THE REGULARITY CONJECTURE
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IN POLYNOMIAL RINGS
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ABSTRACT. This paper presents a survey on recent developments on regularity
of prime ideals in polynomial rings.

1. Introduction

Throughout, we work over the field C. We make this assumption for simplicity and
because polynomial rings over C are our main case of interest; however, most results
and open problems are valid over an algebraically closed field of characteristic zero,
and several of them hold in greater generality. We work over the polynomial ring
S = Clzy,...,z,], which is standard graded with deg(x;) = 1 for all 7, and consider
the projective space P" ' over C.

Castelnuovo-Mumford regularity is a numerical invariant which measures the
complexity of the structure of a graded ideal or a coherent sheaf on projective
space (regularity can be defined for other algebraic objects as well, but we will
not pursue this direction). For a graded ideal I, its regularity shows how high we
should truncate in order to make the homological properties of I, as simple as
possible (more precisely, to get an ideal with a linear minimal free resolution), and
for a coherent sheaf on a projective space it shows how much one has to twist in
order to make the cohomological properties simpler.

The concept of Castelnuovo-Mumford regularity, called regularity for short,
was introduced by Mumford [Mu] generalizing ideas of Castelnuovo. The proper-
ties of reg(X) for a subvariety X C P" !, which depend on the embedding, are
discussed in Section 5. For more details on regularity, we refer the reader to the ex-
pository papers [BM, Ch, Ei] and the books [Ei2, La2]. The following fundamental
problem stems from works of Castelnuovo, Mumford, and others:

Peeva is partially supported by NSF grant DMS-1702125, and McCullough is partially sup-
ported by NSF grant DMS-1900792 and a grant from the Simons Foundation (576107, JGM).

1



Problem 1.1. Find explicit upper bound(s) for reg(X) of a subvariety X C p!
in terms of geometric invariants of X.

This problem is partially motivated by the fact that reg(X) gives an upper
bound for the degrees of the defining equations of X.

The definition of regularity of a graded ideal I in terms of its minimal free
resolution is due to Eisenbud and Goto [EG]. We discuss it in Section 2 and use
it later in the paper. The correspondence between the definitions of regularity of
a graded ideal (or module) and regularity of a coherent sheaf is described in [Ei2,
Proposition 4.16], for example. There is also a natural expression for regularity
(of graded modules, not just of graded ideals) via local cohomology, which we will
not use in this paper.

Papers of Bayer-Mumford, Bayer-Stillman, Koh [BM, BS, Ko| and others give
examples of families of ideals attaining doubly exponential regularity in terms of
the degrees of the minimal generators of the ideal and the number of variables of
the ambient ring. Their examples are based on the Mayr-Meyer [MM2] construc-
tion. We discuss the doubly exponential behavior of regularity of non-prime ideals
in Section 3. In contrast, Bertram-Ein-Lazarsfeld [BEL|, Chardin-Ulrich [CU],
and Mumford (published in [BM]) have proven that there are nice bounds on the
regularity of the ideals of smooth (or nearly smooth) projective varieties. As dis-
cussed in an influential paper by Bayer-Mumford (1993) [BM], the biggest missing
link between the general case and the smooth case is to obtain a “decent bound on
the regularity of all reduced equidimensional ideals”. For simplicity, in this paper
we focus on regularity bounds for prime ideals—the ideals that define irreducible
projective varieties. For such ideals, the long standing Eisenbud-Goto Regularity
Conjecture (1984) [EG] predicts an elegant linear upper bound on regularity in
terms of the degree of the variety (also called multiplicity). The conjecture is dis-
cussed in Section 4 and stated as the Regularity Conjecture 4.4. It was proven for
curves by Gruson-Lazarsfeld-Peskine [GLP], and for smooth surfaces by Lazars-
feld and Pinkham [La, Pi]. Ran [Ra] studied regularity for most smooth 3-folds,
and Kwak [Kw, Kw2] proved a slightly weaker bound for all smooth 3-folds. The
(arithmetically) Cohen-Macaulay case was settled by Eisenbud-Goto [EG]. Refer-
ences for results in other special cases of the conjecture and for similar bounds are
provided in Section 5. That section surveys some results on regularity in Algebraic
Geometry.

This expository paper is an overview of the current state of results on regu-
larity of prime ideals. Recently, in [MP], we produced many counterexamples to
the Eisenbud-Goto conjecture. In fact, in Theorem 11.3 we show that the regular-
ity of prime ideals is not bounded by any polynomial function of the degree. In

the subsequent paper [CCMPV], joint with Caviglia, Chardin, and Varbaro, we
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answer several natural questions which arise from [MP]. Section 11 is devoted to
counterexamples to the Regularity Conjecture 4.4. We present a small counterex-
ample of dimension 3 and families of counterexamples, some of which rely on the
Mayr-Meyer [MM2] construction. The latter lead to the above mentioned Theo-
rem 11.3. In these examples, the degree (multiplicity) fails to bound the maximal
degree of an element in a minimal system of generators of the ideal. We may ask if
it is possible to find prime ideals generated in low degrees but with high regularity.
Theorem 12.2 shows that such prime ideals exist, more precisely, there exist prime
ideals for which the maximal degree of a minimal generator is 6 and the maximal
degree of a minimal first syzygy is arbitrarily large.

Section 13 discusses some open questions. Using a result of Ananyan-Hochster,
Theorem 13.3 shows that there exists an upper bound on regularity of prime ideals
in terms of the multiplicity alone. Motivated by Stillman’s Conjecture and Com-
putational Algebra, one might wonder if that bound can be made less than dou-
bly exponential. The main currently open conjecture on this topic seems to be
Conjecture 14.4, raised by Bayer and Mumford in 1993 [BM, Comments after
Theorem 3.12]. It conjectures a singly exponential bound on the regularity of non-
degenerate homogeneous prime ideals. The bound has base the maximal degree
of an element in a minimal system of generators and exponent in terms of the
number of variables. In a different direction, it would be interesting to prove the
Regularity Conjecture after imposing additional constraints; for example, extra
tools are available in the smooth case and also for toric varieties.

One of the reasons why progress on the Regularity Conjecture was slow was the
lack of techniques for constructing examples of prime ideals with high regularity,
in particular, the lack of techniques for producing such ideals from non-prime
examples. In [MP] we introduced a method which, starting from a homogeneous
ideal I in S, produces a homogeneous prime ideal whose projective dimension,
regularity, degree, dimension, depth, and codimension are expressed in terms of
numerical invariants of I. Our method involves two new techniques:

(1) Rees-like algebras are described in Section 7. Their construction was in-
spired by an example of Hochster published in [Bec]. Rees algebras are of
high interest in Commutative Algebra, but their properties are very intri-
cate. The defining equations of Rees algebras are difficult to find in general,
and usually we can only find bounds for their numerical invariants. In con-
trast, Theorem 7.4 provides simple explicit formulas for the generators and
the numerical invariants of Rees-like algebras.

(2) We use a new homogenization technique for prime ideals, which is described
in Section 6. Its key property is the preservation of the graded Betti num-
bers, which usually change after traditional homogenization (taking pro-

jective closure). In particular, note that traditional homogenization has to
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be performed on a Grobner basis, which is usually a much larger set than

a set of minimal generators.
In Sections 7, 9, and 10 we describe and compare three methods for producing
prime ideals —two versions of the well-known construction of Rees algebras and the
new construction of Rees-like algebras. These constructions usually yield prime
ideals which are homogeneous with respect to a non-standard grading, and thus
need to be homogenized in order to make them standard graded; in Section 6 we
discuss the new Step-by-step homogenization technique from [MP] and another
version from [MMM], called Prime Standardization.

We close the introduction with some remarks about regularity over quotient
rings. The definition of regularity via free resolutions works over graded quotients
of a polynomial ring, but the situation there is usually considerably different than
that over a polynomial ring. For example, by Serre’s Theorem minimal free reso-
lutions over graded quotients of polynomial rings are usually infinite, in contrast
to Hilbert’s Syzygy Theorem that every graded ideal in a polynomial ring has a
finite minimal free resolution. Regularity is known to be finite over graded Koszul
algebras, and several interesting results are known in this setting.

2. Regularity via Minimal Free Resolutions

This section provides background on the definition of regularity via minimal free
resolutions. Throughout, we work over a polynomial ring S = C[zy, ..., x,], which
is standard graded with deg(z;) =1 for all 1.

In his famous paper in 1890 [Hi|, Hilbert introduced the approach to use free
resolutions in order to answer the following basic question.

Basic Question 2.1. How can we describe the structure of a graded ideal?

An initial guess is that perhaps a set of generators provides a lot of information
in some simple way. The first issue to deal with is whether there exists a finite set
of generators. This is resolved by Hilbert’s Basis Theorem:

Theorem 2.2. (see for example, [Ei, Theorem 1.2]) Every graded ideal in S has
a finite set of homogeneous generators.

However, the generators may give very little information about the structure of the
ideal, because there are relations on the generators, relations on these relations,
and so on, which we may need to understand. Hilbert’s approach to Question 2.1
is to capture the structure of such relations by the concept of free resolution. He
introduced this idea in a famous paper in 1890 [Hi| motivated by Invariant Theory;

the idea can also be found in the work of Cayley [Cal. The definition of a free
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resolution works a lot more broadly (for example, for modules over a possibly non-
commutative ring); in this paper we will restrict the concept of resolution to our
case of interest —graded ideals in the polynomial ring S.

Definition 2.3. A sequence

0

0
2 Fi71—>"'—>F1—1>F0

o,
(2.4) F: - —=F,, —F

)

of homomorphisms of finitely generated, graded free S-modules is a graded free
resolution of a graded ideal N if:

(1) F is an exact complex, that is, Ker(9;) = Im(0;,) for ¢ > 1.
(2) N = Coker(0,), that is, we have an exact sequence
Dit1 D1 9o
(2.5) o=y ——F == — Fy— N —=0.
(3) The differential 0 = {0;} of F is homogeneous, that is, it preserves degree.

Hilbert’s key insight was that a graded free resolution of N can be interpreted

as
relations relations
| on the | on the
| relations ' | generators generators
in 04 of N < of N >
— Fy > Iy > Iy N — 0,

and so it is a description of the structure of N. We illustrate this interpretation
in the following simple example:

Example 2.6. Consider the ideal N = (1'2, xy, y2) in the polynomial ring C[z, y].
It is generated by f := xQ, g ==zy, and h = y2. We have the relations

yf —xg=y(@®) —z(xy) =0  and  yg—zh = y(zy) — 2(y*) = 0.

It can be shown that the ideal IV has a free resolution

Y 0
0 —=x <3:2 Ty y2>

(2.7) 0— S 53

N — 0,

which can be interpreted as

relations
on the
generators (generators)

of N of N
0— Fy Ly N —=O0.

=

The key result in Hilbert’s approach is Hilbert’s Syzygy Theorem:
5



Theorem 2.8. (see for example, [Ei3, Corollary 19.7], [Pe, Theorem 15.2]) Every
graded ideal N in S has a finite free resolution.

It is easy to see that a graded free resolution, as defined in Definition 2.3, is far
from being unique. One can produce many different resolutions by simply adding
extraneous short complexes 0 — S 14§~ 0 here and there:

Example 2.9. For example,

2
~y y 0y
—r -z Yy 0
1 0 -z —2° @ 2
0= S s o W )
is a larger free resolution than (2.7) of the ideal N considered in Example 2.6. The
2
Yy
differential 9; contains the relation 0 |, which is a linear combination of the
2
—x

other two relations, and so it could be omitted in order to produce the smaller
resolution (2.7).

It is beneficial to construct a graded free resolution that is as small as possible
since in this way we are not hindered by redundant information. This is captured
in the concept of a minimal free resolution.

Definition 2.10. A graded free resolution F is minimal if
O0;i1(Fi11) € (xq,...,2,)F; foralli>0.
This means that no invertible elements appear in the differential matrices.

Minimal resolutions are sufficient to deal with all graded ideals and are as
small as possible:

Theorem 2.11. (see for example, [Ei, Theorem 20.2], [Pe, Theorem 7.5], [Pe,
Theorem 3.5]) Every graded ideal N in S has a minimal graded free resolution,
which is unique up to isomorphism. Any graded free resolution of N contains its
minimal graded free resolution as a direct summand.

Minimal free resolutions are not only optimal in the sense that they are as
small as possible, but they actually contain more information about the structure
of the resolved ideal than non-minimal resolutions. For example, the Auslander-
Buchsbaum Formula (see for example, [Pe, Theorem 15.3]) expresses depth in
terms of the length (called projective dimension) of the minimal free resolution.

The downside is that they are much harder to obtain than the non-minimal ones.
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Definition 2.12. The ranks of the free modules in the minimal free resolution F
of a graded ideal N are called the Betti numbers of N and denoted by

B;(N) = rank F;.
They can be expressed as
8;(N) = dimg Tor} (N, C) = dim¢ Ext4(N, C),

since the differentials in the complexes F ® ¢ C and Homg(F,C) are zero. The
connections between the structure of an ideal and the properties of its Betti num-
bers are a core topic in Commutative Algebra and have applications in Algebraic
Geometry, Computational Algebra, Algebraic Topology, Invariant Theory, Num-
ber Theory, Non-Commutative Algebra, and Combinatorics. In this paper, we are
interested in a more refined version, the graded Betti numbers, which takes into
account the grading. For each ¢, we write

F, =D s(-p),
PEZL
where S(—p) is the rank-one graded free S-module generated in degree p. The
ranks 3; , are called the graded Betti numbers of N and denoted by f; ,(IN). The
Betti table f(N) has entry 53;,,;, = B;;4+;(N) in position i, j; its columns are
indexed from left to right by homological degree starting with homological degree
zero; its rows are indexed increasingly from top to bottom starting with degree
zero. Thus, the Betti table has the form:

0 1 2
0: | Boo Big Ba2
1| Bog Brz2 Bog
(2.13) Bigri) = 2| Boa iy Baa
3: 1 Bos Bia Bas
In Example 2.6, the Betti table is
|01
0:]- -
1: | - ’
2: 13

“_»

where stands for zero.

The size of a Betti table is given by the projective dimension and the regularity:
The projective dimension

pds(N) = max {i| 87 (N) # 0}
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is the index of the last non-zero column of the Betti table S(N), and thus it
measures its width. The height of the table is measured by the index of the last
non-zero row, and is called the (Castelnuovo-Mumford) regularity of N, which is

regg(N) = max {j ‘ there exists an 7 such that Bfiﬂ(N) # 0} .

Furthermore, we say that N is r-regular for every r > reg(N). We often omit the
subscripts, writing pd(/V) and reg(N) instead, when the ring in question is clear.
Note that

reg(N) > gensdeg(N),
where gensdeg(N) is the maximal degree of an element in a minimal system of
homogeneous generators of IV, which we call the generating degree. In Example 2.6,
pd(N) =1 and reg(N) = gensdeg(N) = 2.

Both projective dimension and regularity are very important and well-studied
invariants. In the following sections, we discuss upper bounds for them.

One immediate consequence of the above definition of regularity is that it
pinpoints how high we have to truncate an ideal in order to get a linear resolution.
We say that a graded ideal has an r-linear resolution if the ideal is generated in
degree r and the entries in the differential maps in its minimal free resolution are
linear.

Theorem 2.14. (see for example, [Pe, Theorem 19.7]) Let N be a graded ideal
in S. If r > reg(N) then N>, := NN (@izr S;) has an r-linear minimal free
resolution, equivalently, reg(N>,) = r.

3. Doubly Exponential Regularity

In this section we discuss upper bounds on the projective dimension and regularity
of a graded ideal in the standard graded polynomial ring S = C[xy,...,x,] that
require no additional constraints on the ideal. Hilbert’s Syzygy Theorem provides
a nice upper bound on the projective dimension:

Theorem 3.1. (see for example, [Ei3, Corollary 19.7], [Pe, Theorem 15.2]) Let N
be a graded ideal in S. Then
pd(N) < n.

In contrast, the regularity bound is doubly exponential. Theorem 3.2 is proved
by Bayer-Mumford [BM] using results of Giusti [Giu] and Galligo [Ga] over fields
of characteristic 0, and by Caviglia-Sbarra [CS] in any characteristic.

Theorem 3.2. (Bayer-Mumford [BM], Caviglia-Sbarra [CS]) Let N be a graded
itdeal in S. Then

n—2
reg(N) < (2gensdeg(N))”
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This bound is nearly the best possible, due to examples based on the Mayr-
Meyer construction [MM?2]. There are several versions of such examples, listed in
Theorems 3.3, 3.4, and 3.5. These examples make use of the fact that in order
to produce high regularity it suffices to focus on the first step in the minimal
resolution: the submodule

Syz; (N) = Im(9,) = Ker(dy) = Coker(dy)

of Fy (in the notation of Definition 2.3), which is called the first syzygy module
of N. We denote by syzdeg(/N) the maximal degree of an element in a minimal
system of homogeneous generators of Syzf(N ). Thus,

syzdeg(N) = max {j | 87;(N) £ 0} |
and hence

reg(N) > syzdeg(N) — 1.

Theorem 3.3. (Bayer-Stillman [BS, Theorem 2.6]) For r > 1, there ezists a
homogeneous ideal I, (using d = 3 in their notation) in a polynomial ring with
107 + 11 wvariables for which

gensdeg(I,.) =5

r—1

syzdeg(I,) > 3

Theorem 3.4. (Bayer-Mumford, [BM, Proposition 3.11]) For r > 1, there ewists
a homogeneous ideal I, in 10r + 1 variables for which

gensdeg(I,.) =4
reg(l,) > 22"

Koh [Ko| achieved examples of high regularity of ideals generated by quadrics
and one linear form. Applying Theorem 10.1 to Koh’s examples we get:

Theorem 3.5. (Koh) For r > 1, there exists a homogeneous I, generated by
22r — 2 quadrics in a polynomial Ting with 22r variables for which

gensdeg(1,) = 2

r—1

syzdeg(I,) > 2°

More examples of ideals with high regularity have been constructed by Beder

et. al. [BMN], Caviglia [Ca], Chardin-Fall [CF], and Ullery [Ul].
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4. Regularity Conjecture for Prime Ideals

In contrast to the doubly exponential regularity examples in Section 3, much bet-
ter bounds on regularity are expected for geometrically nice ideals, for example for
prime ideals. Consider a homogeneous prime ideal L in a standard graded polyno-
mial ring S = C[zq,...,z,]. First, one has to exclude some degenerate cases: the
condition that L C (xq,... ,mn)2 is equivalent to requiring that X := V(L) does
not lie on a hyperplane in ]P’"_l; prime ideals that satisfy this condition are called
non-degenerate. If L is non-degenerate, then

(4.1) deg(L) > 1+ codim(L),

(see for example, [EG, p. 112]), where deg(L) is the multiplicity of S/L (also called
the degree of S/L, or the degree of X ), and codim(L) is the codimension (also called
height) of L. Geometrically deg(L) counts the number of points of intersection of
the projective variety defined by L with a general linear space of complementary
dimension. For a hypersurface defined by an irreducible form of degree ¢, the
multiplicity deg(L) is precisely ¢, but for non-principal ideals L computation of
deg(L) is not easy. Some bounds on regularity using two parameters (for example,
using multiplicity and codimension) are discussed in Section 5. In view of (4.1),
we can look for a bound in terms of a single parameter — the multiplicity — instead
of using both multiplicity and codimension. The following elegant bound was
conjectured by Eisenbud-Goto [EG|, motivated by results in Algebraic Geometry
(see Section 5), and has been very challenging:

Regularity Conjecture for Prime Ideals 4.2. (Eisenbud-Goto [EG], 1984) If
L is a homogeneous prime ideal in a standard graded polynomial ring over C, then

(4.3) reg(L) < deg(L).

Examples have shown that the hypotheses in the Regularity Conjecture cannot
be weakened much. The hypothesis that we work over an algebraically closed
field is necessary by [Ei2, Section 5C, Exercise 4]. The regularity of a reduced
equidimensional ideal cannot be bounded by its degree by [EU, Example 3.1].
Furthermore, there is no bound on the regularity of non-reduced homogeneous
ideals in terms of multiplicity, even for a fixed codimension, by [Ei, Example 3.11].

The Regularity Conjecture implies the following weaker conjecture, which pro-
vides a bound on the generating degree:

Conjecture 4.4. If L is a homogeneous prime ideal in a standard graded polyno-
mial ring over C, then

gensdeg(L) < deg(L),

that is, L is generated in degrees < deg(L).
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In order to make the Regularity Conjecture sharp for non-degenerate primes,
the original form of the conjecture uses the following more refined version of in-
equality (4.3):

(4.5) reg(L) < deg(L)— codim(L)+1.
For instance, the rational normal curve that is the image of P' — P" defined by
[s:t] > [s"cs et t],

is defined by the ideal I5(M) generated by the (2 x 2)-minors of the (2 x r)-matrix

M = (.’EO L1 ... .'17,,.1) )
ry To ... Ty
The ideal I,(M) has a linear free resolution. It follows that
reg(ly(M)) =2=r—(r—1)4+1=deg(Iy(M)) — codim(I(M)) + 1.

See [Ei2, Section 6A.1].
Eisenbud and Goto proved that the sharp inequality (4.5) holds in the Cohen-
Macaulay case:

Theorem 4.6. (Eisenbud-Goto, [EG]) The Regularity Conjecture 4.2 (in the sharp
version (4.5)) holds if the prime ideal L is Cohen-Macaulay.

5. Regularity Bounds and the Regularity Conjecture in Algebraic
Geometry

Lazarsfeld’s book [La2, Section 1.8] provides an overview of this topic; see also the
introduction of the paper [KP] by Kwak-Park.

The concept of regularity was introduced by Mumford [Mu| and generalizes
ideas of Castelnuovo. For an integer r, we say that a coherent sheaf F on the
projective space P"" ! is r-regular if H'(P", F(r —i)) = 0 for all i > 0. The
reqularity of F is the least integer r such that F is r-regular, or —oo (if F is
supported on a finite set). The regularity of a subscheme X C P" ! is the regularity
of its ideal sheaf 7y, so

reg(X) :=reg(Zx) .
We give two simple examples: If X consists of k£ distinct reduced points then
reg(X) < k. If X C P isa complete intersection of hypersurfaces of degrees
dy,...,d; then reg(X) = (dy + --- +d;, — k + 1), which follows from Koszul’s
resolution.

The relation between the definitions of regularity of a coherent sheaf and

regularity of a graded ideal (or module) is given in [Ei2, Proposition 4.16] and is

due to Eisenbud-Goto [EG].
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In this section, we outline some of the main results related to the Regular-
ity Conjecture. In sharp contrast to the doubly exponential regularity behavior
described in Section 3, a much better bound is expected for a geometrically nice
projective variety X C P"!. Recall from Section 4 that we say that X is non-
degenerate if it does not lie on a hyperplane in Pl

Some of the best known bounds on regularity hold in the case when X is

smooth. The following bound follows from a more general result by Bertram-FEin-
Lazarsfeld [BEL]:

Theorem 5.1. (Bertram-Ein-Lazarsfeld, [BEL]) Let X € P"' be a smooth irre-
ducible projective variety. If X is cut out scheme-theoretically by hypersurfaces of
degree < s, then

reg(X) <14 (s—1)codim(X).

For generalizations of this result, see [CU] and [DE]. See also [Ch2] for an
overview. Furthermore, Mumford proved:

Theorem 5.2. (Mumford [BM, Theorem 3.12]) If X C P"! is a non-degenerate
smooth projective variety, then

reg(X) < (dim(X) 4 1)(deg(X) —2) + 2.
The bound was improved by Kwak-Park:

Theorem 5.3. (Kwak-Park [KP, Theorem C]) If X C P" ! is a non-degenerate
smooth projective variety with codim(X) > 2, then

reg(X) < dim(X)(deg(X) —2)+1.

In [BM], Bayer and Mumford pointed out that the main missing piece of infor-
mation between the general case and the geometrically nice smooth case is that we
do not have yet a reasonable bound on the reqularity of all reduced equidimensional
ideals. Consider a non-degenerate subvariety X C P"'. The following inequality
was first considered in the smooth case:

(5.4) reg(X) < deg(X) — codim(X) + 1.

It was conjectured by Eisenbud-Goto [EG] for any reduced and irreducible non-
degenerate variety, and they expected that it might even hold for reduced equidi-
mensional X which are connected in codimension 1 [BM]. This is called the Regu-
larity Conjecture. The conjecture is different in flavor than the bounds in Theorems
5.1, 5.2, and 5.3: the bounds in these theorems are not linear in the degree (or the
degree of the defining equations) since there is a coefficient involving the dimension
or codimension.

The Regularity Conjecture was proved in several important cases. Castelnuovo
[Cas] carried out fundamental work in this direction for smooth space curves; the

case for curves was settled by Gruson-Lazarsfeld-Peskine:
12



Theorem 5.5. (Gruson-Lazarsfeld-Peskine [GLP]) The Regularity Conjecture, i.e.
inequality (5.4), holds if X C P !isa non-degenerate irreducible reduced curve.

Lazarsfeld, using work of Pinkhum, proved the conjecture for smooth surfaces:

Theorem 5.6. (Lazarsfeld [La|, Pinkham [Pi]) The Regularity Conjecture, i.e.
inequality (5.4), holds for smooth irreducible non-degenerate projective surfaces.

The case of mildly singular surfaces was considered by Niu [Ni]. The Regularity
Conjecture was studied for smooth 3-folds by Ran [Ra].

Theorem 5.7. (Kwak [Kw, Kw2]) Let X € P""" be a smooth irreducible projective
non-degenerate threefold. The bound

reg(X) < deg(X) — codim(X) + 2
holds.

For smooth 3-folds, Kwak [Kw, Kw2] also proved other bounds. Regularity
of 3-folds with rational singularities were studied by Niu-Park [NP]. Furthermore,
nice bounds for lower dimensional smooth varieties were obtained by Kwak [Kw3].

Many other special cases of the Regularity Conjecture and also similar bounds
in special cases are proved, for example, by Brodmann [Br], Brodmann-Vogel [BV],
Derksen-Sidman [DS], Eisenbud-Ulrich [EU], Giaimo [Gia], Herzog-Hibi [HH], Hoa-
Miyazaki [HM], Niu [Ni], Niu-Park [NP], Peeva-Sturmfels [PS2], and Stiickrad-
Vogel [SV], and several other authors.

In order to prove inequality (5.4), it is sufficient to show that the following
two properties hold: X is (deg(X) — codim(X))-normal and Oy is (deg(X) —
codim(X ))—regular. Recent progress in the smooth case was made by Noma:

Theorem 5.8. (Noma [No, Corollary 5]) Let X C P" ' be a non-degenerate
smooth projective variety of dim(X) > 2. Then Ox is (deg(X) — codim(X))-
reqular if X 1is not projectively equivalent to any scroll over a smooth projective
curve.

Furthermore, Kwak-Park [KP, Theorem B| obtained the following result; they
also classified the extremal and nearly extremal cases. Their result reduces the
Regularity Conjecture for the smooth case to the problem of finding a Castelnuovo-
type bound for normality [KP].

Theorem 5.9. (Kwak-Park [KP, Theorem B]) Let X € P"! be a non-degenerate

smooth projective variety. Then Ox is (deg(X) — codim(X))-regular.
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6. Homogenization

In this section we describe two versions of a new method for homogenizing (with
respect to the standard grading in a polynomial ring) prime ideals that are ho-
mogeneous with respect to a non-standard grading. Such prime ideals appear for
example as defining ideals of Rees algebras, Rees-like algebras, and toric rings. The
first method, called Step-by-step homogenization was introduced in [MP, Section
4] and has the advantage that it needs fewer new variables. The second method,
called Prime Standardization, was introduced in [MMM]. It needs more variables,
but has the advantage that the codimension of the singular locus is preserved and
that it is not limited to non-degenerate primes. Both versions have the key prop-
erty that they preserve Betti numbers, in contrast to traditional homogenization
(taking projective closure).

6.1. Traditional homogenization (taking projective closure).
We briefly review the construction of traditional homogenization used for taking
the projective closure of an affine variety. Consider the map

Y = (C[ylv s 7yp] — Y/ = Y[yO] = C[yanb' . 'ayp]

that sends a polynomial f =), ¢;m;, written as a C-linear combination of mono-
mials m; with non-zero coeflicients ¢; € C, to

F o= S comygesdestm),
7

called the homogenization of f. The homogenization I' of an ideal I C Y is the
ideal
I'=({f'|fel}) cY’

Usually, the homogenizations of the polynomials in a minimal set of generators of
I fail to generate I'. In order to generate I’ we need to homogenize a Grobner
basis of I (see for example, [CLO, Theorem 8.4.4]). Suppose that the polynomial
ring Y is positively graded (but non-standard graded) and I is homogeneous with
respect to that grading. Then we have graded Betti numbers B}; (I). Now, ignore
the grading of I which comes from the grading of Y and homogenize I with respect
to the standard grading. The ideal I’ is homogeneous with respect to the standard
grading of the ring Y. However, the graded Betti numbers 62;-, (I') are usually not
equal to B};(I) (see Example 6.7 below).

6.2. Step-by-step homogenization.
As discussed in 6.1 above, traditional homogenization requires homogenizing a
Grobner basis. In contrast, for Step-by-step homogenization, we only need to ho-

mogenize a set of generators of the prime ideal. This makes it much easier to apply
14



(or compute). However, it needs the assumption that the ideal is homogeneous
with respect to some non-standard (weighted) grading.

Consider a polynomial ring Y = Cly,...,y,] positively graded with integer
degrees deg(y;) > 1 for every i. Suppose deg(y;) > 1 for i < g and deg(y;) = 1 for
i > q (for some ¢ < p). Consider the homogenous map (of degree 0)

v:Y =Cly, ...,y — Y’ =Cly1,- - Yp> V1, V]
yi — vy T for 1< < g,
y; —y; fori>q,

where vy,...,v, are new variables and the new polynomial ring Y’ is standard
graded. Given a homogeneous element g € Y, the map v homogenizes it with
respect to the standard grading so that ¢’ := v(g) € Y’ has the same degree in
Y’ as ¢ has in Y. This construction is called Step-by-step-homogenization (since
one can homogenize one step at a time lowering the degree of one variable to 1).
For example, if Y = C[z,y, 2] with deg(z) = 3, deg(y) = 2, deg(z) = 1 and
g = xyz — 3y3, which has degree 6, then ¢’ is obtained by replacing z by xv%
and replacing y by yv,, so ¢ = (xv%)(yvg)z - 3(y02)3 is a homogeneous degree 6
polynomial in the standard graded polynomial ring Y = Clz, y, 2, v{, vg].

Theorem 6.3. ([MP, Theorem 4.5]) Let M be a homogeneous non-degenerate
prime ideal, and let gens(M) be a minimal set of homogeneous generators of M.
The ideal M' CY' generated by the elements v(gens(M)) is a homogeneous non-
degenerate prime ideal in'Y'. Furthermore, the graded Betti numbers of M' over
Y’ are the same as those of M over Y.

We say that the ideal M’ is the Step-by-step-homogenization of M.

6.4. Prime Standardization.

An alternate method to make standard graded homogenizations of non-standard
graded prime ideals is introduced in [MMM] by Mantero-McCullough-Miller. The
idea is based on the notion of a prime sequence introduced by Ananyan and
Hochster [AH1]. A sequence of elements g;,...,g; € S = Clzyq,...,x,] is a prime
sequence provided (gy,...,g;) is a proper ideal and S/(gy,...,g;) is a domain for
all 1 < i < t. Clearly any prime sequence is a regular sequence. Conversely, if
J1s---,9; is a homogeneous regular sequence such that S/(gy,..., ;) is a domain
for all 1 <4 <t, then gq,...,q, is a prime sequence and thus so is any permutation
of g1,...,¢9;. The usefulness of this idea is contained in the following result:

Proposition 6.5. (Ananyan and Hochster [AH1, Cor. 2.9, Prop. 2.10]) Suppose
J1s---,9; 18 a homogeneous prime sequence in S and set R = Clgy,...,q;]. Let
I C R be a homogeneous ideal.

(1) The ideals I and IS have the same graded Betti numbers.
15



(2) If I is prime, then IS is prime.

Part (1) holds since the inclusion map R — S is flat. However, if P is prime
and ¢ is a flat map, it is not always the case that ¢(P) is prime. (Consider e.g.
C[+*] < C[z] and the ideal (z%).)

The notion of a prime sequence naturally leads to a way to homogenize non-
standard graded prime ideals, which we call Prime Standardization. One merely
replaces each variable of degree d by a very general form of degree d in many new
variables such that the chosen forms define a prime sequence. The following choice
of forms works in general. Let Y = Cly,,...,y,] be a positively graded polynomial
ring with integer deg(y;) > 1. Consider the standard graded polynomial ring

Y = Cltijel1<i<n,0<j<n,1<0< deg(y;)]

and let

n deg(y;)

E:Z H tijucY'.

j=0 (=1
Define the graded map of rings ¢ : ¥ — Y’ by setting ((y;) = F}.

Theorem 6.6. (Mantero-McCullough-Miller [MMM, Proposition 3.3]) The el-
ements Fy,..., F, form a prime sequence. For any homogeneous prime ideal
M CY, the ideal ((M) is prime, standard graded, and has the same graded Betti
numbers as M.

This method has the advantage of preserving the codimension of the singular
locus of the ideal; of course, just like with Step-by-step homogenization, the many
new variables mean the dimension of the associated variety grows considerably,
but one may take hyperplane sections and appeal to Bertini’s theorem [F1] to
compensate for this. An example where the singular locus of the Step-by-step
homogenization differs from that of Prime Standardization is provided in [MMM,
Example 3.2].

Example 6.7. We will illustrate how Step-by-step homogenization and Prime
standardization work and make a comparison to traditional homogenization (tak-
ing projective closure).

We consider the defining ideal of the affine monomial curve parametrized by
(t,t%,¢%). It is the prime ideal

E=(a*—y, zy - 2)
16



which is the kernel of the map

Y = (C[az,y,z] - (C[t]
Tt
y»—>t2

23
It is homogeneous with respect to the non-standard grading defined by
deg(z) =1, deg(y) = 2, deg(z) =3.
The non-zero graded Betti numbers of E over Y are

Boa=1, Bos=1, f15=1

and thus reg(E) = 4.

The traditional homogenization (that is, taking projective closure) of E is
obtained by homogenizing a Grobner basis. The generators z? - Yy, xy —z and the
element xz —y2 form a minimal Grobner basis with respect to the degree-lex order.
Homogenizing them with a new variable w we obtain the homogeneous prime ideal

F = (:U2 —yw, TY — 2W, TZ — y2)

in the ring Y’ = Clz,y, z, w], which is standard graded. The ideal FE' defines the
projective closure of the affine variety V(E) in P*. Note that:

(1) A Grdbner basis computation is needed in order to obtain the generators
of E.

(2) The non-zero Betti numbers of E' over Y’ are 6672 = 3, 6173 = 2, and so
they are different than those of E over Y. Moreover

reg(E') = 2 < reg(E) = 4.

The Step-by-step homogenization works by applying Theorem 6.3 to E. We
replace the variable y by yu and replace the variable z by 2% Thus, we obtain
the homogeneous prime ideal

E = (2* — yu, zyu — 20°)

in the ring Y’ = C[x, y, 2, u, v] which is standard graded (all variables have degree
one). The graded Betti numbers of E' over Y’ (and thus also the regularity) are
the same as the graded Betti numbers of E over Y.

The Prime standardization works by applying Theorem 6.6 to E. The homog-
enized ideal E’ is defined by replacing y by Z?:o H?zl ty ;¢ and replacing z by
Z?’:o H:Z:l t3 ;- We need not replace x since it has degree 1 already. Thus, F'is

17



generated by the following two elements:

a? — (ta01t202 T ta11ta12 +tao1taoo +ta31t239),

w(typata e +la11t212 Tt221t2020 +1ta31t232)

— (t3,0,1t3,0,2t30,3 + t31,1t3,1,2t3.1,3 T t321t322t323 + 133 1t332t333)-
See [MMM, Example 3.8].

7. Rees-like algebras

In Section 3 we presented several examples of homogeneous ideals with high reg-
ularity. Our goal is to produce similar examples with prime ideals. For this, we
need a method which, starting from a homogeneous ideal I, produces a prime
ideal P whose regularity and multiplicity can be estimated. One way to produce
such ideals is to consider Rees algebras, which have been well-studied in Algebraic
Geometry and Commutative Algebra. However, their defining equations (let alone
free resolutions) are difficult to find in general (see for example [Hu], [KPU]). Thus,
the best we can hope to obtain for Rees algebras are bounds on these invariants.
Section 9 is devoted to Rees algebras. We introduced in [MP] another concept,
Rees-like algebras, which has the advantage that we can provide simple explicit
formulas for the defining equations, projective dimension, regularity, gensdeg, mul-
tiplicity, dimension, depth, and codimension of P in terms of numerical invariants
of I. The construction of Rees-like algebras was inspired by Hochster’s example
in [Bec] which, starting with a family of three-generated ideals in a regular local
ring, produces prime ideals with fixed embedding dimension and Hilbert-Samuel
multiplicity but arbitrarily many minimal generators.

Fix a polynomial ring S = C[xy,...,x,] with a standard grading defined by
deg(z;) = 1 for every i. Let I be a homogeneous ideal minimally generated by forms
fis-++y fm, where m > 2. We consider the prime ideal @ of defining equations of
the Rees-like algebra S[It, t2]. For this purpose, introduce a new polynomial ring
Y = Slyi, .-, Ym, 2] graded by deg(z) = 2 and deg(y;) = deg(f;) + 1 for every
i. The ideal @ is the homogeneous prime ideal that is the kernel of the graded
homomorphism

¢0: Y — S[It,t*] C S[t]
yi — fit
z—s t? ,
where ¢ is a new variable of deg(t) = 1. In contrast to the defining ideal of a Rees

algebra, we can describe a set of generators of () as follows. If p € Z, denote by

S(—p) the shifted free module for which S(—p); = S,_, for all i. The minimal
18



graded presentation (G, d) of I has the form

dlz(cij) do=(f1 - fm)

G: G Go=S(—ay) @ @ 8(—a,,) 2"ty p

Denote by &,...,&,, a homogeneous basis of G such that d(§;) = f; for every i.
Let r = rank (G;), and fix a homogeneous basis f, ..., u, of Gy that is mapped
by the differential to a homogeneous minimal system of generators of Ker(dy). Let
C = (c;;) be the matrix of the differential d; in these fixed homogeneous bases.
Thus Syz,(I) = Ker(dy) is the module generated by the elements

Yy c;.& 1< 3<r 3.
{Z 1]57, J }

i=1
It is clear that the corresponding elements
I<jy<r }

m

(7.1) G = { Z CijYi
i=1

are in ). We prove in [MP, Proposition 3.2 and Corollary 3.6] that the ideal @ is

minimally generated by the elements

(7.2) Q= (9U{yy; —zfifi|1<i,j<m}).

The prime ideal @ is non-degenerate, and so z is a non-zerodivisor on Y/Q. Set

Y :=Y/z, and let Q C Y be the homogeneous ideal (which is the image of Q)

generated by

(7.3) Q=(G,{yy;|1<i,j<m}).

It follows that the graded Betti numbers of ) over Y are equal to those of Q over

Y. The minimal free resolution of @) is obtained in [MP, Theorem 3.10] using a
mapping cone resolution, and we get formulas for its numerical invariants. We
describe this resolution in the next section.

The ideal @ is homogeneous in the polynomial ring Y, which is not standard
graded. Our goal is to construct a prime ideal in a standard graded ring. We
change the degrees of the variables to 1 and homogenize the ideal ) by applying
the Step-by-step homogenization technique described in Section 6. This yields a
homogeneous, non-degenerate prime ideal P in a standard graded polynomial ring.
Since Step-by-step homogenization (or Prime Homogenization) preserves graded
Betti numbers, the formulas for the numerical invariants of @) yield formulas for
the numerical invariants of P.

Theorem 7.4. [MP, Theorem 1.6] Let I be an ideal generated minimally by ho-
mogeneous elements fi,..., f,, (with m > 2) in the standard graded polynomial
ring S = Clxy,...,x,]. Consider the standard graded polynomial ring

R:S[yla‘-'7ym7u17"-’um72>v}
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with n + 2m + 2 variables. Let P be the ideal in R generated by the Step-by-step
homogenizations of the minimal generators of Q listed in (7.1) and (7.2), namely
P is generated by:

(7.5) { viy;u deg(fl)u('ieg(fj) —2vfifj |1 <4, <m}

J
1<j<7‘}.

The ideal P is homogeneous, prime, and non-degenerate. Furthermore:

and

(7.6) { Z Cijyi el

=1

(1) The above system of generators is minimal.
(2) The mazimal degree of a minimal generator of P is:

gensdeg(P) = max { 1 + syzdeg(I), 2gensdeg(l) + 2 } :

Note that gensdeg(I) = max{deg(f;)|1 <1i < m}.
(3) The multiplicity of R/P is

m
deg(P) =2 H deg(f;) + 1
=1
(4) The Castelnuovo-Mumford reqularity and the projective dimension of P are:

reg(P) =reg(l) +2+ Z deg(f;)
i=1
pd(P) =pd(I)+m —1.
(5) The depth, the codimension, and the dimension of R/P are:
depth(R/P) = depth(S/I) +m + 3
codim(P) =m
dim(R/P)=m+n+2.
The key and striking property of the construction of the ideal P is that it has a

nicely structured minimal free resolution, which makes it possible to express its
regularity, multiplicity, and other invariants in terms of invariants of I.

Example 7.7. We illustrate the constructions and results above. Consider the
ideal I = (z1,2z9) C S = Clzy,x5]. Let Y = S[yq, yo, 2]. Then the Rees-like algebra
S[It, %] of I is isomorphic to Y/Q where
2 2 2 2
Q = (Y172 — YTy, Y1 — T12, Y1Ys — T1T92, Yy — T32).

The Step-by-step homogenization P C R of Q is

p— 2 2 2 2 2 2
= (Y1u1Ty — YoUsTy, Y1 U] — T2V, YU Yals — T1T92V, YUy — TH2V).
20



Then P is a homogeneous prime ideal generated by 1 cubic and 3 quartics in a
standard graded polynomial ring over C with

deg(P H deg(z =2%=3

2
reg(P) =reg(I) + 2+ Y deg(ax;) =14+2+1+1=5
=1
pd(P)=pd(I)+m—-1=1+2—-1=2
depth(R/P) :depth(S/I)+m+3—O+2+3—5
codim(P) =
dim(R/P):m+n+2:2+2+2:6.

In particular, R/ P is not Cohen-Macaulay, as is the case with any Rees-like algebra
when m > 2. It is easy to check that R/P is not normal either. The projective
variety V(P) C P" is 5-dimensional.

8. The minimal free resolution for a Rees-like algebra modulo a
non-zerodivisor

Notation 8.1. We adopt the following conventions for shifting: If U is a graded
module, denote by U(—1) the shifted module for which U(—1); = U,_; for all i;
thus, we consider the shift that increases the internal degree by 1. If (V,d) is a
complex, we write V[1] for the shifted complex with V[1]; = V,;_; and differential
(—1)Pd; thus, we shift the complex one step higher in homological degree.

In this section we describe the construction of the minimal graded free resolu-
tion of Y/Q over Y, in the notation of the previous section. We will follow [MP,
Construction 3.8] which uses a mapping cone. In view of (7.3) we consider the
ideals

M= (9)
N:i=(y1, - 9m)”,
so Q = M + N. There is a short exact sequence
0— M/(MNN) - Y/N—Y/(M+N)=Y/Q —0,
where 7 is the homogeneous map (of degree 0) induced by M C Y. Let (B,dB)
and (G,d“) be the graded minimal free resolutions of M/(M N N) and Y /N,

respectively. Let ( : B — G be a homogeneous lifting of ~. Its mapping

cone D is a graded free resolution of Y /Q over Y. It is a complex with modules
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D, =G,®B
internal degree) module

g—1- Thus, as a bigraded (graded by homological degree and by

D =GBl

The resolution G- may be expressed as Y ® G', where G’ is the Eliahou-Kervaire
resolution (or the Eagon-Northcott resolution) that resolves minimally the module
Clyry - Yml/(yrs-- -, ym)2 over the polynomial ring Clyy, ..., y,,]. Furthermore,

B=Kyy, - ym) Oy (F(-1) @Y ),
where

e Ky(yq,--.,¥m) is the Koszul complex on yy,...,¥,, over Y.
e F is the minimal S-free resolution of Syz{ (I).

Formulas for the differentials in this construction are given in [MP, Section 3]. The
following theorem shows that the construction provides the desired minimal free
resolution:

Theorem 8.3. (McCullough-Peeva [MP, Theorem 3.10]) Use the notation above.
The graded minimal Y -free resolution of Y /Q can be described as a bigraded (graded
by homological degree and by internal degree) module by

D=(Y®G) & Ky, ...yn) @F(-1))[1],

where [1] stands for shifting one step higher in homological degree, and (—1) stands
for the shift that increases the internal degree by 1.

9. Rees algebras

Rees algebras are of high interest in Commutative Algebra and Algebraic Geometry
because of their geometric properties, see for example [Cu, Theorem 6.4] for the
relation to blow-ups. Fix a polynomial ring S = Clzy,...,z,] with a standard
grading defined by deg(x;) = 1 for every i. Let I be a homogeneous ideal minimally
generated by forms fq,..., f,,, where m > 2. We consider the prime ideal W of
defining equations of the Rees algebra S[It]. For this purpose, introduce a new
polynomial ring V' = S[yy,...,y,,] graded by deg(y;) = deg(f;) + 1 for every i.
The ideal W is the homogeneous prime ideal that is the kernel of the graded
homomorphism

o: V =Sy, ..,yn] — S[It] C S[t]
y; — fit,

where ¢ is a new variable and deg(t) = 1.
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The following result provides bounds for the regularity and multiplicity of the
defining ideal of a Rees algebra by comparing it to the corresponding Rees-like
algebra:

Theorem 9.1. Consider the standard graded polynomial ring S = Clxy,...,x,].
Let I be a homogeneous ideal minimally generated by forms fi,..., fmn, where m >
2. Consider the Rees algebra S[It] and the Rees-like algebra S[It,t*]. Denote by
Q and W the defining ideals of S[It, t2] and S[It] respectively. Let U and P be the
respective Step-by-step homogenizations of W and Q.

(1) [CCMPV, Theorem 3.2] The degree of the Rees algebra satisfies

m

1
deg(U) < ideg(P) = H (deg(f;) +1).
=1
(2) The regularity of the Rees algebra satisfies

reg(U) > gensdeg(U) > syzdeg(I) .

Theorem 9.1(2) follows from Theorem 7.4(2) and the fact that the generators
G in (7.1) are always minimal generators of W. We remark that it is usually very
difficult to determine what other elements are needed to generate W.

10. Rees algebras of ideals generated in one degree

In this section we outline a different approach which has been used in the study
of Rees algebras. If M is an ideal generated by m > 1 forms of the same degree
d > 2 in S, then the Rees algebra S[Mt] can be considered as a standard graded
quotient of the polynomial ring V' = S[y;,...,9,,]. In this case, we have the
following bounds on degree and regularity:

Theorem 10.1. Let M be an ideal generated by m > 1 forms of the same degree
d>2in S = Clzy,...,x,], and W be the defining ideal of the Rees algebra
S[Mt], which is considered as a standard graded quotient of the polynomial ring
STy, - Yml-
(1) [CCMPV, Theorem 4.3] The degree of the Rees algebra satisfies
min{m,n} 1
d—1
(2) The regularity of the Rees algebra satisfies
reg(W) > gensdeg(W) > syzdeg(M) — (d —1).
Theorem 10.1(2) follows from the fact that the elements in (7.1) are contained

in a minimal system of generators of the ideal W and that we have deg(y;) = 1 =
gensdeg(I) — (d — 1) for every i.

deg(W) <
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In order to apply the above theorem, we use the following construction which
replaces a homogeneous ideal I in S by an ideal generated in one degree:

Theorem 10.2. [CCMPV, Construction 4.1] Let I be a homogeneous ideal in S
minimally generated by forms fi,..., f,,, where m > 2. Set

d = gensdeg(I) = max{deg(f;) |1 <i<m}.

Consider a new ideal M generated by the forms {xd_aifi} of degree d in the poly-
nomial ring S[x]. For every i,

gensdeg(Syzf[w](M)) > gensdeg(Syz (1)) .

11. A zoo of counterexamples to the Regularity Conjecture

The first counterexample that we present in this paper is a threefold computed by
Macaulay2 [M2]. Another such example is given in [MP, Example 4.6]. In these
examples X C P is 3-dimensional. Note that Kwak [Kw2] proved the inequality
reg(X) < deg(X) — codim X 4+ 1 if X C P° is 3-dimensional, non-degenerate,
irreducible, and smooth.

Example 11.1. [MP, Example 4.7] Consider the ideal

I= (u6, 00, WPt + 0?2t + uwowy® + uv:nz?’)
constructed in [BMN] (where it is denoted by Iy (519)) in the standard graded
polynomial ring

S = Clu,v,w,x,y, 2] .

We consider the defining prime ideal M C W = S[wy, w,, w3] of the Rees algebra
S[It], with deg(w;) = 1 for i = 1,2,3. Computation with Macaulay2 [M2] shows
that gensdeg(M) = 38, deg(M) = 31, and pd(W/M) = 5. As dim(W) =9, we
may apply Bertini’s Theorem to obtain a singular projective 3-fold X in P° whose
degree and regularity are

deg(X) =31
reg(X) > gensdeg(X) = 38.

10.2. Super-polynomial growth of regularity.
In this subsection, we provide families of counterexamples to the Regularity Con-
jecture, which lead to our main result in [MP]:

Theorem 11.3. [MP, Theorem 1.9] The regularity of non-degenerate homogeneous
prime ideals is not bounded by any polynomial function of the multiplicity, i.e., for
any polynomial O(x) there exists a non-degenerate homogeneous prime ideal L in

a standard graded polynomial ring (over C) such that reg(L) > O (deg(L)).
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In the next three examples we will show how each of the three methods in
Sections 7, 9, 10 can be applied to Koh’s example in Theorem 3.5 in order to
produce families of counterexamples to the Regularity Conjecture. Recall that
for » > 1 the example provides an ideal I, generated by 22r — 2 quadrics in a
polynomial ring with 227 variables, so that

r—1

syzdeg(I,) > 2
Example 11.4. [MP, Counterexamples 1.8] First, we will apply the Rees-like
algebra construction, from Section 7, to Koh’s example. By Theorem 7.4, the
ideal I, leads to a homogeneous prime ideal P, (in a standard graded polynomial
ring R, over C) whose multiplicity and generating degree are:

deg(P,) =232

r—1

reg(P,) > gensdeg(P,) > 2°

Therefore, Conjecture 4.4 predicts

r—1

22 <9. 3227"—2

which fails for r > 10. Moreover, the difference

r—1
reg(P,) — deg(P,) > gensdeg(P,) — deg(P,) > 2% — 2™

can be made arbitrarily large by choosing a large r.

Example 11.5. [CCMPV, Theorem 3.3] We will apply the Rees algebra construc-
tion, from Section 9, to Koh’s example. For r € N we consider the Step-by-step
homogenization U, of the defining ideal W, of the Rees algebra S[I,.t]. By Theo-
rem 9.1, the multiplicity and generating degree of the prime ideal U, satisfy:

deg(U,) < q22r-2
1

reg(U,) > gensdeg(U,.) > 22
Thus it is a counterexample to the Regularity Conjecture for r > 10.
Example 11.6. [CCMPV, Example 4.2] We will apply the Rees algebra construc-
tion, from Section 10, to Koh’s example. Following the setting in Theorem 10.1,
let W, be the defining ideal of the Rees algebra S[I,t], which is considered as a

standard graded quotient of a polynomial ring. By Theorem 10.1, the multiplicity
and generating degree of the prime ideal W, satisfy:

deg(W ) < 2min{22r72,22r} 1< 222r72
) < <
r—1
reg(W,) > gensdeg(W,) > 22  —1.

Thus it is a counterexample to the Regularity Conjecture for r > 10.
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Example 11.7. Alternatively, we can produce families of counterexamples by
applying the three methods in Sections 7, 9, and 10 to the non-prime examples in
Theorems 3.3 and 3.4.

10.8. Counterexamples not based on the Mayr-Meyer construction.

In order to construct counterexamples to the Regularity Conjecture using Rees or
Rees-like algebras, one needs families of ideals whose regularity grows faster than
the product of the degrees of the generators. The families based on the Mayr-
Meyer construction certainly suffice. Here is the only other known example, which
is sufficient to give counterexamples to the Regularity Conjecture without relying
on the Mayr-Meyer ideals.

Example 11.9. [CCMPYV, Theorem 7.2] In [Ca, Example 4.2.1], Caviglia showed
that if T' = C|zy, 29, 23, 24] and
J= (4, 25, sz =)
with d > 2, then reg(T/J) = d° — 2. We set S = T'[z,y] and
I= (m3, v, 2224+ a;y(zlzg_l — zzzf_l) + y2zg> :

Let P be the Step-by-step homogenization of the defining ideal of the Rees-like
algebra S[It,t*] of the ideal I (defined above), as in Theorem 7.4. Then

deg(P) = 32(d + 3)
reg(P) > d* +d +12.

In particular, the Regularity Conjecture fails when d > 34.
Had we instead computed the defining ideal P’ of T[Jt,t], we would obtain
deg(Pl) = 2d3, which is not sufficient for a counterexample.

Note that all counterexamples in this section are counterexamples to the
weaker Conjecture 4.4 as well.

12. High regularity of syzygies relative to degrees of generators

In the counterexamples in the previous section, the multiplicity is smaller than the
maximal degree of a minimal generator of a prime ideal. One may wonder whether
high regularity is mainly caused by high degrees of the minimal generators, or
whether even low degree generators can lead to high regularity exhibited later in
the resolution.

Question 12.1. Are there homogeneous non-degenerate prime ideals for which
the difference between the mazximal degree of a minimal generator and the maximal

degree of a minimal first syzygy can be made arbitrarily large?
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In the notation introduced in Section 3, this question asks if we can make the
difference

syzdeg(L) — gensdeg(L)

arbitrarily large.

The answer to Question 12.1 is not easy even if we don’t require the ideal L to
be prime. For non-prime ideals, a positive answer was provided by Theorems 3.3,
3.4, 3.5.

Applying our Rees-like algebra construction to Ullery’s designer ideals in [Ul,
Theorem 1.3] we prove:

Theorem 12.2. [CCMPV, Theorem 6.2] Let s > 9 be a positive integer. There
exists a non-degenerate prime ideal L in a standard graded polynomial ring (over

C) with
gensdeg(L) = 6
syzdeg(L) = s.
Note that Rees algebras are not currently useful for tackling Question 12.1

since we don’t have a suitable upper bound on the degrees of the elements in a
minimal generating set of the defining ideal.

13. Open Problems on Regularity in terms of Multiplicity

12.1. A bound on regularity in terms of multiplicity.
The following example shows that a bound on regularity of primary ideals in terms
of the multiplicity alone does not exist.

Example 13.2. [CCMPV, Examples 5.4] For n > 1, consider the ideal
T = (%, %, a"z+b"y)

in S = Clz,y,a,b]. Then Ass(S/J,) = {(x,y)}. Therefore the ideal J, is (x,y)-
primary. Since the length of (S/J,)(y,) is 2, it follows from the associativity
formula [HS, Theorem 11.2.4] that deg(J,,) = 2 for all n. Furthermore,

reg(.J,,) > gensdeg(J,) =n+1.

Theorem 11.3 shows that the regularity of prime ideals is not bounded by any
polynomial function of the multiplicity. In view of Example 13.2, it is natural
to wonder if there exists a bound on regularity of prime ideals in terms of the
multiplicity alone. Using the recent work of Ananyan-Hochster [AH1] we prove

the existence of such a bound:
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Theorem 13.3. [CCMPV, Theorem 5.2] Let L be homogeneous non-degenerate
prime ideal in a polynomial ring over C. There exist constants, depending only on

deg(L), bounding the projective dimension, reqularity and graded Betti numbers of
the ideal L.

The bound obtained in the proof of Theorem 13.3 relies on a bound in [AH1]
(alternatively, one can use bounds from [ESS1, DLL]), which is very large. One
may wonder how to improve the bound:

Question 13.4. What is an optimal function ®(x) such that reg(L) < ®(deg(L))
for any non-degenerate homogeneous prime ideal L in a standard graded polynomial
ring over C?

Since we have doubly exponential bounds for all homogeneous ideals (not only
the prime ideals), the following question is of interest:

Question 13.5. Does there exist a singly exponential bound for reqularity of ho-
mogeneous non-degenerate prime ideals (in a standard graded polynomial ring over
C) in terms of the multiplicity alone?

Finding small bounds is motivated by two different topics: Stillman’s conjec-
ture and Computational Algebra. We describe these motivations in Sections 14
and 15.

12.6. The Regularity Conjecture for ideals satisfying additional condi-
tions.

The bound in the Regularity Conjecture is very elegant, so it is of interest to study
if it holds when we impose extra conditions on the prime ideal. At this point some
possible interesting cases seem to be:

(1) smooth varieties;

(2) projectively normal varieties;

(3) toric ideals (in the sense of the definition in [Pe, Section 65]);

(4) projective singular surfaces. (Recall Theorems 5.5 and 5.6. A 3-dimensional

counterexample is given in Example 11.1.)

It seems to us that it is currently unpredictable if the Regularity Conjecture holds
in any of these cases. The reason why it is reasonable to consider them is that in
these cases there are extra tools available, and the examples in Section 11 do not
satisfy these properties.

12.7. Avoiding the Mayr-Meyer construction.
It would be desirable to have families of examples of high regularity that are not

based on the Mayr-Meyer construction. The family of examples in 11.9 gives
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counterexamples to the Regularity Conjecture, but is not sufficient to prove The-
orem 11.3 about super-polynomial growth. The following generalization of 11.9
might be sufficient:

Construction 13.8. Define a family of three-generated ideals in the polynomial
ring
C[‘rO?‘Tla - Y0, Y15 - - ]

recursively as follows. First set

2 2
J1 =7, g1 = Y1, hy = z120 + Y190-

For r > 2 set

2 2 2 2
fr = xrrv 9r = yrr7 hr = J:rfr—l +Yrgr—1+ xryrhr—l‘
Consider the ideal
Ir = (fr7 9rs hf’r’)7

generated by three forms of degree 2r. With this notation we raise the following
question based on computational evidence by Macaulay?2:

Conjecture 13.9. (McCullough) The regularity reg(1,.) has super-polynomial growth
(that is, for any polynomial ®(x) € R[z], there exists a positive integer r such that

reg(I,) > ®(r)).

If the conjecture holds, then both the Rees algebra and the Rees-like algebra of
the ideal I,. in Construction 13.8 also have regularity exhibiting super-polynomial
growth while the degree grows asymptotically as C’r3, where the constant C' is
independent of 7.

14. More Open Problems

13.1. Bounds in terms of other invariants.

As always, it is very interesting to find bounds on regularity in terms of other in-
variants, and/or for classes of interesting ideals. As mentioned in the introduction,
Bayer-Mumford (1993) [BM] wrote:

Problem 14.2. (Bayer-Mumford (1993) [BM]) The biggest missing link between
the general case and the smooth case is to obtain a “decent bound on the regularity

of all reduced equidimensional ideals”.
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In particular, we are interested in a decent bound on the regularity of prime ideals,
possibly in terms of other invariants than multiplicity. At this point, the problem
is widely open.

13.3. Open Problems inspired by Computational Algebra.

Question 13.4 is of interest in Computational Algebra, as indicated in [BS]. Many
computer computations in Commutative Algebra and Algebraic Geometry (for
example, when using the computer algebra systems Cocoa [Col, Macaulay2 [M2],
Singular [DGPS]) use Grobner bases. Bayer-Stillman [BS2] proved that in generic
coordinates and with respect to reverse lexicographic (revlex) order, one has to
compute up to degree reg(/) in order to compute a Grébner basis of I. Revlex is
usually the most efficient monomial order according to [BM]. Thus the regularity of
a homogeneous ideal I is the degree-complexity of the Grobner basis computation
of I. In [BM, Comments after Theorem 3.12] Bayer and Mumford wrote: “We
would conjecture that if a linear bound doesn’t hold, at the least a single exponential
bound, i.e. reg(L) < gensdeg(L)O("), ought to hold for any reduced equidimensional
ideal. This is an essential ingredient in analyzing the worst-case behavior of all
algorithms based on Grobner bases.” Since our paper is focused on prime ideals,
we state their conjecture in this case:

Conjecture 14.4. (Bayer-Mumford, 1993, [BM, Comments after Theorem 3.12])
If L is a homogeneous non-degenerate prime ideal in the standard graded ring
S =Clxy,...,z,], then

reg(L) < gensdeg(L)°™ .

Of course, one would also like to have a relation between the prime case and
the general case. In some cases Ravi [Ra] has proven that the regularity of the
radical of an ideal is no greater than the regularity of the ideal itself. For a long
time, there was a folklore conjecture that this would hold for every homogeneous
ideal. It was disproved by Chardin-D’Cruz [CD], who provided examples of ideals
related to monomial curves in P* (respectively, in P4) such that the regularity of
the radical is essentially the square (respectively, the cube) of that of the ideal.
They constructed the following family of examples:

Example 14.5. (Chardin-D’Cruz [CD, Example 2.5]) For m > 1 and r > 3,
consider the ideal

2 +1 r r41 r m r m—1

J _/.m m T r—1
mr = u =2z, 2T —xu, uw T —xv, Yy v —x zu )

)



in the polynomial ring C[z,y, z,u,v]. The regularities of J,, . and its radical are:

reg(Jp,,) =m+2r +1

reg(@)zm(ﬂ—%—l)—i—l.

The next best result one might hope for, is described in the following folklore
question which is currently open:

Question 14.6. Is there a singly exponential bound on reg(v/I) in terms of reg(I)
(and possibly codim(I) or n) for every homogeneous ideal I in a standard graded
polynomial ring over C¥¢

Conjecture 14.4 and Question 14.6 not only have applications in Computational
Algebra, but are very interesting on their own. In order to conjecture reason-
able bounds, it would be very helpful to have a method for producing interesting
examples. In [La2, Remark 1.8.33] Lazarsfeld wrote: “the absence of systematic
techniques for constructing examples is one of the biggest lacunae in the current
state of the theory.”

13.7. Generating Degree.
It is a very basic and natural problem to find a nice bound on the degrees of the
defining equations. The following folklore problem is widely open:

Problem 14.8. (Folklore Problem) Find a decent bound on the generating degree
gensdeg(L) for a homogeneous non-degenerate prime ideal L in a standard graded
polynomial ring over C.

Since gensdeg(L) < reg(L) for every graded ideal L in S, the following weaker
form of the Regularity Conjecture provides an elegant bound: if L is a homoge-
neous non-degenerate prime ideal, then gensdeg(L) < deg(L). Unfortunately, the
counterexamples in Section 11 refute that weaker conjecture as well. On the other
hand, it was shown by Mumford that this property is true up to radical, meaning;:

Theorem 14.9. (Mumford [Mu2]; see also [EHV, Proposition 3.5]) Every homo-
geneous prime ideal L in S is generated up to radical by forms of degree at most
deg(L).

In the smooth case, he obtained:

Theorem 14.10. (Mumford [Mu2]; see also [La2, Example 1.8.38.] A smooth
projective variety X C Pt s defined scheme-theoretically by forms of degree at

most deg(X).
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15. Applications to Stillman’s Conjecture

In a different direction, Questions 13.4 and 13.5 are also motivated by Stillman’s
Conjecture. A classical construction of Burch [Bu] and Kohn [Ko| shows that
there exist three-generated ideals in polynomial rings whose projective dimension is
arbitrarily large. In particular, this means it is not possible to bound the projective
dimension of an ideal purely in terms of the number of generators. Later Bruns
showed in a very precise sense that all the pathology of minimal free resolutions of
modules is exhibited by the resolutions of ideals with three generators [Br]. Yet,
when applying his argument to create three-generated ideals with arbitrarily large
projective dimension, the degrees of the generators are forced to grow linearly with
the length of the resolution. Motivated by this phenomenon and by computational
complexity issues, Stillman posed the following conjecture:

Stillman’s Conjecture 15.1. [PS1, Problem 3.14] Fiz m > 1 and a sequence of
natural numbers dy, . ..,d,,. There exist a number p such that reg(I) < p for every
homogeneous ideal I in a polynomial ring with a minimal system of generators of
degrees dy,...,d,,.

Note that the number of variables in the polynomial ring, where I lives, is
not fixed. The original version of Stillman’s Conjecture replaces regularity by
projective dimension; the equivalence of the two conjectures was proved by Caviglia
[Pe, Theorem 29.5]. The conjecture was first proved by Ananyan-Hochster in
[AH1]. Other proofs of Stillman’s Conjecture were given by Erman-Sam-Snowden
[ESS1] and Draisma-Lason-Leykin [DLL].

Next we will explain how Question 13.4 is related to Stillman’s Conjecture.
Let I be an ideal in a standard graded polynomial ring S over C minimally gen-
erated by homogeneous forms of degrees dy,...,d,,. Let ®(x) be a function such
that reg(L) < ®(deg(L)) for any non-degenerate homogeneous prime ideal L in a
standard graded polynomial ring over C. Let P be the prime ideal associated to I
according to Theorem 7.4. Then

reg(!) < reg(P) < ®(deg(P ( i (d; +1) )
=1

where the first inequality holds by Theorem 7.4(4). Thus, ® (2], (d;+1))
provides a bound on the regularity in terms of the degrees of the generators.
Stillman’s Conjecture is usually studied in terms of projective dimension (in-
stead of regularity). There has been substantial interest in finding tight upper
bounds for more specific cases. Families of ideals with large projective dimension

constructed by McCullough in [Mc] and by Beder, McCullough, Nunez-Betancourt,
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Seceleanu, Snapp, Stone in [BMN], show that any upper bound on projective di-
mension must be large. McCullough constructed a family of ideals (), generated by
2g quadrics with pdg(S/Q,) = g>+g. Beder et. al. constructed a family of ideals
T, generated by three homogeneous elements of degree g2 with pdg(S/T,) = ¢’ -
The following example gives the Betti table of one of these ideals.

Example 15.2. Let S = C[z,y,a,b,c,d] and
1= (x2, v, ax + by, cx+ dy).
Then the Betti table for S/I is

001 2 3 4 56
1 - - - - -
-4 - - - - -
13 20 15 6 1

N2

In particular, pdg(S/I) = 6, showing that the bounds in [HMMS1] and [HMMS2]
are optimal.

Currently, the best known explicit bounds on projective dimension are:

(i) If I is generated by 3 quadrics, then [MS, Theorem 3.1] provides the
optimal upper bound pd(S/I) < 4.

(ii) If I is generated by 4 quadrics, then [HMMS2, Theorem 1.3] provides the
optimal upper bound pd(S/I) < 6.

(iii) If I is generated by g quadrics and ht(I) = 2, then [HMMS1, Main The-
orem] provides the optimal upper bound pd(S/I) < 2g — 2.

(iv) If I is generated by g quadrics, then pd(S/I) < 277 (g — 2) + 4 by [AH2,
Theorem 1.11].

(v) If I is generated by 3 cubics, then [MM1, Theorem 1] provides the optimal
upper bound pd(S/I) <5.

In the case of quadrics, the first author has asked if (and Ananyan and Hochster
have conjectured that [AH2, Conjecture 11.4])

pd(S/I) < h(g—h+1)

for an ideal I generated by g quadrics of height h. More generally, Ananyan and
Hochster conjecture that the optimal bound for the projective dimension of an
ideal generated by ¢ forms of degree at most d is Cdgd for some positive constant
Cy depending only on d, where d is fixed and ¢ varies. Examples in [Mc| show
that such a bound would be asymptotically optimal. Ananyan and Hochster also
give alternate arguments in [AH2] yielding very large bounds for ideals generated

by cubics and quartics.
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For more details about Stillman’s Conjecture, we refer the reader to the ex-
pository papers [MS, ESS2].
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