs+pred obs+pred

(xlTobm T y;abm T ) . Inspired by [15], the prediction time is set as 5s assuming it would be
enough for entities to take action. The observation time is set as 3s. The ratio of prediction and
observation time will also vary in the experiments to further analyze the influence of prediction

time.

Different from previous studies [14,31] which only observe entity positions and implicitly
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incorporate the interactions among entities using hidden states learned from deep neural

networks, this study explicitly models the contextual information £

(including entity
interaction and potential destination) on the jobsite, as detailed in Section 3.2. Note that it is
assumed the visual data are first preprocessed to obtain entity positions and contextual features,
consistent with most of the related studies [14,15,31,32].
3.2. Contextual Information Formulation

Construction entities (including both workers and equipment) interact with each other,
constituting working groups to accomplish assigned tasks. It is expected that the worker’s
behavior will be influenced by other entities as well as the involved construction activity. The
rationale is that construction workers tend to avoid obstacles to prevent potential collisions,
while staying close to their co-workers or group members to conduct the activity
collaboratively. Meanwhile, the worker’s movement is typically within the workspace
specified by their involved activity, which indicates their potential destination. The specific
contextual features considered in this study include neighbor position, group relationship with
the neighbor, and distance to potential destination.

3.2.1. Neighbor position

It is not uncommon that the positions of other entities in the scene are incorporated to
reflect their interactions with the target entity when predicting its trajectory. A conventional
approach is to construct an occupancy map of the scene or within a certain area of the target
entity to represent the existence of other entities [14,31]. The main drawback is that if the grid

size is large, resulting in coarse occupancy map, the dynamic changes of entity positions cannot
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be effectively reflected, especially when entity movement is not substantial across consecutive
time steps, such as on construction sites; if the grid size is small, resulting in fine occupancy
map, only a few grids will be occupied by entities, which leads to very sparse occupancy map,
1.e., most values are zero.

In contrast, this study directly uses neighbor position information as one contextual feature.
Note that, only the position of the entity’s nearest neighbor is considered in order to ensure the
same dimensional features in different scenarios. It is reasonable as entities are more likely to
be affected by others who are spatially closer to them. Figure 3 illustrates an example of entity
locations in the image coordinate system, where the positions of construction entities are
represented by the pixel coordinates of the mid-bottom points of their bounding boxes. At any
time step ¢, positions of all entities (from 1 to N) are observed, denoted as (xf , yt"),k el..N.
Then, the distance between any two of the entities is calculated as the Euclidian distance

between their pixel coordinates. As a result, the position of the nearest neighbor of Entity i can

be easily denoted as (x{,yf),j = argmin”(xf —x*, ! —y,") ,kel..N,k #i. The locations of

construction entities can be automatically obtained using vision-based object tracking methods
created in some existing studies [35,36]. However, in this study, in order to exclude the impact
of the possible errors in object tracking, the construction images are manually annotated to

draw the bounding boxes and extract the pixel coordinates.
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Figure 3 Pixel coordinates of construction entities (Entity 7 is the target, j is its nearest
neighbor)

3.2.2.  Group relationship with neighbor

In addition to the neighbor position, the relationship between an entity and its neighbor in
terms of whether they belonging to the same working group also influences entity movement.
For instance, workers tend to avoid entities that are not in the same group to prevent potential
conflict, while they tend to have similar movement patterns with their co-workers. However,
such scenarios are not differentiated, and the group information has been overlooked in current
studies. The group relationship between an entity and its nearest neighbor is considered as a
second contextual feature. Two entities are considered belonging to one working group if they
are interacting with each other during the construction, and the group relationship feature is set
as “1”. Otherwise, they are considered not belonging to the same group with feature value being
“0”.

The working group is identified by integrating positional and attentional cues via an

LSTM-based method created in our previous study [13]. The workflow is as follows.
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Spatial and attentional states of construction entities from construction videos are
represented as numerical values, as shown in Figure 4 (a). The spatial state refers to an
entity’s real-time position on the image plane, represented by the pixel coordinates of the
central point of the bounding box. The attentional state refers to the direction of an entity’s
visual attention, captured by head pose, body orientation, and body pose. Specifically, the
worker’s head yaw and body orientation are categorized into eight discrete classes: north
(N) — 1, south (S) — 2, east (E) — 3, west (W) — 4, northeast (NE) — 5, northwest (NW) — 6,
southeast (SE) — 7, and southwest (SW) — 8, as shown in Figure 4(b) and (c). The head
pitch is categorized into three discrete classes: looking up (U) — 2, looking horizontally (H)
— 1, and looking down (D) — 0, as shown in Figure 4(d). Note that the equipment is
simplified as rigid objects, and the main cab is treated as its “head”. Thus, for equipment,
the body orientation is identical to the head yaw and the head pitch always remains

horizontal.

Time 1

_Time ¢ PJNW(‘” NG NE(Z) NW4 (3}NE(2) f‘:
E(1 WS ue) !
o (o ;‘% o) [ H(1) g
SW(6) §  "SE(S) SW(“ S‘ﬁ"E(S) D),
E v
(c)

#pid (.'r.‘.j-'h RI=( \‘ i yaw Y r] iﬂ “
Figure 4 Construction entity state representation: (a) Example of spatial and attentional
state, (b) head yaw, (c) body orientation, (d) head pitch

bp

(b) (O]

. Positional and attentional cues are computed from the spatial and attentional states of two

entities to model their interaction, which are critical features for working group
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identification. Five positional cues are modeled: 1) distance relationship—modeled as the
topological relationship between the bounding boxes of two entities using the 9-
Intersection model [37] (see Figure 5(a)), where numerical value for each relationship is
assigned based on topological distance [38].; 2) directional relationship—modeled as eight
regions to measure the relative direction between two entities based on the project-based
model [39] (see Figure 5(b)); 3) difference in speed—computed as

Av;) =abs(v! —=v/)/ max(v],v!), where v, is the speed of entity i at time ¢, computed as

Vi = \/ (xf+l —x )2 + ( V= )2 ; 4) difference in moving direction—computed as
AG™ =min{abs(0' —6’),8—abs(0' —6’)} , where &' is the moving direction of entity i,
represented as the numerical values in Figure 5(b), and 5) difference between moving
direction and relative direction—computed similarly to the previous cue but measures the

degree of entity i moving towards entity j.

Disjoint (4-8, depends
on the ratio of distance
to the average size)

] Meet® NW@)

m Overlap (2)

C Covered
(1‘;“"' O] [0 o W (5)
D Equal (0)
[0 Contain ) (O] | mside (0)

(a) (b)

SW (6)

Figure 5 Numerical representation of topological and directional relationships between
two entities: (a) topological relation, (b) directional relation

In addition, six attentional cues are modeled: 1) difference between head yaw and relative
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direction—to measure the gaze exchange between two entities, where head yaw is
represented based on Figure 4(b) and relative direction is represented using Figure 5(b). 2)
difference in head yaw—to measure the joint attention of two entities, 3) difference
between head yaw and moving direction, 4) difference between head yaw and body
orientation—both 3) and 4) are used to model the change of visual attention of an individual
entity, 5) head pitch, and 6) body pose—both 5) and 6) are special cues on construction
jobsites to reflect worker’s visual attention, where the head pitch is modeled as Figure 4(d),
and body pose is considered as either standing — “1” or bending — “2” for workers.

3. The above positional and attentional cues are concatenated into time-series features and fed
into an LSTM network followed by a two-node fully connected layer for working group
identification. The readers are referred to [13] for the detailed method.

3.2.3. Distance to potential destination

On construction sites, worker behavior is goal-based and purposeful, motivated by their
involved activities. It is expected that the worker will inherently move towards the potential
destination. Thus, the distance between worker’s current position and the potential destination
is treated as a third contextual feature, illustrated in the construction image in Figure 1, where
the red bounding box represents the target entity, and the “star” sign represents the destination.

It is assumed the destination is time-invariant during a short period of time. Given time step ¢,

the distance from the target to the destination is used as a contextual feature to incorporate the

i dest i dest
T X s\Ve =y

temporal dynamics, denoted as (Axf,ij):(x

), where (x, ! ) is the

entity location, (x"““", yd""") is the pixel coordinates of the destination. This study simplifies the
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destination as prior knowledge to examine its influence on worker trajectory prediction. In
practice, the potential destination can be inferred from the involved activity and the
corresponding workspace, where ongoing activity can be automatically learned from visual
data and workspace can be acquired from site layout or building information model.
3.3. LSTM-based Sequence-to-sequence (seq2seq) Trajectory Prediction

LSTM network [40] is a typical recurrent neural network (RNN) and can be used to model
temporal dependency among sequential features. It has been successfully applied to many
sequential problems such as natural language translation and activity recognition. Figure 6
illustrates a typical LSTM network that takes time-series features {x,,X,,...,X,} as input. The
LSTM network consists of several cells ordered sequentially, each of which has the same
structure with three gates, i.e., input gate, forget gate, and output gate, to control the information
flow within the cell. At time step ¢, the cell state is determined by both the input of the current

time step and the output from the previous time step, updated using Equation 1.

hy h, h, h,
C, G
LSTM cell LSTM cell oo | | 3 , 3 LSTM cell
I i S *
I L|J Lr 1 L|—‘0, hy
\ [ ! ‘
X Xy X, Xu

Figure 6 LSTM network and LSTM cell
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i, = 5(Vinxz + Vhiht—l + bi)
f,=8(Wx,+V,h_ +b,)
0,=6(W. x,+V, h_+b,)

xf 7t
gt = tanh(Wrcxf + I/hcht—l + bc)
ct :»f; ®ct71 +lt ®gt
h, =0, ® tanh(c,)

(1)

Where x, is the input, i, f,,0, are the input gate, forget gate, and output gate at time ¢
respectively. £, is the hidden state with N hidden units (N=25 in this study) and is also the
output of this cell, and ¢, is the cell state. g, is the input modulation that adds information
to the cell state. o is the sigmoid function and ® represents element-wise multiplication.
Wi, Wty Wyxoy Weey, Vaiy, Vify Vio, Whe, bi, by, bo, be, are the learnable parameters for each LSTM
cell that control the level of information transferred from previous time steps as well as the
level of information taken from the current time step.

Recently, LSTM network has been widely used in data-driven trajectory prediction. As
shown in Figure 7, a conventional approach [30,31] is that 1) in the training process, the model
is fed with time-series inputs and trained to output one-step prediction; and 2) in the inference
process, the observations from time step 1 to 7oss are fed into the trained model and the position
in the next time step Zops+1 1s estimated. Then, the estimated position at time Tops+1 1S used as
input along with observations from time 2 to 7ops, to predict for time 7ops+2, which happens
recursively till Toss+pres. Under such a case, the model only predicts one step each time and the
predicted result is used as inputs recursively in order to generate a sequence of positions over

multiple time steps. This practice leads to large error accumulation.
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Figure 7 Conventional LSTM-based recursive approach for multi-step prediction

To solve this problem, this study adopts the LSTM encoder-decoder architecture, which
allows the generation of a sequence with arbitrary length from a given sequence and was first
introduced in machine translation tasks [41]. Figure 8 illustrates the proposed model. In this
method, the entity position during observation time and the corresponding contextual features
(discussed in Section 3.2) are concatenated into a 7-dimensional feature vector, denoted by
X, =[obj _x,0bj _y,dis _x,dis _y,neighbor _x,neighbor _y,group] , where first two dimensions
represent object (target) positions in x and y directions; third and fourth dimensions represent
the distance from the destination in x and y directions; fifth and sixth dimensions represent
neighbor positions; and the last dimension indicates the group information. This feature vector
describes the object position and the jobsite context at any given time. The time-series feature
is constructed by chaining a series of time-variant feature vectors over a time period, denoted
by {X,,X

X X,.,}, where ¢ is the starting time, Af is the temporal resolution and

t+At> t+2A12°°°o

T'is the time duration of observation. In this study, features that represent position and distance
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information are in pixels with the range depending on image size, while the group information
is binary (either 0 or 1). The time-series features are normalized to the range [0, 1] in data
processing to ensure the same scale of the features, and serve as the inputs of LSTM encoder.
The encoder outputs an encoded vector (i.e., the hidden state of the final encoder LSTM
cell) that encapsulates the information from the observed movements and jobsite context. The
encoded vector is used to initialize the states in LSTM decoder which allows the integration of
previous information for better prediction of future trajectory. The hidden state of each LSTM
cell in the decoder is considered as the output of the corresponding time step, which is further
fed into a dense layer with two nodes. The dense layer essentially performs a linear regression,

resulting in estimated positions from time Tobs+1 t0 Tobstpred.

Position at Position at Position at
time J{Obwpred time Topsia time 7y
Dense Dense Dense
”W\ | Decoder ki I T————1
T | !
___position I LSTM +— -+ LSTM <«— LSTM :
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|
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group S Sy | Sy, .
Time 1 Time 2 Time T,
Distance from
destination

Figure 8 Context-aware LSTM-based seq2seq model

Similar to Saleh et al. [30], the network is trained by minimizing one of the most commonly

used loss functions, i.e., mean squared error (MSE) loss function [42], using Adam optimizer
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[43]. The MSE is computed as MSE = %Z(Y - Yl) , where N is the size of training data, Y,

i=1 l

and Y, are the predicted and actual /" trajectory.
4. Implementation and Results
4.1. Implementation

The dataset used to test the proposed method is introduced and the implementation details
are described. Two evaluation metrics are also explained to assess the prediction performance.

4.1.1. Data Description

To demonstrate the proposed method, ten construction videos were collected from three
projects: a hospital construction project from the publicly-available website — YouTube [44],
and two building projects videotaped by the authors, respectively. The videos consist of a total
of 84 workers in different construction scenarios, conducting various activities in different
working groups. All videos were down-sampled to 2fps, similar to other studies [31,32] on

pedestrian trajectory prediction using surveillance video. Figure 9 illustrates some images from

the dataset.

Figure 9 Sample images: (a)-(b) from hospital project, (c) from building project 1, (d)
from building project 2
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4.1.2. Data Preparation

Visual data were pre-processed to extract entity positions and contextual features, which
are then used as inputs to train and test the proposed method. First, all entities (workers and
equipment) are manually annotated using bounding boxes with pixel coordinates of the mid-
bottom points representing their positions on the images. Second, the nearest neighbor of each
worker is identified by computing the distances between any two entities. It is noted that
although neighboring entities may include both workers and equipment, only workers are
considered as target entities for trajectory prediction because of the data constraint—most of
our dataset involves only workers. However, the proposed method can be easily extended to
equipment by training a different model using equipment movement data. As the movement
patterns for workers and equipment are expected to be different, it is better to treat them
separately [14]. In future study, we will implement the proposed method for equipment
trajectory prediction by extending the dataset with more equipment movements.

Third, the group information is manually labeled based on a period of observations. Two
entities are considered belonging to one working group if they are interacting during the
construction, and are labeled as “1”. Otherwise, they are considered working independently,
labeled as “0”. As explained in Section 3.2.2, this information can be automatically obtained
from positional and attentional cues using the method created in our previous study [13]. Note
that it is also possible to use construction planning and schedules to extract group information.
However, in reality, workers may not always follow what is planned due to the complexity and

uncertainty of construction work and identifying the working group in an automatic approach
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provides real-time information. In this study, we use manually annotated group information to
exclude the possible errors in an automatic approach and focus on evaluating the influence of
contextual information. A promising method is to integrate the planned and the actual
information to determine the workspace and group work.

Finally, the potential destination of workers, simplified as prior knowledge in this study,
is determined as their final position in the scene, based on which the dynamic distance from
worker to the potential destination is computed in both x and y directions. Because the focus of
this study is trajectory prediction by integrating position and contextual information,
preprocessed higher-level information (i.e., extracted location and contextual features) is used
to exclude the impact from possible errors caused by automatic worker localization and group
identification. This practice also aligns with relevant studies on trajectory prediction in both
construction and other domains [14,15,31].

As a result, a total of 241 trajectories with various lengths were obtained for 84 workers.
The length of observation was set as 3s (i.e., 6 frames) and prediction length as 5s (i.e., 10
frames), which is consistent with relevant studies ([31,32]) on pedestrian trajectory prediction.
Correspondingly, the 241 trajectories were trimmed into tracks using a sliding window with a
fixed length of 8s (i.e., 16 frames). To augment the dataset, the sliding window starts from
every other frame of the original trajectory, resulting in 3640 tracks (tracks that are less than
16 frames were excluded).

4.1.3. Implementation Details

The proposed method is implemented using Keras library on top of Tensorflow platform,
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on a desktop with 3.6GHz Intel 19-9900K CPU, 32GB, and NVIDIA GeForce GTX 2080 Ti
GPU. The dataset is randomly split into training set (80%), validation set (10%), and testing
set (10%). The network is trained with Adam optimizer [43], with a learning rate of 0.001,
batch size of 20, and dropout of 0.5. In the experiments, different combinations of the above
hyperparameters, as well as the number of hidden units, were used and the optimal ones that
result in the highest accuracy in validation set were selected. To prevent overfitting, early
stopping criterion is used, i.¢., if the total loss on validation set does not decrease for 100 epochs,
then the model will be terminated and the checkpoint that leads to the smallest loss on the
validation set will be saved; otherwise, the model will stop after 1000 epochs. Moreover, the
model is trained on the training set, evaluated on the validation set for early stopping and
optimal hyperparameter selection, and tested on the testing set to assess the performance of the
proposed method.

4.1.4. Evaluation Metrics

Two evaluation metrics — final displacement error (FDE) and average displacement error
(ADE) — are selected because they are the most widely used evaluation metrics in trajectory
prediction studies in the construction domain [14,15] as well as other applications such as
pedestrian analysis [31-33]. FDE is the MSE between the final predicted location and the final

2.
i=1

-
N

actual location of all testing data, computed as FDE = , where N is data size,

)7} is the final predicted location for i data, and y} is the final actual location for ith data. It
measures the accuracy in predicting an entity’s final location, which is critical in predicting the

proximity between two entities and detecting potential collisions. ADE is the MSE over all
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locations of predicted trajectories and the actual trajectories, computed as

N t=T
ADE — Zi:l Zz=0

NxT

pred

y -

, where T

e 18 the prediction duration. It measures how close the

predicted and actual trajectories are and is critical to ensure the accuracy of the overall
predicted trajectory.

In this study, the entity position is captured by the mid-bottom point of its bounding box
on the 2D image plane. Therefore, the predicted positions and ground truth positions are
represented in pixel coordinates, resulting in FDE and ADE in pixels values. The 2D pixel
coordinates on the image plane can be projected onto the world plane (i.e., ground plane) via a
projective transformation (i.e., homography). To compute the transformation matrix between
two planes, at least four pairs of corresponding points are needed in both planes using the Direct
Linear Transformation (DLT) algorithm [45]. In this work, because the construction videos are
collected from different sources including public website, the actual point locations on the
jobsites are not available, and thus the FDE and ADE in pixels are used for evaluation. In our
future study, the dataset will be expanded to include videos with known ground control points
to predict the trajectory in the world coordinate system.

4.2. Results

The result of the proposed method is compared with that obtained using two other LSTM-
based models: (1) a baseline model that recursively predicts trajectory based on object positions;
and (2) a seq2seq model that predicts trajectory over multiple time steps simultaneously based

on object positions. Table 3 lists the differences in three models.
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Table 3 Three LSTM-based models for comparison

Model Input features Rationale for multi-step
forecasting

Position (recursive) Time-series positions | The model can only predict one-step
ahead, and achieve multi-step
prediction by conducting inference
process recursively (see Figure 7)

Position (seq2seq) Time-series positions | Encoder-decoder architecture to

Position+Context (seq2seq) | Time-series positions | enable multi-step forecasting (see

(proposed in this study) and contextual features | Figure 8)

Figure 10 illustrates two example results of trajectory prediction. The proposed method

results in the predicted trajectory being the closest to the ground truth. The position-based

seq2seq model leads to a trajectory with a slightly larger discrepancy compared to the proposed

method. In contrast, the position-based recursive model has the largest discrepancy from the

ground truth trajectory due to the error accumulation.

o iy

- - \:;ﬁf = 4

—&— Ground truth —— Position (recursive) Position (seq2seq) =#— Position + context (seq2seq)

Figure 10 Example results of trajectory prediction

4.2.1. Quantitative Prediction Results

Table 4 lists the quantitative results from the three models. The recursive approach leads

to much larger errors in both FDE and ADE compared to the seq2seq approaches, which proves

that the seq2seq model is an effective way to avoid error accumulation when predicting
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trajectory over multiple time steps. More specifically, the position-based seq2seq model results
in a 68.2% and 41.9% reduction in FDE and ADE, respectively, and the proposed context-
augmented seq2seq model leads to reduction of 70.0% and 41.6%, compared to the recursive
model. The context-augmented model results in smaller FDE but a slightly larger ADE
compared to the position-based model. This is because by incorporating contextual information,
especially the potential destination information, the model is inherently trained to adapt more
to the long-term goal, rather than accurate prediction of each step. It is reasonable because the

final displacement is more critical in predicting the struck-by hazard in safety management.

Table 4 Quantitative results from three models

Model FDE (pixel) ADE (pixel)
Position (recursive) 28.32 15.41
Position (seq2seq) 9.00 8.95
Position +Context (seq2seq) | 8.51 9.00

4.2.2. Qualitative Analysis

The results from two seq2seq models, i.e., position-based seq2seq model and context-
augmented seq2seq model, are analyzed qualitatively to evaluate the impact of contextual
information and identify the scenarios, under which integrating contextual information leads
to better performance. Specifically, for each testing data, predicted trajectories obtained using
context-aware and position-based methods are plotted against the ground truth trajectories that
are manually annotated. Then, the scenarios are categorized based on whether or not context-
aware method perform better than position-based method by visually inspecting each plot,

examining the overall trend in the plot, and checking back with the corresponding construction
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videos. Some representative plots are shown in this section to illustrate the main findings.

It was found that when workers are walking continuously and not involved in specific
collaborating activities, contextual information does not have a significant influence and both
models result in relatively accurate prediction, as shown in Figure 11. On the other hand, if the
target is collaborating with others or involved in certain activities, incorporating contextual
information leads to better prediction (see Figure 12 Context-augmented model leads to better
prediction). In Figure 12 Context-augmented model leads to better prediction(a), the target
intends to move towards his co-worker, who is working at the left-bottom corner of the image.
With contextual information, especially the position and the relationship with the nearest
neighbor, the context-aware model accurately predicts the behavior of the target moving
towards his neighbor, resulting in a path closer to the actual trajectory. In contrast, the position-
based model only considers individual movement patterns and is more likely to end up with a
near-linear trajectory, which is farther from the actual trajectory. In Figure 12(b), the target is
conducting road paving activity with a roller and other co-workers. Although there remains
some discrepancy with the actual trajectory, the context-aware model accurately predicts the
trend of worker movement, whereas the position-based model predicts the movement in the

opposite direction.
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In some cases, however, the proposed method may fail. Figure 13(a) illustrates when the
status of target significantly changes during prediction time (e.g., from stationary to moving
and vice versa), the movement cannot be accurately predicted. In addition, it is also very
challenging when workers are conducting activities within a limited workspace without

substantial movement, as shown in Figure 13(b).
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Figure 13 Examples when context-augmented model fails

To sum up, when the target is continuously moving but not making interactions with other
entities, the context information is mainly related to target’s positions, and thus the proposed
context-augmented seq2seq model results in similar accuracy with the position-based seq2seq
model. When there are interactions between targets and the surrounding entities, e.g., the target

is collaborating with others or involved in certain activities, there is rich contextual information
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about the target’s group relationship with the nearest neighbor, the neighbor’s position, and the
distance to the destination. By incorporating this context information, the model is provided
with additional features and thus achieves better prediction compared to the position-based
model. On the other hand, a sudden change of target (e.g., from stationary to moving) during
the prediction time would lead to the failure of both models. This is because, essentially, the
seq2seq model is using a sequence of movements to predict the next sequence, while a sudden
change will break the pattern learned in the observed sequence. Additionally, when workers are
conducting activities within a limited workspace without substantial movement, it is very
challenging for the models to differentiate a sequence of movements from near-stationary status
and make accurate predictions.

4.2.3. Influence of Prediction Time

To evaluate the influence of prediction time on different methods, this study examines the
prediction performance with respect to various ratios of prediction to observation length within
the 8-s track prepared in the dataset. Specifically, the partition of observation time and
prediction time varies as 7s/1s, 6s/2s, 5s/3s, 4s/4s, 3s/5s (used in the previous experiment), and
2s/6s. The results are illustrated in Figure 14. It is not surprising that both FDE and ADE
increase as the ratio of prediction to observation increases for all three prediction models, which
further proves the challenge in long-term trajectory prediction (i.e., when prediction time is no
less than observation time).

From Figure 14(a), the context-aware model generally results in a smaller FDE compared

to the position-based model, especially when the length of prediction is no less than the length
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of observation—the FDE of the context-aware model is 8.4%, 5.4%, and 2.4% smaller than
that of the position-based model when the ratio of prediction to observation time is 1, 1.67, and
3, respectively. The two models lead to compatible ADE based on Figure 14(b). From Figure
14(c), the discrepancy between FDE and ADE for the position-based recursive model becomes
much larger as the increase of the ratio, compared to those in two seq2seq models (Figure 14(a)
and (b)). It proves the advantage of seq2seq architecture in mitigating the error accumulation
for long-term trajectory prediction. In the comparison of position-based and context-aware
seq2seq models, the FDEs for both models are compatible in short-term prediction (i.e., when
the ratio is less than 1). However, the context-aware method leads to lower FDE in long-term

prediction.

|
3
|

Displacement error (pixel)

FDE (pixel)
S N
ADE (pixel)

/ 10
/ SN | 5
4 & 0
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.2
Ratio of prediction time to observation time Ratio of prediction time to observation time Ratio of prediction time to observation time
—8—context-aware position-based —@—context-aware position-based —8—IFDE ADI
(a) FDE of seq2seq models under different (b) ADE of seq2seq models under different (c) Prediction performance of recursive model
ratios of prediction to observation ratios of prediction to observation under different ratios of prediction to observation

Figure 14 Influence of prediction time on different models

5. Conclusions and Discussion

Predicting workers’ trajectories on unstructured and dynamic construction sites has great
potential to improve workplace safety. It provides rich information and is critical to pro-
actively prevent struck-by accidents, which has been a major cause of construction fatalities
and a single leading cause for non-fatal injuries. This study proposed an LSTM model
augmented by jobsite contextual information for construction worker trajectory prediction

considering both individual movement information and jobsite contextual information. The
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contextual information is represented as movements of neighboring entities, working group
information, and potential destination information. Experiments were conducted using videos
collected from three different construction projects. The results show that the newly created
method leads to a smaller final displacement error than the model relying solely on target
movements, especially in long-term prediction when the length of prediction is no less than
that of observation. The adopted sequence-to-sequence network architecture also significantly
improves the performance in both final displacement error and average displacement error by
eliminating error accumulation over multiple time steps.

In addition, qualitative analysis was conducted to identify scenarios when incorporating
contextual information is worthwhile. It was found that when workers are conducting
collaborative activities within an area, incorporating contextual information leads to better
results. The context-aware prediction model should be selected when the construction scenario
involves multiple entities collaborating on group activities. Both context-aware and position-
based methods lead to relatively accurate predicted trajectories when workers move
continuously and are not involved in collaborating activities. However, in such case, the
position-based method is favorable. Although in this study, the training time for two models is
almost the same (about 3s per epoch), with more data in the future, the position-based method
is expected to be less computational expensive considering the fewer features involved in
training the model. Moreover, extracting contextual information involves much more complex
computing process and may introduce additional errors. Both models may fail when entity

states change significantly. In such case, it is not reliable to directly predict worker’s trajectory
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and more information (e.g., activity type, entity posture) may be needed. As an exploratory
study that integrates jobsite context in the prediction of workers” movements, the results and
findings are obtained based on the limited construction scenarios. More construction videos in
different scenarios need to  be incorporated to further validate the proposed methods.

This study contributes to the body of knowledge by creating a novel context-augmented
deep learning method for construction worker trajectory prediction. The proposed method not
only considers spatial interaction between the target and neighboring entities, but also
innovatively incorporate the semantic relationship between entities (i.e., whether or not within
a working group) and the long-term goal (i.e., the potential destination). The results show that
integrating the above contextual information outperforms the position-based prediction,
especially for long-term prediction when prediction time is no less than observation time. The
proposed context-aware trajectory prediction forms the base for a proactive struck-by
prevention mechanism. In addition to the early warning when two entities are expected to get
too close, the predicted trajectory also provides information to actively plan a safe path to avoid
collisions while ensuring the smooth operation.

As construction videos are used as the data source for trajectory prediction, cameras are
recommended to be installed on height to mitigate the occlusion, while maintaining adequate
resolutions of entities in the image at the same time. In this study, construction videos are in
two resolutions—1920 x 1080, and 1280 x 720, with average worker size around 60 x 120 and
equipment size around 450 x 350. In practice, when monitoring construction operations on the

complex jobsites, several cameras are needed to ensure the desired coverage and the optimal



632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

camera placement are determined by considering both camera coverage and total cost [46,47].
Moreover, to transfer pixel coordinates into world coordinates (e.g., in meters) on the jobsite,
at least four ground control points (with known world coordinates) are needed to establish
projective transformation between image plane and ground plane using DLT algorithm.

There remain a few limitations that deserve further research efforts. First, due to the
availability of construction data, especially the annotated data, the data size used in the
experiment is relatively small and thus poses a potential limitation to the representativeness of
the proposed method. For possible application and adoption of the proposed approach,
scenarios where workers have distinguishable movements and interactions with surrounding
entities are recommended for better prediction results. To further justify the model performance,
more construction videos will be collected and annotated to expand the existing construction
dataset and statistical tests will be conducted. Besides, transfer learning can be adopted to
leverage the public dataset in other domains (e.g., crowds datasets [48,49]) to overcome the
limitation in the availability of annotated construction datasets. Second, this study used
preprocessed worker position and contextual information to train the neural network. In
practice, due to the complexity and dynamics in the construction operation, such information
may not be acquired with perfect accuracy. In future study, we will work on automating the
entire process and further exploit on how possible errors in feature estimation will influence
the trajectory prediction performance. Third, only nearest neighbor was considered in the
contextual information to reduce the feature dimension when training on small dataset. In

future study, occupancy map will be adopted to capture all neighbors within an area to
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incorporate more comprehensive jobsite context. Forth, the potential destination is simplified
as prior knowledge to examine its influence on trajectory prediction. Future study will focus
on developing new methods to infer worker destination based on their involved activities and
the corresponding workspaces.

Data Availability

Some data, models, or code generated or used during the study are available from the
corresponding author upon reasonable request, including construction videos and python codes
for data processing and trajectory prediction.
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