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ABSTRACT

Construction robot path planning is critical for safe and effective human-robot collaboration in future
intelligent workplaces. While many studies developed methods to generate paths for construction robots,
very few, if any, have integrated the worker trajectory prediction on the jobsite. The objective of this
research is to find a safe and efficient robot path, meanwhile, taking into account the predicted movement
of construction workers. To this end, we propose a context-aware Long Short-Term Memory (LSTM)-
based method to predict worker’s trajectory. Based on the predicted trajectory, the A* and Dynamic
Window Approach (DWA) are used to find an optimal path for the robot. The efficiency and effectiveness
of the proposed method are manifested by simulated and field experiments. The proposed method will
contribute to the body of knowledge for prediction-based construction robots path planning and provide the
potential to be integrated into existing robot platforms to enhance their performance.

1 INTRODUCTION

Automation and robotics are the future of the construction industry. The global construction robot market
is projected to increase to $186.6 billion by 2024 from $78.6 billion in 2018 (The Robot Report Staff 2019).
Approximately 49% of construction tasks can be automated or be substituted by robots (Manzo et al. 2018).
Robots are expected to solve the labor shortage issue and boost productivity in the construction industry.
In the near future, humans and robots will coexist on the intelligent construction sites to conduct a variety
of tasks, posing new challenges on robotics-related safety. Construction robots are expected to
autonomously navigate on the dynamic and unstructured jobsite while avoiding collisions with other site
entities, which, however, remains an unaddressed challenge. Therefore, there is a critical need to create
effective algorithms for collision-free path planning of robots to enable efficient and safe human-robot
collaboration at construction sites.

In some existing studies, methods have been developed to plan paths for construction robots on
construction sites. For example, Kim et al. (2003) proposed a SensBug algorithm to generate a path for a
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mobile construction robot from its initial position to a target position. The SensBug algorithm can navigate
robots in a 2D planar unknown environment with stationary and moving obstacles. However, this method
requires a high-level positioning accuracy of robots which is not achievable at urban or crowded
construction sites. In addition, the generated path by the SensBug algorithm is close to the obstacle, which
is not safe and efficient. Kayhania et al. (2018) presented a methodology to automate path planning for
heavy construction equipment. The proposed method can find the shortest path and avoid obstacles at
construction sites. However, this method is not suitable for moving obstacles such as construction workers.
To address these challenges, we proposed a novel robot path planning method by integrating the worker
trajectory prediction in construction sites. The proposed method can generate paths for robots without
collision with moving workers. Our contribution is twofold. First, this research develops a new algorithm
to predict worker’s trajectory with context information. Second, this research develops a new workflow that
integrates worker trajectory prediction to robot path planning to generate safe and efficient robot paths.

2 LITERATURE REVIEW

2.1 Related Studies on Human Trajectory Prediction

Human trajectory prediction is an essential yet challenging task in computer vision. Traditionally, tracking
filters, such as Kalman filter and Particle filters, are used to predict the future steps in a trajectory (Hermes
et al. 2009; Liu et al. 1998). However, because only the continuity of movement is considered, such
approaches may either result in physically impossible locations (e.g., behind walls, within obstacles) or
degrade into random walks of feasible motion over large time horizons (Ziebart et al. 2009). Some
researches (Rudenko et al. 2018; Ziebart et al. 2009) adopted planning-based approaches, where entities
are treated as intelligent agents who actively plan their path to achieve a goal. The problem is formulated
as a path planning or optimal control task, such as the Markov decision process (MDP). One main drawback
is that the planning-based approach relies heavily on prior knowledge, and it still uses hand-crafted features
to model states and reward functions that are specific to particular settings. Recently, data-driven approach
has been increasingly used given that it does not require to explicitly model movement dynamics and the
ability to be generalized to various scenarios. Long short-term memory (LSTM) network is the most widely
used deep learning method for human trajectory prediction (Alahi et al. 2016; Xue et al. 2018).

In the construction domain, Zhu et al. (2016) proposed a novel Kalman filter to predict the movements
of workers and mobile equipment using positions obtained from multiple video cameras. Although the
methods achieved a submeter accuracy when predicting the next-step movement in 0.03s, the accuracy
decreases to about 1.5m when predicting the movement in 1.5s. Instead of using conventional tracking
filters, Dong et al. (2018) and Rashid et al. (2018) modeled the worker movements as a Markov process to
predict their trajectories based on historical records. More recently, Kim et al. (2019) and Tang et al. (2019)
attempted to predict the construction entity trajectory through a data-driven approach given the advances
in deep learning techniques. Most existing studies only consider individual movements while predicting a
worker’s trajectory, which is insufficient to capture worker behavior under different scenarios. In reality,
multiple entities co-exist on the construction site, forming various working groups to accomplish different
activities (Cai et al. 2019). Workers’ behavior will be influenced by each other and the specific activities
they are involved in. Jobsite contextual information such as entity interactions and ongoing activities must
be incorporated in order to better predict entity movements, which, however, has been overlooked by
existing studies in the construction domain.

Some studies on pedestrian behavior analysis have recognized the significance of context information
and considered various contextual features to predict pedestrian trajectory and intention on the road. For
instance, Kooij et al. (2019) found that incorporating pedestrian situational awareness, situation criticality,
and spatial layout of the environment increases the prediction accuracy. Alahi et al. (2016) proved that the
pedestrian trajectory can be better predicted by incorporating the interaction among multiple pedestrians.
These studies show the great promise of contextual features in improving the performance of movement
prediction. Motivated by the above achievements, this study proposes a context-aware deep learning
method for worker trajectory prediction on unstructured and dynamic construction sites.
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2.2 Relative Studies on Robot Path Planning

With the emergence of robot application in different industries, such as construction (Bogue 2018) and
manufacturing (Paryanto et al. 2015), to automate tasks and enhance worker safety, mobile robotics field
has attracted increasing attention from many researchers, in which robot path planning problem is one of
the important and challenging research themes. Path planning is used to identify a sequence of actions to
transform robots from a start to a goal position. Existing studies on robot path planning can be classified as
classical and heuristic approaches (Atyabi and Powers 2013). Classical approach commits to prove whether
an optimal path for the robot exists or not (Masehian and Sedighizadeh 2007). This method requires
intensive computational power and is sensitive to uncertainty, which limits their application in the real
world. The approaches such as Subgoal Network, Cell Decomposition, Potential Field, and Road Map are
common classical path planning methods. The heuristic approach is developed to solve complex
optimization problems in real-world scenarios, which integrates probabilistic algorithms such as
Probabilistic Roadmaps (PRM) to achieve a high-speed implementation (Mac et al. 2016).

Many heuristic-based path planning approaches have been developed to navigate robots in a partially
known or dynamic environment. For instance, graph-based methods such as Dijkstra’s (Dijkstra 1959) and
A* (Hart et al. 1968) algorithms have been utilized to find an optimal path from the start position to the
goal position. The two methods plan paths on a given graph G = (S, E) that represents the environment of
the robot. Where S is a set of robot states in the graph and E is a set of edges connecting pairs of vertices in
S. The edge cost is defined as the transition cost between the two endpoints of the edge. The optimal path
represents a path that has minimal transition costs leading from initial state to goal state. Rapidly-
Exploration Random Tree (RRT) is a typical sampling-based algorithm (Lavalle 1998). This method is
suitable for planning in a high-dimensional space. However, all the above approaches were designed for
static environments, which do not involve path re-planning after the path is calculated. Thus, they may not
work well in a dynamic environment with moving obstacles. To address this issue, the incremental re-
planning algorithm like the D* algorithm (Stentz 1994) was developed. The D* algorithm is based on the
A* algorithm, which offers an efficient re-planning in changing environments like adding a new obstacle.

The heuristic-based approach was also widely adopted in robot path planning on construction sites.
Soltani et al. (2002) evaluated the performance of Dijkstra’s, A*, and Genetic algorithms regarding their
application in construction sites based on the distance, risk, and visibility of the path. The study concluded
that the A* algorithm can find an optimal solution more efficiently for a large-scale problem. In Ali et al.
(2005), the Genetic algorithm was used to automate a collision-free path planning of cooperative crane
manipulators. The generated path achieved a shorter distance and less computational time compared to the
A* search. Chang et al. (2012) proposed a fast path-planning method for crane erection, where the PRM
algorithm was incorporated. The developed method was validated in virtual experiments, which can
generate erection paths efficiently for operating. The main drawback of these studies is that a static
environment was assumed, which ignores dynamic nature at construction sites where multiple entities
conducting various activities simultaneously on the jobsite.

3 METHODOLOGY

Figure 1 shows an overview of the proposed method, which consists of two steps. In the first step, an LSTM-
based method is created to predict the worker’s trajectory considering contextual information on the jobsite.
In the second step, the robot path planning method is devised based on predicted worker trajectories to
avoid potential collisions. The next two sections elaborate on the technical details of our method.
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Worker trajectory prediction

Contextual information * Formulate contextual information based on neighbor position,
formulation working group information and distance from potential destination

LSTM-based trajectory * Integrate observed movement and contextual features
prediction * Generate a sequence of estimated positions

Robot path planning

* Model predicted trajectory as obstacles for robots
Global path planning * Identify a list of nodes that connect the start node to the goal
Calculate path cost and generate an optimal path with minimal cost

» Sample velocity pairs in the velocity space within the dynamic window
Local path planning * Evaluate and eliminate bad velocity samples
* Maximizes an objective function to obtain optimal velocity pairs

Figure 1: Methodology overview.

3.1  Worker Trajectory Prediction

This study proposes a context-aware LSTM-based method for accurate worker trajectory prediction using
construction video data based on Cai et al. (2020). The method incorporates both individual movement and
workplace contextual information regarding movements of neighboring entities, working group
information, and potential destination information. Entity movement and contextual information are
incorporated in the LSTM-based sequence-to-sequence (seq2seq) neural network for trajectory prediction.
Figure 2 illustrates the framework.
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Figure 2: Context-aware LSTM-based model for trajectory prediction.

It is assumed that construction videos are first preprocessed to obtain entity positions and contextual
features, consistent with most of the related studies (Alahi et al. 2016; Tang et al. 2019; Xue et al. 2018).
We use the mid-bottom point of entity’s bounding box to represent their position. As a result, at time step
t, the i entity is denoted by its pixel coordinates on the image plane, i.e., (x};, yé) The objective is to predict
entity positions from time step Tops41 t0 Topstprea based on the observation of site dynamics, including
both the positions of all entities and the jobsite contexts from time step T; to time step T,,. Different from
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previous studies (Alahi et al. 2016; Tang et al. 2019) which only observe entity positions and implicitly
incorporate the interactions among entities using hidden states learned from deep neural networks, we
explicitly models the contextual information on the jobsite based on the methods developed in our previous
study (Cai et al. 2019).

3.1.1 Contextual information formulation

Construction workers co-exist and collaborate with other entities to conduct various tasks on the jobsite.
Their behavior is purposeful and will be influenced by involved activities and their surrounding entities. It
is expected that construction workers tend to avoid obstacles to prevent potential collisions, while stay close
to their co-workers or group members to conduct the activity collaboratively. In addition, workspaces,
where workers locate and move, are typically defined by specific activities, which will indicate their
potential destination. Therefore, the specific contextual features considered in this study include neighbor
position, working group information, and distance from potential destination.

Neighbor position. Worker behavior can be influenced when they interact with other entities,
especially with their neighbors. Different from previous studies that use occupancy map to represent the
existence of other entities (Alahi et al. 2016; Tang et al. 2019), we directly use neighbor position
information as one contextual feature to capture the temporal dynamics of neighbor’s movement. Note that,
to ensure features in different scenarios have the same dimension, we only consider the position of entity’s
nearest neighbor. It is reasonable because an entity is more likely to be affected by others who are spatially
closer to them.

Working group information. The working group information, i.e., the relationship between an entity
and its neighbor in terms of whether they belonging to the same working group, also influences entity
movement. For instance, workers tend to avoid entities that are not in the same group to prevent potential
conflict, while they tend to have similar movement patterns with their co-workers. Therefore, the group
relationship between an entity and its nearest neighbor is considered as a second contextual feature. If they
belong to the same working group, the feature value is 1, otherwise, it is 0. The group information can be
obtained using the LSTM-based method created in our previous study (Cai et al. 2019) by integrating
positional and attentional cues on the jobsite.

Distance from potential destination. The distance between construction workers and the potential
destination is considered as a third contextual feature because construction worker behavior is typically
goal-based and influenced by their involved activities. In this study, we simplify the potential destination
as prior knowledge. In practice, it can be inferred from the involved activity and the corresponding
workspace, where ongoing activity can be automatically learned from visual data and workspace can be
extracted from site layout or BIM model.

3.1.2 LSTM-based trajectory prediction

This study adopts the LSTM encoder-decoder architecture (Sutskever et al. 2014) (see Fig. 2), which allows
the generation of a sequence with arbitrary length from a given sequence. In the method, the entity position
during observation time and the corresponding contextual features are concatenated into time-series feature
vectors and fed in LSTM encoder. The encoder outputs an encoded vector that incorporates the information
from the observed movements and jobsite context. The encoded vector is used to initialize the states in
LSTM decoder which allows the integration of previous information for better prediction of future
trajectory. The hidden state of each LSTM cell in the decoder is considered as the output of the
corresponding time step, which is further fed into a dense layer with two nodes. The dense layer performs
a linear regression, resulting in estimated positions from time T,pe+1 t0 Tops+prea. The network is trained to
minimize one of the most commonly used loss functions, i.e., mean squared error (MSE) loss function (Lee
2007). The MSE is computed as MsE = 3, (%, - ;)* /N, where N is the size of training data, ¥; and Y; are the
predicted and actual i trajectory.
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3.2 Robot Path Planning

Robots must avoid construction workers to ensure safe operation on construction sites. In this regard,
Construction workers are treated as obstacles for robot path planning. As such, robots can avoid potential
collisions with workers who are moving and conducting a variety of tasks along the trajectory. We adopt a
hierarchical planning approach which includes global and local planning. The global planner is used to find
an optimal collision-free path from the start to the goal without considering differential or dynamic
constraints. In the local planning stage, the local trajectory tries to smooth path with dynamic constraints
and stay close to the global path.

The A* algorithm is used as the global planner in this study, which was developed by Hart et al. (1968).
The algorithm is an improvement of the Dijkstra’s algorithm (Dijkstra 1959) designated to find the shortest
path with high-efficiency. A heuristic function /() is used to direct the robot toward the goal position. The
h function acts as a critical role in the performance of the A* algorithm. In this study, the Manhattan distance
heuristic function is defined in Eq. (1) to calculate distance from any node, 7 (x4, v»), to the goal, g (xg, V¢)
in the graph.

+

h(x”’yn)z'xn _xa Vi = Va (1)
The search cost is defined in Eq. (2), where g(n) represents the cost from starting point to any node n,
f(n) is the total cost. The objective is to minimize the total cost. Using this equation, the A* algorithm will

direct toward the goal and try to find the most direct path.
f(n)=g(n)+h(n) 2)

Given a global path to follow, the local planner produces linear velocity v and angular velocity w for
the robot. The Dynamic Window Approach (DWA) algorithm proposed by Fox et al. (1997) is used for
local robot planning. Constraints regarding robot dynamics (e.g., the maximum velocity) are considered in
the DWA algorithm. The algorithm directly samples velocities in the robot’s control space within a given
time window. The bad velocity samples that intersect with an obstacle are eliminated. The DWA will find
an optimal pair of (v, w) for the robot based on its local condition by maximizing a cost function that
depends on (1) proximity to the global path, (2) proximity to the goal, and (3) proximity to obstacles. Eq.
(3) gives the weighted cost function to find the optimal trajectory. The trajectory with minimal cost is
selected.

cost=af, (v,w)+Bf, (v.w)+7f. (v,w) (3)

Where f.(v, w) represents the distance between global path and the endpoint of the trajectory, fu(v, w)
is the distance to the goal from the endpoint of the trajectory, f«(v, w) is the grid cell costs along the
trajectory, o is the weight representing that how much the controller should stay close to the global path, £
is the weight for how much the robot should attempt to reach the goal, and y is the weight for how much
the robot should attempt to avoid obstacles.

4 IMPLEMENTATION AND RESULTS

In the proposed framework, the moving workers are treated as obstacles for robots in a dynamic
environment. The predicted worker trajectories obtained in module 1 (Section 3.1) can be used to determine
the potential locations of obstacles for robot path planning (Section 3.2). We conducted two experiments
to validate each module of the proposed method and analyzed the results. Note that, the worker trajectory
prediction and robot path planning method were evaluated separately in this study. Specifically, field videos
were collected to evaluate the performance of worker trajectory prediction. A robot simulation platform
was developed to demonstrate the robot path planning method. Using the robot simulation to replicate the
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scenarios in real construction sites is justified in two aspects. First, with the simulation platform, various
construction scenarios can be arranged for testing, which allows us to fully assess the performance of the
robot path planning method. The workers’ trajectories can also be simulated in the robot simulation
platform to reflect different construction activities in real world. The potential safety issue in real
construction sites prevents such experimentation. Second, the simulated scenario is built based on photos
and videos from real construction sites to ensure its authenticity and validity.

4.1 Implementation

We collected ten construction videos from three projects to validate the proposed worker trajectory
prediction method: a hospital construction project from the Hospital Construction (2019), and two teaching
building projects videotaped by authors. The videos consist of a total of 84 workers in different construction
scenarios, conducting various activities in different working groups. All videos were down-sampled to 2fps,
similar to other studies (Alahi et al. 2016; Xue et al. 2018) on video-based pedestrian trajectory prediction.
Figure 3 illustrates some images from the dataset. Visual data were pre-processed to extract entity positions
and contextual features, serving as inputs of the prediction model.

Figure 3: Sample images.

In this study, we observed worker movements and contextual information for 3s (i.e., 6 frames) and
predicted for 5s (i.e., 10 frames), consistent with relevant studies (Alahi et al. 2016; Xue et al. 2018) on
pedestrian trajectory prediction. The proposed method was implemented on a desktop with 3.6GHz Intel
19-9900K CPU, 32GB, and NVIDIA GeForce GTX 2080 Ti GPU using Keras library on top of Tensorflow
platform. The dataset was randomly split into training set (80%), validation set (10%), and testing set (10%).
The network was trained with Adam optimizer (Kingma and Ba 2015), with a learning rate of 0.001, batch
size of 20, and dropout of 0.5.

Mobile ()

Robot

Figure 4: Overview of the robot simulation platform.
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The second set of experiments was conducted in the robot simulation platform, where a husky robot
(Clearpath Robotics 2013) was simulated at a construction site. The robot is equipped with LMS1xx 2D
laser and camera sensors. The laser is used for Simultaneous Localization and Mapping (SLAM) to create
a 2-D occupancy grid map. The occupancy map is then used for path planning. The onboard camera is used
to capture the surrounding environment. Figure 4 shows the experiment setup. The platform is built on a
laptop running Ubuntu 16.04 with Intel i17-4900MQ 2.8GHz CPU processor, NVIDIA Quadro K2100M,
and 16G RAM. The distribution of ROS is Kinetic, and the version of Gazebo is 7.16.0.

4.2  Results
4.2.1 Results for trajectory prediction

The result of the proposed trajectory prediction method was compared with that obtained from two other
LSTM-based models: (1) a standard LSTM model (Saleh et al. 2018) that predicts location one-step-ahead
based on object positions and achieves multi-step prediction by running the model recursively; and (2) a
seq2seq model with the same architecture as the proposed method but only considering entity movements
without contextual information. Figure 5 illustrates two example results of trajectory prediction. The
proposed method results in the predicted trajectory (blue line) that is closer to the ground truth (red line).
The position-based model (yellow line) leads to a trajectory with a slightly larger discrepancy compared to
the proposed method, whereas the position-based recursive model (green line) has the largest discrepancy
from the ground truth.

-

—— Ground truth Position (recursive) Position (seq2seq) —— Position + context (seq2seq)

Figure 5: Example results for trajectory prediction.

The performance is further evaluated quantitatively using two metrics, i.e., final displacement error
(FDE) and average displacement error (ADE), which are most widely used to evaluate performance of
trajectory prediction (Alahi et al. 2016; Xue et al. 2018). FDE measures the average distance between the
final predicted location and the final actual location of all workers, while ADE measures the average
distance between all locations along the predicted trajectories and the actual trajectories. Table 1 lists the
quantitative results of trajectory prediction using three models. The recursive model leads to much larger
FDE and ADE compared to seq2seq approaches due to the error accumulation when predicting trajectory
over multiple time steps. The proposed context-aware seq2seq model achieves the smallest FDE among all
models, despite a slightly larger ADE compared to the position-based approach. The possible reason is that
by incorporating contextual information, especially the potential destination information, the model is
trained to adapt more to the long-term goal, rather than accurately predicting each step.
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Table 1: Trajectory prediction results of three models.

Model FDE (pixel) ADE (pixel)
1. Position (recursive) 28.32 15.41

2. Position (seq2seq) 9.00 8.95

3. Position +Context (seq2seq) (proposed) 8.51 9.00

4.2.2 Results for robot path planning

Table 2 shows the performance of the robot path planning method. The path planning method is
demonstrated to be efficient given an average 0.201s planning time. The standard error of planning time is
small, suggesting that planning time is stable across different simulated cases. The execution time is mainly
dependent on the distance from start to the goal and obstacles between them. In addition, all the 15 simulated
cases successfully generate paths without collision with construction workers and other obstacles.

Table 2: Performance of the robot path planning method.

Number of Planning time (second) Execution time (second) Number of cases
simulation cases Average Standard error  Average  Standard error ~ without collision
15 0.201 0.004 35.147 11.025 15

Figure 6 shows representative examples to demonstrate robot path planning based on the predicted
worker’s trajectory. As indicated, the proposed global path is efficient, safe, and collision-free. Most
importantly, the mobile robot can navigate to the goal without collision with construction workers. We also
present two exemplary results without considering worker movement. As indicated in Figure 7, the global
paths intersect with workers’ potential trajectories, which may lead to the struck-by accident. Thus, it is of
great importance to integrate worker trajectory prediction with robot path planning to effectively avoid
human-robot collision on the jobsites.

it - g
Implementation #1

79
X o O

@ ﬁ. g Qg. 3
R w Implemen;::):#2

=\
w Implementation #3

O Worker who is walking when the robot is moving —p Goal [ Trajectory in grid map
O Worker who is static when the robot is moving Worker trajectory Global path

Figure 6: Examples of generated path considering worker movement.
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O Worker who is walking when the robot is moving =) Goal Worker trajectory

O Worker who is static when the robot is moving Global path

Figure 7: Examples of generated path without considering worker movement.

5 CONCLUSIONS

Autonomous construction robots have been deemed to augment and enhance efficiency as well as improve
safety by reducing human errors. The overarching goal of this research is to develop a system that can
navigate robots safely and efficiently in dynamic and unstructured construction sites with the existence of
moving workers. To this end, a context-aware LSTM model is proposed for trajectory prediction on
construction sites. A robot path planning algorithm that integrates workers’ predict trajectories is designed
to navigate robots on unstructured construction sites. Experiments were conducted using field video data
and robot simulation platform. The results indicate that the proposed context-aware seq2seq model achieves
the smallest final displacement error among the three investigated approaches. The efficiency of the robot
planning method is manifested by the simulated experiment because the approach achieves a small planning
time and generates paths without collision with workers and other obstacles. The value of the proposed
method is highlighted by comparing to the state-of-the-art in collision-free path planning at construction
sites. Different from the GPS-based planning method proposed in (Kim et al. 2003), our method is not
affected by the quality of GPS signal. The proposed method also considers construction contextual
information including entity interactions and involved activity information, which was ignored in previous
studies (Chang et al. 2012; Kayhani et al. 2018). This study has the potential to complement current practice
in construction safety. For instance, the proposed method can be integrated into construction proximity
warning and alert system (Teizer et al. 2010) by providing predicted workers’ trajectories. As such, the
system can achieve more reliable and accurate alert information.

It should be noted that there remain several limitations that deserve further research efforts. First, while
the robot simulation platform allows us to validate the proposed method, we necessarily miss out on the
context and complexity in the real world. Our ongoing research is building the robot platform to collect
data in real construction sites. Second, this study assumes a flat ground surface which may not be the case
in real situations. Future study is needed to address robot path planning on the uneven ground surface. In
this case, terrain traversability of the robot plays a critical role in finding an optimal path. In addition,
algorithms should be developed to reconstruct an uneven environment for future path planning. Third,
human trajectory was modeled as static obstacles for robots without considering the dynamic relationship
between human and robots. In the future, it is indispensable to investigate more complex interactions to
improve efficiency, fluency, and adaptiveness of human-robot cooperation. Finally, human trajectory
prediction and robot path planning were validated in real experiments and the robot simulation platforms,
respectively. Future research will evaluate the performance of the entire workflow by collaborating with
ongoing construction projects.
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