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We study steady-state thin films on chemically heterogeneous substrates of finite size, subject to no-flux

boundary conditions. Based on the structure of the bifurcation diagram, we classify the 1D steady-state

solutions that exist on such substrates into six different branches and develop asymptotic estimates for

the steady states on each branch. Using perturbation expansions, we show that leading-order solutions

provide good predictions of the steady-state thin films on stepwise-patterned substrates. We show how

the analysis in one dimension can be extended to axisymmetric solutions. We also examine the influence

of the wettability contrast of the substrate pattern on the linear stability of droplets and the time evolution

for dewetting on small domains. Results are also applied to describe 2D droplets on hydrophilic square

patches and striped regions used in microfluidic applications.

Keywords: thin films; lubrication theory; heterogeneous substrates; disjoining pressure; pinned droplets.

1. Introduction

Thin liquid films on solid substrates are often seen in nature and engineering applications, e.g. as tear

films on the eye, lubricating coatings, and functional layers in microfluidic devices (see, e.g. Thiele

et al., 2003). Microfluidic systems manipulate small amounts of fluids, using channels with dimensions

at the scale of micrometres (Whitesides, 2006). Microfluidics has found many applications in cell

biology and chemical synthesis (Lo, 2013; Whitesides, 2006). The effect of substrate wetting properties

on the equilibrium liquid droplet formed on a solid, especially features like contact angle and mass, has

attracted extensive research attention due to applications in liquid coating and inkjet printing (Bhushan

et al., 2009; Dong et al., 2006; Sakai et al., 2008; Son et al., 2008; Yuan & Lee, 2013). Specifically,

the steady-state thin films have been previously studied through the approach of numerical methods,

asymptotic approximations and ellipsoidal droplet approximation (Glasner & Witelski, 2003; Gomba &

Homsy, 2009; Lubarda & Talke, 2011; Mac Intyre et al., 2016).

Much of the theoretical understanding of thin films has been limited to films on homogeneous

substrates. Profiles of steady-state solutions under the action of different forms of intermolecular

potentials of homogeneous substrates have been previously investigated and described (Bertozzi et al.,

2001; Glasner & Witelski, 2003; Gomba & Homsy, 2009). In one study, Glasner & Witelski (2003)

considered an isolated steady-state droplet parametrized by uniform pressure on an infinite domain,

given by the homoclinic solution of the system. Through asymptotic matching, they showed that at

leading order, large homoclinic droplets could be well approximated by parabolic profiles. In another

study, Bertozzi et al. (2001) performed similar analysis and computations for steady-state thin films on

© The Author(s) 2020. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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2 W. LIU AND T. P. WITELSKI

finite domains. Asymptotic analysis for both the bifurcation structure and the solution profile of such

films were presented.

However, many naturally occurring surfaces are chemically heterogeneous due to contamination or

differentiated structures in biological or other contexts. Tailored chemically heterogeneous substrates

have been increasingly used for the engineering of micropatterns of thin films and applications that

require accurate dispensing and distribution of liquids on solid surfaces (Zope et al., 2001). One

example of such applications is in the design of the chemical patterns of the nozzle plate in inkjet

print heads (Bliznyuk, 2011; Kooij et al., 2012). Quantifying the characteristics of wetting layer on the

nozzle plate and designing suitable chemical patterns to control the motion of the ink are critical to

improve the printing quality (Bliznyuk, 2011; Kooij et al., 2012). Another application is microcontact

printing where a stamp is used to transfer the material onto a substrate to create a desired pattern.

Understanding equilibrium droplet shapes on chemically patterned substrates is essential to optime the

printing process (Darhuber et al., 2000). Chemically patterned substrates have also been used in the

fabrication of polymer field effect transistors where a substrate with a hydrophobic stripe is employed

to split a deposited liquid droplet (Wang et al., 2004).

Previously, Lenz & Lipowsky (1998) investigated the morphologies of different equilibrium states

of liquids on a surface that consists of hydrophilic domains in a hydrophobic matrix. By minimizing the

interfacial free energy subject to constant liquid volume, they found that the different morphologies are

determined by the liquid volume and the area fraction of the hydrophilic domains. Kašpar et al. (2016)

explored the effect of alternating hydrophobic and hydrophilic areas of a rectangular micro-arrayed

surface on the overall confinement and spillover of water droplets. They gave an estimate for the contact

angle of the droplet in terms of the height of the spherical cap h and a coefficient a that accounts for the

properties of the confining surface.

In the limit of low Reynolds number, the governing equations for a slowly varying free surface flow

of a viscous liquid coating a solid surface can be reduced to an evolution equation for the film thickness;

see, e.g. Ockendon & Ockendon (1995). The lubrication model describing film flow subject to strong

surface tension effects on a homogeneous partially wetting solid substrate is a fourth-order non-linear

parabolic differential equation (Craster & Matar, 2009; Myers, 1998; Oron et al., 1997), written here for

1D problems,

∂h

∂t
= ∂

∂x

(

h3 ∂

∂x

[

Π̃(h) − ∂2h

∂x2

])

, (1.1)

where h(x, t) is the thickness of the film, x is the coordinate in the direction of flow and t is the time.

Here, we will consider only the simple form Π̃ = AΠ(h) where A is the Hamaker constant and Π(h) is

the homogeneous disjoining pressure function which characterizes the wetting properties of the fluid on

the substrate. The form of the disjoining pressure function Π(h) we will use is described in Section 2.

The Hamaker constant A determines the equilibrium contact angle for steady liquid droplets on the

substrate (see, e.g. Brasjen & Darhuber, 2011). Numerical simulations of similar lubrication models have

been presented in Kargupta et al. (2000) and Kargupta & Sharma (2001, 2002) to inspire experimental

studies and illustrate the instability and pattern formation of thin film on chemically heterogeneous

substrates with a stepwise pattern. More systematic analytical studies using lubrication approximation

were presented in Brusch et al. (2002), Kao et al. (2006) and Thiele et al. (2003) where a spatially

dependent Hamaker coefficient A(x) was introduced in the long-wave equation. A disjoining pressure

of the form

Π̃(h, x) = A(x)Π(h) (1.2)
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DROPLETS ON HETEROGENEOUS SUBSTRATES 3

was used to model thin films on a domain with periodic boundary conditions. Specifically, Brusch et al.

(2002) and Thiele et al. (2003) studied the effect of a smoothly patterned substrate on stationary

droplet profiles using wettability as a control parameter. The heterogeneous substrate considered was

a small-amplitude sinusoidal modulation of the form A(x) = 1 + δ cos(kpx) where kp determines the

imposed heterogeneity period and δ ≪ 1 describes the amplitude of heterogeneity. The smooth spatial

variation and the assumption that δ ≪ 1 allows for the analysis of the solutions on heterogeneous

substrates through an asymptotic expansion in terms of δ. By varying the amplitude and periodicity of

the chemical pattern, they identified the parameter range where the pinning mechanism emerges from

coarsening.

However, for an engineered patterned substrate, a piecewise constant A(x) would be a better

description than a sinusoidal profile. For example, micro-patterned surfaces with alternating relatively

hydrophilic and hydrophobic rectangular areas are extensively used in digital microfluidics and high-

throughput screening nanoarrays (Kašpar et al., 2016). In such applications, a stepwise Hamaker

coefficient is needed to model the chemical properties of the surfaces. Kao et al. (2006) studied the

stationary states of thin films on substrates with square-wave patterning in both one and two dimensions

in addition to those with small-amplitude sinusoidal patterning. Specifically, they considered a piecewise

constant A(x) with periodic boundary conditions, given by

A(x) =
{

1 + δ3 3π
2

n � kpx � π
2

+ 3π
2

n,

1 − δ3 π
2

< kpx � 3π
2

,
(1.3)

for patterning wavenumber kp and n = 0, 1 on x ∈ [0, 2π ]. To study the bifurcation of stationary states

on substrates with such patterning, they wrote A(x) as a Fourier series. In particular, they performed

asymptotic analysis for solutions near the bifurcation point. Imperfect bifurcations were observed for

the patterning of the form (1.3). They found that the bifurcations and steady states resemble those for

sinusoidally patterned substrates. While many papers (including Brasjen & Darhuber, 2011 and Brasjen

et al., 2013) have considered thin film models with discontinuous A(x), this formally clashes with the

long-wave assumptions used in lubrication theory. However, as described in Lenz & Kumar (2007),

good solutions can still be obtained in many cases, though caution should be applied to check their

validity.

In this paper, we study the steady-state solutions of thin films on a stepwise-patterned substrate

over a range of wettability contrast. We classify the steady-state solutions that exist on such substrates

into branches. We find new branches of solutions characterizing pinned droplets that arise as a

consequence of the heterogeneity of the substrates. For each branch of solutions, we present systematic

asymptotic analysis of the steady-state profile and the structure of the bifurcation diagram. Through

asymptotic analysis and numerical simulations, we determine the dependence of steady-state thin films

on parameters such as mass, pressure and heterogeneity strength. We employ a phase-plane approach,

which allows us to perform asymptotic analysis in the limit of moderate to large heterogeneity contrast.

Increasing heterogeneity contrast has an increasing confining and pinning effect on the film droplet,

which prevents fluid film from leaking into the more hydrophobic surrounding region. To quantify

this phenomenon, we present an effective measure of the fluid leakage and show that the leakage

is inversely proportional to the heterogeneity contrast. In addition, we investigate the stability of the

steady-state solutions on heterogeneous substrates and show that the analysis derived for 1D solutions

can be extended to axisymmetric solutions and more general 2D solutions. Finally, we illustrate the

influence of chemical heterogeneity on the dynamics of thin film evolution.
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4 W. LIU AND T. P. WITELSKI

Fig. 1. Schematic diagram of a thin film on a heterogeneous substrate with stepwise chemical patterning yielding relatively

hydrophilic (A1) and hydrophobic (A2 > A1) regions.

2. Problem formulation

We study 1D thin films on heterogeneous substrates prescribed with a piecewise chemical patterning.

Figure 1 shows a schematic diagram of a thin film on a heterogeneous substrate with a relatively

hydrophilic region on −s < x < s surrounded by relatively hydrophobic regions on the overall domain

−L � x � L.

Building on the results of Laugesen & Pugh (2000b) that the steady-state solutions of the

homogeneous problem (1.1) are periodic functions and are symmetric with respect to local extrema,

we will focus on symmetric solutions describing single droplets. Using symmetry reduces the problem

to be on the half-domain 0 � x � L subject to homogeneous Neumann boundary conditions where the

lowest-order solutions give height profiles of half-droplets.

We consider a heterogeneous substrate with a stepwise patterning modelled by a piecewise constant

function A(x) where the jumps of A(x) need not be small. In particular, we address analysis of steady-

state solutions in the limit of moderate to large A2 relative to A1 in

A(x) =
{

A1 0 � x � s,

A2 s < x � L.
(2.1)

Here, L is the size of the domain, s is the interface of segmentation and Ai are positive constants.

For concreteness, we will normalize relative to the hydrophilic region, generally taking A1 = 1 and

A2 � A1. The schematic diagram in Fig. 1 shows thin film on heterogeneous substrates with such

stepwise patterning. Specifically, we consider a disjoining pressure given by a 3–4 inverse power law

function which has been used in Schwartz & Eley (1998), Oron & Bankoff (1999, 2001), Glasner &

Witelski (2003) and others,

Π(h) = ε2

h3
− ε3

h4
, (2.2)

and the overall representation of wetting effects is given by Π̃(h, x) = A(x)Π(h). The scaling in (2.2)

yields a finite limit for the effective contact angle of droplet solutions as ε → 0; see Glasner & Witelski

(2003).

We consider thin films on a finite domain as shown in Fig. 1, subject to no-flux boundary conditions

so that the total fluid mass is conserved. Two additional boundary conditions are needed—we impose

zero-meniscus (no slope) conditions, ∂xh = 0. These conditions are consistent with uniform film

solutions for the homogeneous problem and allow general solutions to be extended to periodic problems

(Laugesen & Pugh, 2000a).

As described above, for convenience, we will reduce this to the symmetric problem on the half-

domain, 0 � x � L. The evolution of thin films on chemically heterogeneous substrates of finite-length
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DROPLETS ON HETEROGENEOUS SUBSTRATES 5

with chemical patterning A(x) is given by the partial differential equation for the film height h(x, t)

(O’Brien & Schwartz, 2002; Oron et al., 1997),

∂h

∂t
= ∂

∂x

(

h3 ∂

∂x

[

Π̃(h, x) − ∂2h

∂x2

])

, (2.3a)

subject to the homogeneous Neumann boundary conditions

∂h

∂x
(0, t) = 0,

∂3h

∂x3
(0, t) = 0,

∂h

∂x
(L, t) = 0,

∂3h

∂x3
(L, t) = 0. (2.3b)

The conditions at x = 0 are symmetry conditions; the conditions at x = L, while having the same

form, are no-meniscus and no-flux conditions, where the flux is defined as J(x) ≡ h3∂xp in terms of the

pressure

p(x, t) ≡ Π̃(h, x) − ∂2h

∂x2
with Π̃(h, x) = A(x)Π(h). (2.4)

The equivalence with the Neumann conditions can be seen by expanding J(L) = 0 using A′(L) = 0 and

h(L) > 0.

This problem has a monotone decreasing energy functional,

E = 1

Ā

∫ L

0

A(x)U(h) + 1
2
(∂xh)2 dx where Ā = 1

L

∫ L

0

A(x) dx, (2.5)

where U(h) is the potential such that dU
dh

= Π(h). For Π(h) of the form (2.2), U(h) is given by

U(h) = − ε2

2h2
+ ε3

3h3
. (2.6)

A similar energy functional was used in Brusch et al. (2002) to study heterogeneous dewetting. Equation

(2.5) reduces to the form used in Bertozzi et al. (2001) and Glasner (2003) and other papers for the

homogeneous problem with A(x) ≡ 1. In both cases, E is monotonically decreasing with the same form

for the rate of dissipation,

dE

dt
= − 1

Ā

∫ L

0

h3(∂xp)2 dx � 0, (2.7)

showing that the dynamics of (2.3) follow a gradient flow. The mass of the thin film on [0, L] is

given by

m =
∫ L

0

h(x, t) dx, (2.8)

and is conserved by the dynamics.
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6 W. LIU AND T. P. WITELSKI

We seek solutions h(x, t) that are continuous and whose first derivative is continuous at x = s, i.e.

lim
x→s−

h(x, t) = lim
x→s+

h(x, t) (2.9a)

lim
x→s−

∂h

∂x
(x, t) = lim

x→s+

∂h

∂x
(x, t), (2.9b)

and locally conserve mass across the wettability jump at x = s. These conditions yield that solutions

will have a continuous pressure (2.4) but must have a jump in the curvature at x = s, i.e.

∂2h

∂x2
(s+, t) − ∂2h

∂x2
(s−, t) = (A2 − A1)Π(h(s, t)). (2.10)

Steady-state solutions on homogeneous substrates have been previously analysed in Laugesen &

Pugh (2000a,b), Bertozzi et al. (2001), Glasner & Witelski (2003), Hutchinson et al. (2013), Pahlavan

et al. (2018) and many other papers. From (2.3) and (2.7), it can be seen that all positive steady-state

solutions subject to no-flux boundary conditions have uniform constant pressure, i.e. p ≡ p̄. This is still

true for heterogeneous substrates where A(x) makes Π̃ = AΠ spatially dependent. It follows that the

steady-state solutions of (2.3a) subject to (2.3b) satisfy

d2h

dx2
= A(x)Π(h) − p̄, (2.11a)

hx(0) = 0, hx(L) = 0. (2.11b)

For the homogeneous case, all steady states can be described with respect to the range of the function

Π(h); spatially uniform solutions (‘flat films’ h(x) ≡ h̄) exist for any positive thickness and correspond

to −∞ < p̄ � pmax, where pmax = 27/(256ε) is the maximum of Π(h̄), attained at h̄ = hpeak = 4ε/3.

For sufficiently large L, non-trivial steady solutions exist for 0 < p̄ < pmax; see Bertozzi et al. (2001).

We will see that the situation for heterogeneous substrates is more complicated.

For the heterogeneous case where A(x) is a step function with A1 	= A2, for a steady-state solution

to be a flat film and satisfy (2.10), the only option is to have Π(h̄) = 0, yielding h̄ = ε. Hence, h(x) ≡ ε

is the only possible flat film solution on a heterogeneous substrate, with corresponding pressure p̄ = 0.

For the stepwise A(x), the analysis of (2.11) follows from piecewise-defined autonomous phase

plane analysis on 0 � x � s and s � x � L with constant A = Ai for i = 1, 2, respectively. From the

analysis in Bertozzi et al. (2001), for the phase plane for (2.11a) with A ≡ 1, for 0 < p̄ < pmax then

the problem has two fixed points, a hyperbolic saddle h = Hs,i (with Hs,i < hpeak) and an elliptic centre

point h = Hc,i (with Hc,i > hpeak), each satisfying

Π(Hi) = p̄

Ai

. (2.12)

There is a homoclinic orbit that passes through the saddle point, defining a single maximal-amplitude

droplet on −∞ < x < ∞. This solution has Hs,i as its global minimum and its corresponding maximum

Hmax,i is obtained from a first integral, as in Bertozzi et al. (2001). In the phase plane, the homoclinic
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DROPLETS ON HETEROGENEOUS SUBSTRATES 7

Fig. 2. (a) Phase plane for the homogeneous substrate case, with parameters p̄ = 0.2, ε = 0.1, showing trajectories for the

homoclinic orbit (solid black curve), a periodic solution (red dotted curve) and a solution that lies outside of the homoclinic orbit

(dashed blue curve). (b) Profiles of the three steady-state solutions corresponding to the trajectories shown in (a).

orbit encloses a continuous family of periodic solutions, each having its minimum in the range Hs,i <

hmin � Hc,i and corresponding maximum in Hc,i � hmax < Hmax,i.

Figure 2(a) illustrates the trajectories in the phase plane: the homoclinic orbit with hx → 0 as

h → Hs,i (solid black curve), a periodic solution bounded inside the homoclinic orbit (red dotted curve)

and a typical solution lying entirely outside of the homoclinic orbit with |hx| → ∞ and h → 0 at finite

x (dashed blue curve) (see also Perazzo et al., 2017). Figure 2(b) shows the profiles corresponding to the

three trajectories. On homogeneous substrates, only trajectories that lie inside of the homoclinic orbit

yield acceptable steady solutions of (2.3). In this paper, we will show that trajectories that lie outside of

the homoclinic orbit will be used to construct steady states of thin films on heterogeneous substrates.

Figure 3(a) shows the numerically computed bifurcation diagram for the film mass vs. the maximum

and minimum film thickness, denoted by hmax and hmin, for steady solutions on a homogeneous substrate

with length L = 3. This type of bifurcation diagram has been previously studied in detail by Bertozzi

et al. (2001). Continuous families of non-trivial (periodic) solutions branch-off from the set of flat films

(represented by the diagonal line in Fig. 3(a)) at pairs of pitchfork bifurcation points, h̄ = h̄k,±. The

number of loops of solutions, N, depends on the domain size L and the derivative of the disjoining

pressure through

Π ′(h̄k) = −k2π2/L2, k = 1, 2, · · · , N; (2.13)

see Bertozzi et al. (2001). For the (ε, L) used here, N = 2 yielding two loops corresponding to half-

and whole-droplets on [0, L]. Figure 3(b) shows the profiles of two droplet solutions with mass m = 1.1

centred at opposite ends of the domain. Because of the reflection symmetry under x → L − x for the

homogeneous problem, both of these solutions are given by the same state from the bifurcation diagram.

Figure 3(c) shows the same type of bifurcation diagram as Fig. 3(a), but for thin films on a stepwise-

patterned substrate with A1 = 1, A2 = 1.1 and s = L/2. The spatial dependence of this disjoining

pressure breaks the reflection symmetry and steady-state droplets centred at x = 0 and x = L with the

same mass now differ in profiles, as illustrated in Fig. 3(d). Compared with the homogeneous case, this

symmetry-breaking for the heterogeneous case replaces the pitchfork points with imperfect bifurcations,

as seen in Kao et al. (2006), and yields more complicated loop structures. The outer loops represent
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8 W. LIU AND T. P. WITELSKI

Fig. 3. Steady solutions with ε = 0.1 on a domain of length L = 3: (a) Bifurcation diagram for m vs. hmin and hmax for solutions

on a homogeneous substrate, A(x) ≡ 1. (b) Profiles of two steady-state droplets from (a) with m = 1.1 centred at x = 0 and x = L.

(c) Bifurcation diagram for m vs. hmin, hmax for steady-state solutions on a stepwise-patterned substrate with A1 = 1, A2 = 1.1

and s = L/2. (d) The two distinct droplet profiles for the heterogeneous problem, centred at x = 0 and x = L both with mass

m = 1.1. The difference in the maximum film thicknesses is highlighted by the two dashed lines. (e) Profiles of three distinct

non-trivial inner loop steady-state solutions on a stepwise-patterned substrate, all with mass m = 0.6. In (a) and (c), each branch

is labelled ‘s’ or ‘u’ to indicate the stability. The stability of branches in (c) will be discussed in detail in Section 6.
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DROPLETS ON HETEROGENEOUS SUBSTRATES 9

branches of solutions with maxima at either x = 0 or x = L, while the inner loops give solutions with

interior critical points. Figure 3(e) shows the profile of three distinct steady-state solutions on the inner

loop of Fig. 3(c) with the same mass, m = 0.6.

For convenience, we focus on solutions that are monotone decreasing, describing a half-droplet

profile on x ∈ [0, L] (which can be symmetrically extended to give a single whole drop on [−L, L], as in

Fig. 1). We can write the first integral of (2.11a) on x ∈ [0, s] and x ∈ (s, L] as

dh

dx
= −

{

√

2R1(h) 0 � x � s,
√

2R2(h) s < x � L,
(2.14a)

where

R1(h) = A1(U(h) − U(hmax)) − p̄(h − hmax), (2.14b)

R2(h) = A2(U(h) − U(hmin)) − p̄(h − hmin).

Equation (2.14a) along with the condition (2.9b) yields a condition relating the film thickness at the

heterogeneity interface, x = s, to the extrema for steady states on stepwise-patterned substrates with

A(x) of the form (2.1),

(A1 − A2)U(h(s)) + p̄(hmax − hmin) = A1U(hmax) − A2U(hmin), (2.15)

which we will use for later analysis. Setting both As to Ai and using hmin = Hs,i reduce (2.15) to the

first integral equation for hmax = Hmax,i.

3. Classification of branches in the bifurcation diagram in one dimension

For the remainder of the article, we use a different form of the bifurcation diagram that facilitates

describing the effects due to heterogeneous wettability. Figure 4 shows numerically computed bifurca-

tion diagrams of p̄ vs. hmax for steady states on homogeneous and heterogeneous substrates on a domain

of length L = 3 with ε = 0.1. Here, in the homogeneous case, all flat films are represented by the graph

of the disjoining pressure, p̄ = Π(hmax) (dotted curve). The branch of non-trivial solutions bifurcating

from the flat films in Fig. 4(a) corresponds to the outer loop from Fig. 3(a). The inset plot shows that

the branch bifurcates slightly below pmax.

For the heterogeneous case, we consider a typical problem with A2 = 5, s = L/2 = 1.5 and similarly

plot solutions corresponding to the analogous outer loop from Fig. 3(c). We observe that the family of

solutions is continuous and smooth and has fold points separating the curve into six segments; see

Fig. 4(b). We will analyse the dependence of solutions in each of these segments with respect to limits

for ε and A2. In Section 3, we will use bifurcation diagrams for p̄ vs. hmax, instead of the diagram m vs.

hmin, hmax shown in Section 2, to classify and describe the different types of steady-state solutions for

two reasons. First, each family of steady-state solutions corresponds to one segment of the bifurcation

curve p̄ vs. hmax in the limit of small ε, as mentioned above. Second, this form of diagram shows the

explicit dependence on the pressure p̄ and will be more direct for illustrating the asymptotic results

derived for each type of steady state parametrized by p̄.

Although there is no more flat film solution except for h(x) ≡ ε with p̄ = 0 for A1 	= A2, as we

will show later in Section 3.1, branches 1 and 6 yield nearly flat films that are perturbations of the flat
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10 W. LIU AND T. P. WITELSKI

Fig. 4. Bifurcation diagram for p̄ vs. hmax for steady states with ε = 0.1 and L = 3 on (a) a homogeneous substrate, A(x) ≡ 1, (b)

on a heterogeneous substrate with A1 = 1, A2 = 5, s = 1.5. The solid blue curve represents nontrivial steady-state solutions. The

dashed black curve in (a) represents two branches of flat film solutions that merge together with the nontrivial branch at p̄ = pmax.

In both (a) and (b), the inset plot shows the bifurcation curve zoomed into a small neighbourhood of the maximum pressure. The

red dots in the inset plot of (a) denote the bifurcation points.

film solutions. Figure 4(b) includes the graph of Π(hmax) for reference, to show that the heterogeneous

bifurcation diagram approaches that curve for the limits of large and small film thickness. From the

inset, it is notable that the branch extends to a value of p̄ slightly greater than pmax.

In the following subsections, we will present our analysis and computations of these steady-

state solutions by branch. For each branch, we develop an asymptotic prediction for the steady-state

profile and show that the leading-order solution for each branch depends on different parameters in

(L, s, A1, A2), which describe the chemical heterogeneity of the substrates.

Based on the structure of the diagram shown in Fig. 4(b), we divide the steady-state solutions

that could exist on a heterogeneous substrate with patterning A(x) of the form (2.1) into six different

connected branches, as follows.

• Branch 1: small-thickness films

• Branch 2: small-width droplets

• Branch 3: pinned droplets

• Branch 4: large-width droplets

• Branch 5: confined droplets

• Branch 6: large-thickness films

Branches 1 and 6 are perturbations of homogeneous flat films while branches 2, 4 and 5 correspond

to non-trivial droplet solutions. And in particular, branch 3 is an entirely new branch of solutions

characterizing a class of ‘pinned’ drops that emerges due to the presence of chemical heterogeneity.

3.1 Small-thickness and large-thickness nearly flat films

In this subsection, we study two types of solutions that are perturbations of flat films. First, we study

branch 1, which gives steady-state solutions with mean thickness h = O(ε). Two examples of steady-
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DROPLETS ON HETEROGENEOUS SUBSTRATES 11

Fig. 5. Branch 1, small-thickness film solutions, computed with parameters A1 = 1, A2 = 2, s = 1.5, ε = 0.1. (a) A numerical

solution (blue) with p̄ = 0.387 having mean thickness h̄ > ε compared with approximate form (3.3) (dotted curves). (b) A

computed solution (blue) with p̄ = −0.518 yielding mean thickness h̄ < ε also compared with (3.3).

state profiles of this type of small-thickness films are given in Fig. 5. Both solutions are characterized

by nearly flat films away from the patterning interface x = s and a rapid change in the profile in a small

neighbourhood of the interface x = s. The rapid change in h(x) near the interface is due to the large

change in disjoining pressure for films of thickness h = O(ε). The disjoining pressure Π(h) increases

rapidly for h in the range 0 < h < 4ε/3 in the limit ε → 0. The mean film thickness of branch 1

solutions falls within this range.

These solutions can be understood using matched asymptotics for ε → 0. Away from x = s, the

second derivative in (2.11a) can be neglected and the outer solutions to all orders are given by the

respective saddle points,

hout(x) =
{

Hs,1 0 � x � s,

Hs,2 s < x � L,
(3.1)

where

Hs,i = ε + ε2p̄

Ai

+ O(ε3) (3.2)

with p̄ = O(1). In an O(ε) neighbourhood of x = s±, the solution satisfies a non-linear boundary layer

equation (balancing the disjoining pressure and the second derivative). However, rather than pursuing

this approach to the analysis, we can take advantage of the fact that the range of the solution is small,

hmax − hmin = O(ε2), to estimate the local behaviour from a linearized analysis.

Linearizing (2.11a) about each saddle yields the approximate form of the solution as

h(x) ≈
{

Hs,1 + C1e
√

A1Π
′(Hs,1) (x−s) 0 � x � s,

Hs,2 + C2e−
√

A2Π
′(Hs,2) (x−s) s < x � L,

(3.3)
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12 W. LIU AND T. P. WITELSKI

Fig. 6. Branch 6, thick film solutions, computed for parameters ε = 0.1, A1 = 1, A2 = 2, L = 3, s = 1.5. (a) A numerically

computed solution (blue) compared with the asymptotic estimates (3.5) (dotted) at pressure p̄ = 0.0135. (b) The computed mean

thickness h̄ (blue) as a function of p̄ compared with the asymptotic prediction (3.7) (red dots).

with constants C1, C2 to be determined from conditions (2.9a) and (2.9b). Solving for Ci shows that for

A1, A2 = O(1), Ci = O(ε2p̄) so Ci ≪ Hs,i as long as p̄ ≪ ε−1. For A1 = O(1) and A2 → ∞, similarly

C1 = O(ε2p̄) ≪ Hs,1 and C2 = O
(

ε2p̄/
√

A2

)

≪ Hs,2 for p̄ ≪ ε−1.

We note that for p̄ > 0, the saddle points are related by Hs,1 > Hs,2 yielding monotone decreasing

profiles; this inequality is reversed for p̄ < 0 (hence, the monotone increasing solution in Fig. 5(b)) with

the flat-film solution h ≡ ε being the transition state at p̄ = 0.

Figure 5(a) shows a small-thickness solution with mean thickness h̄ > ε (corresponding to p̄ > 0),

where we define h̄ =
∫ L

0 h dx/L (specifically p̄ = 0.387 corresponds to m = 0.31 and m/L > ε for

L = 3). Figure 5(b) shows the profile for another branch 1 solution, with p̄ < 0 yielding h̄ < ε. In

Fig. 5(a and b), the boundary layer near x = s can be well approximated by the estimate (3.3).

For p̄ < 0, equation (2.12) has only one root with Hs,i < ε and for p̄ → −∞ its leading order

behaviour is Hs,i ∼ ε3/4(Ai/|p̄|)1/4. Consequently the solutions on branch 1 in this limit can still be

approximated by the smoothed step profile (3.3), but now the range of the solutions is hmax − hmin =
O(|ε3/p̄|1/4) and the width of the interior transition layer is O(|p̄|−5/8).

The limit p̄ → 0+ also describes another class of solutions, characterized by nearly-flat films with

large thickness, corresponding to branch 6 in Figure 4(b). Unlike thin nearly-flat solutions, which have

a boundary layer near x = s and approach a step function in the limit ε → 0, this class of thick solutions

has small amplitude slowly-varying deviations from the mean film thickness. An example of a steady-

state profile on this branch is shown in Figure 6(a).

We write h̄ = m/L in terms of the mass of the solution, m =
∫ L

0 h dx. For h̄ → ∞, we write the

solution as h(x) ∼ h̄ + σh1(x) + σ 2h2(x) and we will show that it is convenient to define σ = Π(h̄).

From (2.2), it is clear that the limit h̄ → ∞ for any fixed ε is equivalent to σ → 0.

Substituting this expansion into equation (2.11a) and expanding Π(h) to O(δ), we have

σh1xx = σA1 + σA1Π
′(h̄)h1 − p̄, h1x(0) = 0, 0 < x � s, (3.4a)

σh1xx = σA2 + σA2Π
′(h̄)h1 − p̄, h1x(L) = 0, s < x � L. (3.4b)
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DROPLETS ON HETEROGENEOUS SUBSTRATES 13

To balance the equation at O(σ ), we choose p̄ = O(σ ) by writing p̄ ∼ σ(p0 +σp1) for some p0 = O(1).

As m → ∞, Π ′(h̄) < 0. Solving for h1(x) on 0 � x � s and s < x � L, respectively, we obtain to O(σ )

h(x) ∼

⎧

⎪

⎪

⎨

⎪

⎪

⎩

h̄ + Π(h̄)

(

C1 cos(r1x) + A1−p0

r2
1

)

0 � x � s,

h̄ + Π(h̄)

(

C2 cos(r2(L − x)) + A2−p0

r2
2

)

s < x � L,

(3.5)

where ri =
√

−AiΠ
′(h̄). To determine constants C1 and C2, we use conditions (2.9a) and (2.9b).

Consequently, we find that C1 and C2 are both linear in p0, C1 = p0C̃1 and C2 = p0C̃2. The definition

of the mean thickness h̄ yields the condition
∫ L

0 h1(x) dx = 0, which we can solve for p0 to obtain

p̄ ∼ Π(h̄)L

s
A1

+ L−s
A2

+ C̃1Π
′(h̄)

r1
sin(r1s) + C̃2Π

′(h̄)
r2

sin(r2(L − s))
. (3.6)

Simplifying (3.6) further, in the limit of large h̄, the pressure can be written as

p̄ =
(

A1

s

L
+ A2

L − s

L

) (

ε2

h̄3
− ε3

h̄4

)

+ O(h̄−7). (3.7)

This result being in terms of the weighted average of the wetting parameters Ai with respect to domain

lengths can be interpreted as giving an effective overall leading-order disjoining pressure Π̃ for the

nearly flat film homogenized at the mean level h̄: Π̃ ∼ ĀΠ(h̄). The higher-order terms in (3.7) contain

factors of (A1 − A2) and s(L − s) so if the problem was on a homogeneous substrate (via A2 = A1 or

s = 0 or s = L), then this trivially reduces to the disjoining pressure for a flat film.

Figure 6(a) shows a typical branch 6 thick film solution computed at pressure p̄ = 0.0135. The

asymptotic estimate given by (3.5) agrees very well with the numerical solution, which suggests that p̄

is inversely proportional to m3 for large mass. For fixed large mass, p̄ scales linearly in both A1 and A2.

Figure 6(b) shows h̄ for numerically computed branch 6 solutions over a range of p̄. The comparison

with the analytical predictions show that (3.7) is accurate for the limit of large h̄.

3.2 Large-width and confined droplets

In this subsection, we study branches 4 and 5, which give two families of droplet-type solutions that are

similar to droplet solutions on homogeneous substrates. Droplets are states where most of the fluid is

concentrated within a region of limited width (or radius) and is surrounded by nearly uniform very thin

films with thickness h = O(ε) set by the disjoining pressure.

First, we discuss branch 4, which describes a class of large-width droplets with width s < w < L.

On the droplet core, we assume h = O(1) on 0 � x < w, and h = O(ε) outside. One example of such a

steady-state solution is shown by the blue curve in Fig. 7. We show that in the limit ε → 0, the profiles

for these droplets can be approximated to leading order by truncations of the homoclinic droplet on the

homogeneous substrate with A(x) ≡ A2.

To obtain an asymptotic estimate of the droplet’s maximum (hmax = O(1)), we use (2.15) in the

limit ε → 0. Since the wetting interface, x = s, occurs within the droplet’s core, we have h(s) = O(1).
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14 W. LIU AND T. P. WITELSKI

Fig. 7. Profiles of two droplet solutions with mass m = 35.2 on the domain L = 6 for a disjoining pressure with A1 = 1, A2 = 50,

L = 6, s = 3, ε = 0.1. A branch 4 large-width droplet, with s < w < L, is shown by the blue curve for p̄ = 0.493 and a branch 5

confined droplet, with w = L, at pressure p̄ = 0.809 is given by the black curve.

For h = O(1), equation (2.6) gives U(h) = O(ε2). Using this for hmax and h(s) with hmin ∼ ε, equation

(2.15) reduces to

p̄hmax = −A2U(hmin) + O(ε), (3.8)

which gives the inverse dependence on the pressure,

hmax = A2

6p̄
+ O(ε). (3.9)

Note that to leading order this matches Hmax,2, the maximum of the homoclinic droplet on a

homogeneous substrate with A(x) ≡ A2, as shown in Glasner & Witelski (2003). Since A2 > A1,

this hmax describes a droplet larger than the homoclinic for a homogeneous substrate with A = A1.

For h = O(1), the disjoining pressure scales as Π(h) = O(ε2), so to leading order (2.11) on the

droplet core reduces to d2h

dx2 = −p̄, yielding the parabolic profile

h(x) = hmax − 1

2
p̄x2 + O(ε). (3.10)

The width can then be estimated from h(w) = O(ε) as

w ∼
√

A2

3p̄2
, (3.11)

similar to results in Glasner & Witelski (2003). In summary, in the limit ε → 0, the leading-order profile

of a large-width droplet on [0, L] is given by

h(x) ∼

⎧

⎨

⎩

A2
6p̄

− 1
2

p̄x2 0 � x < w,

ε w < x � L.
(3.12)
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DROPLETS ON HETEROGENEOUS SUBSTRATES 15

Fig. 8. Schematic of the lower half of the phase plane showing the monotone decreasing portions of the homoclinic orbits for

homogeneous substrates, A(x) ≡ A1 (blue) and A(x) ≡ A2 (red) and a branch 4 heterogeneous solution (black), for parameter

values A1 = 1, A2 = 2, L = 6, s = 3, p = 0.211, ε = 0.1. The value of A(x) switches across the line h = h(s), the ‘inactive’

portions of the homoclinics are drawn with dashed lines.

The even extension of this profile gives a 2L-periodic solution and hence its minimum must satisfy

hmin > Hs,2.

In the phase plane, branch 4 solutions lie inside the A2-homogeneous homoclinic orbit; see Fig. 8.

This result is based on two observations for the segments on x � s and x > s. For x � s (where h(x) �

h(s)), this follows directly from the solution’s minimum being above the saddle point, hmin > Hs,2. For

x � s (where h(x) � h(s)), the trajectory lies outside the A1-homogeneous homoclinic orbit since it

starts from hmax > Hmax,1. To see that this portion lies within the region in the phase plane bounded by

the A2-homoclinic, we use (2.14a) noting that R2(h(s)) = R1(h(s)) by (2.9b) and R2(h) > R1(h) for

h > h(s) when A2 > A1, hence hmax < Hmax,2.

Branch 4 droplet solutions are defined by their widths exceeding the wetting interface position,

w > s, but not filling the whole domain, w < L. Using (3.11), this yields the range of pressures for

branch 4 as
√

A2/(3L2) � p̄ �
√

A2/(3s2). At the endpoints, this branch connects to other branches

of solutions: at p̄∗
3,4 =

√

A2/(3s2) with droplets pinned at the wetting interface (called branch 3, to be

described in the next section) and at p̄∗
4,5 =

√

A2/(3L2) with droplets limited by the size of the domain

(called branch 5, described below). Figure 9 gives the bifurcation diagram for p̄ vs. hmax, showing good

agreement of the numerically computed results and compared with the asymptotic predictions. In the

derivation, we assumed A1, A2 = O(1); it can be shown that the profile of branch 4 solutions is still

described by (3.12) for A1 = 1 fixed and A2 → ∞, as suggested by Fig. 9(b).

These solutions have mass and width both decreasing with increasing pressure. For ε → 0, the mass

of the droplet core is

m ∼
∫ w

0

h dx ∼
A

3/2
2

9
√

3 p̄2
. (3.13)

Note the film mass m∗
4,5 ∼

√

3A2 L2/9 corresponding to p∗
4,5 is the maximum possible mass for a

droplet-type solution with domain-size L. Above that mass, only nearly flat film solutions (branch 6)

exist. The scaling of this critical mass with A2 shows the importance of the heterogeneous disjoining

pressure in controlling droplet structure.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
m

a
t/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

a
m

a
t/h

x
a
a
0
3
6
/5

9
1
9
1
9
3
 b

y
 D

u
k
e
 U

n
iv

e
rs

ity
 u

s
e
r o

n
 1

2
 O

c
to

b
e
r 2

0
2
0



16 W. LIU AND T. P. WITELSKI

Fig. 9. Bifurcation diagram for p̄ vs. hmax computed numerically and compared with the asymptotic prediction of branch 4 (a)

in the limit ε → 0, with parameters A1 = 1, A2 = 1.5, ε = 0.001. (b) In the limit A2 → ∞, with parameters A1 = 1, A2 = 50,

ε = 0.01. In both (a) and (b), L = 6, s = 3. The blue solid curve represents the numerically computed bifurcation curve. The red

dashed and dotted curve represents the asymptotic prediction given by (3.9).

Another important physical property characterizing fluid droplets is the contact angle or angle of

inclination at the edge of support. The small aspect ratio assumption essential to lubrication theory

justifies use of the small angle approximation, tan θ ∼ θ , for this context. Consequently, the contact

angle scales the slope of the droplet profile at the edge of the core, with the constant of proportionality

being the aspect ratio. We see that the effective contact angle of all branch 4 droplets is independent of

the pressure,

θ ∝ |h′(w)| ∼ p̄w =
√

A2

3
, (3.14)

again indicating the controlling influence of the disjoining pressure, as in Glasner & Witelski (2003).

It was previously shown in Glasner & Witelski (2003) that large droplets on a homogeneous substrate

with A ≡ 1 have contact angle given by |h′(w)| ∼ 1/
√

3, in agreement with (3.14) when A1 = A2 = 1.

Branch 5 describes large droplets confined by the domain size so the droplet width is always w = L.

This set of solutions provides a transition between the large-thickness nearly flat films (branch 6) and

the large-width droplets (branch 4) described above. An example of a solution on branch 5 is shown by

the black curve in Fig. 7.

We first investigate the solutions in the limit ε → 0 for A1, A2 = O(1). As with branch 4, on the

core region (0 � x < L), branch 5 droplets have h = O(1) and the influence of the disjoining pressure

can be neglected to yield a parabolic profile, h(x) = hmax − 1
2
p̄x2 + O(ε). Here, using w = L gives the

drop’s maximum as scaling linearly with the pressure,

hmax = 1

2
p̄L2 + O(ε). (3.15)

To obtain an asymptotic estimate of the minimum film thickness hmin, we use (2.15) and assume hmin =
O(ε). At leading order, the equation reduces to

− A2U(hmin) = p̄hmax ∼ 1

2
p̄2L2, (3.16)
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DROPLETS ON HETEROGENEOUS SUBSTRATES 17

Fig. 10. Properties of branch 5 large drop solutions computed with parameter values A1, A2 = 1.5, L = 6, s = 3, ε = 0.001.

(a) Branch 5 highlighted in the bifurcation diagram for p̄ vs. hmax computed numerically (blue solid curve) and compared with

the asymptotic estimate (3.15) (red dotted curve) in the limit of small ε. (b) The minimum, hmin as a function of p̄ computed

numerically (blue solid curve) and the asymptotic result ((3.17), (3.18)) (red dotted curve).

similarly to (3.8). Note that the potential function U(h) has a global minimum at h = ε with U(ε) =
−1/6. For (3.16) to have a real solution, we need 1

2A2
p̄2L2 � 1

6
. This upper bound on the pressure on

branch 5 coincides with the lower bound for the pressure on branch 4 found above, p̄∗
4,5 =

√

A2/(3L2).

With U(h) of the form (2.6), (3.16) can be written as a cubic polynomial equation,

1

2
y2 − 1

3
y3 = z with y = ε

hmin

, z = p̄2L2

2A2

. (3.17)

The solution for hmin on 0 � z � 1/6 is the smaller of the two positive roots for y, given by

y = 1

2

(

1 − 1 + i
√

3

2
σ − 1 − i

√
3

2σ

)

with σ =
(

1 − 12z + 12

√

z2 − z/6

)1/3

, (3.18)

where σ is complex-valued yielding y ∼ 1 for z → 1/6 and y ∼
√

2z as z → 0.

For y = O(1), it is clear that hmin = ε/y = O(ε), consistent with our earlier assumption. This result

holds for solutions on branch 5 with the pressure bounded away from zero, with p̄ < p̄∗
4,5. Branch 6

is approached as p̄ → 0. Figure 10(a and b) shows the plots for p̄ vs. hmax and p̄ vs. hmin computed

numerically and asymptotically in the limit of small ε for A1, A2 = O(1).

A uniform solution for the droplet can be constructed using matched asymptotics (Kevorkian &

Cole, 1996) in the limit of ε → 0 with the parabolic profile, (3.10) with (3.15), being the outer solution

on 0 � x < L. To leading order, this outer solution gives the mass and effective contact angle of the

droplet as

m ∼ 1

3
p̄L3, θ ∝ |h′(L)| ∼ p̄L. (3.19)
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18 W. LIU AND T. P. WITELSKI

Fig. 11. Typical pinned droplet branch 3 solutions for A1 = 1, A2 = 50, s = 3, L = 6 at several values of p̄.

Note that for p̄ → 0, the vanishing contact angle is consistent with the branch of droplets transitioning

to become the branch of thick films (branch 6) with hmin ≫ O(ε).

To satisfy the boundary condition h′(L) = 0 at the edge of the domain, the solution must have a

corner layer to give a rapid transition from the finite contact angle (3.19). The local structure for ε → 0

will actually be a triple deck (Murdock, 1999) with an inner solution of the form h = εH(X) with

X = (x − L)/ε satisfying

d2H

dX2
= A2

H3

(

1 − 1

H

)

− εp̄, (3.20)

nested within an intermediate layer h = ε2/3Ĥ(X̂) with X̂ = (x − L)/ε1/3 satisfying

d2H̄

dX̂2
= A2

Ĥ3

(

1 − ε1/3

Ĥ

)

− p̄. (3.21)

From (3.21), the inflection point will occur in the intermediate layer, with h ∼ (ε2A2/p̄)1/3; this could be

used to obtain a refined estimate of the contact angle. We will not go into the details of this construction

here. Note that when hmin = O(ε2/3) the triple deck should reduce to just the intermediate layer and

give an estimate for the lower bound on p̄ where the above arguments apply.

3.3 Pinned droplets

Solutions on branch 3 are droplets with width pinned by the wetting heterogeneity, w ∼ s, and h = O(ε)

for x � s. Examples of branch 3 profiles for several values of the pressure are shown in Fig. 11. This

branch arises as a consequence of the chemical heterogeneity of the substrate. These solutions have

several features in common with the confined droplets from branch 5, differences stem from whether

the width is pinned by boundary conditions or the wetting contrast. To develop an asymptotic prediction

for this type of solutions, we consider the steady state in the limits ε → 0 and A2 → ∞.
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DROPLETS ON HETEROGENEOUS SUBSTRATES 19

We consider the solution in the limit ε → 0 with fixed A1, A2 = O(1). On 0 � x � s, the solution

will satisfy the equation

d2h

dx2
= ε2A1

h3

(

1 − ε

h

)

− p̄. (3.22)

Similar to branch 5 solutions, the disjoining pressure can be neglected at O(1) and O(ε) to yield a

parabolic profile for the droplet core, (3.10). Since the droplet has width w ∼ s, to leading order, the

maximum is given by hmax ∼ 1
2
p̄s2 and to O(ε) the solution can be written as

h(x) ∼ 1

2
p̄
(

s2 − x2
)

+ εC0 on 0 � x < s. (3.23)

Since the leading-order term in this outer solution vanishes as x → s−, a boundary layer is needed to

prevent the divergence of the disjoining pressure contribution there. The structure of inner solution at

x = s− follows similarly to the corner layer at x = L for confined drops in the previous section except

here the coefficient on the disjoining pressure term will be A1 and p̄ will be shown to be O(1) on the

whole branch of solutions.

Using (2.15) with hmax = O(1) and hmin ∼ ε, at leading order, we get a cubic equation for the

thickness at the wetting interface,

U(h(s)) =
−A2

6
+ 1

2
p̄2s2

A2 − A1

(3.24)

with h(s) being the real positive root with h(s) > ε. Similarly to (3.17), such a solution will exist only

if −1/6 < U(h(s)) < 0, yielding a condition on the range of pressures for branch 3,

√

A1

3s2
< p̄ <

√

A2

3s2
, (3.25)

where the upper bound matches p̄∗
3,4 for branch 4 solutions, found in Section 3.2. While the maximum

height for these drops scales linearly with the pressure p̄, we will see that the contact angle is a bit more

complicated to interpret.

To obtain information about the structure of the solution at the contact line, we re-examine the

solution in the limit of A2 → ∞. Let δ = 1/A2, then we can write equation (2.11a) on s � x � L as

δ
d2h

dx2
= Π(h) − δp̄. (3.26)

For δ → 0 this is a singularly perturbed problem that can be solved using the method of matched

asymptotic expansions in terms of an outer solution and a boundary layer of width O(δ1/2). The

boundary conditions, (2.9) and (2.11b)2, determine that the boundary layer must be at x = s+. The

outer solution of (3.26) for s < x � L is a constant to all orders,

h(x) = ε + δε2p̄ + O(δ2); (3.27)
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20 W. LIU AND T. P. WITELSKI

this is the δ → 0 expansion of the saddle point Hs,2, (3.2). Hence, apart from exponentially small terms,

the solution’s minimum is hmin ∼ Hs,2.

The form of the inner solution in the boundary layer is h = ĥ(x̂) where x̂ = (x − s)/δ1/2 and (3.26)

becomes

d2ĥ

dx̂2
= Π(ĥ) − δp̄. (3.28)

The inner solution must match (3.27) for x̂ → ∞ and satisfy (2.9) at x̂ = 0. Noting that for A2 → ∞,

hmax = O(1) and hx(s
−) = O(1) from (2.14a)1, there may be concern that the form of R2(h) suggests

that hx(s
+) = O(δ−1/2). However, from (2.9b), it must be the case that hx(s

+) = hx(s
−) = O(1);

applied to R2, this forces U(h) − U(hmin) = O(δ). Consequently, the expansion of the inner solution

must be ĥ(x̂) = ε + δ1/2ĥ1(x̂) + O(δ) where ĥ1 satisfies the linearized equation, ĥ1x̂x̂ = Π ′(ε)ĥ1. To

satisfy matching, this term must be an exponential decay, ĥ1(x̂) = C2e−x̂/ε, and overall

h(x) ∼ ε + δ1/2C2e−(x−s)/(εδ1/2) s � x < L. (3.29)

To determine the C2 coefficient, we re-write (3.24) as

U(h(s)) =
− 1

6
+ 1

2
δp̄2s2

1 − δA1

(3.30)

and plug in h(s) ∼ ε + δ1/2C2. Expanding for δ → 0, we get

h(s) ∼ ε + ε
√

A2

√

p̄2s2 − A1

3
. (3.31)

This result can also be obtained as the leading-order approximation from solving (3.30) as a cubic

equation as was done with (3.17). Figure 12(a) shows numerically computed values and the asymptotics

for h(s) − ε compared with the asymptotic approximation given by (3.31) for large A2.

Using the asymptotic prediction (3.31), we can also derive h′(s), which represents the contact angle

of this class of droplets in the limit of large A2. On the A1 region [0, s], as x → s−, using (2.14a), we

have

1

2
h′(s)2 = A1U(h(s)) − p̄h(s) + p̄hmax − A1U(hmax). (3.32)

Substituting (3.31) and hmax ∼ 1
2
p̄s2 into (3.32), we obtain

h′(s) = −
√

p̄2s2 − A1

3

(

1 + A1

2A2

)

+ O(ε) + O(ε/A2). (3.33)

This shows how the limiting contact angle is approached as the wettability ratio, A2/A1, is increased;

see Fig. 12(b). We note that this value is lowered by wettability effects (as represented by the A1/3

term) relative to the contact angle of large drops (3.14) or confined drops (3.19) where the locally
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Fig. 12. Properties of branch 3 pinned droplet solutions computed with parameter values A1 = 1, L = 6, s = 3, ε = 0.1. (a)

Comparison of h(s)− ε computed numerically with p̄ = 0.292 (blue) and from the asymptotic approximation (3.31) (red dots) for

large A2 plotted on log scale. (b) The contact angle |h′(s)| vs. A2 with fixed pressure p̄ = 0.22, plotted on log scale, the numerical

result (blue) compared with the asymptotic prediction (3.33) (red dots).

Fig. 13. Small and pinned droplets. (a) The bifurcation diagram for p̄ vs. hmax highlighting branches 2 and 3. The solid blue curve

gives numerical results. The black and red dotted curves represent the asymptotic prediction of hmax for branch 2 and branch 3

solutions, respectively, in the limit ε → 0, with parameters A1 = 1, A2 = 1.5, L = 6, s = 3, ε = 0.001. (b) Profile of a steady

state on branch 2, characterized by a droplet on [0, s] and nearly uniform thin film on [s, L].

homogeneous (A2) wetting properties or the boundary conditions, respectively, set the contact angle. At

the other edge of the pressure-range for this branch, the vanishing contact angle predicted by (3.33) is

lower than what would be expected for small droplets (|hx| ∼
√

A1/3) because in this limit, the pinning

effect is weaker and the effective width decreases from the position of the wetting heterogeneity, w < s.

The asymptotic prediction hmax ∼ 1
2
p̄s2, represented by the red dotted curve in Fig. 13 is compared

with the numerically computed bifurcation curve. We observe that the leading-order asymptotic

prediction agrees well with the numerical results.
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22 W. LIU AND T. P. WITELSKI

3.4 Small-width droplets

Finally, we conclude with branch 2, whose solutions combine features from both droplets and nearly

flat films. This branch describes small droplets with an effective width smaller than the size of the

hydrophilic domain, w < s, and a surrounding nearly flat film that covers the remainder of the domain;

see Fig. 13(b).

Branch 2 folds back from branch 1 in Fig. 4(b) giving droplets whose cores completely reside in the

A1 region. Compared with branch 1 solutions which are thin, nearly flat films over the entire domain, in

the outer A1 and A2 regions and a boundary layer near x = s, solutions on branch 2 are characterized by

larger mass so that droplets could form on the A1 region, but not so large as to yield branch 3 or 4 type

droplets that fill or extend beyond the A1 region (having widths w � s). This class of solutions has the

smallest mass possible for droplets centred at x = 0.

We construct the solution in the limit A2 → ∞ with A1 fixed. On the A2 region, the same matched

asymptotics used for branch 3, (3.26) and (3.28), similarly yields the solution as (3.27) and (3.29) with

h(s) = ε + O(δ1/2), but we must use a different argument to determine C2.

To find C2 in (3.29), we consider the steady state on the A1 region. To leading order as δ → 0, the

steady-state problem for h ∼ h0(x) on 0 � x � s is given by

d2h0

dx2
= A1Π(h0) − p̄ (3.34a)

h′
0(0) = 0, h0(s) = ε. (3.34b)

Noting that the boundary condition h0(s) = ε is less than the saddle point h = Hs,1, the trajectory

for h0(x) must lie outside the A1-homoclinic orbit in the phase plane. Since the solution is monotone

decreasing with h(0) = O(1), there must be a point x1 with 0 < x1 < s where h0(x1) = Hs,1. This will

be a non-stationary inflection point of the solution. Linearizing (3.34a) about Hs,1 and using ε ≪ 1 the

solution on x1 < x � s can be approximated by

h(x) ≈ Hs,1 − C1e
√

A1Π
′(Hs,1) (x−s). (3.35)

Applying boundary conditions (2.9) to (3.35) and (3.29) yields

C1 =
Hs,1 − ε

ε
√

δ
√

A1Π
′(Hs,1) + 1

, C2 =
ε
√

A1Π
′(Hs,1) (Hs,1 − ε)

ε
√

δ
√

A1Π
′(Hs,1) + 1

. (3.36)

If we take ε → 0 and δ → 0, to leading order we get C2 ∼ ε2p̄√
A1

and thus

h(s) ∼ ε + ε2p̄
√

A1A2

. (3.37)

This resembles the Hs saddle value with an effective wetting coefficient given by the geometric mean

of A1 and A2 and remains less than Hs,1 ∼ ε + ε2p̄/A1 since A2 > A1.
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Fig. 14. Details for a branch 2 solution computed with parameters L = 6, s = 3, A1 = 1, A2 = 50, ε = 0.1, p̄ = 0.467. (a)

Comparison of the numerical solution (blue) on the heterogeneous substrate with its corresponding A1-homogeneous homoclinic

(red dots) with the same pressure. (b) Comparison of the numerically computed steady-state (blue) and the approximations

((3.35),(3.29)) for the structure near the interface x = s (red, black dots).

Noting (3.37) and (3.27) motivates writing (2.15) as

A1U(h(s)) + p̄hmax = p̄hmin + A1U(hmax) + A2

(

U(h(s)) − U(hmin)
)

, (3.38)

where if hmax = O(1) then three terms on the right are each O(ε) or smaller. Consequently balancing

terms on the left, at leading order, we get hmax ∼ A1/(6p̄) for ε → 0. This is the leading-order

approximation of the maximum film thickness of the A1-homoclinic (which can be obtained by solving

R1(Hs,1) = 0). This suggests that as A2 → ∞, the droplet core on 0 � x < x1 < s can be approximated

to leading order by the A1-homoclinic solution on 0 � x < x1 < s. Figure 14 shows the profile of a

branch 2 solution for A2 = 50; in Perazzo et al. (2017), this was called a ‘D1’ solution. Figure 14(a)

shows a comparison with the A1-homoclinic solution having the same pressure p̄. Figure 14(b) shows

(3.35) and (3.29) compared with the numerical solution on a heterogeneous substrate near the interface

of A1 and A2 regions, x = s; similarly to the form of the branch 1 solutions (3.3). We note that some of

these approximations break down for p̄ near pmax, where hmax = O(ε) and U(hmax) in (3.38) is O(1).

Figure 15 shows a schematic phase plane for a branch 2 solution (black curve) compared with

the homoclinic orbits for the A1-homogeneous and A2-homogeneous problems (blue and red curves,

respectively). From the arguments connecting to (3.34a), we know that hmax > Hmax,1 and the branch 2

solution lies outside the A1-homoclinic orbit for h � h(s). From the fact that hmin > Hs,2 for any finite L,

we know that the solution must lie within the A2-homoclinic for h � h(s). The branch 2 solutions have

two inflection points in the droplet tail, at heights h = Hs,1 and h = h(s), giving them a characteristic

‘staircase’ or ‘precursor-foot’ appearance; see Fig. 14.

We also note that corresponding results can also be obtained in the limit ε → 0 with fixed A2 =
O(1); see Liu (2019). In particular, for ε → 0, we can use the parabolic profile (3.10) to approximate

the droplet portion of branch 2 solutions. Then, following similar form (3.11) for large drops, we can

estimate the effective width of the core from hmax to yield w ∼
√

A1/(3p̄2). Branch 2 joins branch 3

when the ‘small’ drops attain maximum size as minimal pinned drops with w ∼ s. This yields p̄∗
2,3 ∼
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24 W. LIU AND T. P. WITELSKI

Fig. 15. Schematic of the lower half of the phase plane diagram showing the monotone decreasing portions of the homoclinic

orbits for A(x) ≡ A1 (blue) and A(x) ≡ A2 (red) and the trajectory for a branch 2 solution.

√

A1/(3s2), corresponding to (3.25). Figure 13(a) shows the bifurcation diagram hmax vs. p̄ zoomed into

a portion of branches 2 and 3, computed numerically and asymptotically in the limit of small ε.

3.5 Summary of the steady-state branches

In examining the six branches, we have seen that each type of solution is impacted somewhat differently

by the presence of the heterogeneous wetting. Distinct from groupings by droplets or film-like states,

we can fundamentally separate the solutions into two sets based on phase plane structure.

• Solutions on branches 1 and 2 are given by trajectories from Fig. 15. They are characterized

by having the height at the wetting interface fall between the saddles, Hs,2 < h(s) < Hs,1 (for

p̄ < 0 the order of the saddles is reversed). Portions of these solutions follow the stable and

unstable manifolds from the Hs,1 and Hs,2 saddle points.

• Solutions on branches 3, 4, 5 and 6 are given by trajectories from Fig. 8. Here, the height at the

switching point lies above both saddles, h(s) > Hs,1 > Hs,2 with branches 4, 5 and 6 having

h(s) = O(1) and branch 3 with h(s) = O(ε).

The pinned droplets, branch 3, transitions between these two cases at the p̄∗
2,3 end, where h(s) crosses

Hs,1. For fixed A1, A2, the existence of turning points in Fig. 13(a) that define the range of pressures for

this branch, (3.25), depends on ε being sufficiently small.

4. Leakage in the limit of large A2

In the limit of large A2, the A2 region effectively becomes increasingly hydrophobic and should give

a stronger confining effect on fluid in the A1 region. This behaviour holds only for a range of small

fluid masses, as wetting effects cannot be expected to influence thick layers of fluids. In terms of the

six branches of steady-state solutions we have analysed, branches 2 and 3 described small and pinned

drops that are effectively confined to the A1 region. From (3.13) with p̄∗
3,4 =

√

A2/(3s2), we obtain that
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Fig. 16. (a) Schematic illustration of fluid leakage (4.2). (b) Leakage as a function of A2 computed numerically and asymptotically

for a branch 2 solution with p̄ = 0.466 and a branch 3 solution with p̄ = 0.38 plotted in log scale. The asymptotic prediction for

branches 2 and 3 is given by (4.4) and (4.5), respectively. The pressure p̄ is fixed as A2 increases with L = 6, s = 3, A1 = 1,

ε = 0.1.

the maximum droplet mass that can be confined in the A1 region is

m∗
3,4 ∼

s2A
1/2
2

3
√

3
. (4.1)

Note that this mass increases when the width of the A1 region (s) is increased or A2 is increased. In

applications where accurate distribution of fluid on solid surfaces are required, it is important to develop

a quantitative understanding of the degree of leakage or ‘spillover’ of the fluid from the A1 region into

the A2 region. In this section, we present a measure of leakage for branch 2 and 3 solutions and show

the leakage is inversely proportional to A2.

In Sections 3.3 and 3.4, we showed that the film thickness at the heterogeneous interface is h(s) ∼ ε

as A2 → ∞; see (3.31) and (3.37). We also showed that in the outer A2 region, h(x) ∼ ε for x > s.

To measure the fluid leakage, we use the fluid mass above h(x) = ε on x ∈ [s, L], as illustrated by the

shaded region in Fig. 16(a).

We define the mass of leakage as

Leakage =
∫ L

s

[

h(x) − ε
]

dx. (4.2)

Recalling (3.29), we can approximate the solution on s � x � L as

h(x) ∼ hmin,2 + δ1/2C2e−(x−s)/(εδ1/2). (4.3)
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Using earlier results, (3.27), we have hmin,2 ∼ ε + δε2p̄. For branch 2 solutions, from (3.36),

C2 ∼ ε2p̄/
√

A1 and this gives

Leakage2 ∼
(

L − s + ε
√

A1

)

ε2p̄

A2

, (4.4)

which gives that at the leading order, the fluid leakage of solutions on branch 2 is inversely proportional

to A2 for large A2. Similarly, for branch 3 solutions, we use (3.31) to obtain

Leakage3 ∼
(

L − s +
√

s2 − A1

3p̄2

)

ε2p̄

A2

. (4.5)

Figure 16(b) shows the fluid leakage computed numerically and compared with the asymptotic estimate

for solutions on branches 2 and 3 at fixed pressure over a range of A2, plotted in log scale. The numerical

result is obtained by first numerically solving for h(x) and then numerically integrating (4.2) using the

trapezoidal rule.

5. Axisymmetric steady-state solutions

We can extend our results for 1D thin films on heterogeneous substrates presented in Section 3 to

axisymmetric solutions on 2D heterogeneous substrates with axisymmetric patterning.

For an axisymmetric film h(r, t) on 0 � r � L, the evolution (2.3a) takes the form

∂h

∂t
= 1

r

∂(rJ)

∂r
with J = h3 ∂

∂r

[

A(r)Π(h) − 1

r

∂

∂r

(

r
∂h

∂r

)]

, (5.1a)

where J ≡ h3∂p/∂r is the radial mass flux. Analogous to (2.3b), the boundary conditions needed at

r = 0 for a smooth axisymmetric solution and at r = L for no-meniscus and no-flux conditions are

∂h

∂r
(0, t) = 0

∂3h

∂r3
(0, t) = 0,

∂h

∂r
(L, t) = 0 J(L, t) = 0, (5.1b)

and we enforce conditions (2.9a) and (2.9b) on the smoothness of solutions at the jump in substrate

wetting properties, r = s. The mass of the axisymmetric solutions h(r; p̄) is given by m = 2π
∫ L

0 hr dr

and the average film height is h̄ = 2
∫ L

0 hr dr/L2.

The positive steady states for this problem are still be parametrized by a uniform pressure p ≡ p̄. It

follows that the steady-state axisymmetric solutions on 0 � r � L satisfy

1

r

d

dr

(

r
dh

dr

)

= A(r)Π(h) − p̄ (5.2a)

h′(0) = 0 h′(L) = 0. (5.2b)
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Fig. 17. Bifurcation diagram for h(0) = hmax vs. p̄ for (a) small p̄. (b) large p̄. The solid curve denotes the numerically computed

bifurcation curve. The dashed and dotted curve denotes the asymptotic prediction of hmax derived for each branch in the limit of

small ε. In both (a) and (b), A1 = 1, A2 = 1.5, L = 6, s = 3, ε = 0.001.

Directly corresponding to (2.1), we take the coefficient of the disjoining pressure to describe an

axisymmetrically patterned substrate,

A(r) =
{

A1 0 � r � s,

A2 s < r � L.
(5.3)

Consequently, the axisymmetric equivalent of (2.15) is given by

(A2 − A1)U(h(s)) = A2U(hmin) − A1U(hmax) + p̄(hmax − hmin) −
∫ L

0

h′2

r
dr. (5.4)

Since (5.2a) is not a piecewise-autonomous equation, the phase plane arguments described in Section 3

do not carry over, but we find that most of the other ideas in the asymptotic constructions do

apply similarly. The steady-state axisymmetric solutions separate into six different branches directly

corresponding to the six branches found in Section 3 for one dimension; see Fig. 17. Here, we will

briefly identify the key steps needed to obtain the axisymmetric solutions and highlight results that we

will use further.

5.1 Small-thickness and large-thickness nearly flat films

As in Section 3.1, steady nearly flat solutions generated by the jump in wetting properties can be

described by linearizing (5.2a).

For very thin films, the disjoining pressure will balance the uniform pressure, AiΠ(h) = p̄, to set

piecewise constant heights, Hs,i, as in (3.1). Linearizing about these yields a piecewise-defined modified

Bessel equation of order zero,

h′′
1 + 1

r
h′

1 =
{

A1Π
′(Hs,1)h1 0 � r � s,

A2Π
′(Hs,2)h1 s < r � L.

(5.5)
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28 W. LIU AND T. P. WITELSKI

Consequently, axisymmetric branch 1 solutions can be approximated by

h(r) ≈

⎧

⎨

⎩

Hs,1 + C1I0

(

√

A1Π
′(Hs,1) r

)

0 � r � s,

Hs,2 + C2K0

(

√

A2Π
′(Hs,2) r

)

s < r � L,
(5.6)

where I0(r) and K0(r) are modified Bessel functions of the first kind and second kind, respectively. C1

and C2 are constants to be determined by enforcing the continuity and smoothness of the solution at

r = s.

For thick films, the disjoining pressure has a weaker influence and the solution can be linearized

around a mean height h̄ ≫ O(ε). In the limit h̄ → ∞ (having Π ′(h̄) < 0), the linearized problem is a

regular Bessel equation of order zero, and we can write the axisymmetric branch 6 solutions as

h(r) ∼

⎧

⎨

⎩

h̄ + C1J0

(
√

−A1Π
′(h̄) r

)

− A1Π(h̄)−p̄

A1Π
′(h̄)

0 � r � s

h̄ + C2J0

(
√

−A2Π
′(h̄) r

)

+ C3Y0(

√

−A2Π
′(h̄) r) − A2Π(h̄)−p̄

A2Π
′(h̄)

s < r � L,
(5.7)

where J0(r) and Y0(r) are Bessel functions of the first and second kinds with constants C1, C2 and C3 to

be determined by the continuity conditions at r = s and the boundary condition at r = L. To determine

p̄, we use that (5.7) must satisfy the condition
∫ L

0 hr dr = h̄L2/2. In the limit h̄ → ∞, this yields

p̄ ∼
(

A1

s2

L2
+ A2

L2 − s2

L2

)

ε2

h̄3
+ O

(

ε3

h̄4

)

, (5.8)

like (3.7), this pressure is an area-weighted average of the disjoining pressure between the hydrophilic

and hydrophobic regions (5.3).

5.2 Droplet-type axisymmetric solutions

As was the case for one dimension, for axisymmetric droplet solutions are primarily characterized by

a core region where h = O(1) as ε → 0. In the core, to leading order, the uniform pressure balances

surface tension with the disjoining pressure being negligible,

d

dr

(

r
dh

dr

)

∼ −p̄r. (5.9)

This yields a parabolic profile analogous to (3.10) but with a modified coefficient,

h(r) = hmax − 1

4
p̄r2 + O(ε), (5.10)

and h = O(ε) outside the core. The width w, where h(w) = O(ε), now represents the effective radius of

the core,

w ∼
√

4hmax

p̄
, (5.11)
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and (5.10) can also be written as h ∼ 1
4

p̄(w2−r2) yielding a mass m ∼ 2πh2
max/p̄; see also Glasner et al.

(2009). What remains to define the different branches of droplet solutions is to make use of information

on the contact line position and the far-field of the droplet through (5.4).

Using (5.10) and (5.11), we can approximate the integral term in (5.4) as

∫ L

0

h′(r)2

r
dr ∼

∫ w

0

h′(r)2

r
dr ∼

∫ w

0

1

4
p̄2r dr ∼ 1

2
p̄hmax.

Consequently, (5.4) for droplet solutions can be approximated by

(A2 − A1)U(h(s)) = A2U(hmin) − A1U(hmax) + 1

2
p̄hmax − p̄hmin, (5.12)

then the axisymmetric droplet solutions follow using analogous arguments from Section 3.

• Branch 2: small radii droplets, w < s with

hmax ∼ A1

3p̄
w ∼

√

4A1

3p̄2
h(s) ∼ ε for p̄ >

√

4A1

3s2
.

• Branch 3: pinned droplets, w ∼ s with

hmax ∼ 1

4
p̄s2 h(s) ∼ ε + ε

√

A2

√

1

4
p̄2s2 − A1

3
h′(s) ∼ −

√

1

4
p̄2s2 − A1

3

for
√

4A1/(3s2) < p̄ <
√

4A2/(3s2). Note that these results differ from the 1D results (3.31)

and (3.33) only by a coefficient and the contact angle is lowered relative to estimate based on

the droplet core, |h′(w)| ∼ 1
2
p̄w.

• Branch 4: large radii droplets, s < w < L with

hmax ∼ A2

3p̄
w ∼

√

4A2

3p̄2
for

√

4A2

3L2
< p̄ <

√

4A2

3s2
.

on
√

4A2/(3L2) < p̄ <
√

4A2/(3s2).

• Branch 5: confined droplets, w ∼ L with

hmax ∼ 1

4
p̄L2 h′(L) ∼ −1

2
p̄L for p̄ <

√

4A2

3L2
.

Figure 17(a and b) show the bifurcation diagram h(0) = hmax vs. p̄ computed for small and large p̄,

respectively, compared with the asymptotic estimates given above.
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30 W. LIU AND T. P. WITELSKI

6. Stability of the steady-state solutions

Here, we apply linear stability analysis to the 1D steady-state solutions described in Section 3. Writing

the steady states as h∗(x) = h(x; p̄), we express perturbed solutions as h(x, t) = h∗(x) + δh1(x, t) for

δ ≪ 1. Plugging into the evolution (2.3a) and linearizing, at O(δ), we obtain

∂h1

∂t
= Lh∗ h1, (6.1)

where the linear operator Lh∗ is given by

Lh∗ g ≡ ∂

∂x

(

h3
∗(x)

∂

∂x

[

A(x)Π ′(h∗)g − ∂2g

∂x2

])

(6.2a)

∂g

∂x
(0, t) = 0

∂3g

∂x3
(0, t) = 0,

∂g

∂x
(L, t) = 0

∂3g

∂x3
(L, t) = 0. (6.2b)

By separation of variables, we can write h1(x, t) =
∑

n cngn(x)e
λnt where (gn(x), λn) are eigenmodes of

Lh∗ g = λg. (6.3)

Results from Laugesen & Pugh (2000a) and Bertozzi et al. (2001) provide guidance on interpreting

the linear stability analysis. Since there are continuous branches of steady states, there will be a zero

eigenmode corrresponding to perturbations of the mass; we will neglect this mode and consider only

modes with zero-mean eigenfunctions. The steady state h∗(x) is then linearly stable if all Re(λn) < 0.

It was shown in Laugesen & Pugh (2000a) that for the Neumann problem, steady states with critical

points in the interior of the domain cannot be linearly stable. Periodic solutions and single droplets

centred in the domain will have modes that are anti-symmetric with respect to the critical points. In

the periodic case, there will be a neutrally stable translational mode, g(x) = h′
∗(x). There will also be

unstable modes describing coarsening, where droplets merge and evolve to a solution with longer spatial

period (see, e.g. Kargupta & Sharma, 2001; Thiele et al., 2003). We will see that this ultimately leads to

fluid accumulating at the edge of the domain as a stable large half-droplet.

We numerically investigate the linear stability of the six different branches of solutions discussed in

Section 3 with typical parameters A1 = 1, A2 = 50, L = 6, s = 3, ε = 0.1. Second-order accurate

finite-difference discretizations of the steady-state solutions of (2.11) are found by continuation in

pressure p̄ for all the six branches. Then, a discretized form of the linear operator (6.2a) can be obtained

as a matrix. The eigenvalues of the linear stability problem (6.3) are then obtained using MATLAB’s

eigenvalue solver.

We find that branch 5 is the only unstable branch, while other branches all characterize stable steady-

state solutions. We need to explain how this is consistent with the form of the diagram for p̄ vs. hmax

shown in Fig. 4(b). Although it appears that there are multiple turning points that imply changes in

stability as the solution passes through these points, the only turning points associated with stability

change are the points connecting branches 4 and 5 and connecting branches 5 and 6. It has been

previously shown in Bertozzi et al. (2001) for thin films on homogeneous substrates that the mass

m and the maximum film thickness hmax are the extrinsic parameters that determine the emergence

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
m

a
t/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

a
m

a
t/h

x
a
a
0
3
6
/5

9
1
9
1
9
3
 b

y
 D

u
k
e
 U

n
iv

e
rs

ity
 u

s
e
r o

n
 1

2
 O

c
to

b
e
r 2

0
2
0



DROPLETS ON HETEROGENEOUS SUBSTRATES 31

Fig. 18. Bifurcation diagrams for parameters L = 6, s = 3, A1 = 1, A2 = 1.5, ε = 0.1: (a) bifurcation diagram for p̄ vs. hmax

(b) bifurcation diagram for m vs. hmax, hmin. The insets show the same range of solutions where branches 1 and 2 meet in terms

of both bifurcation diagrams, with stability indicated in (b). The dashed segment denotes the unstable part of branch 2 in both

bifurcation diagrams.

of bifurcations. The pressure p̄ should be viewed as an intrinsic parameter that can be computed by

p̄ =
∫ L

0 Π(h∗(x)) dx/L once h∗(x) is determined. Observe that in Fig. 4(b), viewed with respect to

decreasing hmax from above, a saddle-node bifurcation occurs between branches 4 and 5, with branch

4 being the stable branch and branch 5 the unstable branch. If we increase hmax from below, another

saddle-node bifurcation occurs at between branches 5 and 6, with branch 6 being the stable branch,

which is consistent with the finding that branch 5 is the only unstable branch for the parameters used

above. Also see the stability indicated in Fig. 3(c).

Depending on the choice of parameters, a part of branch 2 near the connection with branch 1 may

also be unstable. Figure 18 shows bifurcation diagrams for p̄ vs. hmax and m vs. hmax, hmin. The inset

plot in Fig. 18(a) zooms into the end of branch 2 that connects with branch 1. This corresponds to the

inset plot shown in Fig. 18(b), showing the same solution branches yield an S-shaped curve plotted

using m vs. hmax, hmin, indicating saddle-node bifurcations. There is a small range of mass for which

three different steady states exist with the same mass. Two of the steady states are branch 2 solutions.

Of the two branch 2 solutions, the solution with the smaller amplitude is unstable. The third steady state

is a branch 1 solution. The unstable part of branch 2 is represented by the dashed curve in Fig. 18. As

will be discussed further, increasing A2 has the effect of stabilizing branch 2 solutions. We found that

for L = 6, s = 3, ε = 0.1 fixed, as A2 increases, the unstable part of branch 2 vanishes.

It was shown that steady states on branch 5 are parametrized by a finite range of pressures p̄.

Corresponding to a finite range of masses, in Fig. 3(c) this is approximately 1.2 < m < 1.6. Branches

4 and 6 are defined over the same range of masses, suggesting mass-conserving bi-stable dynamics

of (2.3) separated by branch 5. Figure 19 confirms this description by showing the two different stable

equilibria approached by the solution at large times starting from initial data given by a branch 5 solution

with small perturbations of opposite sign. Figure 19(a) shows that when the initial condition is given by

h(x, 0) = h∗(x) + δg1(x) where g1(x) is the unstable eigenmode of h∗(x), the stable branch 6 solution

is approached. In contrast, in Fig. 19(b) starting from the initial condition h(x, 0) = h∗(x) − δg1(x), the

dynamics lead to the branch 4 solution with the same mass, m ≈ 12.8.

In Section 2, we noted the existence of further branches of solutions in the bifurcation diagram,

besides the primary (outer-most) loop (Fig. 4(b)) that we have been studying, for heterogeneous
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32 W. LIU AND T. P. WITELSKI

Fig. 19. Bi-stable dynamics with respect to perturbations of an unstable branch 5 solution h∗(x). (a) Initial conditions (red dotted

curve) h(x, 0) = h∗(x) + δg1(x), with g1(x) being the unstable eigenmode of h∗ and small δ > 0, evolving to the stable branch 6

solution (blue curve). (b) Initial conditions h(x, 0) = h∗(x) − δg1(x) evolving to the stable branch 4 solution.

substrates with sufficiently large domain size L. We use the values of the system parameters from

Fig. 3(c) and consider the stability of solutions off the primary loop. We compute the eigenvalues

for the four solutions with mass m = 0.6 marked by asterisks in the bifurcation diagram shown in

Fig. 20(a). Figure 20(b) shows the corresponding profiles of the four solutions. Linear stability analysis

suggests that of these four steady states, only solution d, which is a solution representing a large droplet

centred at x = L on the larger loop compared with the solutions a-c, is stable; solutions a-c are unstable.

Specifically, solutions b and c have one unstable eigenvalue and solution a has two unstable eigenvalues,

which is consistent with the observed fold points of the inner loop. At each fold point, the number of

unstable eigenvalues changes by one, implying one eigenvalue crosses through zero. The dominant

eigenvalue for solution d, λ1 ≈ −0.065, is smaller in amplitude compared with λ1 ≈ −0.08 for

the stable droplet centred at x = 0. This suggests that while both droplets are stable to infinitesimal

perturbations, the droplet in the hydrophilic region may be the attracting state for dynamics starting

from most generic initial conditions at this mass. Such stability considerations led us to focus on the

outer loop of solutions.

In Sections 3.3 and 4, we quantified the pinning effect of an increasing wettability contrast on branch

2 and 3 droplets. Here, we show that increasing A2 can increase the relative stability of a branch 2 droplet

at a fixed mass. Figure 21 shows the largest eigenvalue of a steady-state branch 2 droplet with mass

m = 3.5 as a function of A2. As A2 increases, the leading eigenvalue λ1 becomes more negative, making

the steady state more stable with small perturbations decaying faster. We will see further influences of

large A2 on the dynamics in the next section.

7. Dynamics of 1D solutions

The dewetting dynamics of thin films on hydrophobic substrates involves many regimes starting from

linear instabilities of perturbed films, leading to pattern formation and long-time breakup into droplets

connected by thin precursor films; see, e.g. Thiele et al. (2001). An important step in showing that model

(2.3) can represent these dynamics for homogeneous substrates (A(x) ≡ 1) was the proof in Bertozzi

et al. (2001) that film thicknesses remain positive for all times. In the appendix here, we extend their
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Fig. 20. (a) Part of the bifurcation diagram from Fig. 3(c) highlighting four distinct non-primary steady states with mass m = 0.6.

(b) The corresponding height profiles of the four solutions, of which a-c were shown in Fig. 3(e) and d is a large droplet centred

at x = L.

Fig. 21. The largest eigenvalue λ1 of a steady-state branch 2 droplet with fixed mass on a substrate with increasing A2 for

parameters m = 3.5, L = 10, s = 5, A1 = 1, ε = 0.1.

proof to apply to (2.3) with heterogeneous wetting given by (2.1). Given that result, here we briefly

address the influence of heterogeneous wetting properties on the timescales of the dewetting dynamics.

Figure 22 compares the evolution of a thin film on substrates with homogeneous and heterogeneous

wetting properties, (2.2) with ε = 0.1, on a domain with L = 10. The initial condition is given by a

perturbed thin film h(x, 0) = 0.35
[

1 + 0.1 cos
(

2πx
L

)

+ 0.1 cos
(

3πx
L

)]

with mass m = 3.5. In each of

three simulations, we illustrate the dynamics by showing the evolution of the height profiles as surface

plots along with plotting the evolution of the energy (2.5).

On the homogeneous substrate, with A(x) ≡ 1 (Fig. 22(a)), the thin film de-stabilizes to form two

droplets of different sizes centred at x = 0 and x = L. This is accompanied by a rapid decrease in the

energy from the initial value. Thereafter, the drops slowly evolve. The droplet at x = L slowly gains

mass as time increases, eventually leading to an equilibrium with one large droplet centred at x = L.

Figure 22(b) shows the evolution starting from the same initial film on a stepwise-patterned substrate

with s = 5, A1 = 1 and A2 = 5. While the film also breaks up to form two droplets in this case, the

right droplet initially develops at an interior position, at some x∗ with s < x∗ < L. As time increases,

the right droplet moves towards x = L and loses mass, eventually leading to one single equilibrium

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
m

a
t/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

a
m

a
t/h

x
a
a
0
3
6
/5

9
1
9
1
9
3
 b

y
 D

u
k
e
 U

n
iv

e
rs

ity
 u

s
e
r o

n
 1

2
 O

c
to

b
e
r 2

0
2
0



34 W. LIU AND T. P. WITELSKI

Fig. 22. Surface plots that demonstrate the dewetting dynamics of thin films over time starting from the same initial profile on

0 � x � 10 with ε = 0.1 on (a) a homogeneous substrate with A(x) ≡ 1, (b) a heterogeneous substrate with A2 = 5 on 5 � x � 10

and (c) a heterogeneous substrate with A2 = 50 on 5 � x � 10. The time is plotted in log scale. (d) The corresponding energy

given by (2.5) of the thin films over time on substrates described in (a,b,c).

droplet centred at x = 0. In this evolution, the energy of the thin film has two stages of rapid decrease,

first forming two drops from the film followed by the movement of the interior droplet to the edge of

the domain. The two edge droplets then slowly evolve until a single-drop equilibrium is approached, as

shown in Fig. 22(b). Note that compared with the homogeneous substrate case, the final droplet formed

on the other side of the domain, and the timescale to reach this near-equilibrium phase was reduced by

a factor of five.

Figure 22(c) shows the evolution of the thin film profile on the patterned substrate with A2 = 50. The

evolution of the thin film goes through a similar dewetting process. However, the droplet formed at the

right boundary has a smaller width compared with the A2 = 5 case and the stages of dynamics occurred

in a much shorter time-scale, as can be observed in Fig. 22(d). This is consistent with the stabilizing

effect of increasing A2 evidenced by the eigenvalue calculation shown earlier in Fig. 21. With this larger

value of A2, the influence of the heterogeneity is more clear. In the early stages, a pinned drop forms

in the relatively hydrophilic region while coarsening dynamics proceed on the hydrophobic region. For

long times the pinned drop slowly evolves to become a stable steady-state droplet centred at x = 0;

since the width of this drop is within the hydrophilic region (w < s), this is a branch 2 solution. Further

work is needed to better understand the significant influence of substrate heterogeneity on the overall

timescales and dynamics of thin film evolution.
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8. Steady-state thin films on 2D substrates

So far, we have mainly focused on solutions for the simple 1D and axisymmetric cases. However,

the chemical patterning of surfaces used in many microfluidic applications is generally much more

complicated; see, e.g. Darhuber et al. (2001), Darhuber & Troian (2005) and Kašpar et al. (2016).

Here, we study thin films on 2D heterogeneous surfaces with square and stripe patterning and show that

the cross-sections of some 2D steady-state solutions on such surfaces can be approximated by 1D and

axisymmetric solutions.

The generalization of (2.3a) to two dimensions for the evolution of h(x, y, t) is

∂h

∂t
= ∇ ·

(

h3∇
[

A(x, y)Π(h) − ∇2h
])

, (8.1)

and steady states are characterized by having constant pressures, p = p̄, yielding the semilinear elliptic

partial differential equation problem

p̄ = A(x, y)Π(h) − ∇2h. (8.2)

Computationally, we obtain stable steady states by applying efficient numerical schemes for (8.1)

(Witelski & Bowen, 2003) and evolving the solution to sufficiently long times starting from initial

conditions over a range of masses.

As in the 1D and axisymmetric cases, we focus on the droplet solutions centred at the origin. First,

we study drops on a heterogeneous substrate with a relatively hydrophilic A1-square patch in the centre,

surrounded by a relatively hydrophobic A2 region on a square domain with the Hamaker coefficient

modelled by

A(x, y) =
{

A1 0 � x � s and 0 � y � s,

A2 otherwise.
(8.3)

With this geometry, we can take advantage of four-fold symmetry to get the solutions in terms of

computing just the first quadrant. Our expectations are that small droplets, whose core fits well inside

the A1 square should be close to axisymmetric, as should large drops that overflow the A1 square but

are not so large as to be strongly influenced by the confining effects of the finite domain size. These

correspond to branches 2 and 4 of the axisymmetric solutions found in Section 5. Between these cases

should be 2D pinned drops whose structure depends significantly on the shape of the hydrophilic region.

To quantitatively compare the computed solutions on this substrate with the axisymmetric steady-

state solutions, we define a measure for the difference of h = h(x, y) from being an axisymmetric form,

h = h(r), as

D ≡
∫ Ly

0

∫ Lx

0

∣

∣

∣

∣

x
∂h

∂y
− y

∂h

∂x

∣

∣

∣

∣

2

dx dy. (8.4)

Note that written in polar coordinates, D =
∥

∥
∂h
∂θ

∥

∥

2

L2
; hence if a solution is axisymmetric, then D = 0.

Figure 23 shows film mass m =
∫∫

h dx dy vs. D plotted on log scale over a range of fluid masses on

a square hydrophilic patch (8.3) with A2/A1 = 10. Droplet-type solutions, represented by blue triangular

data points, correspond to pinned and unpinned droplets similar to those studied in Sections 3.2 and 3.3.
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Fig. 23. Thin films on a hydrophilic square patch, −s � x, y � s: (top) Film mass m vs. D plotted in log scale for both droplet-

type solutions and perturbations of thick flat films, with parameters L = Lx = Ly = 5, A1 = 1, A2 = 10, s = L/2. The insets

show colour contour maps of four selected solutions (on one quarter of the domain, 0 � x, y � L, reduced by symmetry). (a,b,c)

Cross-section of the 2D solution at y = 0 compared with the axisymmetric steady-state solution with the same maximum film

thickness for (a) droplet a (b) droplet b (c) droplet c. No cross-section profile is shown for the nearly uniform thick film marked

by inset d.

We observe that the maximum D occurs at a pinned steady-state droplet with droplet width w ≈ s. The

contour map of the surface of the solution labelled b is also shown in Fig. 23. For solutions with mass

larger than droplet b, the droplet becomes a large-radii unpinned droplet like a branch 4 solution, shown

by the contour map labelled c. In this process, D gradually decreases. For masses smaller than droplet

b, droplets gradually transition to being small-radii droplets like a branch 2 droplet with a smaller D,

shown by the contour map of droplet a. Figure 23(a, b and c) confirms the excellent agreement of the

computed solution with the axisymmetric height profiles for cases a, c and the noticeable difference with

the anisotropic pinned droplet b. Above a certain mass, the wettability contrast is not strong enough to

maintain droplets and the solution will take the form of a nearly uniform thick film. A branch of these

solutions is also shown in the figure (indicated with black dots); as should be expected from earlier

results for branch 6 solutions, the influence of the form of A(x, y) decreases with increasing thickness.

Processes in many applications involve depositing liquids on periodic striped wettability patterns;

see Ajaev et al. (2016), Brasjen et al. (2013), Honisch et al. (2015) and Kargupta & Sharma (2002).

In particular, several different regimes for liquid droplets on substrates with stripe-like patterns have

been identified in Honisch et al. (2015). Here, we show that depending on the regime, cross-sectional

profiles of the 2D droplet can be predicted using the axisymmetric or 1D steady states. To simulate the
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Fig. 24. Symmetric thin films on a hydrophilic stripe, −s � x � s: (top) Film mass m vs. D plotted in log scale for droplet-type

solutions, with parameters Lx = 5, Ly = 10, A1 = 1, A2 = 10, s = Lx/2. The insets show colour contour maps of three selected

solutions (on one quarter of the domain, reduced by symmetry). (a,b,c) Cross-sections of the 2D solutions at y = 0 compared with

the axisymmetric and 1D steady states with the same maximum film thickness for droplets a, b, c, respectively.

deposition of liquids on a substrate with stripe-like patterns, we consider A(x, y) of the form

A(x, y) =
{

A1 0 � x � s,

A2 otherwise.
(8.5)

We focus on one-quarter of a droplet whose maximum film thickness occurs at (0, 0), in the centre of

the stripe. Figure 24 shows m vs. D plotted on log scale for droplets on striped substrates. When the

fluid mass is small, with the droplet core fitting well inside the width of the stripe, the influence of the

chemical heterogeneity on the droplets is limited. The droplets are closer to axisymmetric solutions with

small D, as shown by the colour map of the surface of droplet a and droplet b highlighted in Fig. 24.

As mass increases, the fluid grows in the y-direction and becomes increasingly non-axisymmetric, as

shown by droplet c labelled in Fig. 24. Figure 24(a, b and c) show the cross-section of the 2D computed

solution at y = 0 compared with the axisymmetric or 1D steady states with the same maximum film

thickness for droplets a–c. We observe that the cross-section of droplet a and droplet b can be well

approximated by the axisymmetric solution with the same maximum film thickness. As the fluid mass

increases, D increases. The 1D steady state gives a better prediction of the cross-sectional profile at

y = 0 for the elongated pinned droplet c.
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9. Conclusions

This paper has considered the steady-state thin films on a finite chemically heterogeneous substrate

with stepwise patterning. We have classified the primary steady-state solutions in one dimension into

six different branches, for which we presented asymptotic analysis of solutions and have considered

two limits, the small ε limit and the large wettability contrast limit. In particular, we investigated a

new type of pinned droplet solutions that arise due to the heterogeneity of the substrate. We identified

that an increasing A2 has a confining effect on these pinned droplets. Through asymptotic analysis, we

quantified the degree of confinement and leakage of fluid film in terms of the wettability contrast.

We showed that the results of the asymptotic analysis derived for 1D solutions can be directly

extended to axisymmetric solutions. In addition, we discussed the stability of these steady-state solutions

using linear stability analysis. We also extended a proof of positivity of solutions on homogeneous

substrates to the case of heterogeneous substrates. Last, we explored the effect of heterogeneity on

the dynamics of thin film evolution in one dimension and in square and striped geometries in two

dimensions.

There are many interesting questions for further study suggested by this work. This includes

analysing if the bifurcation structure of the six branches of solutions found for (2.2) holds for broader

classes of Π(h) disjoining functions and other forms for A(x). More work is needed to study solutions

on larger domains with periodic A(x) functions, representing micro-arrays; it would be interesting to

see if non-periodic steady states can exist. Similarly, understanding the structure of the higher-order

branches in one dimension may be important for studies of dewetting. We hope that more use of the 1D

and axisymmetric can be made for approaches to systematically approximate solutions of the 2D elliptic

problem (8.2) in simple geometries like those studied in Brasjen & Darhuber (2011) and Brasjen et al.

(2013). Further work is needed to compare our results for branch 3 pinned drops with the results for

pinned drops on square patches given in Kašpar et al. (2016). Comparisons with studies of Stokes flows

on pattern substrates (Asgari & Moosavi, 2012; Moosavi et al., 2008) could shed light on limitations

for using of thin film models with discontunuous wetting properties. Much more work is also needed

to better understand the influence of heterogeneous wetting on dewetting and coarsening dynamics on

larger domains as in Brusch et al. (2002), Thiele et al. (2003) and Asgari & Moosavi (2012).
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A. Proof of positivity and global existence of solutions

Here, we extend the proof given in Bertozzi et al. (2001) showing the global existence of positive

solutions to (2.3a) from the homogeneous case (A(x) ≡ 1) to apply to heterogeneous substrates with

positive A(x) bounded from above.

Theorem A.1 Consider the initial data for (2.3) satisfying h0(x) > 0 with h0 ∈ H1([0, L]) and E(h0) <

∞, then the solution h(x, t) is positive for all t > 0.

Proof. We derive a priori pointwise upper and lower bounds for the solution. The energy E, as given

by (2.5), is monotonically decreasing following (2.7). It follows that at any time T > 0,

1

2

∫ L

0

∣

∣

∣

∣

∂h

∂x
(T)

∣

∣

∣

∣

2

dx �
1

2

∫ L

0

∣

∣

∣

∣

∂h0

∂x

∣

∣

∣

∣

2

dx +
∫ L

0

A(x)U(h0) dx −
∫ L

0

A(x)U(h(T)) dx. (A.1)

Using that A(x) is bounded and −U(h) has an a priori upper bound independent of h (from (2.6),

U(h) � 1/6 for all h > 0), implies that
∫

|∂xh(x, T)|2 dx is bounded. Hence, h(x, T) ∈ H1([0, L]). Then,

h(x, T) has both a priori pointwise and C0,1/2 upper bounds by the Sobolev embedding theorem.

Note that (A.1) along with the boundedness of A(x) implies
∫ L

0 U(h(x, T)) dx < C. Suppose h(x, T)

attains its minimum hmin at x = x0. By Holder continuity, h(x) � hmin + Ch|x − x0|1/2. Therefore,

C >

∫ L

0

U(h(x, T)) dx �

∫ L

0

(

ε3

3(hmin + Ch|x − x0|1/2)3
− ε2

2h2
min

)

dx �
C2(ε, L)

hmin

+ O(1). (A.2)

Hence, the solution cannot go below a positive threshold for any T > 0. �
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