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Steady states of thin film droplets on chemically heterogeneous substrates
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We study steady-state thin films on chemically heterogeneous substrates of finite size, subject to no-flux
boundary conditions. Based on the structure of the bifurcation diagram, we classify the 1D steady-state
solutions that exist on such substrates into six different branches and develop asymptotic estimates for
the steady states on each branch. Using perturbation expansions, we show that leading-order solutions
provide good predictions of the steady-state thin films on stepwise-patterned substrates. We show how
the analysis in one dimension can be extended to axisymmetric solutions. We also examine the influence
of the wettability contrast of the substrate pattern on the linear stability of droplets and the time evolution
for dewetting on small domains. Results are also applied to describe 2D droplets on hydrophilic square
patches and striped regions used in microfluidic applications.
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1. Introduction

Thin liquid films on solid substrates are often seen in nature and engineering applications, e.g. as tear
films on the eye, lubricating coatings, and functional layers in microfluidic devices (see, e.g. Thiele
et al., 2003). Microfluidic systems manipulate small amounts of fluids, using channels with dimensions
at the scale of micrometres (Whitesides, 2006). Microfluidics has found many applications in cell
biology and chemical synthesis (Lo, 2013; Whitesides, 2006). The effect of substrate wetting properties
on the equilibrium liquid droplet formed on a solid, especially features like contact angle and mass, has
attracted extensive research attention due to applications in liquid coating and inkjet printing (Bhushan
et al., 2009; Dong et al., 2006; Sakai et al., 2008; Son et al., 2008; Yuan & Lee, 2013). Specifically,
the steady-state thin films have been previously studied through the approach of numerical methods,
asymptotic approximations and ellipsoidal droplet approximation (Glasner & Witelski, 2003; Gomba &
Homsy, 2009; Lubarda & Talke, 2011; Mac Intyre et al., 2016).

Much of the theoretical understanding of thin films has been limited to films on homogeneous
substrates. Profiles of steady-state solutions under the action of different forms of intermolecular
potentials of homogeneous substrates have been previously investigated and described (Bertozzi et al.,
2001; Glasner & Witelski, 2003; Gomba & Homsy, 2009). In one study, Glasner & Witelski (2003)
considered an isolated steady-state droplet parametrized by uniform pressure on an infinite domain,
given by the homoclinic solution of the system. Through asymptotic matching, they showed that at
leading order, large homoclinic droplets could be well approximated by parabolic profiles. In another
study, Bertozzi et al. (2001) performed similar analysis and computations for steady-state thin films on
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finite domains. Asymptotic analysis for both the bifurcation structure and the solution profile of such
films were presented.

However, many naturally occurring surfaces are chemically heterogeneous due to contamination or
differentiated structures in biological or other contexts. Tailored chemically heterogeneous substrates
have been increasingly used for the engineering of micropatterns of thin films and applications that
require accurate dispensing and distribution of liquids on solid surfaces (Zope et al., 2001). One
example of such applications is in the design of the chemical patterns of the nozzle plate in inkjet
print heads (Bliznyuk, 2011; Kooij et al., 2012). Quantifying the characteristics of wetting layer on the
nozzle plate and designing suitable chemical patterns to control the motion of the ink are critical to
improve the printing quality (Bliznyuk, 2011; Kooij et al., 2012). Another application is microcontact
printing where a stamp is used to transfer the material onto a substrate to create a desired pattern.
Understanding equilibrium droplet shapes on chemically patterned substrates is essential to optime the
printing process (Darhuber et al., 2000). Chemically patterned substrates have also been used in the
fabrication of polymer field effect transistors where a substrate with a hydrophobic stripe is employed
to split a deposited liquid droplet (Wang et al., 2004).

Previously, Lenz & Lipowsky (1998) investigated the morphologies of different equilibrium states
of liquids on a surface that consists of hydrophilic domains in a hydrophobic matrix. By minimizing the
interfacial free energy subject to constant liquid volume, they found that the different morphologies are
determined by the liquid volume and the area fraction of the hydrophilic domains. KaSpar et al. (2016)
explored the effect of alternating hydrophobic and hydrophilic areas of a rectangular micro-arrayed
surface on the overall confinement and spillover of water droplets. They gave an estimate for the contact
angle of the droplet in terms of the height of the spherical cap / and a coefficient a that accounts for the
properties of the confining surface.

In the limit of low Reynolds number, the governing equations for a slowly varying free surface flow
of a viscous liquid coating a solid surface can be reduced to an evolution equation for the film thickness;
see, e.g. Ockendon & Ockendon (1995). The lubrication model describing film flow subject to strong
surface tension effects on a homogeneous partially wetting solid substrate is a fourth-order non-linear
parabolic differential equation (Craster & Matar, 2009; Myers, 1998; Oron et al., 1997), written here for

1D problems,
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where h(x,t) is the thickness of the film, x is the coordinate in the direction of flow and ¢ is the time.
Here, we will consider only the simple form T =Al (h) where A is the Hamaker constant and I7 (k) is
the homogeneous disjoining pressure function which characterizes the wetting properties of the fluid on
the substrate. The form of the disjoining pressure function I7(h) we will use is described in Section 2.
The Hamaker constant A determines the equilibrium contact angle for steady liquid droplets on the
substrate (see, e.g. Brasjen & Darhuber, 201 1). Numerical simulations of similar lubrication models have
been presented in Kargupta et al. (2000) and Kargupta & Sharma (2001, 2002) to inspire experimental
studies and illustrate the instability and pattern formation of thin film on chemically heterogeneous
substrates with a stepwise pattern. More systematic analytical studies using lubrication approximation
were presented in Brusch et al. (2002), Kao et al. (2006) and Thiele er al. (2003) where a spatially
dependent Hamaker coefficient A(x) was introduced in the long-wave equation. A disjoining pressure
of the form

I1(h,x) = A(x)IT(h) (1.2)
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was used to model thin films on a domain with periodic boundary conditions. Specifically, Brusch et al.
(2002) and Thiele et al. (2003) studied the effect of a smoothly patterned substrate on stationary
droplet profiles using wettability as a control parameter. The heterogeneous substrate considered was
a small-amplitude sinusoidal modulation of the form A(x) = 1 + & cos(kpx) where kp determines the
imposed heterogeneity period and § < 1 describes the amplitude of heterogeneity. The smooth spatial
variation and the assumption that § < 1 allows for the analysis of the solutions on heterogeneous
substrates through an asymptotic expansion in terms of §. By varying the amplitude and periodicity of
the chemical pattern, they identified the parameter range where the pinning mechanism emerges from
coarsening.

However, for an engineered patterned substrate, a piecewise constant A(x) would be a better
description than a sinusoidal profile. For example, micro-patterned surfaces with alternating relatively
hydrophilic and hydrophobic rectangular areas are extensively used in digital microfluidics and high-
throughput screening nanoarrays (KaSpar et al., 2016). In such applications, a stepwise Hamaker
coefficient is needed to model the chemical properties of the surfaces. Kao er al. (2006) studied the
stationary states of thin films on substrates with square-wave patterning in both one and two dimensions
in addition to those with small-amplitude sinusoidal patterning. Specifically, they considered a piecewise
constant A(x) with periodic boundary conditions, given by

1+83 3z <kx<Z 3
A(x)=’+ NS HYS T (1.3)

3 3n
1_8 7<k[)x<7’

for patterning wavenumber k, and n = 0,1 on x € [0, 27 ]. To study the bifurcation of stationary states
on substrates with such patterning, they wrote A(x) as a Fourier series. In particular, they performed
asymptotic analysis for solutions near the bifurcation point. Imperfect bifurcations were observed for
the patterning of the form (1.3). They found that the bifurcations and steady states resemble those for
sinusoidally patterned substrates. While many papers (including Brasjen & Darhuber, 2011 and Brasjen
et al., 2013) have considered thin film models with discontinuous A(x), this formally clashes with the
long-wave assumptions used in lubrication theory. However, as described in Lenz & Kumar (2007),
good solutions can still be obtained in many cases, though caution should be applied to check their
validity.

In this paper, we study the steady-state solutions of thin films on a stepwise-patterned substrate
over a range of wettability contrast. We classify the steady-state solutions that exist on such substrates
into branches. We find new branches of solutions characterizing pinned droplets that arise as a
consequence of the heterogeneity of the substrates. For each branch of solutions, we present systematic
asymptotic analysis of the steady-state profile and the structure of the bifurcation diagram. Through
asymptotic analysis and numerical simulations, we determine the dependence of steady-state thin films
on parameters such as mass, pressure and heterogeneity strength. We employ a phase-plane approach,
which allows us to perform asymptotic analysis in the limit of moderate to large heterogeneity contrast.
Increasing heterogeneity contrast has an increasing confining and pinning effect on the film droplet,
which prevents fluid film from leaking into the more hydrophobic surrounding region. To quantify
this phenomenon, we present an effective measure of the fluid leakage and show that the leakage
is inversely proportional to the heterogeneity contrast. In addition, we investigate the stability of the
steady-state solutions on heterogeneous substrates and show that the analysis derived for 1D solutions
can be extended to axisymmetric solutions and more general 2D solutions. Finally, we illustrate the
influence of chemical heterogeneity on the dynamics of thin film evolution.
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FiG. 1. Schematic diagram of a thin film on a heterogeneous substrate with stepwise chemical patterning yielding relatively
hydrophilic (A1) and hydrophobic (A > A1) regions.

2. Problem formulation

We study 1D thin films on heterogeneous substrates prescribed with a piecewise chemical patterning.
Figure 1 shows a schematic diagram of a thin film on a heterogeneous substrate with a relatively
hydrophilic region on —s < x < s surrounded by relatively hydrophobic regions on the overall domain
—L<x< L.

Building on the results of Laugesen & Pugh (2000b) that the steady-state solutions of the
homogeneous problem (1.1) are periodic functions and are symmetric with respect to local extrema,
we will focus on symmetric solutions describing single droplets. Using symmetry reduces the problem
to be on the half-domain 0 < x < L subject to homogeneous Neumann boundary conditions where the
lowest-order solutions give height profiles of half-droplets.

We consider a heterogeneous substrate with a stepwise patterning modelled by a piecewise constant
function A(x) where the jumps of A(x) need not be small. In particular, we address analysis of steady-
state solutions in the limit of moderate to large A, relative to A; in

A 0<
-y 15

’ 2.1
o @1

<
< L

Here, L is the size of the domain, s is the interface of segmentation and A; are positive constants.
For concreteness, we will normalize relative to the hydrophilic region, generally taking A; = 1 and
A, > A,. The schematic diagram in Fig. 1 shows thin film on heterogeneous substrates with such
stepwise patterning. Specifically, we consider a disjoining pressure given by a 3—4 inverse power law
function which has been used in Schwartz & Eley (1998), Oron & Bankoff (1999, 2001), Glasner &
Witelski (2003) and others,

2 3

& &

Ih) = RS (2.2)

and the overall representation of wetting effects is given by IT(h,x) = A(x)IT(h). The scaling in (2.2)
yields a finite limit for the effective contact angle of droplet solutions as ¢ — 0; see Glasner & Witelski
(2003).

We consider thin films on a finite domain as shown in Fig. 1, subject to no-flux boundary conditions
so that the total fluid mass is conserved. Two additional boundary conditions are needed—we impose
zero-meniscus (no slope) conditions, 3,2 = 0. These conditions are consistent with uniform film
solutions for the homogeneous problem and allow general solutions to be extended to periodic problems
(Laugesen & Pugh, 2000a).

As described above, for convenience, we will reduce this to the symmetric problem on the half-
domain, 0 < x < L. The evolution of thin films on chemically heterogeneous substrates of finite-length
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with chemical patterning A(x) is given by the partial differential equation for the film height h(x, 7)
(O’Brien & Schwartz, 2002; Oron et al., 1997),

ah 9 a [ - 8%h
—=—(rP=|amnx-—|), 2.3
a1 ax( ax[ (. %) ax2]) (2.52)

subject to the homogeneous Neumann boundary conditions

0. =0 83h(0t)—0 M=o 83h(Lt)—0 (2.3b)
ax 0T e T T T e T ‘

The conditions at x = 0 are symmetry conditions; the conditions at x = L, while having the same
form, are no-meniscus and no-flux conditions, where the flux is defined as J(x) = h d,p in terms of the
pressure

2
p(x, 1) = IT(h,x) — % with T (h,x) = A (h). (2.4)

The equivalence with the Neumann conditions can be seen by expanding J(L) = 0 using A’(L) = 0 and
h(L) > 0.
This problem has a monotone decreasing energy functional,

L L
E= L / AWMU + 5@?dx  where A= 1 / AQ) dx, 2.5)
A Jo L Jy

where U (h) is the potential such that % = [1(h). For I1(h) of the form (2.2), U(h) is given by

2 83

i (2.6)

Uh) = —— .
*) 2n2  3K3

A similar energy functional was used in Brusch ez al. (2002) to study heterogeneous dewetting. Equation
(2.5) reduces to the form used in Bertozzi er al. (2001) and Glasner (2003) and other papers for the
homogeneous problem with A(x) = 1. In both cases, E is monotonically decreasing with the same form
for the rate of dissipation,

dE 1 (L
—=—= [ K@prd<o, 2.7
7 A/O 0,p) 2.7)

showing that the dynamics of (2.3) follow a gradient flow. The mass of the thin film on [0, L] is
given by

L
m=/ h(x,t) dx, (2.8)
0

and is conserved by the dynamics.
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We seek solutions A(x, t) that are continuous and whose first derivative is continuous at x = s, i.e.

lim A(x, 1) = hm h(x,t) (2.9a)
X—>S
. 0h
lim —(x,1) = hm (x, 1), (2.9b)
x—s— 0X x—st 0X

and locally conserve mass across the wettability jump at x = s. These conditions yield that solutions
will have a continuous pressure (2.4) but must have a jump in the curvature at x = s, i.e.

Ph o+ Oh Ay —ADIT(h 2.10
@(S ’t)_ﬁ(s 1) = (Ay —ADII(h(s,1)). (2.10)

Steady-state solutions on homogeneous substrates have been previously analysed in Laugesen &
Pugh (2000a,b), Bertozzi et al. (2001), Glasner & Witelski (2003), Hutchinson et al. (2013), Pahlavan
et al. (2018) and many other papers. From (2.3) and (2.7), it can be seen that all positive steady-state
solutions subject to no-flux boundary conditions have uniform constant pressure, i.e. p = p. This is still
true for heterogeneous substrates where A(x) makes IT = AIT spatially dependent. It follows that the
steady-state solutions of (2.3a) subject to (2.3b) satisfy

2
—3 =AWIh) ~p. (2.11a)
h(0)=0,  h(L)=0. (2.11b)

For the homogeneous case, all steady states can be described with respect to the range of the function
I1(h); spatially uniform solutions (‘flat films’ h(x) = h) exist for any positive thickness and correspond
t0 —00 < P < Py Where p. = 27/(256¢) is the maximum of I7 (), attained at i = hoear = 4€/3.
For sufficiently large L, non-trivial steady solutions exist for 0 < p < p,,...; see Bertozzi et al. (2001).
We will see that the situation for heterogeneous substrates is more complicated.

For the heterogeneous case where A(x) is a step function with A; # A,, for a steady-state solution
to be a flat film and satisfy (2.10), the only option is to have IT (h) =0, yielding h = e.Hence, h(x) = ¢
is the only possible flat film solution on a heterogeneous substrate, with corresponding pressure p = 0.

For the stepwise A(x), the analysis of (2.11) follows from piecewise-defined autonomous phase
plane analysison 0 < x < sand s < x < L with constant A = A, for i = 1,2, respectively. From the
analysis in Bertozzi et al. (2001), for the phase plane for (2.11a) w1th A=1,for0 < p < pp. then
the problem has two fixed points, a hyperbolic saddle i = H ; (with Hy; < hy,) and an elliptic centre
point h = H; (With H_; > hy,., ), each satisfying

(2.12)

There is a homoclinic orbit that passes through the saddle point, defining a single maximal-amplitude
droplet on —00 < x < 00. This solution has H; as its global minimum and its corresponding maximum

H,,x; 1s obtained from a first integral, as in Bert0221 et al. (2001). In the phase plane, the homoclinic
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(a) (b)

FiG. 2. (a) Phase plane for the homogeneous substrate case, with parameters p = 0.2,& = 0.1, showing trajectories for the
homoclinic orbit (solid black curve), a periodic solution (red dotted curve) and a solution that lies outside of the homoclinic orbit
(dashed blue curve). (b) Profiles of the three steady-state solutions corresponding to the trajectories shown in (a).

orbit encloses a continuous family of periodic solutions, each having its minimum in the range H; <
himin < H,; and corresponding maximum in H,; < hy, < Hyoy e

Figure 2(a) illustrates the trajectories in the phase plane: the homoclinic orbit with &, — 0 as
h— Hg; (solid black curve), a periodic solution bounded inside the homoclinic orbit (red dotted curve)
and a typical solution lying entirely outside of the homoclinic orbit with |A,| — oo and 2 — 0 at finite
x (dashed blue curve) (see also Perazzo er al., 2017). Figure 2(b) shows the profiles corresponding to the
three trajectories. On homogeneous substrates, only trajectories that lie inside of the homoclinic orbit
yield acceptable steady solutions of (2.3). In this paper, we will show that trajectories that lie outside of
the homoclinic orbit will be used to construct steady states of thin films on heterogeneous substrates.

Figure 3(a) shows the numerically computed bifurcation diagram for the film mass vs. the maximum
and minimum film thickness, denoted by &, and A, for steady solutions on a homogeneous substrate
with length L = 3. This type of bifurcation diagram has been previously studied in detail by Bertozzi
et al. (2001). Continuous families of non-trivial (periodic) solutions branch-off from the set of flat films
(represented by the diagonal line in Fig. 3(a)) at pairs of pitchfork bifurcation points, h = ﬁk’i. The
number of loops of solutions, N, depends on the domain size L and the derivative of the disjoining
pressure through

m'(h) = —k*n*/L*, k=12,---,N; (2.13)

see Bertozzi et al. (2001). For the (g,L) used here, N = 2 yielding two loops corresponding to half-
and whole-droplets on [0, L]. Figure 3(b) shows the profiles of two droplet solutions with mass m = 1.1
centred at opposite ends of the domain. Because of the reflection symmetry under x — L — x for the
homogeneous problem, both of these solutions are given by the same state from the bifurcation diagram.

Figure 3(c) shows the same type of bifurcation diagram as Fig. 3(a), but for thin films on a stepwise-
patterned substrate with A; = 1, A, = 1.1 and s = L/2. The spatial dependence of this disjoining
pressure breaks the reflection symmetry and steady-state droplets centred at x = 0 and x = L with the
same mass now differ in profiles, as illustrated in Fig. 3(d). Compared with the homogeneous case, this
symmetry-breaking for the heterogeneous case replaces the pitchfork points with imperfect bifurcations,
as seen in Kao et al. (2006), and yields more complicated loop structures. The outer loops represent
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h(x)

0.3 | 1

0.1} 4

]

0.4 0.8 1.2 1.6 2 0 1 2
m

FI1G. 3. Steady solutions with & = 0.1 on a domain of length L = 3: (a) Bifurcation diagram for m vs. hyj, and hmax for solutions
on a homogeneous substrate, A(x) = 1. (b) Profiles of two steady-state droplets from (a) with m = 1.1 centred atx = 0 and x = L.
(c) Bifurcation diagram for m vs. hpyin, hmax for steady-state solutions on a stepwise-patterned substrate with A} = 1, Ap = 1.1
and s = L/2. (d) The two distinct droplet profiles for the heterogeneous problem, centred at x = 0 and x = L both with mass
m = 1.1. The difference in the maximum film thicknesses is highlighted by the two dashed lines. (e) Profiles of three distinct
non-trivial inner loop steady-state solutions on a stepwise-patterned substrate, all with mass m = 0.6. In (a) and (c), each branch
is labelled ‘s’ or ‘u’ to indicate the stability. The stability of branches in (c) will be discussed in detail in Section 6.

020Z 1890100 Z| Uo Jasn AjisiaAiun ana Aq €6 161 6S/9S0BEXYABWEWI/SE0 L 0L /I0p/3|o1e-00uBApE/jBWEBWI/WOD dNO"dIWSpEI.//:Sd)Y WO} POPEOjUMO(



DROPLETS ON HETEROGENEOUS SUBSTRATES 9

branches of solutions with maxima at either x = 0 or x = L, while the inner loops give solutions with
interior critical points. Figure 3(e) shows the profile of three distinct steady-state solutions on the inner
loop of Fig. 3(c) with the same mass, m = 0.6.

For convenience, we focus on solutions that are monotone decreasing, describing a half-droplet
profile on x € [0, L] (which can be symmetrically extended to give a single whole drop on [—L, L], as in
Fig. 1). We can write the first integral of (2.11a) on x € [0, s] and x € (s,L] as

@__ V2R (h) 0<x<s, (2.142)
dc | V2R () s <x<L, '
where
Ry(h) =A(Uh) — Ulhyy)) —p(h — by, (2.14b)

Ry(h) = Ay(U(h) — Ulhyyin)) — p(h — i)

Equation (2.14a) along with the condition (2.9b) yields a condition relating the film thickness at the
heterogeneity interface, x = s, to the extrema for steady states on stepwise-patterned substrates with
A(x) of the form (2.1),

A} = APU(S)) + Py — hoin) = A U (Bp) — Aa Ul (2.15)

which we will use for later analysis. Setting both As to A; and using A

first integral equation for f,,, = H .y ;.

= Hy; reduce (2.15) to the

'min

3. Classification of branches in the bifurcation diagram in one dimension

For the remainder of the article, we use a different form of the bifurcation diagram that facilitates
describing the effects due to heterogeneous wettability. Figure 4 shows numerically computed bifurca-
tion diagrams of p vs. h,,, for steady states on homogeneous and heterogeneous substrates on a domain
of length L = 3 with ¢ = 0.1. Here, in the homogeneous case, all flat films are represented by the graph
of the disjoining pressure, p = I1(h,,) (dotted curve). The branch of non-trivial solutions bifurcating
from the flat films in Fig. 4(a) corresponds to the outer loop from Fig. 3(a). The inset plot shows that
the branch bifurcates slightly below p ...

For the heterogeneous case, we consider a typical problem withA, = 5,5 = L/2 = 1.5 and similarly
plot solutions corresponding to the analogous outer loop from Fig. 3(c). We observe that the family of
solutions is continuous and smooth and has fold points separating the curve into six segments; see
Fig. 4(b). We will analyse the dependence of solutions in each of these segments with respect to limits
for £ and A,. In Section 3, we will use bifurcation diagrams for p vs. k., instead of the diagram m vs.
Reins Pmax Shown in Section 2, to classify and describe the different types of steady-state solutions for
two reasons. First, each family of steady-state solutions corresponds to one segment of the bifurcation
curve p vs. h,. in the limit of small &, as mentioned above. Second, this form of diagram shows the
explicit dependence on the pressure p and will be more direct for illustrating the asymptotic results
derived for each type of steady state parametrized by p.

Although there is no more flat film solution except for h(x) = ¢ with p = 0 for A; # A,, as we
will show later in Section 3.1, branches 1 and 6 yield nearly flat films that are perturbations of the flat
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]! Nontrivial solution Heterogezlleous —_—
: Flat film ------ Flat film (homogeneous) ------
(
: 16 4
' i 5
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I I
] 3 ;
Eaf ! BT
< | . 3
r e 1
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] . T ) g e,
(| I N St T el 1 e e
! 1
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0 _ 1 0 _ 1
p p
(a) (b)

FIG. 4. Bifurcation diagram for p vs. hmax for steady states with ¢ = 0.1 and L = 3 on (a) a homogeneous substrate, A(x) = 1, (b)
on a heterogeneous substrate with A} = 1, A =5, s = 1.5. The solid blue curve represents nontrivial steady-state solutions. The
dashed black curve in (a) represents two branches of flat film solutions that merge together with the nontrivial branch at p = pmax.
In both (a) and (b), the inset plot shows the bifurcation curve zoomed into a small neighbourhood of the maximum pressure. The
red dots in the inset plot of (a) denote the bifurcation points.

film solutions. Figure 4(b) includes the graph of IT(h,,,,) for reference, to show that the heterogeneous
bifurcation diagram approaches that curve for the limits of large and small film thickness. From the
inset, it is notable that the branch extends to a value of p slightly greater than p_ ...

In the following subsections, we will present our analysis and computations of these steady-
state solutions by branch. For each branch, we develop an asymptotic prediction for the steady-state
profile and show that the leading-order solution for each branch depends on different parameters in
(L,s,Aq,A,), which describe the chemical heterogeneity of the substrates.

Based on the structure of the diagram shown in Fig. 4(b), we divide the steady-state solutions
that could exist on a heterogeneous substrate with patterning A(x) of the form (2.1) into six different
connected branches, as follows.

e Branch 1: small-thickness films
e Branch 2: small-width droplets
e Branch 3: pinned droplets

e Branch 4: large-width droplets
e Branch 5: confined droplets

e Branch 6: large-thickness films

Branches 1 and 6 are perturbations of homogeneous flat films while branches 2, 4 and 5 correspond
to non-trivial droplet solutions. And in particular, branch 3 is an entirely new branch of solutions
characterizing a class of ‘pinned’ drops that emerges due to the presence of chemical heterogeneity.

3.1 Small-thickness and large-thickness nearly flat films

In this subsection, we study two types of solutions that are perturbations of flat films. First, we study
branch 1, which gives steady-state solutions with mean thickness 2 = O(¢). Two examples of steady-
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Fi1G. 5. Branch 1, small-thickness film solutions, compute_d with parameters A] = 1, A = 2,5 = 1.5, ¢ = 0.1. (a) A numerical
solution (blue) with p = 0.387 having mean thickness & > ¢ con}pared with approximate form (3.3) (dotted curves). (b) A
computed solution (blue) with p = —0.518 yielding mean thickness 4 < ¢ also compared with (3.3).

state profiles of this type of small-thickness films are given in Fig. 5. Both solutions are characterized
by nearly flat films away from the patterning interface x = s and a rapid change in the profile in a small
neighbourhood of the interface x = s. The rapid change in h(x) near the interface is due to the large
change in disjoining pressure for films of thickness 7 = O(¢). The disjoining pressure /7 (%) increases
rapidly for 4 in the range 0 < h < 4¢/3 in the limit ¢ — 0. The mean film thickness of branch 1
solutions falls within this range.

These solutions can be understood using matched asymptotics for ¢ — 0. Away from x = s, the
second derivative in (2.11a) can be neglected and the outer solutions to all orders are given by the
respective saddle points,

H 0<x<s
h (x sl TEEEE 3.1
our () Hs’z s<x<L, G-
where
2_
e p 3
Hs,i =&+ A_ + 0(8 ) (32)

1

with p = O(1). In an O(e) neighbourhood of x = s*, the solution satisfies a non-linear boundary layer
equation (balancing the disjoining pressure and the second derivative). However, rather than pursuing
this approach to the analysis, we can take advantage of the fact that the range of the solution is small,
Bax — hiin = O(£2), to estimate the local behaviour from a linearized analysis.

Linearizing (2.11a) about each saddle yields the approximate form of the solution as

hooy ~ 1 s F CreVATHD (=)0 < x s, (33)
RN . )
H, + Cye VAT H2) (=9 ¢ o x <L,
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F1G. 6. Branch 6, thick film solutions, computed for parameters ¢ = 0.1, A1 = 1, A = 2, L = 3, s = 1.5. (a) A numerically
computed _solution (blue) compared with the asymptotic estimates (3.5) (dotted) at pressure p = 0.0135. (b) The computed mean
thickness % (blue) as a function of p compared with the asymptotic prediction (3.7) (red dots).

with constants C;, C, to be determined from conditions (2.9a) and (2.9b). Solving for C; shows that for
AL Ay =0(1), C; = O(e?p) so C; < Hy; as long as p < &' For A| = O(1) and Ay — 00, similarly
C, = 0(e’p) < Hy; and C, = O (ep//A,) < H, forp < 7!,

We note that for p > 0, the saddle points are related by H, ; > H, yielding monotone decreasing
profiles; this inequality is reversed for p < 0 (hence, the monotone increasing solution in Fig. 5(b)) with
the flat-film solution & = ¢ being the transition state at p = 0.

Figure 5(a) shows a small-thickness solution with mean thickness i > & (corresponding to p > 0),
where we define i = fOL hdx/L (specifically p = 0.387 corresponds to m = 0.31 and m/L > ¢ for
L = 3). Figure 5(b) shows the profile for another branch 1 solution, with p < 0 yielding & < &. In
Fig. 5(a and b), the boundary layer near x = s can be well approximated by the estimate (3.3).

For p < 0, equation (2.12) has only one root with H;; < ¢ and for p — —oo0 its leading order
behaviour is H; ~ &3/ 4(Ai /IphY/4. Consequently the solutions on branch 1 in this limit can still be
approximated by the smoothed step profile (3.3), but now the range of the solutions is A, — by, =
O(|&3/p|'/*) and the width of the interior transition layer is O(|p|~>/8).

The limit p — 0% also describes another class of solutions, characterized by nearly-flat films with
large thickness, corresponding to branch 6 in Figure 4(b). Unlike thin nearly-flat solutions, which have
a boundary layer near x = s and approach a step function in the limit ¢ — 0, this class of thick solutions
has small amplitude slowly-varying deviations from the mean film thickness. An example of a steady-
state profile on this branch is shown in Figure 6(a).

We write h = m/L in terms of the mass of the solution, m = fOL hdx. For h — oo, we write the
solution as h(x) ~ h + oh (x) + ozhz (x) and we will show that it is convenient to define o = I7(h).
From (2.2), it is clear that the limit # — oo for any fixed ¢ is equivalent to o — 0.

Substituting this expansion into equation (2.11a) and expanding I7 (%) to O(5), we have

ohy,, = 0A, +cA I (hhy — p, hy,(0) =0, 0<x<s, (3.42)

oh, =0A, + JAZH’(l_z)hl - D, hy, (L) =0, s<x<L. (3.4b)
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DROPLETS ON HETEROGENEOUS SUBSTRATES 13

To balance the equation at O(o'), we choose p = O(o’) by writing p ~ o (py+op;) for some p, = O(1).
As m — oo, IT'(h) < 0. Solving for hi(x)on0 < x < sands < x < L, respectively, we obtain to O(o)

h+ ) | C, cos(rlx)+‘%) 0<x<s,
1

h(x) ~ (3.5)

h+ I (h) Czcos(rz(L—x))w%) s<x<L,
2

where r; = |/ —A 1T’ (h). To determine constants C, and C,, we use conditions (2.9a) and (2.9b).

Consequently, we find that C; and C, are both linear in p,, C; = pOC’ and C, = poéz. The definition
of the mean thickness 7 yields the condition fOL h;(x) dx = 0, which we can solve for p,, to obtain

_ (h)L
P i BT . (3.6)
i + L + IT sin(r;s) + ZT sin(ry (L — )

Simplifying (3.6) further, in the limit of large A, the pressure can be written as

Y PVl | i WP (37
P=\0e ™o )\ e ' '

This result being in terms of the weighted average of the wetting parameters A; with respect to domain
lengths can be interpreted as giving an effective overall leading-order disjoining pressure IT for the
nearly flat film homogenized at the mean level i: IT ~ AIT (k). The higher-order terms in (3.7) contain
factors of (A; — A,) and s(L — s) so if the problem was on a homogeneous substrate (via A, = A; or
s = 0 or s = L), then this trivially reduces to the disjoining pressure for a flat film.

Figure 6(a) shows a typical branch 6 thick film solution computed at pressure p = 0.0135. The
asymptotic estimate given by (3.5) agrees very well with the numerical solution, which suggests that p
is inversely proportional to m? for large mass. For fixed large mass, p scales linearly in both A; and A,.
Figure 6(b) shows & for numerically computed branch 6 solutions over a range of p. The comparison
with the analytical predictions show that (3.7) is accurate for the limit of large /.

3.2 Large-width and confined droplets

In this subsection, we study branches 4 and 5, which give two families of droplet-type solutions that are
similar to droplet solutions on homogeneous substrates. Droplets are states where most of the fluid is
concentrated within a region of limited width (or radius) and is surrounded by nearly uniform very thin
films with thickness 2 = O(¢) set by the disjoining pressure.

First, we discuss branch 4, which describes a class of large-width droplets with width s < w < L.
On the droplet core, we assume & = O(1) on 0 < x < w, and h = O(¢) outside. One example of such a
steady-state solution is shown by the blue curve in Fig. 7. We show that in the limit ¢ — 0, the profiles
for these droplets can be approximated to leading order by truncations of the homoclinic droplet on the
homogeneous substrate with A(x) = A,.

To obtain an asymptotic estimate of the droplet’s maximum (h,,, = O(1)), we use (2.15) in the
limit ¢ — 0. Since the wetting interface, x = s, occurs within the droplet’s core, we have h(s) = O(1).
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F1G. 7. Profiles of two droplet solutions with mass m = 35.2 on the domain L = 6 for a disjoining pressure with A; = 1, A = 50,
L =06,s=3,&=0.1. A branch 4 large-width droplet, with s < w < L, is shown by the blue curve for p = 0.493 and a branch 5
confined droplet, with w = L, at pressure p = 0.809 is given by the black curve.

For h = O(1), equation (2.6) gives U(h) = 0(d). Using this for A, and h(s) with k_;, ~ €, equation
(2.15) reduces to

ﬁhmax = _AZ U(hmm) + 0(8)9 (38)

which gives the inverse dependence on the pressure,

_4h + O(e). (3.9)

max -

P

Note that to leading order this matches H, >, the maximum of the homoclinic droplet on a
homogeneous substrate with A(x) = A,, as shown in Glasner & Witelski (2003). Since A, > Aj,
this &, describes a droplet larger than the homoclinic for a homogeneous substrate with A = A;.

For h = O(1), the disjoining pressure scales as I1(h) = 0(£2), so to leading order (2.11) on the
droplet core reduces to iné' = —p, yielding the parabolic profile

h(x) = h, — %ﬁxz + O(¢). (3.10)

The width can then be estimated from i(w) = O(¢g) as

A (3.11)
w 3}_}2 s .

similar to results in Glasner & Witelski (2003). In summary, in the limit ¢ — 0, the leading-order profile
of a large-width droplet on [0, L] is given by

=2 —spx 0<x<w,
hoy ~ 1% 2 (.12)
e w<x<L.
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DROPLETS ON HETEROGENEOUS SUBSTRATES 15

h

FiG. 8. Schematic of the lower half of the phase plane showing the monotone decreasing portions of the homoclinic orbits for
homogeneous substrates, A(x) = A (blue) and A(x) = A, (red) and a branch 4 heterogeneous solution (black), for parameter
values A] = 1,Ap =2,L =6,5s =3,p =0.211, ¢ = 0.1. The value of A(x) switches across the line & = h(s), the ‘inactive’
portions of the homoclinics are drawn with dashed lines.

The even extension of this profile gives a 2L-periodic solution and hence its minimum must satisfy
hmin > HS,Z'

In the phase plane, branch 4 solutions lie inside the A,-homogeneous homoclinic orbit; see Fig. 8.
This result is based on two observations for the segments on x < s and x > s. For x > s (where h(x) <
h(s)), this follows directly from the solution’s minimum being above the saddle point, A, > H,. For
x < s (where h(x) > h(s)), the trajectory lies outside the A;-homogeneous homoclinic orbit since it
starts from h,,. > H,,, |- To see that this portion lies within the region in the phase plane bounded by
the A,-homoclinic, we use (2.14a) noting that R, (h(s)) = R;(h(s)) by (2.9b) and R,(h) > R, (h) for
h > h(s) when A, > A, hence hy,, < H .\ 5.

Branch 4 droplet solutions are defined by their widths exceeding the wetting interface position,
w > s, but not filling the whole domain, w < L. Using (3.11), this yields the range of pressures for

branch 4 as \/A,/(3L?) < p < /A,/(3s%). At the endpoints, this branch connects to other branches
of solutions: at [33 4 = VAy/ (3s2) with droplets pinned at the wetting interface (called branch 3, to be

described in the next section) and at 1_72,5 = /A, /(3L?) with droplets limited by the size of the domain
(called branch 5, described below). Figure 9 gives the bifurcation diagram for p vs. h,,., showing good
agreement of the numerically computed results and compared with the asymptotic predictions. In the
derivation, we assumed A;,A, = O(1); it can be shown that the profile of branch 4 solutions is still
described by (3.12) for A; = 1 fixed and A, — o0, as suggested by Fig. 9(b).

These solutions have mass and width both decreasing with increasing pressure. For ¢ — 0, the mass
of the droplet core is

W A3
m~ [ hdx~ . (3.13)
/o 9/3p2

Note the film mass mj’s ~ /34, L?/9 corresponding to pj’s is the maximum possible mass for a
droplet-type solution with domain-size L. Above that mass, only nearly flat film solutions (branch 6)
exist. The scaling of this critical mass with A, shows the importance of the heterogeneous disjoining
pressure in controlling droplet structure.
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F1G. 9. Bifurcation diagram for p vs. hmax computed numerically and compared with the asymptotic prediction of branch 4 (a)
in the limit ¢ — 0, with parameters A| = 1, Ay = 1.5, ¢ = 0.001. (b) In the limit A — oo, with parameters A| = 1, A, = 50,
& = 0.01. In both (a) and (b), L = 6, s = 3. The blue solid curve represents the numerically computed bifurcation curve. The red
dashed and dotted curve represents the asymptotic prediction given by (3.9).

Another important physical property characterizing fluid droplets is the contact angle or angle of
inclination at the edge of support. The small aspect ratio assumption essential to lubrication theory
justifies use of the small angle approximation, tan6 ~ 6, for this context. Consequently, the contact
angle scales the slope of the droplet profile at the edge of the core, with the constant of proportionality
being the aspect ratio. We see that the effective contact angle of all branch 4 droplets is independent of

the pressure,
/ - AZ
0 < |W(w)| ~pw = 3 (3.14)

again indicating the controlling influence of the disjoining pressure, as in Glasner & Witelski (2003).
It was previously shown in Glasner & Witelski (2003) that large droplets on a homogeneous substrate
with A = 1 have contact angle given by |4’ (w)| ~ 1/ V3, in agreement with (3.14) when A; = A, = 1.

Branch 5 describes large droplets confined by the domain size so the droplet width is always w = L.
This set of solutions provides a transition between the large-thickness nearly flat films (branch 6) and
the large-width droplets (branch 4) described above. An example of a solution on branch 5 is shown by
the black curve in Fig. 7.

We first investigate the solutions in the limit ¢ — 0 for A;,A, = O(1). As with branch 4, on the
core region (0 < x < L), branch 5 droplets have # = O(1) and the influence of the disjoining pressure
can be neglected to yield a parabolic profile, h(x) = h,, — %ﬁxz + O(e). Here, using w = L gives the
drop’s maximum as scaling linearly with the pressure,

o = %pLZ + 0(e). (3.15)
To obtain an asymptotic estimate of the minimum film thickness &
O(¢). At leading order, the equation reduces to

min> We use (2.15) and assume A ;, =

1
~ _1321}, (3.16)

max 2

— AyU(hy,;) = ph

020Z 1890100 Z| Uo Jasn AjisiaAiun ana Aq €6 161 6S/9S0BEXYABWEWI/SE0 L 0L /I0p/3|o1e-00uBApE/jBWEBWI/WOD dNO"dIWSpEI.//:Sd)Y WO} POPEOjUMO(



DROPLETS ON HETEROGENEOUS SUBSTRATES 17

0.05 T . . T
2.5 - = ! Numerical
Numerical : Asymptotic - - = -
PL? e 0.04|
2+ ]
0.03
1.5 P
% Branch 5 £
£ <
< | 0.02
0.5 0.01
0~ - . 0 . . . . :
0 0.05 0.1 0.15 0.2 0.25 0 0.02 0.04 0.06 0.08 0.1
P P
(a) (b)

FiG. 10. Properties of branch 5 large drop solutions computed with parameter values A;, Ap = 1.5, L =6, s = 3, ¢ = 0.001.
(a) Branch 5 highlighted in the bifurcation diagram for p vs. hmax computed numerically (blue solid curve) and compared with
the asymptotic estimate (3.15) (red dotted curve) in the limit of small €. (b) The minimum, A,;, as a function of p computed
numerically (blue solid curve) and the asymptotic result ((3.17), (3.18)) (red dotted curve).

similarly to (3.8). Note that the potential function U (k) has a global minimum at & = ¢ with U(g) =

—1/6. For (3.16) to have a real solution, we need ﬁﬁzﬁ < é. This upper bound on the pressure on

branch 5 coincides with the lower bound for the pressure on branch 4 found above, 13?4"5 = /A,/(3L?).
With U(h) of the form (2.6), (3.16) can be written as a cubic polynomial equation,

1, 1, , € pAL?
=y -y = th = , =,
y y z wi y h z 24,

'min

(3.17)

The solution for A, on 0 < z < 1/6 is the smaller of the two positive roots for y, given by

1 1+i/3  1-iV3 . Lo\
y_z(l— >~ ) with a_(1—122+121—z/6) ,  (3.18)

where o is complex-valued yielding y ~ 1 forz — 1/6 and y ~ /2z as z — 0.

Fory = O(1), it is clear that h,;, = ¢/y = O(¢), consistent with our earlier assumption. This result
holds for solutions on branch 5 with the pressure bounded away from zero, with p < [7:’5. Branch 6
is approached as p — 0. Figure 10(a and b) shows the plots for p vs. h_,, and p vs. h;, computed
numerically and asymptotically in the limit of small ¢ for A;,A, = O(1).

A uniform solution for the droplet can be constructed using matched asymptotics (Kevorkian &
Cole, 1996) in the limit of ¢ — 0 with the parabolic profile, (3.10) with (3.15), being the outer solution
on 0 < x < L. To leading order, this outer solution gives the mass and effective contact angle of the
droplet as

1
m~ gﬁLS, 0 o |W(L)| ~ pL. (3.19)
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FiG. 11. Typical pinned droplet branch 3 solutions for A| = 1,A; = 50, s = 3, L = 6 at several values of p.

Note that for p — 0, the vanishing contact angle is consistent with the branch of droplets transitioning
to become the branch of thick films (branch 6) with &, > O(e).

To satisfy the boundary condition #'(L) = 0 at the edge of the domain, the solution must have a
corner layer to give a rapid transition from the finite contact angle (3.19). The local structure for ¢ — 0
will actually be a triple deck (Murdock, 1999) with an inner solution of the form & = ¢H(X) with
X = (x — L) /¢ satistying

CH _ 4 - p (3.20)
= — - — — &p, .
X2 " H H) ?

nested within an intermediate layer i = 2/ 3SHX) with X = (x — L) /e'/3 satisfying

d’H A gl/3 .
E:#}(l— - )—p. (3.21)

From (3.21), the inflection point will occur in the intermediate layer, with A ~ (82A2 /p)'/3; this could be
used to obtain a refined estimate of the contact angle. We will not go into the details of this construction
here. Note that when h;, = O(¢?/?) the triple deck should reduce to just the intermediate layer and
give an estimate for the lower bound on p where the above arguments apply.

3.3 Pinned droplets

Solutions on branch 3 are droplets with width pinned by the wetting heterogeneity, w ~ s, and h = O(¢)
for x > s. Examples of branch 3 profiles for several values of the pressure are shown in Fig. 11. This
branch arises as a consequence of the chemical heterogeneity of the substrate. These solutions have
several features in common with the confined droplets from branch 5, differences stem from whether
the width is pinned by boundary conditions or the wetting contrast. To develop an asymptotic prediction
for this type of solutions, we consider the steady state in the limits ¢ — 0 and A, — 0.
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DROPLETS ON HETEROGENEOUS SUBSTRATES 19

We consider the solution in the limit ¢ — 0 with fixed A;,A, = O(1). On 0 < x < s, the solution
will satisfy the equation

d*h &4, )

S=—s(1-7)-p 3.2
dx? h3 ( P (3-22)
Similar to branch 5 solutions, the disjoining pressure can be neglected at O(1) and O(e) to yield a
parabolic profile for the droplet core, (3.10). Since the droplet has width w ~ s, to leading order, the

maximum is given by A, ~ % ps? and to O(e) the solution can be written as

l— 22
h(x) ~ 2p(s X ) +€C on0d<x<s. (3.23)

Since the leading-order term in this outer solution vanishes as x — s~, a boundary layer is needed to
prevent the divergence of the disjoining pressure contribution there. The structure of inner solution at
x = s~ follows similarly to the corner layer at x = L for confined drops in the previous section except
here the coefficient on the disjoining pressure term will be A; and p will be shown to be O(1) on the
whole branch of solutions.

Using (2.15) with h,. = O(1) and h_;, ~ &, at leading order, we get a cubic equation for the
thickness at the wetting interface,

Ay 1-2.2
— Lz + =
U(h(s)) = “o T aPs (3.24)
Ay — A

with h(s) being the real positive root with A(s) > &. Similarly to (3.17), such a solution will exist only
if —1/6 < U(h(s)) < 0, yielding a condition on the range of pressures for branch 3,

[A [A
Lop< 22, (3.25)
352 3s

where the upper bound matches ﬁ;‘, 4 for branch 4 solutions, found in Section 3.2. While the maximum
height for these drops scales linearly with the pressure p, we will see that the contact angle is a bit more
complicated to interpret.

To obtain information about the structure of the solution at the contact line, we re-examine the
solution in the limit of A, — oo. Let § = 1/A,, then we can write equation (2.11a) on s < x < L as

d*h
§— = I (h) — 8p. 3.26
72 (h) —dp (3.26)

For 6 — O this is a singularly perturbed problem that can be solved using the method of matched
asymptotic expansions in terms of an outer solution and a boundary layer of width O(8'/?). The
boundary conditions, (2.9) and (2.11b),, determine that the boundary layer must be at x = st. The
outer solution of (3.26) for s < x < L is a constant to all orders,

h(x) = & + 882p + 0(8%); (3.27)
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20 W. LIU AND T. P. WITELSKI

this is the § — 0 expansion of the saddle point H 5, (3.2). Hence, apart from exponentially small terms,
the solution’s minimum is /., ~ H ;.

The form of the inner solution in the boundary layer is & = h(X) where & = (x — ) /812 and (3.26)
becomes

d?h

5= M (h) — 8p. (3.28)

The inner solution must match (3.27) for X — oo and satisfy (2.9) at x = 0. Noting that for A, — oo,
hpax = O(1) and h (s7) = O(1) from (2.14a),, there may be concern that the form of R, (h) suggests
that h,(sT) = O(8~1/2). However, from (2.9b), it must be the case that h (s*) = h (s7) = O(1);
applied to R,, this forces U(h) — U(hy;,) = 0(8) Consequently, the expansion of the inner solution
must be h(x) =¢e+8Y 2h (X) + O(8) where h1 satisfies the linearized equation, h1 =1IT (e)hl To
satisfy matching, this term must be an exponential decay, l(x) = Cye™ /¢ and overall

h(x) ~ & + 8'2C,e /D gy L. (3.29)

To determine the C, coefficient, we re-write (3.24) as

1 1022

—z + 50p°s
U(h(s)) = —4—2—— 3.30
Uths) = =55 (3.30)

and plug in A(s) ~ ¢ + 81/2C2. Expanding for § — 0, we get

€ A
h(s) ~ & + ——=,/p*s? — L. 331
(5) K p 3 (3.3

This result can also be obtained as the leading-order approximation from solving (3.30) as a cubic
equation as was done with (3.17). Figure 12(a) shows numerically computed values and the asymptotics
for h(s) — & compared with the asymptotic approximation given by (3.31) for large A,.

Using the asymptotic prediction (3.31), we can also derive /' (s), which represents the contact angle
of this class of droplets in the limit of large A,. On the A, region [0, s], as x — s, using (2.14a), we
have

(3.32)

max) °

%h/ ()2 = A U(h(s)) — ph(s) + ph_.. — A U(h

Substituting (3.31) and A, ~ %ﬁsz into (3.32), we obtain

A A
Ty — — 522 L
h(s) = p*s 3 (1 + 2A2) + O0(¢e) + O(g/A,). (3.33)

This shows how the limiting contact angle is approached as the wettability ratio, A, /A, is increased;
see Fig. 12(b). We note that this value is lowered by wettability effects (as represented by the A;/3
term) relative to the contact angle of large drops (3.14) or confined drops (3.19) where the locally
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FiG. 12. Properties of branch 3 pinned droplet solutions computed with parameter values A} = 1, L = 6, s = 3, ¢ = 0.1. (a)

Comparison of i(s) — & computed numerically with p = 0.292 (blue) and from the asymptotic approximation (3.31) (red dots) for
large A, plotted on log scale. (b) The contact angle | (s)| vs. A with fixed pressure p = 0.22, plotted on log scale, the numerical
result (blue) compared with the asymptotic prediction (3.33) (red dots).
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FiG. 13. Small and pinned droplets. (a) The bifurcation diagram for p vs. imax highlighting branches 2 and 3. The solid blue curve
gives numerical results. The black and red dotted curves represent the asymptotic prediction of smax for branch 2 and branch 3
solutions, respectively, in the limit ¢ — 0, with parameters A; = 1, A = 1.5, L = 6, s = 3, ¢ = 0.001. (b) Profile of a steady
state on branch 2, characterized by a droplet on [0, s] and nearly uniform thin film on [s, L].

homogeneous (A,) wetting properties or the boundary conditions, respectively, set the contact angle. At
the other edge of the pressure-range for this branch, the vanishing contact angle predicted by (3.33) is
lower than what would be expected for small droplets (|4, | ~ /A /3) because in this limit, the pinning
effect is weaker and the effective width decreases from the position of the wetting heterogeneity, w < s.

The asymptotic prediction A, ~ % ps?, represented by the red dotted curve in Fig. 13 is compared
with the numerically computed bifurcation curve. We observe that the leading-order asymptotic
prediction agrees well with the numerical results.
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3.4 Small-width droplets

Finally, we conclude with branch 2, whose solutions combine features from both droplets and nearly
flat films. This branch describes small droplets with an effective width smaller than the size of the
hydrophilic domain, w < s, and a surrounding nearly flat film that covers the remainder of the domain;
see Fig. 13(b).

Branch 2 folds back from branch 1 in Fig. 4(b) giving droplets whose cores completely reside in the
A, region. Compared with branch 1 solutions which are thin, nearly flat films over the entire domain, in
the outer A; and A, regions and a boundary layer near x = s, solutions on branch 2 are characterized by
larger mass so that droplets could form on the A; region, but not so large as to yield branch 3 or 4 type
droplets that fill or extend beyond the A; region (having widths w > s). This class of solutions has the
smallest mass possible for droplets centred at x = 0.

We construct the solution in the limit A, — oo with A fixed. On the A, region, the same matched
asymptotics used for branch 3, (3.26) and (3.28), similarly yields the solution as (3.27) and (3.29) with
h(s) = & + O(81/?), but we must use a different argument to determine C,.

To find C, in (3.29), we consider the steady state on the A region. To leading order as § — 0, the
steady-state problem for 4 ~ h,(x) on 0 < x < s is given by

d’h }
?20 = A I(hy) — p (3.34a)
00 =0,  hy(s) =e. (3.34b)

Noting that the boundary condition /y(s) = ¢ is less than the saddle point & = H, ,, the trajectory
for hy(x) must lie outside the A;-homoclinic orbit in the phase plane. Since the solution is monotone
decreasing with 2(0) = O(1), there must be a point x; with 0 < x; < s where h(x,) = Hg ;. This will
be a non-stationary inflection point of the solution. Linearizing (3.34a) about H ; and using ¢ < 1 the
solution on x; < x < s can be approximated by

h(x) ~ [—]S’1 — Cle\/Aln/(Hs,l) (X—S)' (3.35)
Applying boundary conditions (2.9) to (3.35) and (3.29) yields

H, ¢ /AT (Hy, — )

C = , C, = (3.36)
Y eV ATH, ) + 1 2 oo ATH,) + 1
If we take ¢ — 0 and § — O, to leading order we get C, ~ % and thus
&2p
D
h(s) ~ &+ —— (3.37)

\/AIAZ-

This resembles the H, saddle value with an effective wetting coefficient given by the geometric mean
of A and A, and remains less than H, | ~ ¢ + e2p/A, since A, > A,.
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FiG. 14. Details for a branch 2 solution computed with parameters L = 6, s = 3, A} = 1, Ay = 50, ¢ = 0.1, p = 0.467. (a)
Comparison of the numerical solution (blue) on the heterogeneous substrate with its corresponding A1-homogeneous homoclinic
(red dots) with the same pressure. (b) Comparison of the numerically computed steady-state (blue) and the approximations
((3.35),(3.29)) for the structure near the interface x = s (red, black dots).

Noting (3.37) and (3.27) motivates writing (2.15) as
Al U(h(s)) +ﬁhmax = I_jhmin +A1 U(hmax) +A2 (U(h(s)) - U(hmin)) ’ (3.38)

where if h,. = O(1) then three terms on the right are each O(e) or smaller. Consequently balancing
terms on the left, at leading order, we get h_,, ~ A,/(6p) for ¢ — 0. This is the leading-order
approximation of the maximum film thickness of the A;-homoclinic (which can be obtained by solving
R, (H ;) = 0). This suggests that as A, — 00, the droplet core on 0 < x < x; < s can be approximated
to leading order by the A;-homoclinic solution on 0 < x < x; < s. Figure 14 shows the profile of a
branch 2 solution for A, = 50; in Perazzo et al. (2017), this was called a ‘D1’ solution. Figure 14(a)
shows a comparison with the A;-homoclinic solution having the same pressure p. Figure 14(b) shows
(3.35) and (3.29) compared with the numerical solution on a heterogeneous substrate near the interface
of A; and A, regions, x = s; similarly to the form of the branch 1 solutions (3.3). We note that some of
these approximations break down for p near p_.., where i, = O(¢) and U(h,,,,) in (3.38) is O(1).

Figure 15 shows a schematic phase plane for a branch 2 solution (black curve) compared with
the homoclinic orbits for the A;-homogeneous and A,-homogeneous problems (blue and red curves,
respectively). From the arguments connecting to (3.34a), we know that i, > H,,, ; and the branch 2
solution lies outside the A;-homoclinic orbit for 4 2> h(s). From the fact that &, > H, for any finite L,
we know that the solution must lie within the A,-homoclinic for 4 < h(s). The branch 2 solutions have
two inflection points in the droplet tail, at heights h = H,; and h = h(s), giving them a characteristic
‘staircase’ or ‘precursor-foot’ appearance; see Fig. 14.

We also note that corresponding results can also be obtained in the limit ¢ — 0 with fixed A, =
O(1); see Liu (2019). In particular, for ¢ — 0, we can use the parabolic profile (3.10) to approximate
the droplet portion of branch 2 solutions. Then, following similar form (3.11) for large drops, we can
estimate the effective width of the core from &, to yield w ~ /A,/(3p?). Branch 2 joins branch 3
when the ‘small’ drops attain maximum size as minimal pinned drops with w ~ s. This yields [73’3 ~
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Fi1G. 15. Schematic of the lower half of the phase plane diagram showing the monotone decreasing portions of the homoclinic
orbits for A(x) = Aq (blue) and A(x) = A (red) and the trajectory for a branch 2 solution.

VA,/(Bs?), corresponding to (3.25). Figure 13(a) shows the bifurcation diagram ,,, vs. p zoomed into
a portion of branches 2 and 3, computed numerically and asymptotically in the limit of small ¢.

3.5 Summary of the steady-state branches

In examining the six branches, we have seen that each type of solution is impacted somewhat differently
by the presence of the heterogeneous wetting. Distinct from groupings by droplets or film-like states,
we can fundamentally separate the solutions into two sets based on phase plane structure.

e Solutions on branches 1 and 2 are given by trajectories from Fig. 15. They are characterized
by having the height at the wetting interface fall between the saddles, Hy, < h(s) < Hg; (for
p < 0 the order of the saddles is reversed). Portions of these solutions follow the stable and
unstable manifolds from the H; | and H; , saddle points.

e Solutions on branches 3, 4, 5 and 6 are given by trajectories from Fig. 8. Here, the height at the
switching point lies above both saddles, h(s) > Hg; > Hg, with branches 4, 5 and 6 having
h(s) = O(1) and branch 3 with i(s) = O(e).

The pinned droplets, branch 3, transitions between these two cases at the p p2 5 end, where h(s) crosses
Hg ;. For fixed Ay, A,, the existence of turning points in Fig. 13(a) that define the range of pressures for
this branch, (3.25), depends on ¢ being sufficiently small.

4. Leakage in the limit of large A,

In the limit of large A,, the A, region effectively becomes increasingly hydrophobic and should give
a stronger confining effect on fluid in the A, region. This behaviour holds only for a range of small
fluid masses, as wetting effects cannot be expected to influence thick layers of fluids. In terms of the
six branches of steady-state solutions we have analysed, branches 2 and 3 described small and pinned
drops that are effectively confined to the A region. From (3.13) with [3’3" 4 =VAy/ (3s2), we obtain that
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FI1G. 16. (a) Schematic illustration of fluid leakage (4.2). (b) Leakage as a function of A computed numerically and asymptotically
for a branch 2 solution with p = 0.466 and a branch 3 solution with p = 0.38 plotted in log scale. The asymptotic prediction for
branches 2 and 3 is given by (4.4) and (4.5), respectively. The pressure p is fixed as A, increases with L = 6, s = 3, A1 = 1,
e=0.1.

the maximum droplet mass that can be confined in the A| region is

241/2
NsAz

m3 Vel

4.1)

Note that this mass increases when the width of the A; region (s) is increased or A, is increased. In
applications where accurate distribution of fluid on solid surfaces are required, it is important to develop
a quantitative understanding of the degree of leakage or ‘spillover’ of the fluid from the A; region into
the A, region. In this section, we present a measure of leakage for branch 2 and 3 solutions and show
the leakage is inversely proportional to A,.

In Sections 3.3 and 3.4, we showed that the film thickness at the heterogeneous interface is h(s) ~ ¢
as A, — o0; see (3.31) and (3.37). We also showed that in the outer A, region, h(x) ~ ¢ for x > s.
To measure the fluid leakage, we use the fluid mass above h(x) = ¢ on x € [s, L], as illustrated by the
shaded region in Fig. 16(a).

We define the mass of leakage as

L
Leakage = / [h(x) - 8] dx. 4.2)
S
Recalling (3.29), we can approximate the solution on s < x < L as

h(x) ~ hins + 872 Cye= 9/ (4.3)
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Using earlier results, (3.27), we have h ~ &+ 682[7. For branch 2 solutions, from (3.36),

C, ~ ¢2p/,/A, and this gives

min,2

£ e2p
Leakage, ~\L—s+ — ) — “4.4)

VA ) Ay

which gives that at the leading order, the fluid leakage of solutions on branch 2 is inversely proportional
to A, for large A,. Similarly, for branch 3 solutions, we use (3.31) to obtain

/ A ’p
Leakage, ~ (L — s+ /52— 3712 ) sA_p 4.5)
P 2

Figure 16(b) shows the fluid leakage computed numerically and compared with the asymptotic estimate
for solutions on branches 2 and 3 at fixed pressure over a range of A,, plotted in log scale. The numerical
result is obtained by first numerically solving for 4(x) and then numerically integrating (4.2) using the
trapezoidal rule.

5. Axisymmetric steady-state solutions

We can extend our results for 1D thin films on heterogeneous substrates presented in Section 3 to
axisymmetric solutions on 2D heterogeneous substrates with axisymmetric patterning.
For an axisymmetric film A(r, ) on 0 < r < L, the evolution (2.3a) takes the form

oh _ 10())
ar  r or

with J = h3i [A(r)]'[(h) — li (r%):| s (5.1a)
or rar or

where J = h39p/dr is the radial mass flux. Analogous to (2.3b), the boundary conditions needed at
r = 0 for a smooth axisymmetric solution and at » = L for no-meniscus and no-flux conditions are

oh 33h oh
—(0,n=0 — (0,) =0, —(LnH=0 JL1=0, (5.1b)
or ar3 or

and we enforce conditions (2.9a) and (2.9b) on the smoothness of solutions at the jump in substrate
wetting properties, r = s. The mass of the axisymmetric solutions h(r; p) is given by m = 27 fOL hrdr
and the average film height is 1 = 2 fOL hrdr/L?.

The positive steady states for this problem are still be parametrized by a uniform pressure p = p. It
follows that the steady-state axisymmetric solutions on 0 < r < L satisfy

1d ( dh _
T (VE) =AnII(h) —p (5.2a)

HO)y=0  H(L) =0. (5.2b)
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FiG. 17. Bifurcation diagram for 2(0) = hmax vs. p for (a) small p. (b) large p. The solid curve denotes the numerically computed
bifurcation curve. The dashed and dotted curve denotes the asymptotic prediction of smax derived for each branch in the limit of
small ¢. In both (a) and (b),A] =1, Ap = 1.5, L=6, s =3, ¢ =0.001.

Directly corresponding to (2.1), we take the coefficient of the disjoining pressure to describe an
axisymmetrically patterned substrate,

s (53)
: .

Consequently, the axisymmetric equivalent of (2.15) is given by

L 12
Ay —ADUWS) = A U(hpin) — A U (hpax) + PBipax — Pimin) —/0 - dr. 54

Since (5.2a) is not a piecewise-autonomous equation, the phase plane arguments described in Section 3
do not carry over, but we find that most of the other ideas in the asymptotic constructions do
apply similarly. The steady-state axisymmetric solutions separate into six different branches directly
corresponding to the six branches found in Section 3 for one dimension; see Fig. 17. Here, we will
briefly identify the key steps needed to obtain the axisymmetric solutions and highlight results that we
will use further.

5.1  Small-thickness and large-thickness nearly flat films

As in Section 3.1, steady nearly flat solutions generated by the jump in wetting properties can be
described by linearizing (5.2a).

For very thin films, the disjoining pressure will balance the uniform pressure, A;IT(h) = p, to set
piecewise constant heights, H; ;, as in (3.1). Linearizing about these yields a piecewise-defined modified
Bessel equation of order zero,

1 A IT' (Hg)hy 0<r<s, 5.5)
<r<

h//+ _h/ —
R V¥ s (0 AV
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Consequently, axisymmetric branch 1 solutions can be approximated by

H, + CIIO( [ATTH ) 0<r<s,
Hy, + CZKO( /AT (H,,) r) s<r<L,

where I,(r) and K;(r) are modified Bessel functions of the first kind and second kind, respectively. C,
and C, are constants to be determined by enforcing the continuity and smoothness of the solution at
r=s.

For thick films, the disjoining pressure has a weaker influence and the solution can be linearized
around a mean height 2 > O(¢). In the limit z — oo (having IT'(h) < 0), the linearized problem is a
regular Bessel equation of order zero, and we can write the axisymmetric branch 6 solutions as

; IZA 11700 r) — A=
h(r) ~ ht ClJO( AT r) AT () Osrss (5.7)
B+ Colo (/=421 () r) + CYo( —A Ty ) — BIB2 5 < <1,

where J;,(r) and Y, (r) are Bessel functions of the first and second kinds with constants Cy, C, and C5 to
be determined by the continuity conditions at » = s and the boundary condition at r = L. To determine
P, we use that (5.7) must satisfy the condition fol‘ hrdr = hL?/2. In the limit 4 — oo, this yields

2 2 2 2 3
_ ) L —s"\ ¢ e
P~ (AIL—2 + Ay ) =+0 (—}_14) , (5.8)

like (3.7), this pressure is an area-weighted average of the disjoining pressure between the hydrophilic
and hydrophobic regions (5.3).

h(r) =~ (5.6)

N
N

5.2 Droplet-type axisymmetric solutions

As was the case for one dimension, for axisymmetric droplet solutions are primarily characterized by
a core region where & = O(1) as ¢ — 0. In the core, to leading order, the uniform pressure balances
surface tension with the disjoining pressure being negligible,

d ( dh _
505)~¢n (5.9)

This yields a parabolic profile analogous to (3.10) but with a modified coefficient,
1.,
h(r) = hp — i + O(e), (5.10)

and & = O(e) outside the core. The width w, where h(w) = O(¢g), now represents the effective radius of
the core,

4
| Himax (5.11)

p
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and (5.10) can also be written as i ~ %ﬁ(w2 —?) yielding a mass m ~ 2x hrznax /D; see also Glasner et al.
(2009). What remains to define the different branches of droplet solutions is to make use of information
on the contact line position and the far-field of the droplet through (5.4).

Using (5.10) and (5.11), we can approximate the integral term in (5.4) as

L W 2 W 2 W 1
/ (r) dr ~ / (r) dr ~ / —ﬁzr dr ~ —ph ...
0 r 0 r 0 4 2

Consequently, (5.4) for droplet solutions can be approximated by

1 _
(A3 = ADU(h(5)) = Ay Ullyin) = Ay Ulltgy) + 5 Phiyay — Pl (5.12)

then the axisymmetric droplet solutions follow using analogous arguments from Section 3.

e Branch 2: small radii droplets, w < s with

hoo~A (M h(s) ~&  for p>, —.
max 3]-7 31—72

e Branch 3: pinned droplets, w ~ s with

1, e [1_ . A . A
Ponax ™ 2P h(s) ~ &+ 77 szsz -3 W(s) ~— szsz -3

for 1/4A1/(352) <p< \/4A2/(3s2). Note that these results differ from the 1D results (3.31)
and (3.33) only by a coefficient and the contact angle is lowered relative to estimate based on
the droplet core, [H' (w)| ~ %ﬁw.

e Branch 4: large radii droplets, s < w < L with

~ — w ~ —_— or —_— << < —_—.
max 35 352 Virz P V3e

on /4A,/(3L%) < p < \/4A,/(3s?).

e Branch 5: confined droplets, w ~ L with

1., / 1. = 44,
hmax ~ ZpL h (L) ~ —EpL for p < 3?

Figure 17(a and b) show the bifurcation diagram h(0) = h_ . vs. p computed for small and large p,
respectively, compared with the asymptotic estimates given above.
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6. Stability of the steady-state solutions

Here, we apply linear stability analysis to the 1D steady-state solutions described in Section 3. Writing
the steady states as h,(x) = h(x;p), we express perturbed solutions as h(x,t) = h,(x) + §h;(x,1) for
6 < 1. Plugging into the evolution (2.3a) and linearizing, at O(8), we obtain

oh,

=% h, 6.1
ar he 1 ©.1)
where the linear operator ., is given by

% e= L (ool [acomng - T2 (6.22)

= — x)— [A(x - — .

he 8 = 50 W os 8~ 52

2on=0 Bon=o, Bun=o Lwn=o (6.2b)

ax ax3 T ax ax3 T '
By separation of variables, we can write h(x,?) = >, c,8, (x)e*! where (g,(x), ) are eigenmodes of
2, 8 =Ag. (6.3)

Results from Laugesen & Pugh (2000a) and Bertozzi et al. (2001) provide guidance on interpreting
the linear stability analysis. Since there are continuous branches of steady states, there will be a zero
eigenmode corrresponding to perturbations of the mass; we will neglect this mode and consider only
modes with zero-mean eigenfunctions. The steady state &, (x) is then linearly stable if all Re(A,) < 0.
It was shown in Laugesen & Pugh (2000a) that for the Neumann problem, steady states with critical
points in the interior of the domain cannot be linearly stable. Periodic solutions and single droplets
centred in the domain will have modes that are anti-symmetric with respect to the critical points. In
the periodic case, there will be a neutrally stable translational mode, g(x) = # (x). There will also be
unstable modes describing coarsening, where droplets merge and evolve to a solution with longer spatial
period (see, e.g. Kargupta & Sharma, 2001; Thiele er al., 2003). We will see that this ultimately leads to
fluid accumulating at the edge of the domain as a stable large half-droplet.

We numerically investigate the linear stability of the six different branches of solutions discussed in
Section 3 with typical parameters A; = 1, A, = 50, L = 6, s = 3, ¢ = 0.1. Second-order accurate
finite-difference discretizations of the steady-state solutions of (2.11) are found by continuation in
pressure p for all the six branches. Then, a discretized form of the linear operator (6.2a) can be obtained
as a matrix. The eigenvalues of the linear stability problem (6.3) are then obtained using MATLAB’s
eigenvalue solver.

We find that branch 5 is the only unstable branch, while other branches all characterize stable steady-
state solutions. We need to explain how this is consistent with the form of the diagram for p vs. h_,,
shown in Fig. 4(b). Although it appears that there are multiple turning points that imply changes in
stability as the solution passes through these points, the only turning points associated with stability
change are the points connecting branches 4 and 5 and connecting branches 5 and 6. It has been
previously shown in Bertozzi et al. (2001) for thin films on homogeneous substrates that the mass

m and the maximum film thickness h,,, are the extrinsic parameters that determine the emergence
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FiG. 18. Bifurcation diagrams for parameters L = 6, s = 3, A| = 1, Ap = 1.5, ¢ = 0.1: (a) bifurcation diagram for p vs. fimax
(b) bifurcation diagram for m vs. Amax, imin. The insets show the same range of solutions where branches 1 and 2 meet in terms
of both bifurcation diagrams, with stability indicated in (b). The dashed segment denotes the unstable part of branch 2 in both
bifurcation diagrams.

of bifurcations. The pressure p should be viewed as an intrinsic parameter that can be computed by
p = fOL I (h,(x))dx/L once h,(x) is determined. Observe that in Fig. 4(b), viewed with respect to
decreasing A, from above, a saddle-node bifurcation occurs between branches 4 and 5, with branch
4 being the stable branch and branch 5 the unstable branch. If we increase h,,,, from below, another
saddle-node bifurcation occurs at between branches 5 and 6, with branch 6 being the stable branch,
which is consistent with the finding that branch 5 is the only unstable branch for the parameters used
above. Also see the stability indicated in Fig. 3(c).

Depending on the choice of parameters, a part of branch 2 near the connection with branch 1 may
also be unstable. Figure 18 shows bifurcation diagrams for p vs. k. and m vs. h_, , h . . The inset
plot in Fig. 18(a) zooms into the end of branch 2 that connects with branch 1. This corresponds to the
inset plot shown in Fig. 18(b), showing the same solution branches yield an S-shaped curve plotted
using m vs. hy,., b, indicating saddle-node bifurcations. There is a small range of mass for which
three different steady states exist with the same mass. Two of the steady states are branch 2 solutions.
Of the two branch 2 solutions, the solution with the smaller amplitude is unstable. The third steady state
is a branch 1 solution. The unstable part of branch 2 is represented by the dashed curve in Fig. 18. As
will be discussed further, increasing A, has the effect of stabilizing branch 2 solutions. We found that
for L =6, s =3,¢ = 0.1 fixed, as A, increases, the unstable part of branch 2 vanishes.

It was shown that steady states on branch 5 are parametrized by a finite range of pressures p.
Corresponding to a finite range of masses, in Fig. 3(c) this is approximately 1.2 < m < 1.6. Branches
4 and 6 are defined over the same range of masses, suggesting mass-conserving bi-stable dynamics
of (2.3) separated by branch 5. Figure 19 confirms this description by showing the two different stable
equilibria approached by the solution at large times starting from initial data given by a branch 5 solution
with small perturbations of opposite sign. Figure 19(a) shows that when the initial condition is given by
h(x,0) = h,(x) + 8g,(x) where g, (x) is the unstable eigenmode of £, (x), the stable branch 6 solution
is approached. In contrast, in Fig. 19(b) starting from the initial condition A(x, 0) = A, (x) — §g; (x), the
dynamics lead to the branch 4 solution with the same mass, m ~ 12.8.

In Section 2, we noted the existence of further branches of solutions in the bifurcation diagram,
besides the primary (outer-most) loop (Fig. 4(b)) that we have been studying, for heterogeneous
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Fi1G. 19. Bi-stable dynamics with respect to perturbations of an unstable branch 5 solution A4 (x). (a) Initial conditions (red dotted
curve) h(x,0) = hy(x) + 8g1 (x), with g1 (x) being the unstable eigenmode of 4, and small § > 0, evolving to the stable branch 6
solution (blue curve). (b) Initial conditions A(x, 0) = h4(x) — §g1 (x) evolving to the stable branch 4 solution.

substrates with sufficiently large domain size L. We use the values of the system parameters from
Fig. 3(c) and consider the stability of solutions off the primary loop. We compute the eigenvalues
for the four solutions with mass m = 0.6 marked by asterisks in the bifurcation diagram shown in
Fig. 20(a). Figure 20(b) shows the corresponding profiles of the four solutions. Linear stability analysis
suggests that of these four steady states, only solution d, which is a solution representing a large droplet
centred at x = L on the larger loop compared with the solutions a-c, is stable; solutions a-c are unstable.
Specifically, solutions b and ¢ have one unstable eigenvalue and solution a has two unstable eigenvalues,
which is consistent with the observed fold points of the inner loop. At each fold point, the number of
unstable eigenvalues changes by one, implying one eigenvalue crosses through zero. The dominant
eigenvalue for solution d, A; ~ —0.065, is smaller in amplitude compared with A; =~ —0.08 for
the stable droplet centred at x = 0. This suggests that while both droplets are stable to infinitesimal
perturbations, the droplet in the hydrophilic region may be the attracting state for dynamics starting
from most generic initial conditions at this mass. Such stability considerations led us to focus on the
outer loop of solutions.

In Sections 3.3 and 4, we quantified the pinning effect of an increasing wettability contrast on branch
2 and 3 droplets. Here, we show that increasing A, can increase the relative stability of a branch 2 droplet
at a fixed mass. Figure 21 shows the largest eigenvalue of a steady-state branch 2 droplet with mass
m = 3.5 as a function of A,. As A, increases, the leading eigenvalue A; becomes more negative, making
the steady state more stable with small perturbations decaying faster. We will see further influences of
large A, on the dynamics in the next section.

7. Dynamics of 1D solutions

The dewetting dynamics of thin films on hydrophobic substrates involves many regimes starting from
linear instabilities of perturbed films, leading to pattern formation and long-time breakup into droplets
connected by thin precursor films; see, e.g. Thiele et al. (2001). An important step in showing that model
(2.3) can represent these dynamics for homogeneous substrates (A(x) = 1) was the proof in Bertozzi
et al. (2001) that film thicknesses remain positive for all times. In the appendix here, we extend their
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Fi1G. 20. (a) Part of the bifurcation diagram from Fig. 3(c) highlighting four distinct non-primary steady states with mass m = 0.6.
(b) The corresponding height profiles of the four solutions, of which a-c were shown in Fig. 3(e) and d is a large droplet centred
atx = L.
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FiG. 21. The largest eigenvalue A of a steady-state branch 2 droplet with fixed mass on a substrate with increasing A, for
parameters m = 3.5, L =10,s =5,A; = 1,&e =0.1.

proof to apply to (2.3) with heterogeneous wetting given by (2.1). Given that result, here we briefly
address the influence of heterogeneous wetting properties on the timescales of the dewetting dynamics.

Figure 22 compares the evolution of a thin film on substrates with homogeneous and heterogeneous
wetting properties, (2.2) with ¢ = 0.1, on a domain with L = 10. The initial condition is given by a
perturbed thin film h(x,0) = 0.35[1 4 0.1 cos (2%() + 0.1 cos (3”7)‘)] with mass m = 3.5. In each of
three simulations, we illustrate the dynamics by showing the evolution of the height profiles as surface
plots along with plotting the evolution of the energy (2.5).

On the homogeneous substrate, with A(x) = 1 (Fig. 22(a)), the thin film de-stabilizes to form two
droplets of different sizes centred at x = 0 and x = L. This is accompanied by a rapid decrease in the
energy from the initial value. Thereafter, the drops slowly evolve. The droplet at x = L slowly gains
mass as time increases, eventually leading to an equilibrium with one large droplet centred at x = L.

Figure 22(b) shows the evolution starting from the same initial film on a stepwise-patterned substrate
withs = 5,A; = 1 and A, = 5. While the film also breaks up to form two droplets in this case, the
right droplet initially develops at an interior position, at some x, with s < x, < L. As time increases,
the right droplet moves towards x = L and loses mass, eventually leading to one single equilibrium
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FI1G. 22. Surface plots that demonstrate the dewetting dynamics of thin films over time starting from the same initial profile on
0 < x < 10 with ¢ = 0.1 on (a) a homogeneous substrate with A(x) = 1, (b) a heterogeneous substrate withAy) = 5on5 < x < 10
and (c) a heterogeneous substrate with Ap = 50 on 5 < x < 10. The time is plotted in log scale. (d) The corresponding energy
given by (2.5) of the thin films over time on substrates described in (a,b,c).

droplet centred at x = 0. In this evolution, the energy of the thin film has two stages of rapid decrease,
first forming two drops from the film followed by the movement of the interior droplet to the edge of
the domain. The two edge droplets then slowly evolve until a single-drop equilibrium is approached, as
shown in Fig. 22(b). Note that compared with the homogeneous substrate case, the final droplet formed
on the other side of the domain, and the timescale to reach this near-equilibrium phase was reduced by
a factor of five.

Figure 22(c) shows the evolution of the thin film profile on the patterned substrate with A, = 50. The
evolution of the thin film goes through a similar dewetting process. However, the droplet formed at the
right boundary has a smaller width compared with the A, = 5 case and the stages of dynamics occurred
in a much shorter time-scale, as can be observed in Fig. 22(d). This is consistent with the stabilizing
effect of increasing A, evidenced by the eigenvalue calculation shown earlier in Fig. 21. With this larger
value of A,, the influence of the heterogeneity is more clear. In the early stages, a pinned drop forms
in the relatively hydrophilic region while coarsening dynamics proceed on the hydrophobic region. For
long times the pinned drop slowly evolves to become a stable steady-state droplet centred at x = O;
since the width of this drop is within the hydrophilic region (w < s), this is a branch 2 solution. Further
work is needed to better understand the significant influence of substrate heterogeneity on the overall
timescales and dynamics of thin film evolution.

020Z 1890100 Z| Uo Jasn AjisiaAiun ana Aq €6 161 6S/9S0BEXYABWEWI/SE0 L 0L /I0p/3|o1e-00uBApE/jBWEBWI/WOD dNO"dIWSpEI.//:Sd)Y WO} POPEOjUMO(



DROPLETS ON HETEROGENEOUS SUBSTRATES 35

8. Steady-state thin films on 2D substrates

So far, we have mainly focused on solutions for the simple 1D and axisymmetric cases. However,
the chemical patterning of surfaces used in many microfluidic applications is generally much more
complicated; see, e.g. Darhuber et al. (2001), Darhuber & Troian (2005) and KaSpar et al. (2016).
Here, we study thin films on 2D heterogeneous surfaces with square and stripe patterning and show that
the cross-sections of some 2D steady-state solutions on such surfaces can be approximated by 1D and
axisymmetric solutions.

The generalization of (2.3a) to two dimensions for the evolution of i(x, y, ?) is

oh_g. (h3v [A(x,y)H(h) . Vzh]), 8.1)

ot
and steady states are characterized by having constant pressures, p = p, yielding the semilinear elliptic
partial differential equation problem

p =A@ (h) — Vh. (8.2)

Computationally, we obtain stable steady states by applying efficient numerical schemes for (8.1)
(Witelski & Bowen, 2003) and evolving the solution to sufficiently long times starting from initial
conditions over a range of masses.

As in the 1D and axisymmetric cases, we focus on the droplet solutions centred at the origin. First,
we study drops on a heterogeneous substrate with a relatively hydrophilic A;-square patch in the centre,
surrounded by a relatively hydrophobic A, region on a square domain with the Hamaker coefficient
modelled by

A 0<x<sand0<<y<s,

. (8.3)
A, otherwise.

Alx,y) = H

With this geometry, we can take advantage of four-fold symmetry to get the solutions in terms of
computing just the first quadrant. Our expectations are that small droplets, whose core fits well inside
the A, square should be close to axisymmetric, as should large drops that overflow the A; square but
are not so large as to be strongly influenced by the confining effects of the finite domain size. These
correspond to branches 2 and 4 of the axisymmetric solutions found in Section 5. Between these cases
should be 2D pinned drops whose structure depends significantly on the shape of the hydrophilic region.

To quantitatively compare the computed solutions on this substrate with the axisymmetric steady-
state solutions, we define a measure for the difference of & = h(x, y) from being an axisymmetric form,

h = h(r), as
Ly rLe| 9 oah|?
D= x— —y—| dxdy. (8.4)
0 0 8y 0x
Note that written in polar coordinates, D = H % Hiz; hence if a solution is axisymmetric, then D = 0.

Figure 23 shows film mass m = [[ hdxdy vs. D plotted on log scale over a range of fluid masses on
a square hydrophilic patch (8.3) with A, /A; = 10. Droplet-type solutions, represented by blue triangular
data points, correspond to pinned and unpinned droplets similar to those studied in Sections 3.2 and 3.3.
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F1G. 23. Thin films on a hydrophilic square patch, —s < x,y < s: (top) Film mass m vs. D plotted in log scale for both droplet-
type solutions and perturbations of thick flat films, with parameters L = Ly = Ly = 5, A1 = 1, Ap = 10, s = L/2. The insets
show colour contour maps of four selected solutions (on one quarter of the domain, 0 < x,y < L, reduced by symmetry). (a,b,c)
Cross-section of the 2D solution at y = 0 compared with the axisymmetric steady-state solution with the same maximum film
thickness for (a) droplet a (b) droplet b (c) droplet ¢. No cross-section profile is shown for the nearly uniform thick film marked
by inset d.

We observe that the maximum D occurs at a pinned steady-state droplet with droplet width w ~ s. The
contour map of the surface of the solution labelled b is also shown in Fig. 23. For solutions with mass
larger than droplet b, the droplet becomes a large-radii unpinned droplet like a branch 4 solution, shown
by the contour map labelled c. In this process, D gradually decreases. For masses smaller than droplet
b, droplets gradually transition to being small-radii droplets like a branch 2 droplet with a smaller D,
shown by the contour map of droplet a. Figure 23(a, b and c) confirms the excellent agreement of the
computed solution with the axisymmetric height profiles for cases a, ¢ and the noticeable difference with
the anisotropic pinned droplet . Above a certain mass, the wettability contrast is not strong enough to
maintain droplets and the solution will take the form of a nearly uniform thick film. A branch of these
solutions is also shown in the figure (indicated with black dots); as should be expected from earlier
results for branch 6 solutions, the influence of the form of A(x, y) decreases with increasing thickness.
Processes in many applications involve depositing liquids on periodic striped wettability patterns;
see Ajaev et al. (2016), Brasjen et al. (2013), Honisch et al. (2015) and Kargupta & Sharma (2002).
In particular, several different regimes for liquid droplets on substrates with stripe-like patterns have
been identified in Honisch ef al. (2015). Here, we show that depending on the regime, cross-sectional
profiles of the 2D droplet can be predicted using the axisymmetric or 1D steady states. To simulate the
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F1G. 24. Symmetric thin films on a hydrophilic stripe, —s < x < s: (top) Film mass m vs. D plotted in log scale for droplet-type
solutions, with parameters Ly = 5, Ly = 10,A; = 1,A» = 10, s = Ly/2. The insets show colour contour maps of three selected
solutions (on one quarter of the domain, reduced by symmetry). (a,b,c) Cross-sections of the 2D solutions at y = 0 compared with
the axisymmetric and 1D steady states with the same maximum film thickness for droplets a, b, ¢, respectively.

deposition of liquids on a substrate with stripe-like patterns, we consider A(x, y) of the form

A 0<x<y,

Alx,y) =
) A, otherwise.

(8.5)

We focus on one-quarter of a droplet whose maximum film thickness occurs at (0, 0), in the centre of
the stripe. Figure 24 shows m vs. D plotted on log scale for droplets on striped substrates. When the
fluid mass is small, with the droplet core fitting well inside the width of the stripe, the influence of the
chemical heterogeneity on the droplets is limited. The droplets are closer to axisymmetric solutions with
small D, as shown by the colour map of the surface of droplet a and droplet b highlighted in Fig. 24.
As mass increases, the fluid grows in the y-direction and becomes increasingly non-axisymmetric, as
shown by droplet ¢ labelled in Fig. 24. Figure 24(a, b and c) show the cross-section of the 2D computed
solution at y = 0 compared with the axisymmetric or 1D steady states with the same maximum film
thickness for droplets a—c. We observe that the cross-section of droplet a and droplet b can be well
approximated by the axisymmetric solution with the same maximum film thickness. As the fluid mass
increases, D increases. The 1D steady state gives a better prediction of the cross-sectional profile at
y = 0 for the elongated pinned droplet c.
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9. Conclusions

This paper has considered the steady-state thin films on a finite chemically heterogeneous substrate
with stepwise patterning. We have classified the primary steady-state solutions in one dimension into
six different branches, for which we presented asymptotic analysis of solutions and have considered
two limits, the small ¢ limit and the large wettability contrast limit. In particular, we investigated a
new type of pinned droplet solutions that arise due to the heterogeneity of the substrate. We identified
that an increasing A, has a confining effect on these pinned droplets. Through asymptotic analysis, we
quantified the degree of confinement and leakage of fluid film in terms of the wettability contrast.

We showed that the results of the asymptotic analysis derived for 1D solutions can be directly
extended to axisymmetric solutions. In addition, we discussed the stability of these steady-state solutions
using linear stability analysis. We also extended a proof of positivity of solutions on homogeneous
substrates to the case of heterogeneous substrates. Last, we explored the effect of heterogeneity on
the dynamics of thin film evolution in one dimension and in square and striped geometries in two
dimensions.

There are many interesting questions for further study suggested by this work. This includes
analysing if the bifurcation structure of the six branches of solutions found for (2.2) holds for broader
classes of I7(h) disjoining functions and other forms for A(x). More work is needed to study solutions
on larger domains with periodic A(x) functions, representing micro-arrays; it would be interesting to
see if non-periodic steady states can exist. Similarly, understanding the structure of the higher-order
branches in one dimension may be important for studies of dewetting. We hope that more use of the 1D
and axisymmetric can be made for approaches to systematically approximate solutions of the 2D elliptic
problem (8.2) in simple geometries like those studied in Brasjen & Darhuber (2011) and Brasjen et al.
(2013). Further work is needed to compare our results for branch 3 pinned drops with the results for
pinned drops on square patches given in KaSpar et al. (2016). Comparisons with studies of Stokes flows
on pattern substrates (Asgari & Moosavi, 2012; Moosavi et al., 2008) could shed light on limitations
for using of thin film models with discontunuous wetting properties. Much more work is also needed
to better understand the influence of heterogeneous wetting on dewetting and coarsening dynamics on
larger domains as in Brusch ez al. (2002), Thiele ez al. (2003) and Asgari & Moosavi (2012).
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A. Proof of positivity and global existence of solutions

Here, we extend the proof given in Bertozzi et al. (2001) showing the global existence of positive
solutions to (2.3a) from the homogeneous case (A(x) = 1) to apply to heterogeneous substrates with
positive A(x) bounded from above.

THEOREM A.1 Consider the initial data for (2.3) satisfying iy (x) > O with hy € H 1([0,L)) and E (hy) <
00, then the solution A(x, ¢) is positive for all > 0.

Proof. 'We derive a priori pointwise upper and lower bounds for the solution. The energy E, as given
by (2.5), is monotonically decreasing following (2.7). It follows that at any time 7 > 0,

1 L 2 1 L

Z dx < =

2 2
Using that A(x) is bounded and —U(h) has an a priori upper bound independent of A (from (2.6),
U(h) > 1/6 for all h > 0), implies that f [0, h(x, T)|2 dx is bounded. Hence, h(x, T) € H' ([0, L]). Then,
h(x, T) has both a priori pointwise and C%!/? upper bounds by the Sobolev embedding theorem.

Note that (A.1) along with the boundedness of A(x) implies fOL U(h(x,T))dx < C. Suppose h(x,T)
attains its minimum /,; at x = x,,. By Holder continuity, 2(x) < A, + C),|x — xo|'/%. Therefore,

L L &3 &2 C,y(e,L)
C > / U, T))dx > / dx > + O0(1). (A2)
0 3(hmin n h

oh dhy
— () -
0x

2 L L
S| dot / A()U(hy) dx — / AXUK(T)) dx. (A1)
0 0

0 + Chlx — x|/23 202, min

Hence, the solution cannot go below a positive threshold for any 7' > 0. (]
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