
2020 IEEE International Conference on Big Data (Big Data)

978-1-7281-6251-5/20/$31.00 ©2020 IEEE 1236

Anomaly Detection in Edge Nodes using Sparsity
Profile

Aekyeung Moon
ETRI

akmoon@etri.re.kr

Xiaoyan Zhuo
UMass Lowell

xiaoyan zhuo@student.uml.edu

Jialing Zhang
UMass Lowell

jialing zhang@student.uml.edu

Seung Woo Son
UMass Lowell

seungwoo son@uml.edu

Yun Jeong Song
ETRI

yjsong@etri.re.kr

Abstract—Edge devices with attentive sensors enable various
intelligent services by exploring streams of sensor data. However,
anomalies, which are inevitable due to faults or failures in
the sensor and network, can result in incorrect or unwanted
operational decisions. While promptly ensuring the accuracy of
IoT data is critical, lack of labels for live sensor data and limited
storage resources necessitates efficient and reliable detection of
anomalies at edge nodes. Motivated by the existence of unique
sparsity profiles that express original signals as a combination of
a few coefficients between normal and abnormal sensing periods,
we propose a novel anomaly detection approach, called ADSP
(Anomaly Detection with Sparsity Profile). The key idea is to
apply a transformation on the raw data, identify top-K dominant
components that represent normal data behaviors, and detect
data anomalies based on the disparity from K values approxi-
mating the periods of normal data in an unsupervised manner.
Our evaluation using a set of synthetic datasets demonstrates
that ADSP can achieve 92%–100% of detection accuracy. To
validate our anomaly detection approach on real-world cases,
we label potential anomalies using a range of error boundary
conditions using sensors exhibiting a straight line in Q-Q plot and
strong Pearson correlation and conduct a controlled comparison
of the detection accuracy. Our experimental evaluation using
real-world datasets demonstrates that ADSP can detect 83%–
92% of anomalies using only 1.7% of the original data, which is
comparable to the accuracy achieved by using the entire datasets.

Index Terms—Transform Coding, Lossy Compression,
Anomaly Detection, IoT

I. INTRODUCTION

Internet of Things (IoT) enables connectivity for an ex-
tremely large number of devices, which consist of fine-grained
sensors and actuators. Rapid advances in wireless sensors have
been a key enabler for discovering actionable insights from
raw data and ultimately making smart decisions. Under those
knowledge discovery processes, IoT systems need to support
time-sensitive applications by allowing data storage and pro-
cessing to occur at or near edge nodes while minimizing use
of limited storage, computing, and bandwidth. Performing data
analysis locally, at or near edges, allows faster time-to-action
than doing it at a remote data center or cloud.

The discovery paradigm where actionable knowledge is
extracted from a steady stream of data collected from sensor
nodes is increasingly adopted by various applications [1].
For example, traditional farms, which used to rely on human
expertise, have been transformed into IoT-enabled agriculture,
enabling precise and profitable operations such as the reduc-
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Fig. 1. Original datasets showing anomalous periods. Black arrows indicate
apparent anomalous periods.

tion of non-essential pesticides use [2], [3]. Similarly, an IoT
platform called Waggle [4] improves the ability to collect
real-time urban environmental data and ultimately enabling
sustainable urban growth and smart city planning. For instance,
microclimate data collected by Waggle nodes can be used as
inputs to various simulation models to predict urgent climate
conditions or air pollution levels. Furthermore, it can also
use IoT devices or sensors in environments with unreliable
network connectivity, such as rural agricultural plants or
ecological research sites.

While the volume of data generated by IoT-enabled appli-
cations has increased at an unprecedented rate, it is practically
infeasible to send all raw data to the remote cloud or data cen-
ters for post-processing. Due to the limited network bandwidth
available, instead of transmitting all raw data, edge (sensor)
nodes locally filter (such as hourly average) and perform
analysis and periodically send significantly relevant aggregated
data to remote nodes for long-term storage and big data analy-
sis. Furthermore, the computing capability of most connected
devices or physical sensors is limited. Under these inherently
unfavorable circumstances, yet moving computation close to
data is promising. There are, however, several challenges to
exploit IoT datasets effectively and reliably in edge nodes.

First, data collected at sensor nodes are inherently inaccurate
because of the faults or failures in sensors and unreliable
network and can eventually generate incorrect or unwanted
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control operations or decisions in actuator nodes or gate-
ways. These unexpected data frequently occur, especially in
microclimate datasets collected in rural or urban settings.
Figure 1 shows data samples containing several instances of
actual anomaly data, which are considerably dissimilar from
the remainder of the data. The presence of such anomalies
must be detected and notified before control operations are
performed [5], [6]; An effective anomaly detection empowers
decision-makers to adequately react and take timely actions to
correct anomaly situations [7].

Second, edge nodes usually have limited resources and ca-
pabilities in terms of processing power, bandwidth, energy, and
storage [4], [8]. The scarcity of storage resources, in particular,
could be a significant bottleneck as sensor nodes continuously
collect data. Since sensor nodes send collected data to the
gateways or cloud periodically, data volume during transmis-
sion needs to be minimized. Nevertheless, the transmitted
data should be represented in the highest possible precision.
Otherwise, analytic decisions derived from the collected data
will have limited significance.

Lastly, the current state-of-the-art anomaly detection tech-
niques are increasingly accommodating supervised machine
learning (ML) methods where they learn to distinguish be-
tween healthy and faulty states after a training phase [9],
[10]. In other words, ML-based anomaly detection models
learn to classify normal and anomalous behaviors from labeled
training data. However, it is often difficult to obtain large-
scale datasets with proper labels. Furthermore, the annotation
process requires domain knowledge from experts. Labeling
the representative data patterns in real-world scenarios is
also another challenging tasks as precise labeling depends on
applications. Because of that, contextual anomaly such as [11]
is often imprecise, and there is no single generic rule that
applies to all IoT datasets of interest. For instance, in IoT
farm datasets, the continuous change due to interaction among
crop growth and operations of actuators (such as a heater,
CO2 generator for growing plants, fan, etc.) makes it almost
impossible to distinguish between normal states and abnormal
states except noticeably significant deviations.

Motivated by aforementioned challenges, we propose a
novel approach, called ADSP (Anomaly Detection with Spar-
sity Profile), to detect data anomaly using a sparse repre-
sentation of streams of sensor data. Our approach exploits
lossy data compression (or approximation) to obtain unique
sparsity profiles between normal and abnormal states dur-
ing sensing periods. Our mechanism systematically collects
original data, transforms them, obtains approximated data,
and detects anomalies in an unsupervised manner. Many
transformation methods provide a mechanism to reconstruct
the signal close to the original using a minimal number of
significant components [12]. After applying a transformation
on the original datasets, we detect anomalies by inspecting on
K-dominant components. Sensor nodes only need to process
a small number of transformed data points, which optimally
compacts a certain amount of signal energy (information).

We evaluate the effectiveness of ADSP against several state-
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Fig. 2. The variation of “temperature” values. (a) Original and reconstructed
data from approximated data. (b) Cumulative distribution function (CDF) in
the sequences of DCT components.

of-the-art unsupervised anomaly detection techniques using a
set of synthetic and real-world IoT datasets. Our experimental
results demonstrate that ADSP can: 1) detect anomaly with
high accuracy, 83%–92% and 92%–100% of detection ac-
curacy for real-world datasets and synthetic datasets, respec-
tively; 2) achieve competitive approximation ratios, 98.3% on
average, with less influence on errors from approximation; and
3) provide the characterization criteria between normal and
anomalous and a hypothesis for labeling data with a range of
error thresholds.

II. PRELIMINARIES

A. Lossy Compression

In lossy compression algorithms [13], the theoretical un-
derpinning for our approximation mechanism, a signal can be
sparse or compressible after applying signal transform with a
suitable basis, e.g., discrete cosine transform (DCT), Fourier,
or Wavelet basis [14]. In other words, unlike original signals,
signals in a transformed domain often contain only a few
significant components [12].

To demonstrate that similar sparsity exists in real-world IoT
datasets, let us consider Figure 2a that depicts a case where
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Fig. 3. Overview of our anomaly detection mechanism.

DCT components containing 99%-percentile of the energy
attained by the original data account for only 0.14% (173
out of 127,667) of the entire data points. In signal theory,
the energy spectrum of a given signal is the sum of the
squared transform coefficients [14]. Figure 2b illustrates such
high correlation through the energy cumulative distribution
function (CDF) for coefficients after applying the transform
on the original temperature data. Note that the x-axis is
represented by a log scale to emphasize that most of the
energy is concentrated on a small number of transformed
components. Therefore, even though we sampled only a small
number of dominant components, the approximated data can
be reconstructed close to the original with a relatively small
error [15]. As shown in Figure 2a, NRMSE (Normalized Root
Mean Square Error) between reconstructed data points and
original data points is only 0.1039.

While we can exploit such property in IoT datasets, applying
conventional lossy compression techniques in the context of
detecting anomalies in IoT datasets is challenging because
selecting a suitable number of dominant coefficients is highly
data-dependent. In other words, application exhibits different
characteristics in the signal domain, so does the number of
dominant coefficients that attain the same or similar energy
compaction. Even in the same application, it varies in different
sampling periods.

B. Anomaly Detection

Anomaly detection is the process of finding the patterns in
data points whose behavior is not normal as expected [11],
[16]. Those unexpected behaviors are also referred to as
outliers [13]. Anomaly detection, which has been extensively
studied, can be classified into three categories [9]: unsuper-
vised, supervised, and semi-supervised. Under the assumption
that the majority of the instances in the datasets are normal,
the unsupervised method finds anomalies by looking for the
instance that seems to be the least fit in the unlabeled datasets.
Supervised anomaly detection techniques, on the other hand,
require datasets that have been labeled as “normal” and
“abnormal” and involve training a classifier. Semi-supervised
anomaly detection techniques construct a model representing
normal behavior from a given normal training datasets and
then obtain the likelihood of a test instance generated by the
learned model.

While the anomaly detection technique can be applied as
supervised learning, this is not viable in many real-world
scenarios because there are few or no labeled examples of
anomalous behavior. In fact, in many cases, it is infeasible
to label them manually [9], [17]. Moreover, it is hard to
define normal data behavior in real-world scenarios where
data patterns depend on the application domain as well as
the data itself. Prior studies address this by learning anomaly
conditions, building a prediction model, and comparing pre-
dicted values and measured values to determine whether
there were anomalies or not. For instance, Haque et al. [5]
used 30 samples as a history to build a prediction model.
Nevertheless, in the real world IoT deployment where there is
a frequent influence from the surrounding environment such
as the microclimate in rural and urban settings, it becomes
more difficult to distinguish normal data from anomalies.

III. PROPOSED APPROACH: ADSP

The relationship among the dominant components (denoted
as K in this paper), anomalies, and scarcity of storage re-
sources at the sensor nodes inspired us to design our data
anomaly detection scheme, called ADSP, that includes overall
processes from approximation to detection and reconstruction.
We envision that the sensor or edge node can employ an
efficient approximation algorithm that exploits the sparsity
of sensing data to detect anomalies without relying on full
datasets, which would incur a storage burden at sensor nodes.
Figure 3 shows an overview of our approach. The sensor
node transforms collected raw data into an approximated form
in a fixed interval (or period) and detects data anomalies
using profiles of these sparsely sampled data. ADSP detects
anomalies by investigating only the K-dominant values, which
are determined automatically based on the curvatures of the
transformed coefficients, for approximated (sampled) data
points without inspecting full original datasets.

A. Data Approximation

Our approach begins by approximating raw data to extract
compact sparse representations. To illustrate ADSP’s approx-
imation mechanism, let us consider X , which denotes the
transformed version of the original datasets (D). We first
formulate this as the energy (or information) contained in the
number of coefficients, denoted as K, of the entire sorted
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transformed components (X = {X1, X2, ...Xn}), which is
calculated as:

E(Xk) =

Pk
i=1 X

2
iPn

i=1 X
2
i

, N = 1, 2, ..., n, k  n. (1)

Note that the sum of energy stored in the entire transformed
components is 1.0 (or 100%-percentile). We then select the K-
dominant components ({X1, X2, ...Xk}) from the transformed
components to approximate the original datasets. One should
expect K varies spatially (depending on data) and temporally.
Thus, we need a systematic method to determine K. It
should be mentioned that, unlike lossy compression techniques
used in image and video data, we ignore the non-significant
components other than the K-dominant components during
approximation. We employ the DCT transformation mecha-
nism, particularly the type-II DCT, as it is known to generate
sparse representation effectively as compared with other signal
transformation methods [14]. We later evaluate the effect of
transform methods other than DCT in terms of data approxi-
mation in Section IV-B4.

The data approximation procedure based on the transformed
data, in some more details, is as follows. First, we transform
the original data, D, into DCT basis components to decorrelate
data. In this way, the original data points D(t)i at tth sampling
period (P ), where 1  i  N , are converted into the
transformed data points, X(t). After the transform, we acquire
the full N -sample signal X(t), sort |X(t)| in descending order,
and determine the K largest components (using Equation 1).
As K-dominant components are selected from the sorted form
S(t) of X(t), the approximated data points (AD(t)) include
K-dominant components and their indices only. The index in-
dicates the position of the selected component in X(t), which
is required to reconstruct data reliably later. Once K-dominant
components are selected, non-significant components (N�K)
are discarded. If we keep performing these processes every
hour on data collected every second, it will locate only K-
dominant components from 3,600 data points (i.e., 60 times
60), resulting in a significant data reduction.

While our approximation mechanism reduces data require-
ments by maintaining K components (and indices associated
with them when the reconstruction is required), selecting the
right K, especially in a systematic way, is not an easy task.
One of the main reasons is that K is application-dependent.
Even in the same data, it also varies in the spatial and temporal
domains. In the following subsection, we will describe our
novel mechanism to obtain optimal K.

B. Finding Optimal K
We adopt Kneedle algorithm [18] on the CDF of the coef-

ficients’ energy compaction [14] to determine K. Specifically,
we first fit CDF into a smoothing spline such that it preserves
the overall behavior of the energy distribution. Then we
normalize the points in the best-fit curve to the unit square
as a preprocessing step to eliminate anomalies (which can
make the analysis more complicated). Next, we find the knee

Fig. 4. Finding anomaly using knee detection algorithm.

points (K) of the normalized curve, which is, in general, the
point of maximum curvature of the normalized curve. In other
words, the point is the local maxima, where it depicts the
maximum distance between the normalized curve and the line
y = x; mathematically, it is defined as a function of its first
and second derivatives. We use a 1D interpolate function for
obtaining smoothing curves, but a more sophisticated one such
as polynomial interpolation function can also be applied.

Figure 4 shows the use of knee detection algorithm in
our anomaly detection on two selected periods in “humidity”
dataset: normal (blue) and abnormal (red). The dotted lines
depict the curve where each represents the difference between
the normalized spline (solid line) and y = x. The dashed
vertical lines depict the position of local maxima (maximum
curvature of the normalized curve, i.e., maximum distance
between spline and difference curve). From these curves,
we can see that the abnormal period has a large K value
(in this case, K=8) while the normal period shows a stable
K value of 1. We attribute such disparate K values to the
observed pattern that normal periods exhibit a pattern of high
energy compaction and abnormal periods show a low energy
compaction rate.

C. Data Anomaly Detection

Our anomaly detection mechanism utilizes the fact that
the energy (information) is more dispersed when data has
more unexpected patterns, which in turn requires more dom-
inant components to maintain the same amount of energy.
To illustrate how our anomaly detection mechanism exploits
that property, let us consider the graph in Figure 5a, where
the x-axis represents per-minute sampling points and the y-
axis represents three examples of the temperature data that
required different K values. In other words, to make all three
temperature curves have the same curvatures, each requires
different K values. The reason for such variation is that,
when DCT (or any other equivalent transforms) is applied
to data with an anomaly, the correlation between those data
and K shows a distinctive difference. Figure 5a indicates
that the sampling periods with anomalies require three or
more dominant components, whereas periods with normal data
require only one component. Figure 5b shows the histogram
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Fig. 5. Detection of anomalies using K-dominant coefficient. (a) K values
for each period and (b) histogram of K.

of K considering all periods in the temperature dataset. Since
there exist dominant K values, we can classify each period as
normal or abnormal behavior according to K.

Our anomaly detection approach consists of two methods:
binary detector and difference detector. The binary detector
compares only K values and decides whether this period is
normal or abnormal depending on if K is above a certain
threshold, denoted as ". The " is determined by the average
of Kn, where Kn indicates the majority of K values in
normal periods. As an example, " for Figure 5b is equal to
1. The ", determined by the normal periods, will be used
for classifying among normal and abnormal. Our methods
reference K-dominant components of normal datasets as
shown in Figure 3. The difference detector, on the other
hand, calculates |(Kn � K)|/Mean(X), where X denotes
transformed coefficients, and classifies normal and abnormal
state according to K > Kn. When K > ", the K could be
represented Ka.

D. Data Reconstruction

We have thus far discussed how our approach approximates
the original data using top-K transformed components and
how the variation in K per sampling period can be used

for anomaly detection. In this subsection, we discuss how
to reconstruct approximated data in sensor nodes or gate-
ways/clouds to full data when there is a need for the whole
data such as measuring reconstruction errors. As discussed in
Section III-A, after sensor data are transformed, the selected
K-dominant components along with the corresponding indices
are maintained at edge devices or sent to the cloud or gateways
if needed. Note that both K-dominant transformed compo-
nents and their indices are required to define the approximated
data points. Using AD(t) (Approximated Data at period t), we
generate X(t) by replacing the indices of data points except
for the indices of K-dominant with zeros. We then reconstruct
data points D0(t), which are generated from X(t) by applying
inverse transformation methods, i.e., IDCT (Inverse Discrete
Cosine Transform) in our case. We use the reconstructed data
to compare it against the original data and measure the quality
of data approximation (later in Section IV-B5).

IV. EVALUATIONS

A. Setup

1) Datasets: We use multiple synthetic and real-world
datasets in our evaluation. For generating synthetic datasets,
we use utility functions provided in the PyOD library [19],
which is an open-source Python toolbox. We generated both
training (3,000*N ) and test (10,000*N ) datasets using the
library, where N is the number of data points in each sampling
P (described in Section III-A). When generating synthetic
datasets, we use a range of contamination ratios from 0.1
to 0.4. The rate of contamination means the proportion of
anomalies in the datasets.

For real-world datasets, we used the followings:
• F1: The IoT farm system deployed in Gangwon Province,

South Korea, from October 1st to December 31st, 2017
(90 days of data collection) [20]. We collected the follow-
ing three microclimate datasets in the deployed system:
temperature, humidity, and CO (carbon monoxide). The
data collection period is per minute.

• F2: The IoT farm system deployed in Chungnam
Province, South Korea, from March 1st to December 31st,
2019 (304 days of data collection). The data collection
period is per minute.

• U: The Waggle project is also targeting climate applica-
tions but in an urban environment setting [4], [21]. The
Waggle dataset is time-series data, including air temper-
ature, relative humidity, barometric pressure, UV light,
IR light, and so on, collected at several urban locations
in the US [4]. We evaluated temperature, humidity, and
CO extracted in the big Chicago datasets measured from
February 3rd, 2017 to July 4th, 2019.

The unit for temperature (C or Celsius), humidity (RH or
Relative Humidity in %), and CO (ppm) are the same for all
three datasets (F1, F2, and U).

Table I and Table II show the statistical properties of
the both synthetic and real-world datasets in terms of STD
(standard deviation), NSTD (normalized standard deviation),
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Fig. 6. The normality test using Q-Q (Quantile-Quantile) plot for our evaluated datasets: (a) temperature, (b) humidity, and (c) CO.

TABLE I
THE CHARACTERISTICS OF SYNTHETIC DATASET AND APPROXIMATION

RATIOS (AR).

No. of
Contamination Data points STD NSTD Skewness Kurtosis AR

(N=60)
0.1 10,000*N 2.2365 0.4141 -3.0276 12.8917 67.54
0.2 10,000*N 2.9440 0.6134 -2.0943 6.6107 56.99
0.3 10,000*N 3.4071 0.8112 -1.5455 4.2248 50.2
0.4 10,000*N 3.7157 1.0317 -1.1573 3.0262 45.18

TABLE II
THE CHARACTERISTICS OF REAL-WORLD DATASET AND ARS.

No. of STD NSTD Skewness Kurtosis ARData points
F1-Temp 127,668 5.1532 0.2871 -0.2983 5.3136 99.86

F1-Humidity 127,668 15.5245 0.2700 -1.0632 5.4268 99.89
F1-CO 127,668 87.4290 0.2188 -1.4900 17.8790 99.42

F2-Temp 440,684 4.4801 0.2135 0.5871 3.3394 99.86
F2-Hum 440,684 13.7558 0.1542 -1.5751 6.5466 99.95
F2-CO 440,684 59.5058 0.1454 1.4967 6.0620 99.86

U-Temp 46,203,212 11.0143 0.8309 -0.0975 2.2491 85.13
U-Hum 8,762,131 18.81023 0.3036 -0.2474 3.0318 99.25
U-CO 19,401,868 1.0097e+04 1.2764 62.86 1.0397e+04 34.56

skewness, and kurtosis. As shown in Table I, the higher the
contamination ratio, the higher STD. NSTD is calculated as
STD(x)
Mean(x) . Skewness is a measure of data asymmetry around the
mean value. In general, negative skewness means that more
data are scattered in the left of the mean, whereas positive
skewness means the opposite. Therefore, the normal distri-
bution, where data is symmetric about its mean, gives zero
skewness. Measures of kurtosis indicate how outlier-prone a
distribution is. As the kurtosis of any normal distribution is
3, distributions with kurtosis higher than 3 are more outlier
prone. As shown in Table II, U-CO exhibits higher STD than
other datasets and has the highest kurtosis value among all
datasets, which means it is more outlier prone. In the case of
skewness, U-Temperature and U-CO only have positive values,
which indicates they are mainly scattered in the right of the
mean. AR means the compression ratio of all datasets without
considering P .

2) Labeling Rule for Datasets: For the synthetic datasets,
the utility function in PyOD labels each data point based on
the ratio of contamination. For instance, 10% of datasets are
set to anomaly data when the contamination is 0.1. In the case

of real-world datasets, however, there is no easy way to label
each data point using the same mechanism as the synthetic
datasets. However, we already deployed multiple sensors of the
same types in our farm environment (F1 and F2) for evaluating
the integrity of sensors, so we use an analytical comparison
of identical sensors in real-world scenarios as ground truth
for labeling datasets. The hypothesis is that the same types of
sensors are deployed closer than others to evaluate how sensor
values are spatially and temporally correlated.

To characterize normal period behavior precisely, we first
test the normality of datasets using the quantile-quantile (Q-
Q) plot of sensors. Figure 6 shows a normal Q–Q plot
that compares datasets (temperature, humidity, and CO). The
linearity of the points in Figure 6 suggests that the data are
normally distributed. Especially the plot of “temperature” pro-
duces an approximately straight line, which means it follows
a normal distribution more than the others. We also use a Q-
Q plot to determine whether two sets of sample data come
from the same distribution or not. As shown in Figure 6,
[Sensor 1, Sensor 4] in the F1 dataset shows almost the same
distribution. To confirm this, we also measured the Pearson
correlation coefficient between sensors and chose three pairs
of a sensor for each farm as the guidelines for analyzing the
strength of the correlation [22]. Our measurement confirmed
that the correlations between the same types of sensors are
high. Specifically, we have 0.8285, 0.8487 and 0.406 for three
groups [Sensor 1, Sensor 4], [Sensor 2, Sensor 5], [Sensor 3,
Sensor 6] of F1. We then used the result from this step as our
ground truth for training and test.

3) Evaluated Schemes: We compare our approach with
several unsupervised anomaly detection techniques. Since un-
supervised anomaly detection does not require any labels,
there is no distinction between a training and a test dataset.
Typically, distances or densities are used to estimate normal or
outlier. We choose two state-of-the-art unsupervised anomaly
detection methods [23]: local outlier factor (LoF) [24] and
autoencoder (AE) [25], [26]:

• LoF: It measures the local deviation of the density of a
given sample with respect to its neighbors. The anomaly
score depends on how isolated the object is with respect
to the surrounding neighborhood.
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• AE: It can detect outlying objects in the data by calcu-
lating reconstruction errors.

• ADSP: This scheme is our proposed method described
in Section III.

4) Evaluation Metrics: We use the following metrics to
assess the overall anomaly detection rates and the quality of
the approximated data.

• Accuracy can be calculated as:
Accuracy = TP+TN

TP+TN+FP+FN where TP, TN, FP, and
FN refer to true positive, true negative, false positive and
false negative, respectively.

• Approximation Ratio (AR) is given by:
AR = |D|�|D0|

|D| ⇥ 100%,
where |D| is the size of D, |D0| is the approximated data
size.

• The error rate is assessed using PSNR (Peak Signal-
to-Noise Ratio), which measures the overall distortion
between the original data and the reconstructed data.
PSNR is expressed in terms of the logarithmic decibel
scale:
PSNR = 20 · log10(value range) � 10 · log10(MSE),
where value range and MSE refer to data value range and
the mean squared compression error, respectively.

The objective of our performance metrics is to achieve
higher AR, PSNR, and detection accuracy.

B. Results

1) Detection Accuracy using Synthetic Data: Figure 7
shows the detection accuracy of the evaluated schemes while
varying the ratio of data contamination. The contamination
ratio of 0.1 means that 10% of the anomaly data are included in
training and test datasets, respectively. As shown in Figure 7,
ADSP not only can detect 92%-100% of anomalies but also
improves the detection accuracy as the contamination ratio
increases. The reason for ADSP’s higher detection accuracy
with higher contamination ratios is that, when there were
more anomalies, K would increase accordingly, consequently
adapting well with increasing contamination ratios. In ADSP,
the threshold values " of K for distinguishing normal and
abnormal from training datasets we obtain are 9, 13, 17 and 21
for the contamination of 0.1, 0.2, 0.3 and 0.4, respectively. We
did not evaluate the contamination of 0.5 or beyond because
such a high contamination ratio makes it difficult to distinguish
between normal and abnormal conditions.

AE and LoF, on the other hand, showed decreasing detection
accuracies as the contamination ratio increases. The reason for
the decreasing accuracy is that an AE-based anomaly detector
uses the reconstruction error as an anomaly score. Because
of this, AE shows better detection accuracy than ADSP when
the contamination ratio is 0.1, i.e., relatively few anomalies
exist. However, this means that AE becomes unreliable in
the practical unsupervised case, where the training data may
contain more anomalous examples [26], thus suffering from
the increasing contamination ratios. In LoF, because the degree
of anomaly depends on how isolated the object is with respect
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Fig. 7. Comparison of anomaly detection techniques for synthetic datasets
with varying contamination rates.
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Fig. 8. The number of anomaly data based on error rates.

to the surrounding neighborhood, it is more difficult to decide
the anomaly threshold for each period than to find anomaly
points.

2) Detection Accuracy using Real-World Data: Since the
measurement from the paired sensors with high linearity and
correlation in Q-Q plots and Pearson correlation provides
us with a mechanism to control confidence on our dataset,
we can apply statistical methods in our classification. More
specifically, we use NRMSE (the normalized version of root
mean square error) to characterize anomalies. That is, we
classify the sensor data in the case of anomaly conditions
according to the NRMSE values. Let x = {x1, x2, x3, ..xn}
be the first sensor data, x̂ = {x̂1, x̂2, x̂3, ...x̂n} be the second
sensor data, and N be the number of data points.

• NRMSE for each period Pt can be calculated as:

NRMSE(t) = RMSE(t)
Mean(x) = 1

x̄

qPN
n=1(x(n)�x̂(n))2

N .
Any data points whose NRMSE is larger than the error

threshold ↵ will be considered as an anomaly.
To give overall characteristics about anomalous data, Fig-

ure 8 presents results for F1 and F2 while varying NRMSE
values. As expected, there are more data anomalies as we
increase ↵. In the case of temperature, 86 periods are labeled
as anomaly states when ↵ is 2.0. Comparatively, there are
more periods with data anomalies in CO than the other two
datasets. This is because the CO sensor has relatively higher
data variation than that of the other sensors. As we expected,
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F2 datasets have fewer anomaly data in the regard of NRMSE
than F1. Because there are little anomaly data points in F2
datasets, the anomaly detection accuracy in F2 datasets has less
significance. Therefore, we evaluate the detection accuracy
using the F1 dataset.

Based on the labeling from using sensors with strong
relationships, we measure detection accuracy using the F1
dataset. In our context, TP is the case where K is greater than
" and NRMSE is greater than ↵. Recall that we automatically
set ", which is a threshold for distinguishing between normal
and abnormal.

Figure 9 shows that the accuracy while increasing ↵ values.
Recall that ↵ is the error threshold determined using unsuper-
vised schemes. Specifically, we evaluate the error rate from 0.1
to 0.5 because the number of anomaly data based on NRMSE
shown in Figure 8 becomes steady beyond 0.5. Overall, higher
↵ means more tolerable sensor variations, thus resulting in
fewer anomaly points. As shown in Figure 9, ADSP’s detection
accuracy is higher than those of AE and LoF. In the CO data,
ADSP has even higher accuracy than others. We attribute this
to ADSP’s detection models, which are more reliable than the
other schemes when there are more anomaly data points like
CO by determining K value automatically with the varying
characteristic of data. ADSP shows 83%-92% the accuracy of
anomaly detection in the case of temperature data.

3) Variations of K: ADSP’s high detection accuracy on
synthetic and real-world datasets presented so far is based on
our hypothesis that an anomaly can be detected by the rela-
tionship among the K-dominant coefficients. To confirm this,
Figure 10 shows the variation in K values for F1 datasets from
our knee detection algorithm (described in Section III-A). In
Figure 10, the primary x- and y-axis (in blue color) represents
the index of data points and its values, respectively, whereas
the secondary x- and y-axis (in orange color) represents the
compressive period and the K-dominant components required
to approximate every period, respectively. As we can see,
K is notably different in periods where there are anomalies.
For example, in the case of temperature data (shown in
Figure 10a), anomalies occurred around the 1,422th periods
(or 85,320 sample index). The datasets in this period are
anomalous due to unexpected network outages.

We also measured the variation of K for the F2 and U
datasets and observed that our mechanism works well with
them as well. While we observe similar trends in overall (i.e.,
relatively higher K values in abnormal periods), each dataset
showed minor differences. First, as shown in Table II, F2 has
less variation than F1, thus smaller variations in K values
in both K values themselves and their range of fluctuation.
As compared with the other datasets, the U dataset showed
the largest K values, which is on a par with the statistical
characteristic of datasets; all datasets in U showed the highest
variations in Table II.

4) Approximation Ratios (AR): In our evaluated datasets,
the data are collected every minute, and we approximate
every 60 raw data points. In other words, the approximation
period is set to 1 hour. Note that the approximation ratios for

TABLE III
COMPARISON OF ERROR RATES (IN TERMS OF PSNR) AND

APPROXIMATION RATIO FOR OUR APPROACHES WITH DIFFERENT
TRANSFORMS AND HOURLY AVERAGES.

Temperature Humidity CO
PSNR AR PSNR AR PSNR AR

ADSP 32.41 98.3% 31.86 98.3% 34.08 98.1%
FWHT 32.14 98.1% 31.69 98.5% 34.00 98.2%

Hourly average 31.77 98.3% 31.08 98.3% 33.54 98.3%

our approach vary depending on periods, whereas the hourly
average has fixed 1/60 ratios (or 98.3%). In other words, only
1.7% of data is required. While one can use more complex
data approximation methods, we compare our algorithms with
hourly averaged data as it is one of the most commonly
used techniques in widespread edge deployments. We also
measured the data approximation approach of ADSP with
FWHT, a faster version of the Walsh-Hadamard Transform
(WHT), in addition to DCT. ADSP is also a transform-based
method because it adopts DCT transformations. In terms of
compressibility, the F1 dataset shows higher approximation
ratios than FWHT as shown in Table III. Among different
transformation techniques, we observed that our approach
shows better approximation ratios. As invested in [12], DCT
and FWHT show better compression ratios than other trans-
formation methods. We also observe that our approach can
achieve up to 98.3% of approximation ratios, which is the
same as the hourly average. Note that the approximation ratios
presented in Table III are based on all sampling periods,
including both normal and abnormal cases.

5) Error Rates: Since our approximation mechanism is
based on lossy compression techniques, it also minimizes
errors when data is reconstructed even using only K-dominant
coefficients. Table III shows the error rates between the recon-
structed data using our approach and the conventional hourly
average value of data. In our approach, K varies depending
on data. So, for a fair comparison, we measured error rates
using a fixed energy compaction rate of 95%-percentile. In the
case of our approximation approach, the error rate is slightly
lower (i.e., slightly higher PSNR), while both ADSP and the
hourly average have the same approximation ratios (98.3%).
The results show that sparse signals extracted from the original
datasets (collected every minute) can be more accurate than
hourly averages because PSNR of our approach is higher than
that of hourly averages. Recall that higher PSNR represents
less error that affects data quality.

Table III also shows the relationship between AR and PSNR
for ADSP and FWHT when energy is 0.95 (95%-percentile)
(in terms of Equation 1). Overall, PSNR of 95%-percentile,
while it has comparable approximation ratios, is higher than
that of the hourly average. Overall, our approach achieves
a quite competitive approximation ratio while maintaining a
relatively low error rate.
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Fig. 9. Comparison of anomaly detection accuracy for F1 datasets. (a) temperature, (b) humidity, and (c) CO.
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Fig. 10. Variation of K-dominant components in F1 datasets. We also see similar variations of K in the other datasets: F2 and U.

V. RELATED WORK

Statistical methods such as exponentially weighted moving
average or cumulative sum [27] have been used for detecting
anomalous behaviors in time series data. Anomaly detection
for AWS IoT data [6] uses PEWMA (Probabilistic Expo-
nentially Weighted Moving Average) proposed by Carter and
Streilein [28], but they did not consider the impact of approx-
imated data on detecting data anomalies. In other words, it
requires all original data points in their anomaly detection
model. Recent studies proposed several methods to detect
anomalies while using compression techniques. For instance,
Kartakis and McCann [8], [29] presented that anomalies can be
identified by analyzing significant changes in the compression
rate. Kartakis et al. [29] also used compression rate fluctuation
to detect anomalies. However, these prior studies mainly used
lossless compression methods with a high sampling rate so
that the compression rate is usually lower compared to lossy
compression techniques [30]. In several prior studies such as
analyses of turbulent flow data [31] and climate data [32],
data reconstructed from lossy compression allows meaningful
analysis to be carried out. Kartakis et al. [30] recently used
adaptive compressive sensing mechanisms in smart water
networks but for reducing data transfer overheads. Shah et
al. [33] proposed a compression-based approach for detecting
anomalies in edge-attributed networks.

We proposed an anomaly detection using lossy compression

based on an approximated form out of original datasets with
a high compression capability in our previous research [20].
Our proposed mechanism is similar to approaches based on
compressive sensing [20], [30], [34]–[36] in that, it shares
the same notion that data can be reconstructed from a small
number of samples or projections. It has been shown that com-
pressive sensing is beneficial for solving the distributed outlier
detection problem in distributed computing [37]. However, our
previous approach does not consider K for the normal datasets
and the validation of labeling approach.

VI. CONCLUSIONS

In this work, we proposed a novel approach to detect anoma-
lies using a sparse representation of IoT datasets. The motiva-
tion behind our method is that microclimate datasets collected
at rural and urban sensor nodes exhibit a certain degree of
sparsity. We use discrete transformations, specifically DCT,
to reveal the signal’s local behavior, which effectively leads
to such sparse representation. Our technique also exploits the
high correlation between the number of dominant transform
coefficients and data anomalies.

Our experimental results showed the farm datasets gen-
erate a higher approximation ratio than the hourly average
method. For validation of our unsupervised approach, we
first measured two state-of-the-art unsupervised anomaly de-
tection techniques, AE and LoF using the synthetic datasets
generated by the PyOD library. The results showed that
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our approach achieves a high accuracy as the contamination
ratio is increased compared with others. We then labeled
data collected at two sensors with a Q-Q plot and a strong
Pearson correlation using a set of statistical rules to cover
a range of error boundary conditions for real-world datasets.
Our proposed approach successfully detected anomalies while
obtaining 98.3% of approximation ratios, i.e., requiring only
1.7% of original data. We also observed that the accuracy of
anomaly detection can be 92%–100% for synthetic datasets
and 83%–92% for real-world datasets.
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