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Abstract

In this paper, we develop a robotic telepresence system to provide remote users with immersive embodiment in local envi-
ronments through a custom-designed mobile robot. The proposed telepresence system uses a virtual reality (VR) device to
connect a remote user to the robot. Three dimensional visual data from a RGB-D camera are rendered for real-time stereo-
scopic display in the VR device, which forms a deeply-coupled human machine system and creates an immersive experience
of telepresence. Based on a user study, it is found that better user experience can be achieved by allowing the robot to track
the speaker while being aware of the intention of the remote user. To this end we propose a human-robot collaborative control
framework based on human intention recognition and sound localization. The intentions of head movement of the remote user
are inferred based on the motion of the VR device using hidden Markov models. The speaker is tracked through sound source
localization using a microphone array. A collaborative control scheme is developed to fuse the control from the robot and
the remote user. Experiments are conducted in both one-to-one and one-to-two remote conversation scenarios. The results
show that the proposed system can significantly improve the immersiveness and performance of robotic telepresence systems,
therefore greatly enhancing the user experience of such telepresence systems.

Keywords Telepresence - Virtual reality - Sound localization - Collaborative control

1 Introduction

Telepresence robots [1-3] allow people to “transport” them-
selves to remote locations and accomplish certain tasks
such as having a conversation and conducting teleopera-
tion. Telepresence robots have many potential applications.
For example, doctors can interview and examine patients
remotely, or even perform surgery from distant locations.
Search and rescue teams can conduct exploration and inspec-
tion via robots in hazardous environments. Students can
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attend school from their homes when they have to be absent
due to sickness. A typical scenario of robotic telepresence
is that a remote user controls a robot in a local environment
and interacts with local users via the robot, as illustrated in
Fig. 1. The remote user experiences his/her presence in the
local environment through sensory stimulus provided by the
different sensors (cameras, microphones, etc.) on the mobile
robot and a rendering device such as a head mounted display
(HMD). The local users can also feel the existence of the
remote user via the robot avatar which mimics the appearance
and actions of the remote user. Thus, a robotic telepresence
system involves both human-human interactions and human-
robot interactions.

A traditional robotic telepresence system [3-5] is essen-
tially a video conferencing system implemented with a
mobile robot, which consists of a joystick and a computer
at the remote site, an LCD screen, a web camera, a micro-
phone, and speakers on the robot at the local site, allowing
“face-to-face” communication between the remote and local
users. Such robotic telepresence systems lack immersiveness
and are usually not intuitive to operate for the remote user,
which also causes poor experience to the local users. In this
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Fig.1 The concept of robotic telepresence: a remote user interacts with
local users via a remotely controlled robot

paper we study the problem of how to develop a more immer-
sive and user-friendly robotic telepresence system, so that
it can help improve the user experience of the participants
involved. There are two key problems that a robotic telep-
resence system should address. The first problem is how to
develop a proper human-robot interface to allow the remote
user to gain an immersive experience of telepresence. The
second problem is how to facilitate smooth and easy con-
trol of the telepresence robot by the remote user, which will
create better user experience for both the remote and local
users.

For the first problem, we propose that the virtual real-
ity technique can be utilized to enhance the remote user’s
experience of telepresence. Usually virtual reality devices
provide sensory stimulus from simulated environments and
allow the user to interact with the simulated environments. In
recent years, the virtual reality technique progresses rapidly
and many VR devices have been developed, such as the
Cardboard [6] from Google and the Oculus Rift [7] from
Facebook. These devices are excellent interfaces for robotic
telepresence which provide immersiveness, realisticness and
interactivity. The visual data from the cameras on the robot
can be displayed in realtime to the user via the VR device,
while the user can send commands to the robot via the head
movement collected by the motion sensor in the VR device.

For the second problem, it is desirable to introduce some
local intelligence into the robot, which allows the robot to
take some actions based on its local sensor input so that
the human-robot interaction experience can be improved.
Therefore the robot has its own decisions and the remote
user may have his/her intentions, which leads to a deeply
coupled human-machine system. To deal with any potential
conflict, we propose a collaborative control mechanism that
allows the robot and the remote user to coordinate with each
other smoothly and efficiently. Unlike direct teleoperation,
the robot needs to predict user’s intentions and then assists
the user to fulfill his/her intentions.

This project considers the application of telepresence in a
tele-conferencing scenario, as depicted in Fig. 1. The main
contribution of this paper has three aspects. Firstly, we pro-
pose and develop a robotic telepresence platform which
connects human and robot closely by taking advantage of the
virtual reality device. The VR device facilitates immersive
audio visual stimuli and intuitive control to the remote user.
Secondly, we introduce an approach to infer the remote user’s
intentions based on the head movement captured by the VR
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device. We also develop a local intelligence in the telepres-
ence robot that tracks the speakers in the local environment
using a microphone array. Finally, a two-stage collaborative
control scheme is proposed to fuse the human intentions and
robot’s local control, which facilitates smooth human-robot
collaboration in telepresence. To the best of our knowledge,
this is the first work to combine human intentions and robot
local intelligence in an immersive telepresence setting.

This paper is organized as follows: in the next section, the
related work is introduced. In Sect. 3, we present an overview
of the proposed virtual-reality-based robotic telepresence
system. In Sect. 4 we conduct a user study and the collabora-
tive control framework is explained in detail. Experimental
results are demonstrated in Sect. 5. Section 6 concludes the
paper and outlines the future work.

2 Related Work

A telepresence robot can be defined as an avatar in a distant
environment that is operated by a remote user and carries
out certain tasks, for example, facilitating social interac-
tions between the remote user and one or more local users.
Many research work has been focused on how to develop an
intuitive interface to connect the remote user and the robot
closely, and thus to improve the user experience. Adalgeirs-
son and Breazeal [8] designed and evaluated a telepresence
robot named MeBoT which had social expressions. They
found that people felt more psychologically focused and
more engaged in the interaction with their remote partners
when they were embodied in a socially expressive way.
Escolano et al. [9] developed a telepresence system with
a noninvasive brain-computer interface (BCI) to provide a
user with presence in remote environments through a mobile
robot. The system inferred the human intention using the
BCI decoding of task-related orders and collaborated with
the robot. Sirkin and Ju [10] conducted a study on how
augmented movement capability would improve the user
experience in telepresence meetings. The robot had both
a display screen and a moving base. Martins et al. [11]
designed a teleoperation system based on a field robot and a
head-mounted display was used for immersive display. The
video streams were transferred from a pair of stereo cameras
located on the robot and the tracker on the HMD provided
head orientation which was used for operation. Similarly,
Kratz et al. [12] developed a mobile telepresence robot for
navigation tasks. The robot was able to perform immersive
navigation using head-tracked stereoscopic video and a head-
mounted display. A user study was conducted and the results
showed the improvements of user experience. In [13], a sim-
ple telepresence robot was designed to perform navigation
tasks under the remote control of a human operator. The oper-
ator interacted with a virtual environment mapped to robot’s
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Fig.2 The proposed VR-based
robotic telepresence system
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real world which improved usability and reduced power con-
sumption. Recently a platform named DORA [14] attempted
to track the movements of a user’s head with an advanced
camera system. The user was able to gain immersive experi-
ences by wearing an Oculus Rift goggle.

On the other hand, in a robotic telepresence system, the
robot can provide assistance while the user is teleoperating
the robot. In these cases, we have a human-robot collabora-
tive control system which has received much interest recently.
Such collaborative control systems can infer user intentions
based on sensor observations, and the intentions can be fused
with the robot decisions to obtain the final control. Stiefelha-
genetal. [15] developed a system to estimate the visual focus
of attention of human users from multiple cues in a televideo
meeting. Both visual and audio data were used to predict
user intentions. Gao et al. [16] proposed a shared auton-
omy system based on a mobile robot. The robot recognized
the user intentions by estimating the task using the con-
text information and provided motion assistance accordingly.
Carlson et al. [17] developed a shared control system for a
brain-computer interfacing (BCI) controlled wheelchair. The
robot interpreted BCI commands by considering the con-
text of the surroundings perceived through vision. The vision
information provided reliable cues to the shared controller,
allowing the synthesized BCI interface to drive safely in an
indoor environment. Almeida et al. [18] proposed a human-
embodiment method for tele-operating a mobile robot. The
human intentions were inferred from user’s body postures
captured through vision.

Overall, although there are many existing robotic telepres-
ence systems, most of them are not user friendly and therefore
not appealing to the users. The key factors of building an ideal
telepresence robot are a friendly interface that tightly con-
nects the remote user and the robot, and an efficient scheme
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for easy and intuitive control. In this paper, we propose to
use an Oculus Rift goggle as the interface to provide a tight
connection between the remote user and the robot. We use a
RGB-D camera and an array of four microphones to enhance
the sensing capability of the robot. Moreover, we propose
a novel collaborative control framework based on human
intention recognition and sound localization to improve the
experience of the users.

3 System Overview

In this section, we first describe the overall design of the
proposed virtual-reality-based robotic telepresence system.
Then we introduce the pose integration and stereoscopic ren-
dering for the display of virtual reality, as well as the approach
for sound localization.

3.1 Overall Design

The proposed VR-based robotic telepresence system is
shown in Fig. 2. The system has two main components:
the mobile platform and the remote station. The mobile
platform consists of a Pioneer mobile robot base [19], a com-
pact mini-computer, a microphone array (4 microphones), a
touch-screen monitor, two speakers and a RGB-D camera.
The mobile robot base provides the ability to move around
in the environment. The compact mini-computer (Intel NUC
[20]) receives all the sensor data and sends commands to the
robot. The microphone array is used to collect sound signals.
The RGB-D camera is used to capture the color and depth
images necessary for 3D data display. To enlarge the field of
view (FoV), the RGB-D camera is mounted on a pan-tilt unit
controlled by a control board using the Pulse Code Modula-
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tion (PCM) signals. The camera is calibrated with the pan-tilt
unit using external markers through a motion capture system.
Additionally, the touch screen and speakers are used for dis-
playing the information of any user connected to the system.
On the remote site, a head-mounted display for virtual real-
ity (Oculus DK2 [7]) is adopted to connect the human to the
robot via a workstation with wireless communication. The
Oculus DK2 has dual lenses to provide a stereoscopic 3D
perspective and an IMU for orientation tracking.

The functional block diagram of the proposed virtual-
reality-based robotic telepresence system is shown in Fig. 3.
The system is divided into two parts. The first part is data
acquisition and visualization. The 3D point cloud data are
captured by the RGB-D camera mounted on the robot and
rendered using Open Graphics Library (OpenGL [21]), and
then transmitted to the Oculus Rift goggle for immersive dis-
play to the human. The current pose of the robot is aligned
with the virtual viewpoint in the Oculus Rift goggle, which
allows the human to explore the 3D data. The second part is
human intention recognition for robot control. The intentions
of the human head movement are inferred from the inertial
measurement unit (IMU) data in the Oculus Rift goggle using
hidden Markov models (HMMs). Then the intention results
are translated into the control commands to guide the robot
to interact with the environment or other humans. An appli-
cation scenario of such an immersive VR-based telepresence
system is shown in Fig. 4, in which one remote user engages
one or two local users in a conversation via the robot.

3.2 Pose Integration and Stereoscopic Rendering

To display the data from the camera to the human, we imple-
ment a rendering pipeline to integrate the 3D data and the
virtual reality device using the OpenGL library. The pipeline
takes the images as an input and gives the output to the VR
device. The 3D point cloud data are reconstructed based on
the color and depth images from the RGB-D camera. The
movements of the camera and the VR device are coordi-
nated in the pipeline. Before rendering the 3D point cloud
to the VR device, the pose of the RGB-D camera in the real
world needs to be associated with the viewpoint in the virtual
environment for display. Several coordinates are defined as
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Fig. 4 The application scenario of an immersive VR-based telepres-
ence system (top images: 1 vs. 1 conversation. Bottom images: 1 vs. 2
conversation)
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Fig.5 Defined frames for pose integration

shown in Fig. 5. The world frame is defined as the initial
position of the telepresence robot in the real world. The rel-
ative transformation matrix Gwc between the world frame
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Fig.6 The views in Oculus Rift

and the camera frame is obtained from the system calibra-
tion process. The transformation matrix Gwy represents the
VR device’s relative motion with respect to the world frame,
which is calculated using the data (roll, pitch and yaw) from
the IMU in the VR device. Gvg is the projection matrix from
the 3D world on a screen or display, which is calculated as
follows.

— 1 -

_— 0 0 0
a -tan (8/2)
—_ 0 0
Gvg = tan (8/2) 5 (1)
0 0 —Z1 — 22 2122
71 —232 21 —22
i 0 0 0 |

a is the screen aspect ratio and S is the angle of the field
of view in the vertical direction. z; and z, are the near and
far distance in z axis respectively.

After pose integration, the 3D data is rendered in a shared
frame and then projected in split-screen stereo with half of the
screen used for each eye as shown in Fig.6. The viewpoint
is adjusted to remove the lens effects by applying a radial
scaling function

F0) =ko+kir? +kor* + ksr®, )

where r is the distance from each distorted pixel to the lens
center and (ko, k1, k2, k3) are the distortion parameters. The
stereoscopic rendering is implemented based on both the
OpenGL and the Oculus SDK. The OpenGL provides the
handle of the reconstructed 3D point cloud data to the Ocu-
lus SDK and then the Oculus SDK uses it to display for both
left and right eyes, including shade generation, distortion
compensation, etc.

3.3 Sound Localization and Separation

As shown in Fig. 2(left), the audio data are obtained using a
microphone array that was built with 4 G.R.A.S IEPE (Inte-

grated Electronic Piezoelectric) microphones [22] and an NI
USB-9234 DAQ (Data Acquisition) [23]. This set of micro-
phones has high-sensitivity at 50 mV/Pa, a wide frequency
range up to 20 kHz, and a large dynamic range topping at
around 135 dB. The DAQ is a USB-based four-channel C
Series dynamic signal acquisition module for high-accuracy
audio frequency measurements from IEPE and non-IEPE
sensors. It can deliver a dynamic range of 102dB, incorporate
programmable AC/DC coupling and IEPE signal condition-
ing for accelerometers and microphones, as well as digitize
signals at rates up to 51.2 kHz per channel with built-in
antialiasing filters that automatically adjust to the sampling
rate.

The auditory software is developed based on HARK [24],
which is an open source audition software consisting of mod-
ules for acoustic signal processing, sound localization and
separation, speech recognition, and audio streaming. The
data collection program is developed to capture the audio
data from the microphones, filter them out, and send them to
an audio stream receiver through a TCP/IP socket for sound
localization and separation.

Sound localization is implemented based on the GEVD-
MUSIC (Generalized EigenValue Decomposition-Multiple
Signal Classification) method [25]. This method localizes
sound sources by computing an eigenvalue decomposition
vector of the correlation matrix between the inputs signal
channels, then calculating MUSIC spectrum of this vector
and the impulse responses (transfer functions) of micro-
phones. The DoAs (Direction of Arrival) which have the
largest values of the spectrum power are the sound source
direction results.

The transfer function generally varies depending on the
shape of the room and the relative positions between micro-
phones and sound sources [26]. However, when ignoring
acoustic reflection and diffraction, and given that the relative
position of microphones and sound sources is known, the
transfer function Hp (k;) is limited only to the sound source
direction and calculated by the following Equation [26]:

—j2rw
HDm,n(k) =exp c 'm,n (3)

where c is the speed of sound; w is the frequency in the
frequency bin k; r,, ,, is the difference between the distance
from the microphone m to the sound source n and the distance
from the reference point of the coordinate system to the sound
source 7.

The sounds from Ns sources are affected by the transfer
function of each microphone H; (k) in space and perceived
by M microphones as expressed by the following equation:

Ns
Xi(k) =Y Hi(k)Sj(k)+ Ni(k), i=12,....M (4)
j=1
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where S (k) is the Fourier transform of the jth sound source
at the frequency k; N; (k) is the additive noise that includes
environmental noise and electronic noise in each micro-
phone. Sound source separation extracts the sound in each
direction that is estimated by the sound localization from the
recorded sound X (k). The Fourier transform of separated
sound Y; (k) is obtained from the following equation:

Yj(k) = W;k)X (k) (&)

The separation matrix W;(k) is estimated by Geometric-
Constrained High-order Source Separation (GHDSS) [27]
which has the highest total performance in various acoustic
environments.

4 Collaborative Control for Telepresence
Robot

Traditional telepresence robots are based on video confer-
encing and teleoperation, which have several limitations,
including the lack of close engagement, difficulty of manip-
ulation, etc. An ideal telepresence robot should represent the
remote user in the environment while perceiving and interact-
ing with local users. In order to find the best control strategy
of the robot, we conduct a user study, in which a remote user
controls the telepresence robot to have conversations with
one or more local users.

4.1 User Study

The user study evaluates two different control strategies. The
first is teleoperation which directly maps the head movement
to the rotation of the camera. We call it the “teleoperated”
method. The second one is that the robot has its own local
intelligence which allows it to track the speakers through
sound localization. We assume the only sounds in the envi-
ronment are the voices from the local users. We call it the
“sound-guided” method. A total of 10 human subjects par-
ticipated in the study who are graduate students from our
department. For each method, the user performs a conversa-
tion task through the telepresence robot as the remote user
and the local user, respectively. After the task, the user is
asked to answer several questions to assess each method,
using a scale of zero to ten. We divide the questions into two
categories based on the user’s role: remote or local.

1. Questions for the remote user

Q1 (Convenience): How convenient is it to use the
telepresence system? (10 for the most convenient)
02 (Workload): How much is the workload? (10 for
the lowest)
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03 (Immersiveness): How immersive is your feeling
during the conversation? (10 for the most)

2. Questions for the local user

04 (Engagement): How much do you feel engaged
with the operator via the robot? (10 for the most)
05 (Embodiment): How much do you feel the embod-
iment of the remote operator? (10 for the most)

The results of the user study are shown in Fig. 7 and the
users’ preferences for the two methods are shown in Fig. 8.
The “teleoperated” method gives more manipulability but
also induces heavier workload. The “sound-guided” method
incurs less workload on the remote user. Both methods have
high scores on immersive experience. For the local user, the
“sound-guided” method has higher scores in engagement and
embodiment. From Fig. 8, we can see the participants pre-
fer the “teleoperated” method as a remote operator and the
“sound-guided” method as a local user. We conclude that
people want more manipulability from the remote side and
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need more embodiment from the local side. Users feel more
comfortable when the robot is changing its viewpoint accord-
ing to the sound sources as in the “sound-guided” method.
Although the “teleoperated” method provides direct control,
the remote operator gets tired easily and sometimes it is dif-
ficult for the remote user to find the local user due to the
inability to track the sound source.

4.2 Collaborative Control Framework

Based on the above user study we find that the two meth-
ods have both advantages and disadvantages. Therefore we
introduce a shared control framework to combine these two
methods. The main challenge is that the robot should be able
to decide its actions based on two different control inputs:
the remote operator’s control and the robot’s local control.
To solve this problem, we propose a two-stage collabora-
tive control framework as shown in Fig. 9. The first stage is
the prediction of the remote user’s intention by fusing the
observations from the user input (head movement) and the
microphone (sound), which predicts what the remote user
wants to do. The second stage is the coordination based on
the evaluation of the prediction and control commands, which
derives the actions that the robot should take.

In the first stage, the prediction of the remote user’s inten-
tion is modeled by the posterior probability P (x|Op, Os). X
is the intention of the remote user. In the case of daily conver-
sation in telepresence, x is defined as {lef't, middle, right},
which indicates the direction the remote user wants to look at.
The definition of the intention can vary to adapt to different
scenarios. Op and Oy are the observations from the human
and the microphone array respectively. The observation Og
from the microphone array is the yaw angle of the detected
human voice, which is obtained by the GEVD (Generalized
Eigen Value Decomposition) method [28]. The observation
Op from human is the head movement (roll, pitch and yaw)
obtained from the IMU inside the VR device.

The posterior probability is inferred using the Bayesian
theorem as shown in Eq. (6).

P (x|On, Os) &< P(On, Os|x) - P(x) 6)

We assume Oy, and Oy are independent given X, so we have
the fusion rule as follows:

P(X[On, Os) o< P(On[x) - P(Osx) - P(x) @)

Due to the lack of the prior knowledge on the distribution
of x, the prior P(x) is set as a uniform distribution. Based
on the Bayesian theorem, P (x|Op, Os) is inferred through
posterior fusion of two observations [29].

Remote Intention Sensor
User —>» Recognition Observations
Input (HMM) (Sound)

Head Movement Fusion

v Fli

Stage 1: Prediction

|
Wlicy Blending+ *

Stage 2: Coordination

v
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Fig.9 The block diagram of the proposed two-stage collaborative con-
trol framework
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P (x]|Oy) is derived through intention recognition using
hidden Markov models (HMMs) [30]. The intentions are
inferred from the head movement of the remote user. The
head movement is characterized by a sequence of rotation
angles obtained from the IMU inside the Oculus Rift. The
rotation angles are roll, pitch and yaw with respect to the
coordinate system of the Oculus Rift. Similarly, we define
three intentions: furn left, stay and turn right, which corre-
spond to the user’s true state. To recognize the intentions,
we use HMMs to characterize the head movements. HMM
is a mathematical model of stochastic processes in terms of
a directed structure of states and observations, which can
be parametrized as A = (A, B, ). A is the state transition
probability distribution, B is the observation probability dis-
tribution, 7 is the initial state distribution. The objective is
to maximize the probability of P(O|A) and the problem can
be solved by the Baum-Welch algorithm [31] in the training
stage. Since the head movements are within relatively short
range we set the number of the states as 5 in the model. The
training data are aligned with the first observation and the
length of the sequence is not fixed. In the real-time applica-
tion, we apply a sliding window of observations to realize
continuous recognition. Then P (x|Oy) is inferred based on
the trained HMMs.

The range of the direction of arrival (DoA) of the sound
sources is (—, ] which is divided into three regions (lef't,
middle and right): (—m, —b], (=b, b] and (b, w]. 0° is
aligned with the current pose of the camera. b is set to 0.087
(5°) based on the accuracy of the sound localization algo-
rithm. We use the angle 6 to represent the real location of the
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sound, which is defined as a circular normal distribution [32]:

e A cos(6—Og)

P(9|Os)=f(9|0s’)»)=2n[—o(m 9

X is the concentration factor which is analogous to 1/0°2 in
Gaussian distribution. Ip(}) is the modified Bessel function
of order 0. The cumulative distribution function is calculated
as:

o0

1 2 sin (j(6—0s))
F0|0g, \)=— | 0+— Ii(\) —————=
(0105, )= +10<x>,.§’() ;
(10)
The probability P (x|Os) is modelled as:
P(x =left|0s) = P(—7 <O < —b|0s, 1)
= F(=b|0Os, 1) — F(—m|Os, 1)
P(x = middle|Og) = P(—b < 6 < b|Og, 1) (11

= F(b|Os, A) — F(=b|0s, A)
P(x = right|Os) = 1 — P(x = left|Os)
— P(x = middle|Og)

Therefore P (x|Op, Og) can be inferred by P (x|Op) and
P (x|Oy) after normalization.

In the second stage, the coordination is based on the eval-
uation of the prediction in the previous stage. We use the
difference of the entropy between the human original inten-
tion and the fused results to evaluate the prediction, which is
denoted as D,,. A larger difference means better prediction
and less uncertainty.

D, =Y P(x|Oy)log P(x|Op)

12)
— ) P(x|Op, O5) log P(x|Op. O)
X
The final control output U is calculated as follows.
U, D, <0
Up=1" P (13)

(I —-a)Up +aUs Dy >0

U), and U represent the control inputs which move the cam-
era to a location based on the user’s head movement and
sound location. « is a coordination factor that defines the
amount of control from the user which takes value in [0, 1].
o = 1 gives the user full control and o« = 0 allows the robot
to control itself. « is calculated using a sigmoid function of
D, for the purpose of smooth shift of the control weight.
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1 +e_C1D17+C2 (14)

o =

Although the remote operator can hear the voices from
the local user, he/she cannot infer the sound location espe-
cially when there is no human subject in the field view of the
camera. In this case, it is highly likely that there is a conflict
between the human and the robot, which causes insufficient
movements from the human operator. So we can draw an
arrow in the 3D image displayed on the Oculus Rift to indi-
cate the sound location which helps the operator find the local
user quickly.

5 Experiments and Results
5.1 Experimental Setup

We evaluate the proposed two-stage collaborative control
framework on our VR-based robotic telepresence system.
Oculus Rift Development Kit 2 is used as the VR device
which has a resolution of 1920 x 1080 per eye and a field
of view of 90° horizontal and 110° vertical. We use the
ASUS Xtion Pro Live sensor as the RGB-D camera. Due
to the limited bandwidth, the images from the RGB-D cam-
era are compressed, JPEG compression for the color image
and PNG compression for the depth image respectively. The
sound localiztion algorithm is implemented based on an open
source audition software HARK [24]. All the data are syn-
chronized and processed in real time.

5.2 HMMs-Based Intention Recognition

Firstly, we test the performance of HMM-based intention
recognition. We define five simple intentions: turn left, turn
right, turn up, turn down and other (not moving). The train-
ing data are collected from two human users and manually
labelled. During the training stage, the length of the sequence
is not restricted. In the real-time testing stage, the length of
the sequence is fixed to 20 observations using a slide window
method. We also add a motion detection threshold to remove
the noise. Four human users participated in the testing stage.
Table 1 shows the statistical results. The HMM-based method
can distinguish two intentions even part of the sequence is
similar, such as turn left and turn right. Overall the accuracy
is above 92%. Figure 10 shows the online recognition results.
Both the ground truth and the recognition results are shown
in the figure. Most of the intentions are recognized. There is
a slight delay in the testing results compared to the ground
truth because of the processing time. The recognition is quite
robust and it can be easily extended to more intentions.
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Table 1 Results of HMM-based intention recognition

Intentions ~ Recognized results Accuracy
Right Left Down Up Other

Right 0.95 001 O 0 0.04 0.95

Left 0.03 092 0 0 0.05 0.92

Down 0 0 0.95 0.02 0.03 0.95

Up 0 0 0.02 096  0.02 0.96

Other 0.02 0.03  0.02 0.01 092 0.92

Table 2 Results of sound localization

Distance  Errors Direction
0° +45° +90° +135° Sum
0.5m Mean (°) —0.3 —-0.1 =02 0.2 —-02
Std (°) 1.5 2.0 1.9 1.6 1.7
Im Mean (°) 0.6 —-08 —02 0.5 —0.1
Std (°) 2.2 2.1 23 2.0 22
2m Mean (°) 0.1 02 —0.1 0.1 —-0.3
Std (°) 3.1 2.9 3.0 2.7 2.9
3m Mean (°) 1.8 03 —-1.1 =09 0.5
Std (°) 4.2 3.6 4.0 3.7 39

angle(degree)
Lo

Tum Up-
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Tum Down|~
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| | :
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Other =
0 50

Fig. 10 The online recognition results using HMMs

5.3 Sound Localization

Sound localization is tested using a sound simulation system
and a motion capture system (OptiTrack [33]). To fully eval-
uate the accuracy of the sound localization, the speaker is
placed at different directions (0°, £45°, £90°, and +135°)
and distances (0.5 m, 1 m, 2 m and 3 m) with respect to the
robot. The motion capture system obtains the relative loca-
tions between the speaker and the robot, which are treated as
the ground truth. For each location, we run the sound local-
ization algorithm 10 times and calculate the mean and the
standard deviation which are shown in Table 2. From Table 2,
we can see that the detection errors are small in the same dis-
tance and not very sensitive to the direction of the sound
sources. However, the errors increase with the distance. The
standard deviation of errors is less than 2° at 0.5 m and less
than 4° at 3 m away from the robot. Based on the results, we
set 1/A to be 0.003 (o = 3°) for the sound detection model
as mentioned in Sect. 4.2.

5.4 Overall Experiments

The experiments consist of two scenarios of daily conver-
sation: one remote user vs. one local user (1 vs. 1) and one
remote user vs. two local users (1 vs. 2). The remote user
wears the Oculus Rift to view the rendered 3D scene of the

local site while having an audio-only Skype chatting with the
local user(s). We assume only one local user speaks at any
time. Ten participants were involved in the experiments. They
are graduate students from School of ECE at Oklahoma State
University. Most of the participants have limited experience
of virtual reality devices. Before the experiment, a detailed
instruction manual was provided to help the participants use
the VR device. 1 vs. 2 conversation was conducted after 1
vs. 1 conversation. All the participants were involved in both
scenarios. For each scenario, three trials were conducted for
each participant. In the 1 vs. 1 conversation, one local user
speaks to the telepresence robot from different angles with
respect to the robot, while the remote user talks through the
robot. The results are shown in Fig. 11. The first row is the
speed of the head movement in the yaw direction. The sec-
ond row is the result of sound localization. The third row is
the decision output using the proposed collaborative control
method where 1 means no sound is detected, 2 means the
control is based on fusion which implies that the robot is
assisting the user, 3 means the prediction is not good so the
user takes over the control. The fourth row is the location
of the motor which indicates the viewpoint of the camera.
For most of the times, the robot provides assistance to the
user when there is any sound detected. The remote user can
reject the robot’s control if there is a conflict with robot’s
prediction, such as the period from frame 19 to frame 97 in
Fig. 11. In the 1 vs. 2 conversation, two local users stand at
two different locations. The results are shown in Fig. 12. In
the second row, the blue and red dots indicate different users,
and the black dots represent the false detections. Although
the sound location is quite accurate at most of the times, there
are some noises that cause false detections. Even with false
detection, our method can still handle the situation to avoid
unnecessary movements. The results are similar to those of
the 1 vs. 1 conversation. If the prediction of human intention
is correct then the robot provides assistance. The human can
take over the control if the robot’s prediction is not correct.

@ Springer
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Fig. 11 The results of a 1 versus 1 conversation. a Speed of human
head movement (°), b sound location (°), ¢ decision output, d motor
location (°)

sol- - Fig. 13 An example of showing hint in a human search experiment.
- Top: Hint (red arrows) appears in the search; bottom: human subject is
found. (Color figure online)
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Fig. 12 The results of a 1 versus 2 conversation. a Speed of human 4

head movement (°), b sound location (°), ¢ decision output, d motor
location (°)

Then we evaluate the system in a scenario when the local
user does not appear in the field of view of the camera at the “ “ « “ «
beginning. The goalis to let the remote user find the localuser ~ Fig. 14 The results of the user study. Q1 (Convenience), Q2 (Work-
who is speaking. A hint in the form of a red arrow will show  load), Q3 (Immersiveness), Q4 (Engagement) and Q5 (Embodiment)
up on the display to indicate the sound location as shown
in Fig. 13 (Top). The experiments are conducted on 10 par- o ) ]
ticipants in a total of 18 trials using both the “teleoperated” remote user side I.S improved with more convem.ence and
method and the proposed collaborative control method. The less Workload,'whlle the enga'lger'nent and embodiment on
average search time is 15.83s for the “teleoperated” method the local user side are also maintained.
and 7.89s for the collaborative control method. With the hint
of the sound location, the search time is significantly reduced.

We also conduct a user study with the same questions men- 6 Conclusions and Future Work

tioned in Sect. 4.1. The results are shown in Fig. 14. The

proposed collaborative control method has the highest score  In this paper, we develop a virtual-reality-based robotic telep-
for convenience and a similar score in workload compared  resence system with both visual and audio input that aims to
with the “sound-guided” method. The manipulability on the ~ improve the user experience in telepresence. We adopt an

@ Springer
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Oculus Rift goggle as the interface that connects the user
to the robot to provide immersive feelings and infer head
movement intentions. Sound localization is implemented
with a microphone array to allow the robot to track the
speaker in a conversation. Based on the findings of a user
study, a human-robot collaborative framework is proposed
to integrate the remote user’s control and the robot’s con-
trol. The experimental results show that the proposed system
can provide better user experience for telepresence tasks.
The proposed collaborative control framework can be applied
to other human-machine coupled control systems. The pro-
posed VR-based telepresence system has great potential in
many social robot applications. The future work will focus
on further improving the user friendliness of the robot and
conducting more experiments with more human subjects as
well as collecting more side-effect data, including fatigue,
control frustration, etc. We will also consider the application
of such telepresence robots in elderly care and telemedicine.
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