Quadratic Gorenstein algebras with many
surprising properties
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Abstract. Let k be a field of characteristic 0. Using the method of ideal-
ization, we show that there is a non-Koszul, quadratic, Artinian, Goren-
stein, standard graded k-algebra of regularity 3 and codimension 8, an-
swering a question of Mastroeni, Schenck, and Stillman. We also show
that this example is minimal in the sense that no other idealization that
is non-Koszul, quadratic, Artinian, Gorenstein algebra, with regularity
3 has smaller codimension.

We also construct an infinite family of graded, quadratic, Artinian,
Gorenstein algebras A, , indexed by an integer m > 2, with the following
properties: (1) there are minimal first syzygies of the defining ideal in
degree m + 2, (2) for m > 3, A, is not Koszul, (3) for m > 7, the
Hilbert function of A,, is not unimodal, and thus (4) for m > 7, A,
does not satisfy the weak or strong Lefschetz properties. In particular,
the subadditivity property fails for quadratic Gorenstein ideals.

Finally, we show that the idealization of a construction of Roos
yields non-Koszul quadratic Gorenstein algebras such that the residue
field k£ has a linear resolution for precisely « steps for any integer o > 2.
Thus there is no finite test for the Koszul property even for quadratic
Gorenstein algebras.
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1. Introduction

Let k be a field and let S = k[xy,...,z.] be a standard graded polynomial
ring over k. Consider R = S/I an Artinian standard graded quotient of
S. A recent problem that has attracted some attention is to identify what
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conditions on a quadratic Gorenstein algebra R force R to be Koszul. While
every such R with reg(R) < 2 is Koszul [9], Mastroeni, Schenck, and Stillman
[25] constructed quadratic, Gorenstein algebras with r = reg(R) = 3 and
codim(R) = ¢ for all ¢ > 9; this negatively answered a question of Conca,
Rossi, and Valla [9]. Mastroeni et. al. pose the following question: For which
positive integers (r,c) does there exist a non-Koszul, quadratic, Gorenstein
algebra with regularity r and codimension ¢? In a second paper [26], they
settle the question in all cases except three, namely (r,¢) = (3,6), (3,7), and
(3,8). The first result of this paper, given in Section 3, is to settle the case
(r,c) = (3,8) by finding a non-Koszul, quadratic, Gorenstein algebra with
these parameters. We do so by applying Nagata’s idealization construction to
a non-Koszul Artinian algebra of codimension 4, which comes from Roos’ list
of quadratic algebras in four variables [32]. Moreover, we show that the other
two cases (r,¢) = (3,6), (3,7) cannot be similarly settled via idealizations.

Our second construction addresses the subadditivity property of Goren-
stein ideals. Set t;(R) = sup{j| Tor? (R, k); # 0}. The numbers t;(R) mea-
sure the maximal degree of a minimal generator of the i-th syzygy module of
R as an S-module. They are primarily of interest because of their relation to
regularity as reg(S/I) = max;>o{t;(S/I)—i}. The ring R is said to satisfy the
subadditivity property if to(R) 4+ tp(R) > tas(R) for all a,b > 1. It is easy to
see that complete intersections satisfy subadditivity (Proposition 4.1) while
general Cohen-Macaulay ideals do not (cf. [12, Example 4.4]). Several recent
papers have studied the subadditivity property for various classes of ideals
[1, 14, 22]. Tt is conjectured that monomial ideals and Koszul ideals satisfy
subadditivity [2, Conjecture 6.4]. To our knowledge, there were no known
counterexamples to subadditivity for Gorenstein ideals; some positive results
for Gorenstein ideals are proved in [13]. In Section 4, we show that subaddi-
tivity fails in a strong way for quadratic Gorenstein ideals. As a consequence
of our methods, we obtain an infinite family of quadratic Gorenstein ideals
that are non-Koszul, have arbitrarily high degree first syzygies, have non-
unimodal Hilbert function, and do not satisfy the strong or weak Lefschetz
properties. This provides a counterexample to a conjecture of Migliore and
Nagel [29, Conjecture 4.5]; an earlier counterexample was given by Gondim
and Zappala [16].

The third construction modifies a separate example of Roos [31] to show
that there is no finite test of the Koszul property even for quadratic Goren-
stein algebras. In Section 5, we show that for any integer o > 2, there is
a quadratic, Artinian, Gorenstein k-algebra B, with codim(B,) = 14 and
reg(B,) = 3 such that the resolution of k as a B-module is linear for pre-
cisely a many steps.

2. Background

Here we collect notation and results needed in the rest of the paper. Let k be
a field, S = k[z1,...,z,] a standard graded polynomial ring over k, and R =
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S/I, where T is a homogeneous ideal of S. Then R inherits a decomposition
R = ®;>0RR; as K-vector spaces with the property that R; - R; C R;; ;. The
Hilbert function of R is HF g(i) = dimg(R;). If HFg(i) = 0 for ¢ > 0, R is
Artinian; this is equivalent to requiring dimg(R) < oo or that R satisfies the
descending chain condition on ideals. The generating function for the Hilbert
function is the Hilbert series of R defined as HSg(t) = >, dimy(R;)t* and
similarly for a graded R-module. For a graded Artinian ring R, the h-vector
records the nonzero values of the Hilbert function of R. The syzygy modules
of R are denoted Syz; (R). The regularity of R is reg(R) = max{j| B(R) #
0}, where Bisj(R) = Tory (R, k); are the graded Betti numbers of R over S.
Regularity is one of the most well-studied invariants of graded k-algebras
and has connections to sheaf cohomology and computational complexity [4].
In particular, if R = S/I as above, regg(S/I) + 1 is an upper bound on the
degrees of a minimal generating set of I; however, there are examples showing
that regg(S/I) can be doubly exponential in the degrees of the generators of
T [24].

The ring R is called Koszul if k has a linear free resolution over R; that
is, ﬁg(k) = 0 for all j > 4. It is well-known that Koszul algebras are defined
by quadratic ideals and that ideals having a Grobner basis of quadrics define
Koszul algebras, but both of these implications are irreversible [8, Remark
1.10 and Example 1.20]. Every quadratic complete intersection (that is, rings
of the form S/(f1,..., fm), where f1,..., fm is a graded regular sequence on
S) is Koszul by a result of Tate [34]. There are many examples of Koszul
algebras in algebraic geometry and these algebras enjoy a rich duality theory.
The article [7] contains a modern introduction to the theory of (commutative)
Koszul algebras.

A graded Artinian k-algebra R is said to satisfy the weak Lefschetz
property if there is a linear form ¢ € R; such that for each non negative
integer ¢ the k-linear map R; — R;41,7 +— {r is either injective or surjective.
Similarly, R is said to satisfy the strong Lefschetz property if there is a linear
form ¢ € R; such that for each pair of non negative integers 7, j the k-linear
map R; — R;yj,r — {’r is either injective or surjective. Lefshetz properties
of Artinian k-algebras have been well-studied and we refer the reader to [21]
or [30] for an overview of the area.

If R is graded Artinian, then the canonical module of R is given by
wr = Extg(R, S)(—n) and the canonical module of an R-module M is given
by wyr = ExtG(M, S)(—n). In this case R is called level if wg is generated in
a single degree. The minimal number of generators of wg is called the type
of R and denoted throughout this paper by type(R). If type(R) = 1, i.e. if
wpg is isomorphic to R, up to a shift in the grading, then R is Gorenstein.
Equivalently, R is Artinian and Gorenstein if it is injective as an R-module.
Gorenstein ideals have symmetric Betti tables and thus Gorenstein rings
have palindromic h-vectors. There are many examples of Gorenstein rings of
interest in algebraic geometry, such as coordinate rings of many canonical
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curves, rings of invariants, and monomial curves. We refer the reader to [23]
for a history of Gorenstein rings.

Following [25], we say that R is superlevel if R is level and wg, is linearly
presented over R. Note that for R to be superlevel, it is sufficient for R to
be level and wr be linearly presented over S. The idealization (sometimes
called the Nagata idealization or trivial extension) of R with respect to its
canonical module is the ring

R:=Rx wr(—reg(R) — 1),

with multiplication given by (r1, 21) - (2, 22) = (r1ra, 7122 +7221). When R is
level, R is a standard graded ring. It is well-known that when R is Artinian,
R is Artinian and Gorenstein; see [5, proof of Theorem 3.3.6] or [18, Theorem
2.76]. Mastroeni, Schenck, and Stillman observed the following:

Theorem 2.1 (25, Proposition 2.2, Lemma 2.3, Theorem 2.5]). Let R = S/I
be a standard graded, Artinian k-algebra.

1. If R is level, then R is a standard graded, Artinian, Gorenstein k-
algebra. In this case

codim(R) = codim(R) + type(R) and  reg(R) = reg(R) + 1.

2. If R is quadratic and superlevel, then R is quadratic.
3. If R is not Koszul, then R 1is not Koszul.
4. R Slyr, ..., u) /(1) + L+ (y1, .-, y)?), where t = type(R) and

L= (Z fiyi

i=1

(fi,....f1) € syzf(wR)> .

Thus idealizations of superlevel, Artinian, quadratic algebras are a conve-
nient way of constructing quadratic Gorenstein algebras. All three of the
constructions in this paper use this idea.

3. A non-Koszul, quadratic, Gorenstein ring with codimension
8 and regularity 3

A construction of Matsuda [27] shows that not every quadratic, Gorenstein
ideal is Koszul. Matsuda’s example had regularity 4. Conca, Rossi, and Valla
showed that every quadratic, Gorenstein algebra with regularity 2 was Koszul
[9, Proposition 2.12] and asked asked whether every such algebra with regu-
larity 3 was Koszul [9, Question 6.10]. It is known that all quadratic, Goren-
stein algebras of regularity 3 and codimension at most 5 are Koszul [6, 9].
Mastroeni, Schenck, and Stillman [25] constructed counterexamples in all
codimensions ¢ > 9. They then posed the following question:

Question 3.1 ([25, Question 1.3]). For which positive integers ¢ and r is every
quadratic Gorenstein ring R with codim(R) = ¢ and reg(R) = r Koszul?
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In a second paper [26] Mastroeni, Schenck and Stillman settle this question
for all ordered pairs (r, ¢) except for (3,6), (3,7), and (3, 8). In this section, we
show that the answer to Question 3.1 is negative for (r,c) = (3,8). We con-
struct our example by starting with one of the 4-variable quadratic algebras
that Roos compiled in [32]. In particular, he constructed a non-Koszul, Ar-
tinian, quadratic, superlevel k-algebra of regularity 2. Applying Theorem 2.1
to it, we obtain the following result.

Theorem 3.2. Let k be a field of characteristic 0 and let S = k[u, x,y, z]. Let
I = (2?4 yz+u?, ou, 22 + 2y, w2 +yu, zutu?, y?>+22). Then R = S/I is non-
Koszul, Artinian, superlevel, with reg(R) = 2 and type(R) = 4. Consequently,
its idealization R = R x wr(=5) is a non-Koszul, quadratic, Gorenstein,
Artinian, graded k-algebra with reg(R) = 3 and codim(R) = 8.

Proof. That S/I is not Koszul follows from computations done by Roos [32].
A Macaulay?2 [20] calculation shows that S/I has graded Betti table

01 2 3 4

o1 - - - -
.1- 6 4 - -
2:1- - 9 12 4.

In particular, S/I is superlevel and type(R) = 4. Therefore by Theorem 2.1,
R = R x wgr(1l) is a non-Koszul, quadratic, Gorenstein, standard graded
k-algebra with reg(R) = 3 and codim(R) = 8. O

The h-vector of R is (1,8,8,1). The above example comes from [32, Example
57, Table 5]. Other examples can be constructed from [32, Examples 55 and
56, Table 5].

It is natural to ask whether one can use the idealization of a non-Koszul,
superlevel, Artinian algebra R to settle the two remaining cases (r,c¢) = (3, 6)
and (3,7). We show next that this is impossible. Since the codimension of
the resulting idealization R is codim(R) + type(R), we would need to find a
quadratic, superlevel, Artinian algebra with codim(R) + type(R) < 7. This
is impossible in view of the following result.

Proposition 3.3. If R is a level, Artinian, quadratic non-Koszul algebra with
reg(R) = 2, then codim(R) + type(R) > 8. Hence R = R X wg has codimen-
sion at least 8.

Proof. Assume towards a contradiction that codim(R) + type(R) < 7. Since
R is level with reg(R) = 2, type(R) = HFg(2). If HFg(2) < 2, then R is
Koszul by [3, 4.8]. If HFg(2) = 3, we may appeal to [7, Theorem 1.1] to
conclude that R is Koszul. If HF z(2) > 4, then ¢ = codim(R) < 3, which is
impossible since HF g(2) < (Cgl) — 3 < 3if R is Artinian and quadratic. O
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4. Subadditivity fails for Gorenstein ideals

To place our second result in context, we begin by showing that homogeneous
complete intersection rings R enjoy the subadditivity property, that is ¢t,(R)+
ty(R) > toyp(R) for all a,b > 1.

Proposition 4.1. Subadditivity holds for homogeneous complete intersections.

Proof. Let I = (f1,...,f.) be a homogeneous complete intersection ideal
with deg(f;) = d;. Then S/I is resolved by a Koszul complex. We order the
generators so that d; > do > -+ > dc. By the construction of the Koszul
complex, it follows that ¢;(S/I) = >°%_, d;. Hence for any positive integers

7j=1
a,b with a + b < ¢ we have
a-+b a-+b a b
taps(S/T) = Zd _Zd + >0 d; <> di+ Y dy =ta(S/) +t,(S/1).
j=a+1 j=1 Jj=1

O

On the other hand, subadditivity fails in general, even for Cohen-Macaulay
ideals cf. [12, Example 4.4]. Note that to study subadditivity for Cohen-
Macaulay, and in particular, for Gorenstein rings, it suffices to consider Ar-
tinian rings R = S/1I, since the graded Betti numbers of R over S are the
same as those of R/(¢) over S/(¢) for any linear form ¢ € S regular on R.

The following Lemma is similar to an example due to Caviglia [12,
Example 4.4]. We use the notation [—] : Z — N, [2] = max{z, 0}.

Lemma 4.2. Fiz o natural number m and a field k with char(k) = 0 or
char(k) > 2m + 1. Let S = k[z1,...,%2m] and consider the ideals C =
(23,...,23,,) and I = C + ((w1 4+ -+ + z2m)?). Then form > 2, R:= S/I
1s an Artinian, quadratic algebra that has the following properties.

1. The Hilbert function of R is HFg(i) = [(22") - (121"2)}

2. reg(R) = m.

3. B§m+2(R) # 0, and moreover, t3(R) = m + 2.

4. R is superlevel.

5. R is not Koszul.

Proof. Tensoring with a field extension of k, if necessary, one may assume
that k is infinite. Set L = C : I and note that L is directly linked to I. Let
¢ =21+ -+ Ty, and consider the homomorphism u : (S/C) — (S/C),
where p(x) = (2 for which Ker(u) = L/C and Coker(u) = S/I. Since £? is a
strong Lefschetz element for S/C' (see [21, Theorem 3.35] and the references
therein for the characteristic zero case and [10, Theorem 7.2] for positive

characteristics), the k-linear functions p; : (S/C); — (S/C);y2, obtained
by restricting p to each of the graded components of S/C, are injective for
1 < m — 1 and surjective for i > m — 1. It follows that the Hilbert function

of R = S/I is
HE (i) = [im ((5/0)) ~ i (1570020 = | (1) = ()|

7 i — 2
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In particular, R is Artinian with HF g(m) # 0, while HFg(m + 1) = 0 and
so reg(R) = m.

Moreover, the injectivity of the maps u; above shows dimy(L;/C;) =0
for ¢ < m — 1, so L has no minimal generators below degree m besides
the quadratic generators of C. The non-injectivity of u,, shows that L has
minimal generators in degree m.

Consider the graded short exact sequence

0 S/L(-2)-% §/C—s §/T = 0.

Since 61’m+2(5/0) = 0 and 61,m+2(S/L(—2)) = ﬂLm(S/L) 75 0, it follows
from the long exact sequence of Tor that B3 ,,42(S/I) # 0. Since the only
minimal generators for both C' and L below degree m are those in the com-
plete intersection C, it follows that 3; ;(S/C) = 0 for j < 2i and

BZJ(S/L<—2)) = Bi,j+2(S/L) =0 for 7 < mln{m — 241,21 — 2}

Again by the long exact sequence of Tor we obtain that j; ;(S/I) = 0 for
J < min{2i,m + i}.

On the other hand, since R = S/I is Artinian and its Hilbert function
satisfies

2m 2m .
HF 5 (i) {L( ; ) (;_2)} =0 for z > m and
() —(,2my) #£0,  fori=m.
it follows that reg(R) = m; so the vanishing of Betti numbers j; ;(R) = 0 for
j < min{2i,m + i} forces B; m+i(R) # 0 for m < i < 2m. In particular, R is
superlevel.

Finally to see that R = S/I is not Koszul, note that if m > 3, then
t2(R) = m+2 >4 = t1(R) + t1(R). If R were Koszul, then this would
contradict [2, Theorem 6.2]. For m = 2 the non Koszul property can be
checked by direct computation in Macaulay2 [20]. O

We now construct a family of quadratic, Artinian, Gorenstein graded
rings that have several bad properties.

Theorem 4.3. Fizx an integer m > 2 and let k be a field with char(k) = 0
or char(k) > 2m + 1. There exists a quadratic, Artinian, Gorenstein, graded
k-algebra A with the following properties

codim(A) = 2m + [(ZWT) - (2 )} .

—_

m—2

2. A is not Koszul.
3. tQ(A) =m+ 2.
4. reg(A) =m+1.
5.

The Hilbert function of A is

e = () - ()] [ 2m) - ()]

In particular,

e A does not satisfy the subadditivity property if m > 3, and
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e A has a non-unimodal Hilbert function if m > 7 and thus does not
satisfy the weak or strong Lefschetz properties.

Proof. Set A= R = Rxwpr(—m—1), where R = §/I is the Artinian algebra

introduced in the statement of Lemma 4.2 for S = k[xy, ..., Zom]. That A is

quadratic, Artinian, non-Koszul, and Gorenstein with the claimed regularity,

codimension and Hilbert function follows from Theorem 2.1 and Lemma 4.2.
Also by Theorem 2.1 we can write a presentation for A as

A=T/M with M = ((I)+ L+ (y1,---,v)?),

where ¢t = type(R) = {(27?:) - (73713)} and T = Sly1,...,y:]. It will be useful
at this time to view A as a bigraded ring with respect to the grading ob-
tained by assigning degree (1,0) to the variables of S and degree (0, 1) to the

variables y;. The short exact sequence of bigraded T-modules
0= LA+ Wi, ..,9)> = T/IT - A—0
gives rise to a long exact sequence containing the fragment
o= Torl (L+ (y1,...,y)% k) — Tors (T/IT, k) — Tork (A, k) —

Since (L£+ (y1,---,¥1)}) x0) = 0, also (Tor (L + (Y1, .- -, ye)% k) (s,0) = O for
all x € N. By contrast, since y1, . . ., y; is a regular sequence on T'/IT, it follows
that Torl (T/IT,k) = Tor5(S/I,k) ®s T is concentrated in degrees (x,0).
It follows that the long exact sequence above splits inducing an injection
Tors (T/IT, k) < Tork (A, k). Hence to(A) > to(S/I) =m

On the other hand, since reg(S/I) = m, we get from Theorem 2.1 that
reg(A) = m + 1; ie. t;(A) < m+ 1+ for all ¢ > 0. Moreover, since A
is Gorenstein and quadratic, the symmetry of the Betti table of A over T
forces t;(A) < m + i for all i < 2m + ¢. In particular, this implies that
ta(A) =m+2>2+42=1(A) + t1(A) and thus A fails the subadditivity
property when m > 3.

Finally, assume that m > 7. If m = 7, then HF 4(3) = 1988 < 2092 =
HF 4(2). If m = 8, then HF 4(3) = 6732 < 7191 = HF 4(2). If m = 9 then
HF 4(3) = 24054 < 25346 = HF 4(2). We now show HF 4(1) > HF 4(| %) for
m > 10. By (5) we have

HF 4(1) = 2m + (2,:) - (m%_n2> =2m+ m

and thus it suffices to show that %/HFA (L J) > 1. Consider first the

case m = 2n, whence by use of Pascal’s formula one computes

()-(Z)+ (2)-(2)
(1) (4) -

HFA (n)
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We deduce the desired inequality by considering the function

M 2.(n+1)! (Bt 2)(n+ 1)
HF4(n)  (2n)!(2n+2)! (4n+ 1) 2(2n+1)2

2n+3)2n+4)---(3n+1)3n+2)
n+2)(n+3)---(2n)(2n + 1)?

_ 2ﬁ1 1+n+1 1
o i 2n+1

i=n+2

n+1\" 1 17\" 1
1+ . > — . .
2n+1 2n+1 11 2n+1

Clearly the last function above attains arbitrarily large values asymptot-
ically and one can check that its values surpass 1 for n > 6. In the remaining
case, n = b, the claim 58806 = HF 4(1) > HF 4 (n) = 48279 can be checked
by direct computation. The case when m is odd is similar and we omit the
details. O

V

That the family of Artinian algebras in Theorem 4.3 fails to satisfy the
strong Lefschetz property can be deduced from [15, Proposition 2.1], however
the stronger statement regarding the failure of the weak Lefschetz property
is to our knowledge new.

Example 4.4. Take m = 3 and consider S = k[z1, ..., x¢|. Applying Lemma 4.2,
we set C = (23,...,23) and [ = C' + (z1 + - - + x6)?. Then R = S/I has the
following Betti table over S:

001 2 3 4 5 6
-1 - _ _ _ _ _
-7 - - - - -
- - 921 - - - -
14 105 132 70 14

In particular, t1(S/I) = 2 and t3(S/I) =5, so R is an Artinian algebra that
fails subadditivity; i.e. t2(R) > t1(R) +t1(R). Moreover, R is superlevel with
reg(R) = 3 and h-vector (1,6, 14,14).

Now we consider R = R X wg(—4). By Theorem 2.1, R is Artinian,
Gorenstein with h-vector (1,20,28,20,1) and reg(R) = 4. As R is quadratic,
t1(R) = 2 while t5(R) = 5 by Theorem 4.3. Thus R is an Artinian, Gorenstein
algebra for which subadditivity fails.

It is worth noting that while we know the Hilbert function of R from
Theorem 4.3, the full Betti table of E, as a quotient of a polynomial ring
in 20 variables, is not so clear. It would be very interesting to have a full
description of the resolution of the idealization R in terms that of R.

W

Example 4.5. When m = 7, the Gorenstein k-algebra R from Theorem 4.3 has
non-unimodal h-vector (1,1444,2092,1958, 1820, 1958,2092, 1444, 1). Thus R
is a quadratic Gorenstein algebra with codim(R) = 1444 and reg(R) = 8
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and for which both the weak and strong Lefshetz properties fail. The first
example of a (non-quadratic) Gorenstein algebra with non-unimodal h-vector
was famously constructed by Stanley [33]. !

5. Quadratic non-Koszul Gorenstein algebras with linear
resolutions of arbitrarily high order

Let k be a field of characteristic 0. In [31, Thereom 1’] Roos gave examples
of graded Artinian non-Koszul quadratic k-algebras A, for integers o > 2
such that k£ has a linear resolution for precisely the first a steps before a
minimal non-linear syzygy. Here we note that these algebras are superlevel
and that their Gorenstein idealizations have the same property. This removes
any hope of a ‘finite test’ for the Koszul property in the context of quadratic
Gorenstein algebras.

To state the result, we first recall the definition of the graded Poincare
series of a module. Fix a graded module M over a graded ring R. The gen-
erating function for the bigraded k-vector space Torf(M k) is PM(z,y) =
Do 1 (M)z'y?. Thus the graded Poincare series of R is Pf(z,y), which
encodes the resolution of k over R.

Theorem 5.1. Let k be a field of characteristic 0 and fix a positive integer
a>2. Let S = klu,v,w,z,y, 2] and

I = (22, 2y,y% vz, 22, zu, u?, uv, v2, vw, w?, rz+azw—uw, 2w+zut(a—2)uw).

Then the idealization R of R = S/I is quadratic, Gorenstein, non-Koszul,
and k has linear resolution for precisely o steps in the resolution over R.

Proof. By [31, Theorem 1’], R has Hilbert series HSg(t) = 1 + 6t + 8t2,
whence reg(R) = 2, and type(R) = 8, and it is easy to check with Macaulay?2

[20] that R is superlevel. Thus R = R X wg(—3) is Artinian, quadratic, and
Gorenstein with reg(R) = 3 and codim(R) = 6 + 8 = 14.

We need only argue that the resolution of k over R is linear for exactly
« steps. To achieve this, we recall the details of the construction of R from
[31]. Tt is shown therein that R itself is an idealization R = A x M(-1),
where A = k[z,y,u,v]/(2?, 2y, y?,v?, vw,w?) = B®y, C, B = k[z,y]/(z,y)?,
and C = k[v,w]/(v,w)? and M is an A-module with Hilbert series HS s (t) =
2+ 4¢. By a result of Gulliksen [17, Theorem 2] combined with the fact that
M and wpg are linearly presented, the relevant graded Poincaré series are
related by

—2 —
Ph(z.y) = Phlz.y)(l—zyPp" " (z.y) ™ (1)
PRi(z,y) = P3*(z,y)(1—ayPyl(z,y) 7" (2)
IStanley’s construction was also given via idealization for the ring A = k[z,y, 2]/(x, y, 2)*.

Since A has h-vector (1, 3, 6,10), its idealization A = Axwy4 has h-vector (1,13,12,13,1);
however, A is clearly not quadratic.



Quadratic Gorenstein algebras 11

Since [31] shows that both the resolution of k over R and the resolution of M
over A are linear for exactly « steps, it suffices to show that the resolution
of wg over A is linear.

By [19, proof of Claim 2] there is an isomorphism of R-modules wr(—2)
wrr(—1) X wu(—2), with the R = A x M(—1)-module structure given by
(a,m)-(s,t) = (as,at+ s(m)), where we view s € Hom 4 (M, w4) = wyps. This
induces an isomorphism of A-modules wr(—2) = wy(—1) B wa(—2), and we
note that both wys(—1) and w4 (—2) are generated in degree 0. Thus it suffices
to show that both wa(—2) and wps(—1) have linear resolutions over A. The
former module decomposes as a tensor product wa(—2) =2 wp(—1)@kwe(—1).
Thus the minimal free resolution of w4 (—2) over A is in turn the tensor prod-
uct of the resolutions of wp(—1) over B and we(—1) over C. Since the rings
B and C contain no elements of degree greater than one, the differentials in
the resolutions of wp(—1) and we(—1) are linear. As B and C are level of
regularity 1, wg(—1) and we(—1) are each generated in degree zero, hence
their resolutions are linear and so is the resolution of w4 (—2) over A.

Finally, in order to analyze the resolution of wy;(—1) over A one must
dig deeper into the structure of the module M. Since A is Artinian, [11,
Proposition 21.1] shows that wy;(—1) = Homy (M (4+1),k) as an A-module.
Consequently the Hilbert series of this module is HS,,,, (_1)(t) = 4 + 2t. Fix
k-bases {ff, f3, f5, fi} for (war(—1))o and {ef,e5} for (war(—1))1, where
ei, fi refer to the dual elements in My and M; respectively. The A-module
structures of M and wy; can be completely described by the following dual
tables, the first of which can be deduced from [32, Equation (3)]

>~

| £ f2 fs I | i s £ i
e | v w z+aoaw 0 el | v w r+ow 0
e2| 0 (a—2w—z w Y e 0 (a—2w-—=x w y

The leftmost table should be interpreted to mean that, for example, ve; = f;
in M, while the rightmost table should be interpreted to mean that, dually,
vff = e} in wpr. (That for instance ye; = 0 is thus implicit in the table.)
Equipped with this information, we implement a strategy for determining
Tor? (wpr(—1), k) inspired by Roos’s original approach: we compute the ho-
mology of the tensor product of the bar resolutions for k over B and C' further
tensored with wjs. Since wys is concentrated in only two degrees, the only
potential nonzero components of Tor:! (wyr(—1), k) are in degrees i and i+ 1.
Furthermore Tor{ (wps(—1), k)i4+1 is the cokernel of

(@t (=1))o®s (@ B, c?i> S (war(—1))1®5 (@ o1 g, c;zn)

q=0 q=0
S®b1®'.'®bi7q®cl®'.'®cq’_>
S @ @b @1 @ ®@cg+ (—1)7ls¢; @b @ Rbi_g Ry @+ D¢y

It is easily verified that this map is surjective as for arbitrary u, A € k,b; €
B, cj € Cq we have

M RY@ba@- - -@b;_ @1 @+ - -@cg+(—1) T ff Rba®@- - -®b; @V - Ry
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(nel +Xe3) @by @ -+ ®@bi_q®@c1 @+ ® cq.
Thus Tor (war(—1), k)iy1 = 0 for i > 0, which concludes the proof. O
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