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Abstract—The growing demand for recording longer ECG
signals to improve the effectiveness of IoT-enabled remote clinical
healthcare is contributing large amounts of ECG data. While
lossy compression techniques have shown potential in significantly
lowering the amount of data, investigation on how to trade-off
between data reduction and data fidelity on ECG data received
relatively less attention. This paper gives insight into the power
of lossy compression to ECG signals by balancing between data
quality and compression ratio. We evaluate the performance
of transformed-based lossy compressions on the ECG datasets
collected from the Biosemi ActiveTwo devices. Our experimental
results indicate that ECG data exhibit high energy compaction
property through transformations like DCT and DWT, thus could
improve compression ratios significantly without hurting data
fidelity much. More importantly, we evaluate the effect of lossy
compression on ECG signals by validating the R-peak in the QRS
complex. Our method can obtain low error rates measured in
PRD (as low as 0.3) and PSNR (up to 67) using only 5% of the
transform coefficients. Therefore, R-peaks in the reconstructed
ECG signals are almost identical to ones in the original signals,
thus facilitating extended ECG monitoring.

Index Terms—Transform coding, Lossy compression, IoT,
Health care, R-peak, data fidelity

I. INTRODUCTION

Various application domains benefit from the Internet of
Things (IoT) that enables the extraction of suggestive knowl-
edge from plenty of raw datasets continuously collected by
IoT devices. One of those IoT-based services of considerable
importance is remote healthcare applications, where IoT en-
ables medical monitoring, diagnosis, and treatment services
to be delivered efficiently through a digital medium such as
mobile devices. A recent study reports that those applications
have the potential to generate about $1.1-$2.5 trillion of annual
economic impact globally by 2025 [1]. As cardiovascular
diseases (CVDs) are the number one cause of death globally,
medical researchers have placed significant importance on
electrocardiogram (ECG) analysis as it is one of the most
common methods for testing clinical cardiac functions [2].

Current medical screening and diagnostic procedures, which
traditionally handle the majority of data processing on remote
systems that have higher computational power and storage
capacity [3], have shifted toward storing longer ECG signals
with the convergence of AI technologies and increasing com-
putational power. However, in mobile healthcare services, the

volume of ECG signals generated has increased at an unprece-
dented rate, making it practically infeasible to send all raw data
to the remote site for processing. One potential solution to this
is to apply compression, particularly lossy, techniques such
that the storage and communication overheads are reduced [4]–
[6]. As lossy compression uses inexact approximations, under-
standing the impact of data compression techniques in terms
of bit and error rate could be of significance in making ECG
records broadly usable in remote clinical healthcare.

There are a variety of data compression algorithms proposed
to meet different application needs. However, prior ECG
compression methods in the literature have reported limited
discussion on the performance of the compressed and the
reconstructed ECG signals in terms of the R-peak detection
accuracy [3], [7]. In this paper, we first evaluate the impact of
lossy compression algorithms on ECG signals based on two
well-known transformations, namely, discrete cosine transform
(DCT) [8] and discrete wavelet transform (DWT). To evaluate
the impact on data fidelity, we also validate the value and the
position of R-peaks in ECG signals between original datasets
and reconstructed ones. Our results demonstrate that R-peak
accuracy did not drop much even if data is reconstructed using
only 3% of coefficients, which matches 99.9% of energy (or
information). In most cases, the detected R-peaks in the recon-
structed data are almost equivalent to the ones based on the
original data. These results indicate that lossy compression has
a beneficial effect not only on reducing ECG data significantly
to minimize the burden on storage and transmission but also
on maintaining high data quality.

Overall our experimental results demonstrate: 1) our DCT-
based lossy algorithms generate competitive compression ra-
tios (83%-92%); 2) the error introduced by our lossy com-
pressions is marginal in terms of measured distortion level
in PRD (percentage root-mean-square difference) and PSNR
(peak signal-to-noise ratio) while using only 5% of the original
signal; and 3) the reconstructed R-peaks almost coincide with
ones in the original signal.

II. BACKGROUND

A. IoT Services for ECG
The extended measure of ECG signals, a useful diagnostic

signal to evaluate the electrical and muscular functions of



3495

the heart, during ordinary daily activities serves to detect
and characterize anomaly in cardiac functions [9]. Thus,
developing a reliable and scalable IoT-enabled ECG system
is essential for accurate and efficient remote screening and
diagnosis [3]. At the same time, IoT devices should minimize
the use of limited storage, computing, and bandwidth [10].
Therefore, leveraging the understanding of the impact of lossy
compression on ECG data in terms of bits and errors presented
in this study can facilitate remote patient treatment under edge
computing environments by connecting patient networks with
a medical infrastructure.

B. Discussion of Prior Work

While the lossless compression method recovers the original
ECG signal precisely from the compressed signal, lossy com-
pression methods discard (or eliminate) some ECG samples
from the original datasets to achieve much higher compression
ratios. Several lossy compression methods for ECG data in the
literature [11] reported that the eliminated data may or may
not be noticeable to the user depending on the type of lossy
compression employed. Thus in the context of applying lossy
compression techniques [12], it is vital not only to reduce the
data size significantly but also to quantify error rates, the latter
of which might incur the risk of potential distortion.

As the medical signals contain and relay essential informa-
tion required for precise detection of diseases, any noticeable
distortion can result in an erroneous diagnosis, which could
turn out to be a fatal consequence. However, for fast and effi-
cient transmission of a large amount of information, it might be
acceptable to overlook a certain amount of distortion as long as
it will not hurt data fidelity much. However, achieving a lossy
compression technique with a lesser amount of distortion in
biomedical data is a challenging task [13]. For example, Roy
et al. compared the recovered signals using various levels of
PSNR. However, they did not consider features such as R-
peak. Rebollo-Neira [9] also introduced the effectiveness of
the transform-based lossy compression and distortion using
PRD but did not deal with the characteristics of ECG directly.

In our recent studies [14], [15], we showed that
transformation-based lossy compressions could ensure that
reconstruction errors are within a tolerable range for datasets
from IoT enabled farm and HPC applications. No prior works,
however, have studied the effect of lossy data compression on
the fidelity of ECG signals. For the validation of data fidelity
from the reconstruction of compressed datasets, [16] evalu-
ated microclimate datasets collected in smart farm domains
and obtained the promising results that classification models
can effectively predict using the reconstructed datasets. [3]
proposed several compression methods and compared each of
them in terms of QRS detection accuracy.

C. ECG Signals Processing

We use the ECG datasets collected using ActiveTwo by
Biosemi, as depicted in Figure 1a. The ECG datasets include
2,048 data points per second. Figure 1b shows the results after
applying filters from 0.3 Hz (using low pass filter) to 35 Hz
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Fig. 1. ECG transformation (a) Original ECG signals. (b) after filtering (0.3
Hz by low pass filter), 35Hz by high pass filter).
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Fig. 2. The transformed representations of ECG signals. (a) after applying
DCT transform. (b) Cumulative distribution function (CDF) in the sequences
of transformed DCT coefficients.

(using high pass filter). After filtering, the signal on Figure 1b
shows an internal characteristics representation of ECG, such
as R-peak in the PQRST [17] complex [7].

In transform-based lossy compression algorithms [18], un-
like original signals, the transformed signals often contain only
a few significant components [15], [19], [20]. In other words,
discrete transforms redistribute the energy contained in the
signal and concentrate it into a small number of dominant
coefficients (as low-frequency coefficients).

To demonstrate that similar signal property of high energy
compaction exhibits in ECG, Figure 2 shows the distribution
of coefficients (in the time domain) after applying a discrete
transform (DCT in this case). Figure 2 depicts a case where
DCT components containing 99%-percentile of the energy
attained by the original data are only 2% (4,667 out of
232,400) of the entire ECG datasets (shown in Figure 1b).
In this paper, we use the energy spectrum of signal theory,
where a given signal is the sum of the squared transform co-
efficients [8], [15]. Figure 2b illustrates such a high correlation
through the energy cumulative distribution function (CDF) for
DCT coefficients. The x-axis is represented as a log scale to
emphasize that a small number of transformed components
account for most of the energy.

III. QUANTIFYING EFFECTS OF LOSSY COMPRESSION

A. ECG Data Analytics Requirements
In typical use cases, server systems carry out processing

ECG signals collected for an extended period as they have
higher memory/storage capacity and high-performance proces-
sors. Maintaining the same level of data processing, however,
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is hardly feasible for edge devices, which in general have
limited storage, processor, and processing power.

As far as handling ECG signals is concerned, there are
three use case scenarios. The first scenario is collecting ECG
signals for offline analysis and then process them in the
server later. Secondly, ECG signals are collected and analyzed
in real-time at the device. For example, Gradl et al. [21]
considered Android-based mobile devices to allow real-time
ECG monitoring. The last scenario is collecting ECG signals
in real-time, transmit signals to remote servers or cloud, and
investigate the transmitted signals there. The compression
framework discussed in this paper could be beneficial to the
third case, as our compression scheme could compress data
with high fidelity at minimum bit rates.

Our motivations in evaluating transform-based lossy com-
pression techniques on ECG are as follows. First, applying
lossy compression based discrete transforms such as DCT and
DWT gives a reasonably high compression performance be-
cause such transforms can easily decorrelate inherent random-
ness exhibited in ECG signals. Second, although individual
data values in ECG signals show a certain degree of random-
ness, their overall patterns are smooth spatiotemporally. Be-
cause of this, combining data transformation with compression
can be more effective as the transformed data usually reveal
the correlation of the data explicitly. Lastly, R-peak is one of
the most critical features in the ECG signal, which plays a
vital role in the diagnosis of heart rhythm abnormalities and
also in determining heart rate variability (HRV) [22], [23].
Therefore, we validate the fidelity of reconstructed datasets
based on R-peak variations.

B. Data Compression
Our compression approach begins by transforming raw ECG

data into sparse representations using a discrete transform,
either DCT or DWT. To illustrate our mechanism in detail,
let us consider x̂, which expresses the transformed compo-
nents of the original datasets (x) using either DCT [8] or
DWT [24]. To model the correlation between the transformed
coefficients and energy (or information) represented among
them, let us further define x̂t, which denotes transformed
components at compressed block size of n at given period
t: x̂t = {x̂t,1, x̂t,2, ...x̂t,n}. Thus, each coefficient component
has own energy coefficient defined as: e(x̂t,i). We formulate
EC(x̂t,k) as the energy concentration (EC) contained in the
number of coefficients components, denoted as k, of the entire
transformed components (x̂t), which is calculated as:

EC(x̂t,k) =

Pk
n=1 e(x̂t,n)2PN
n=1 e(x̂t,n)2

, n = 1, 2, ..., N, k  N. (1)

The energy concentration of the entire transformed com-
ponents (n) is 1.0 (or 100%-percentile), and a partial
of coefficient components, for instance, k components
({x̂t,1, x̂t,2, ...x̂t,k}) represents a certain portion of energy con-
centration. Given this notion, we use the energy threshold, �, to
select the k-dominant components from the entire transformed
components. To achieve higher compression ratios, we ignore

the non-significant components other than the k-dominant
components. In our compression method, it is possible to
achieve a higher compression ratio if k, i.e., the number of
dominant coefficients, is sufficiently smaller [24]–[26].

Our compression procedure based on DCT and DWT is
described in more detail as follows. The procedure starts
by transforming the original data, x at a given period of t,
into DCT and DWT basis components to decorrelate data. In
this way, the original datasets xt of compressed block size
(n) are converted into the transformed datasets, x̂t. After the
transform, x̂t including n-coefficient components are sorted in
descending order. In general, the most dominant component is
ˆxt,1 in the transformed coefficients [27]. Finally, we determine

the k largest components (using Equation 1) that amount to the
required energy threshold �. As k-dominant components are
selected from the sorted version (st) of x̂t, the approximated
data points (ADt) need to include k-dominant components and
their indices, the latter of which indicate the positions of the
selected components in x̂t for reconstructing data correctly.
All non-significant components (n� k) are discarded.

C. Data Reconstruction
Our reconstruction algorithm using k-dominant transformed

components in conjunction with their indices is as follows.
Using ADt (at period t), we generate x̂t by substituting the
indices of data points with zeros except for the indices of
k-dominant. We then reconstruct data points x0

t, which are
generated from x̂t by applying inverse transformation methods
on a cosine or wavelet basis.

IV. EVALUATIONS

A. Setup
1) Datasets: We use ECG datasets collected from

Biosemi’s ActiveTwo system in our evaluation (as shown in
Figure 3). ActiveTwo can measure electrocardiogram (ECG)
signals using sampling frequency up to 16,384 Hz (152
channels). In this study, we measured data at 2,048 Hz. In other
words, it collects 2,048 data points per second. After collecting
all ECG records to evaluate, we implement and evaluate our
compression methods using MATLAB.

2) ECG Datasets Fidelity: We compare the morphological
patterns of ECG after reconstruction. The recent use of ECG
analysis allows visualization of the ECG signal patterns,
composed of multiple cycles that include numerous sample
points [7]. The identification of these morphological patterns
is a critical step in analyzing ECG signals [17], [28].

An ECG signal is composed of a successive repetition of
PQRST patterns, which include P wave, QRS complex, and
T wave, as shown in Figure 4a. After the P wave begins, the
declining wave soon gets a downward deflection labeled as Q
wave. R-peak is a sudden upright deflection. On its decline,
a slight downward deflection is the S wave. In Figure 4a,
we depict PQRST by aligning the R-peak as the center. R-
peaks are the highest waves of the QRS regions as shown in
Figure 4b. Even though every QRS complex does not contain
Q, R, and S waves accurately, the Q and R wave is always



3497

Fig. 3. Acquisition of ECG signals using Biosemi’s ActiveTwo.
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Fig. 4. (a) PQRST wave of ECG. (b) R-peaks (in red dots).

negative and positive, respectively, in the QRS complex. These
are detected by comparing relative magnitude in each QRS
region. R wave is the most crucial section of this QRS,
which has an essential role in the diagnosis of heart rhythm
irregularities and also in determining HRV [22], [23].

3) Evaluation Metrics: We use the following metrics to
assess the overall compression performance and the quality of
the reconstructed data.

• Two types of compression ratio (CR), which are cal-
culated as: CRK = |D|�|K|

|D| ⇥ 100% and CRA =
|D|�|AD|

|D| ⇥ 100%, where |D| is the sum of xt size, |K|
is the sum of k-dominant coefficients at given period t,
|AD| is the sum of ADt size.

• Let xt be the original datasets and x0
t be the reconstructed

datasets at given period t to assess the quality of the
reconstructed signal.

• PSNRt = 20log10(range)� 10log10(MSE(xt, x0
t),

• PRDt = kxt�x0
tk

kxtk ⇥ 100, where k k indicates the 2-
norm [9].

In our performance metrics, achieving higher CR and PSNR
and lower PRD is our goal.

B. Results
For the details about the algorithm described in Sec-

tion III-B, we use the type-II DCT, which is known to generate
sparse representation effectively as compared with other signal
transformation methods [15]. In the case of DWT, we use
Daubechnies d4 wavelet (or db4 wavelet).

1) Compression using entire datasets: We first evaluate the
compression performance using the entire datasets. Table I and
Figure 5 show the compression ratios when � in Equation 1
is varied between 0.95 (95%) and 0.999 (99.9%). As shown
in Table I, DCT shows higher compression ratios (CRK

and CRA) than DWT. DWT shows lower compression ratios
because of a 1-level wavelet transformation we employed,
and therefore, it required increased k in Equation 1. The
compression ratio of DWT increased about 1.4 times and
22.4 times in terms of CRK and CRA, respectively, as we
decreased �. CRA (shown in Section III-B) refers to the
actual data size being transferred because the approximated
data points include k-dominant components as well as their
indices. The index is required to reconstruct data correctly
because it indicates the position of the selected components
in x̂t.

Figure 5 shows the comparison of the recovered data in
various cases. The error threshold of 95% overall demonstrates
somewhat higher error rates than those of 99.9% (or 0.999).
DWT shows higher variations than DCT, although the general
trend is similar to other reconstructed data. We can also see
that the reconstructed data with a small number of coefficients
almost coincide with the original data. This suggests the
importance of selecting compression coefficients within the
tolerable error threshold for the ECG application. In the
case of DCT, the effect of error varied depending on the
energy threshold of �. Specifically, the DCT and DWT show
increased error rates with lower �, as shown in Table I. The
reason the error rate has similar values is that it contains
different k-dominant coefficients to attain the same energy in
each compression algorithm, so when reconstructed, the error
appears the same according to the value of the retained energy.

The results for PSNR and PRD also showed a similar
pattern. First, while DCT demonstrates better compression
ratios than DWT, PSNR, and PRD values are in a similar
range. In DCT, PRD in the range [0.3, 21.8] showed significant
variations depending on the threshold. For a data quality
measured using PRD of 0.3, the achieved average compression
ratio is 87.15%. When the compression ratio increases up to
92.36%, a distortion measured in terms of PRD increases to
0.9. Like DCT, compression ratios of DWT changed signifi-
cantly depending on the energy threshold, while the range of
measured PRD is in [0.3, 22.3]. However, PRD of 0.3 achieved
1.98% of the compression ratio. When PRD is increased to
0.98, the compression ratio increases up to 91.4% of CRA

and 95.7% of CRK .
2) Compression using a fixed interval: We assume that

compression is performed in a fixed interval (i.e., per second)
since we collected 2,048 samples per second. Figure 6 shows
the variation in k values for ECG datasets per one second.
As we can see, DWT requires higher k-dominant coefficients
than DCT to keep the same energy. When � = 0.95 (95%), 0.99
(99%) and 0.999 (99.9%), DCT also shows better compression
ratios than DWT like the experimental results using full
datasets because DCT has lower k-dominant coefficients. Like
Figure 5, this case also shows that the higher the energy
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Fig. 5. Comparison of reconstructed datasets against the original datasets
using full data points ((a) and (b)), 1 sec period or 2,048 data points ((c)
and (d)), and the PQRST complex with R-peak in the center ((e) and (f)),
respectively.

TABLE I
COMPARISON RESULTS USING FULL DATASETS.

Algorithm Threshold CRK CRA RMSE PSNR PRD

DCT 0.95 98.8249 97.6497 0.0315 30.0243 22.3595
0.99 97.9918 95.9836 0.0141 37.0153 9.9980
0.999 97.0839 94.1678 0.0045 47.0156 3.1615

0.9999 96.3107 92.6213 0.0014 57.0146 0.9999
0.99999 95.5581 91.1162 4.4590e-04 67.0152 0.3162

DWT 0.95 76.2169 52.4337 0.0315 30.024 22.3604
0.99 62.7909 25.5818 0.0141 37.0138 9.9997
0.999 55.3894 10.7788 0.0045 47.0148 3.1618

0.9999 52.4776 4.9552 0.0014 57.0173 0.9996
0.99999 51.1760 2.3520 4.4584e-04 67.0164 0.3161

value, the more similar the PQRST pattern to the original with
increasing energy threshold.

C. Data Fidelity
In our next sets of experiments, we evaluate how lossy

compression affects the quality of analytics outcomes in ECG
datasets. More specifically, we assess the following features
of R-peak on the reconstructed datasets.

1) Compare R-peak values in the original and the recon-
structed ones.

2) Compare the time when the location of R-peak appeared
in the original and the reconstructed signals.

3) Compare the index when the position of R-peak appears
in the original and the reconstructed signals.
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Fig. 6. Comparison of k-dominant components.

TABLE II
COMPARISON OF ERROR RATES IN R-PEAK.

Algorithm Threshold D(4Rs
val) D(4Rs

idx) D(4Rs
tm)

DCT 0.95 0.0519 3.1095 0.0015
0.99 0.0117 1.3775 6.7263e-04

0.999 0.0029 0.5542 2.7058e-04
0.9999 6.6355e-04 0.2174 1.0613e-04

0.99999 1.4660e-04 0.1984 9.6884e-05

DWT 0.95 0.0065 0.4695 2.2927e-04
0.99 0.0030 0.2348 1.1463e-04

0.999 9.0601e-04 0.1775 8.6656e-05
0.9999 2.1153e-04 0.0887 4.3328e-05

0.99999 5.7462e-05 0 0

To evaluate overall data fidelity, we detect R-peaks and de-
fine the set of R-peak (Rs). Rs includes the three information
about R-peak mentioned above, namely Rs

idx(n), R
s
tm(n), and

Rs
val(n), which measures locations, time, and value of nth

R-peak, respectively. Our overall evaluation metrics on the
quality of R-peaks are defined as:

Rs = {{Ridx(1), Rtm(1), Rval(1)}, ..., {Ridx(N), Rtm(N), Rval(N))}},
4Rs

idx(n) = x(Rs
idx(n)� x̂(Rs

idx(n)),
4Rs

tm(n) = x(Rtime(n)� x̂(Rtm(n)),
4Rs

val(n) = x(Rval(n)� x̂(Rval(n)).

D(4Rs
idx) =

rPN
n=1 4Rs

idx(n)2

N ,

D(4Rs
tm) =

qPN
n=1 4Rs

tm(n)2

N ,

D(4Rs
val) =

rPN
n=1 4Rs

val(n)2

N .

Figure 7 shows the comparison of R-peak values between
original signals and reconstructed ones whereas Table II shows
error rates in R-peaks. Overall, the energy threshold of 95%
shows slightly higher deviations than that of 99.9% (or 0.999).
DCT shows higher variances than DWT, although it is similar
to other reconstructed data. These results suggest that we can
recover data using only a small number of measurements or
sampling rate. In the case of 99.99% in Table II, the position
and value of R-peaks in the reconstructed data are almost
identical to those in the original signal. Overall, we observe
lower 4Rs

idx(k),4Rs
tm(k) and 4Rs

val(k) with the higher
energy threshold, which is demonstrated in Figure 7 where
the reconstructed signals using 99.9% is more coincide with
the original signals than those of 95%.

V. CONCLUSIONS AND FUTURE WORK

To effectively support IoT enabled remote healthcare ser-
vices that produce a large volume of data, it is necessary
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Fig. 7. Comparison of reconstructed datasets against the original datasets in
terms of R-peaks.

to store efficiently and transmit reliably for post-processing
or diagnosis. In this paper, we evaluated ECG datasets ac-
quired from Biosemi ActiveTwo devices as an example of a
critical meta-analysis for CVD and HRV and compared the
performance of lossy compression based on DCT and DWT to
evaluate the feasibility of reconstructed data. Our experimental
results show that lossy compression could generate signifi-
cantly higher compression ratios, while the loss of data quality
is acceptable. Lastly, the detected R-peaks in the reconstructed
data from lossy compression techniques based on DCT and
DWT are almost identical to those in original ECG signals.

We argue that lossy compression schemes can be useful
for ECG datasets because the R-peak values in reconstructed
data are almost identical to ones in the original data. Our
experimental evaluation demonstrates that our compression
method can obtain a lower distortion in terms of PRD using
only 5% of the original datasets.

In our future work, we plan to experiment with other ECG
datasets (Physinet), use reconstructed ECG data for real-world
detection algorithms, and show how resource consumption gets
affected by applying lossy compression in edge devices.
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