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Abstract. This paper presents a survey on recent developments on regularity
of prime ideals in polynomial rings.

1. Introduction

Throughout, we work over the field C. We make this assumption for simplicity and

because polynomial rings over C are our main case of interest; however, most results

and open problems are valid over an algebraically closed field of characteristic zero,

and several of them hold in greater generality. We work over the polynomial ring

S = C[x1, . . . , xn], which is standard graded with deg(xi) = 1 for all i, and consider

the projective space Pn−1 over C.

Castelnuovo-Mumford regularity is a numerical invariant which measures the

complexity of the structure of a graded ideal or a coherent sheaf on projective

space (regularity can be defined for other algebraic objects as well, but we will

not pursue this direction). For a graded ideal I, its regularity shows how high we

should truncate in order to make the homological properties of I≥r as simple as

possible (more precisely, to get an ideal with a linear minimal free resolution), and

for a coherent sheaf on a projective space it shows how much one has to twist in

order to make the cohomological properties simpler.

The concept of Castelnuovo-Mumford regularity, called regularity for short,

was introduced by Mumford [Mu] generalizing ideas of Castelnuovo. The proper-

ties of reg(X) for a subvariety X ⊆ Pn−1, which depend on the embedding, are

discussed in Section 5. For more details on regularity, we refer the reader to the ex-

pository papers [BM, Ch, Ei] and the books [Ei2, La2]. The following fundamental

problem stems from works of Castelnuovo, Mumford, and others:
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Problem 1.1. Find explicit upper bound(s) for reg(X) of a subvariety X ⊆ Pn−1

in terms of geometric invariants of X.

This problem is partially motivated by the fact that reg(X) gives an upper

bound for the degrees of the defining equations of X.

The definition of regularity of a graded ideal I in terms of its minimal free

resolution is due to Eisenbud and Goto [EG]. We discuss it in Section 2 and use

it later in the paper. The correspondence between the definitions of regularity of

a graded ideal (or module) and regularity of a coherent sheaf is described in [Ei2,

Proposition 4.16], for example. There is also a natural expression for regularity

(of graded modules, not just of graded ideals) via local cohomology, which we will

not use in this paper.

Papers of Bayer-Mumford, Bayer-Stillman, Koh [BM, BS, Ko] and others give

examples of families of ideals attaining doubly exponential regularity in terms of

the degrees of the minimal generators of the ideal and the number of variables of

the ambient ring. Their examples are based on the Mayr-Meyer [MM2] construc-

tion. We discuss the doubly exponential behavior of regularity of non-prime ideals

in Section 3. In contrast, Bertram-Ein-Lazarsfeld [BEL], Chardin-Ulrich [CU],

and Mumford (published in [BM]) have proven that there are nice bounds on the

regularity of the ideals of smooth (or nearly smooth) projective varieties. As dis-

cussed in an influential paper by Bayer-Mumford (1993) [BM], the biggest missing

link between the general case and the smooth case is to obtain a “decent bound on

the regularity of all reduced equidimensional ideals”. For simplicity, in this paper

we focus on regularity bounds for prime ideals – the ideals that define irreducible

projective varieties. For such ideals, the long standing Eisenbud-Goto Regularity

Conjecture (1984) [EG] predicts an elegant linear upper bound on regularity in

terms of the degree of the variety (also called multiplicity). The conjecture is dis-

cussed in Section 4 and stated as the Regularity Conjecture 4.4. It was proven for

curves by Gruson-Lazarsfeld-Peskine [GLP], and for smooth surfaces by Lazars-

feld and Pinkham [La, Pi]. Ran [Ra] studied regularity for most smooth 3-folds,

and Kwak [Kw, Kw2] proved a slightly weaker bound for all smooth 3-folds. The

(arithmetically) Cohen-Macaulay case was settled by Eisenbud-Goto [EG]. Refer-

ences for results in other special cases of the conjecture and for similar bounds are

provided in Section 5. That section surveys some results on regularity in Algebraic

Geometry.

This expository paper is an overview of the current state of results on regu-

larity of prime ideals. Recently, in [MP], we produced many counterexamples to

the Eisenbud-Goto conjecture. In fact, in Theorem 11.3 we show that the regular-

ity of prime ideals is not bounded by any polynomial function of the degree. In

the subsequent paper [CCMPV], joint with Caviglia, Chardin, and Varbaro, we
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answer several natural questions which arise from [MP]. Section 11 is devoted to

counterexamples to the Regularity Conjecture 4.4. We present a small counterex-

ample of dimension 3 and families of counterexamples, some of which rely on the

Mayr-Meyer [MM2] construction. The latter lead to the above mentioned Theo-

rem 11.3. In these examples, the degree (multiplicity) fails to bound the maximal

degree of an element in a minimal system of generators of the ideal. We may ask if

it is possible to find prime ideals generated in low degrees but with high regularity.

Theorem 12.2 shows that such prime ideals exist, more precisely, there exist prime

ideals for which the maximal degree of a minimal generator is 6 and the maximal

degree of a minimal first syzygy is arbitrarily large.

Section 13 discusses some open questions. Using a result of Ananyan-Hochster,

Theorem 13.3 shows that there exists an upper bound on regularity of prime ideals

in terms of the multiplicity alone. Motivated by Stillman’s Conjecture and Com-

putational Algebra, one might wonder if that bound can be made less than dou-

bly exponential. The main currently open conjecture on this topic seems to be

Conjecture 14.4, raised by Bayer and Mumford in 1993 [BM, Comments after

Theorem 3.12]. It conjectures a singly exponential bound on the regularity of non-

degenerate homogeneous prime ideals. The bound has base the maximal degree

of an element in a minimal system of generators and exponent in terms of the

number of variables. In a different direction, it would be interesting to prove the

Regularity Conjecture after imposing additional constraints; for example, extra

tools are available in the smooth case and also for toric varieties.

One of the reasons why progress on the Regularity Conjecture was slow was the

lack of techniques for constructing examples of prime ideals with high regularity,

in particular, the lack of techniques for producing such ideals from non-prime

examples. In [MP] we introduced a method which, starting from a homogeneous

ideal I in S, produces a homogeneous prime ideal whose projective dimension,

regularity, degree, dimension, depth, and codimension are expressed in terms of

numerical invariants of I. Our method involves two new techniques:

(1) Rees-like algebras are described in Section 7. Their construction was in-

spired by an example of Hochster published in [Bec]. Rees algebras are of

high interest in Commutative Algebra, but their properties are very intri-

cate. The defining equations of Rees algebras are difficult to find in general,

and usually we can only find bounds for their numerical invariants. In con-

trast, Theorem 7.4 provides simple explicit formulas for the generators and

the numerical invariants of Rees-like algebras.

(2) We use a new homogenization technique for prime ideals, which is described

in Section 6. Its key property is the preservation of the graded Betti num-

bers, which usually change after traditional homogenization (taking pro-

jective closure). In particular, note that traditional homogenization has to
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be performed on a Gröbner basis, which is usually a much larger set than

a set of minimal generators.

In Sections 7, 9, and 10 we describe and compare three methods for producing

prime ideals – two versions of the well-known construction of Rees algebras and the

new construction of Rees-like algebras. These constructions usually yield prime

ideals which are homogeneous with respect to a non-standard grading, and thus

need to be homogenized in order to make them standard graded; in Section 6 we

discuss the new Step-by-step homogenization technique from [MP] and another

version from [MMM], called Prime Standardization.

We close the introduction with some remarks about regularity over quotient

rings. The definition of regularity via free resolutions works over graded quotients

of a polynomial ring, but the situation there is usually considerably different than

that over a polynomial ring. For example, by Serre’s Theorem minimal free reso-

lutions over graded quotients of polynomial rings are usually infinite, in contrast

to Hilbert’s Syzygy Theorem that every graded ideal in a polynomial ring has a

finite minimal free resolution. Regularity is known to be finite over graded Koszul

algebras, and several interesting results are known in this setting.

2. Regularity via Minimal Free Resolutions

This section provides background on the definition of regularity via minimal free

resolutions. Throughout, we work over a polynomial ring S = C[x1, . . . , xn], which

is standard graded with deg(xi) = 1 for all i.

In his famous paper in 1890 [Hi], Hilbert introduced the approach to use free

resolutions in order to answer the following basic question.

Basic Question 2.1. How can we describe the structure of a graded ideal?

An initial guess is that perhaps a set of generators provides a lot of information

in some simple way. The first issue to deal with is whether there exists a finite set

of generators. This is resolved by Hilbert’s Basis Theorem:

Theorem 2.2. (see for example, [Ei, Theorem 1.2]) Every graded ideal in S has

a finite set of homogeneous generators.

However, the generators may give very little information about the structure of the

ideal, because there are relations on the generators, relations on these relations,

and so on, which we may need to understand. Hilbert’s approach to Question 2.1

is to capture the structure of such relations by the concept of free resolution. He

introduced this idea in a famous paper in 1890 [Hi] motivated by Invariant Theory;

the idea can also be found in the work of Cayley [Ca]. The definition of a free
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resolution works a lot more broadly (for example, for modules over a possibly non-

commutative ring); in this paper we will restrict the concept of resolution to our

case of interest – graded ideals in the polynomial ring S.

Definition 2.3. A sequence

(2.4) F : · · · → Fi+1

∂i+1−−−−→ Fi
∂i−−−→ Fi−1 → · · · → F1

∂1−−→ F0

of homomorphisms of finitely generated, graded free S-modules is a graded free

resolution of a graded ideal N if:

(1) F is an exact complex, that is, Ker(∂i) = Im(∂i+1) for i ≥ 1 .

(2) N ∼= Coker(∂1), that is, we have an exact sequence

(2.5) · · · → Fi+1

∂i+1−−−−→ Fi → · · · → F1
∂1−−→ F0

∂0−−→ N → 0 .

(3) The differential ∂ = {∂i} of F is homogeneous, that is, it preserves degree.

Hilbert’s key insight was that a graded free resolution of N can be interpreted

as

· · · → F2

∂2=


relations
on the

relations
in ∂1


−−−−−−−−−−−−−→ F1

∂1=


relations
on the

generators
of N


−−−−−−−−−−−−−−→ F0

(
generators

of N

)
−−−−−−−−−−−→ N → 0,

and so it is a description of the structure of N . We illustrate this interpretation

in the following simple example:

Example 2.6. Consider the ideal N = (x2, xy, y2) in the polynomial ring C[x, y].

It is generated by f := x2, g := xy, and h := y2. We have the relations

yf − xg = y(x2)− x(xy) = 0 and yg − xh = y(xy)− x(y2) = 0.

It can be shown that the ideal N has a free resolution

(2.7) 0→ S2


y 0
−x y
0 −x


−−−−−−−−−−→ S3

(
x2 xy y2

)
−−−−−−−−−−−→ N → 0 ,

which can be interpreted as

0→ F1

∂1=


relations
on the

generators
of N


−−−−−−−−−−−−−−→ F0

(
generators

of N

)
−−−−−−−−−−−→ N → 0 .

The key result in Hilbert’s approach is Hilbert’s Syzygy Theorem:
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Theorem 2.8. (see for example, [Ei3, Corollary 19.7], [Pe, Theorem 15.2]) Every

graded ideal N in S has a finite free resolution.

It is easy to see that a graded free resolution, as defined in Definition 2.3, is far

from being unique. One can produce many different resolutions by simply adding

extraneous short complexes 0 −→ S
1−−→ S −→ 0 here and there:

Example 2.9. For example,

0→ S


−y
−x
1


−−−−−−→ S3


y 0 y2

−x y 0

0 −x −x2


−−−−−−−−−−−−−−−→ S3

(
x2 xy y2

)
−−−−−−−−−−−→ N → 0

is a larger free resolution than (2.7) of the ideal N considered in Example 2.6. The

differential ∂1 contains the relation

 y2

0

−x2

, which is a linear combination of the

other two relations, and so it could be omitted in order to produce the smaller

resolution (2.7).

It is beneficial to construct a graded free resolution that is as small as possible

since in this way we are not hindered by redundant information. This is captured

in the concept of a minimal free resolution.

Definition 2.10. A graded free resolution F is minimal if

∂i+1(Fi+1) ⊆ (x1, . . . , xn)Fi for all i ≥ 0.

This means that no invertible elements appear in the differential matrices.

Minimal resolutions are sufficient to deal with all graded ideals and are as

small as possible:

Theorem 2.11. (see for example, [Ei, Theorem 20.2], [Pe, Theorem 7.5], [Pe,

Theorem 3.5]) Every graded ideal N in S has a minimal graded free resolution,

which is unique up to isomorphism. Any graded free resolution of N contains its

minimal graded free resolution as a direct summand.

Minimal free resolutions are not only optimal in the sense that they are as

small as possible, but they actually contain more information about the structure

of the resolved ideal than non-minimal resolutions. For example, the Auslander-

Buchsbaum Formula (see for example, [Pe, Theorem 15.3]) expresses depth in

terms of the length (called projective dimension) of the minimal free resolution.

The downside is that they are much harder to obtain than the non-minimal ones.
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Definition 2.12. The ranks of the free modules in the minimal free resolution F

of a graded ideal N are called the Betti numbers of N and denoted by

βi(N) = rank Fi .

They can be expressed as

βi(N) = dimC TorSi (N,C) = dimC ExtiS(N,C) ,

since the differentials in the complexes F ⊗S C and HomS(F,C) are zero. The

connections between the structure of an ideal and the properties of its Betti num-

bers are a core topic in Commutative Algebra and have applications in Algebraic

Geometry, Computational Algebra, Algebraic Topology, Invariant Theory, Num-

ber Theory, Non-Commutative Algebra, and Combinatorics. In this paper, we are

interested in a more refined version, the graded Betti numbers, which takes into

account the grading. For each i, we write

Fi =
⊕
p∈Z

S(−p)βi,p ,

where S(−p) is the rank-one graded free S-module generated in degree p. The

ranks βi,p are called the graded Betti numbers of N and denoted by βi,p(N). The

Betti table β(N) has entry βi,i+j = βi,i+j(N) in position i, j; its columns are

indexed from left to right by homological degree starting with homological degree

zero; its rows are indexed increasingly from top to bottom starting with degree

zero. Thus, the Betti table has the form:

(2.13) (βi,i+j) =

0 1 2 . . .
0: β0,0 β1,1 β2,2 . . .
1: β0,1 β1,2 β2,3 . . .
2: β0,2 β1,3 β2,4 . . .
3: β0,3 β1,4 β2,5 . . .
...

...
...

...

In Example 2.6, the Betti table is

0 1
0: - -
1: - -
2: 3 2

,

where “ - ” stands for zero.

The size of a Betti table is given by the projective dimension and the regularity:

The projective dimension

pdS(N) = max
{
i
∣∣∣βSi (N) 6= 0

}
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is the index of the last non-zero column of the Betti table β(N), and thus it

measures its width. The height of the table is measured by the index of the last

non-zero row, and is called the (Castelnuovo-Mumford) regularity of N , which is

regS(N) = max
{
j
∣∣∣ there exists an i such that βSi, i+j(N) 6= 0

}
.

Furthermore, we say that N is r-regular for every r ≥ reg(N). We often omit the

subscripts, writing pd(N) and reg(N) instead, when the ring in question is clear.

Note that

reg(N) ≥ gensdeg(N) ,

where gensdeg(N) is the maximal degree of an element in a minimal system of

homogeneous generators of N , which we call the generating degree. In Example 2.6,

pd(N) = 1 and reg(N) = gensdeg(N) = 2.

Both projective dimension and regularity are very important and well-studied

invariants. In the following sections, we discuss upper bounds for them.

One immediate consequence of the above definition of regularity is that it

pinpoints how high we have to truncate an ideal in order to get a linear resolution.

We say that a graded ideal has an r-linear resolution if the ideal is generated in

degree r and the entries in the differential maps in its minimal free resolution are

linear.

Theorem 2.14. (see for example, [Pe, Theorem 19.7]) Let N be a graded ideal

in S. If r ≥ reg(N) then N≥r := N ∩
(⊕

i≥r Si
)

has an r-linear minimal free

resolution, equivalently, reg(N≥r) = r.

3. Doubly Exponential Regularity

In this section we discuss upper bounds on the projective dimension and regularity

of a graded ideal in the standard graded polynomial ring S = C[x1, . . . , xn] that

require no additional constraints on the ideal. Hilbert’s Syzygy Theorem provides

a nice upper bound on the projective dimension:

Theorem 3.1. (see for example, [Ei3, Corollary 19.7], [Pe, Theorem 15.2]) Let N

be a graded ideal in S. Then

pd(N) < n.

In contrast, the regularity bound is doubly exponential. Theorem 3.2 is proved

by Bayer-Mumford [BM] using results of Giusti [Giu] and Galligo [Ga] over fields

of characteristic 0, and by Caviglia-Sbarra [CS] in any characteristic.

Theorem 3.2. (Bayer-Mumford [BM], Caviglia-Sbarra [CS]) Let N be a graded

ideal in S. Then

reg(N) ≤ (2 gensdeg(N))2
n−2

.
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This bound is nearly the best possible, due to examples based on the Mayr-

Meyer construction [MM2]. There are several versions of such examples, listed in

Theorems 3.3, 3.4, and 3.5. These examples make use of the fact that in order

to produce high regularity it suffices to focus on the first step in the minimal

resolution: the submodule

SyzS1 (N) := Im(∂1) = Ker(∂0) ∼= Coker(∂2)

of F0 (in the notation of Definition 2.3), which is called the first syzygy module

of N . We denote by syzdeg(N) the maximal degree of an element in a minimal

system of homogeneous generators of SyzS1 (N). Thus,

syzdeg(N) = max
{
j
∣∣∣βS1,j(N) 6= 0

}
,

and hence

reg(N) ≥ syzdeg(N)− 1 .

Theorem 3.3. (Bayer-Stillman [BS, Theorem 2.6]) For r ≥ 1, there exists a

homogeneous ideal Ir (using d = 3 in their notation) in a polynomial ring with

10r + 11 variables for which

gensdeg(Ir) = 5

syzdeg(Ir) ≥ 32
r−1

.

Theorem 3.4. (Bayer-Mumford, [BM, Proposition 3.11]) For r ≥ 1, there exists

a homogeneous ideal Ir in 10r + 1 variables for which

gensdeg(Ir) = 4

reg(Ir) ≥ 22
r

.

Koh [Ko] achieved examples of high regularity of ideals generated by quadrics

and one linear form. Applying Theorem 10.1 to Koh’s examples we get:

Theorem 3.5. (Koh) For r ≥ 1, there exists a homogeneous Ir generated by

22r − 2 quadrics in a polynomial ring with 22r variables for which

gensdeg(Ir) = 2

syzdeg(Ir) ≥ 22
r−1

.

More examples of ideals with high regularity have been constructed by Beder

et. al. [BMN], Caviglia [Ca], Chardin-Fall [CF], and Ullery [Ul].
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4. Regularity Conjecture for Prime Ideals

In contrast to the doubly exponential regularity examples in Section 3, much bet-

ter bounds on regularity are expected for geometrically nice ideals, for example for

prime ideals. Consider a homogeneous prime ideal L in a standard graded polyno-

mial ring S = C[x1, . . . , xn]. First, one has to exclude some degenerate cases: the

condition that L ⊂ (x1, . . . , xn)2 is equivalent to requiring that X := V (L) does

not lie on a hyperplane in Pn−1; prime ideals that satisfy this condition are called

non-degenerate. If L is non-degenerate, then

(4.1) deg(L) ≥ 1 + codim(L) ,

(see for example, [EG, p. 112]), where deg(L) is the multiplicity of S/L (also called

the degree of S/L, or the degree ofX), and codim(L) is the codimension (also called

height) of L. Geometrically deg(L) counts the number of points of intersection of

the projective variety defined by L with a general linear space of complementary

dimension. For a hypersurface defined by an irreducible form of degree c, the

multiplicity deg(L) is precisely c, but for non-principal ideals L computation of

deg(L) is not easy. Some bounds on regularity using two parameters (for example,

using multiplicity and codimension) are discussed in Section 5. In view of (4.1),

we can look for a bound in terms of a single parameter – the multiplicity – instead

of using both multiplicity and codimension. The following elegant bound was

conjectured by Eisenbud-Goto [EG], motivated by results in Algebraic Geometry

(see Section 5), and has been very challenging:

Regularity Conjecture for Prime Ideals 4.2. (Eisenbud-Goto [EG], 1984) If

L is a homogeneous prime ideal in a standard graded polynomial ring over C, then

(4.3) reg(L) ≤ deg(L) .

Examples have shown that the hypotheses in the Regularity Conjecture cannot

be weakened much. The hypothesis that we work over an algebraically closed

field is necessary by [Ei2, Section 5C, Exercise 4]. The regularity of a reduced

equidimensional ideal cannot be bounded by its degree by [EU, Example 3.1].

Furthermore, there is no bound on the regularity of non-reduced homogeneous

ideals in terms of multiplicity, even for a fixed codimension, by [Ei, Example 3.11].

The Regularity Conjecture implies the following weaker conjecture, which pro-

vides a bound on the generating degree:

Conjecture 4.4. If L is a homogeneous prime ideal in a standard graded polyno-

mial ring over C, then

gensdeg(L) ≤ deg(L),

that is, L is generated in degrees ≤ deg(L).
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In order to make the Regularity Conjecture sharp for non-degenerate primes,

the original form of the conjecture uses the following more refined version of in-

equality (4.3):

(4.5) reg(L) ≤ deg(L)− codim(L) + 1 .

For instance, the rational normal curve that is the image of P1 −→ Pr defined by

[s : t] 7→ [sr : sr−1t : · · · : tr] ,

is defined by the ideal I2(M) generated by the (2×2)-minors of the (2× r)-matrix

M =

(
x0 x1 . . . xr−1

x1 x2 . . . xr

)
.

The ideal I2(M) has a linear free resolution. It follows that

reg(I2(M)) = 2 = r − (r − 1) + 1 = deg(I2(M))− codim(I2(M)) + 1 .

See [Ei2, Section 6A.1].

Eisenbud and Goto proved that the sharp inequality (4.5) holds in the Cohen-

Macaulay case:

Theorem 4.6. (Eisenbud-Goto, [EG]) The Regularity Conjecture 4.2 (in the sharp

version (4.5)) holds if the prime ideal L is Cohen-Macaulay.

5. Regularity Bounds and the Regularity Conjecture in Algebraic
Geometry

Lazarsfeld’s book [La2, Section 1.8] provides an overview of this topic; see also the

introduction of the paper [KP] by Kwak-Park.

The concept of regularity was introduced by Mumford [Mu] and generalizes

ideas of Castelnuovo. For an integer r, we say that a coherent sheaf F on the

projective space Pn−1 is r-regular if H i(Pn−1,F(r − i)) = 0 for all i > 0. The

regularity of F is the least integer r such that F is r-regular, or −∞ (if F is

supported on a finite set). The regularity of a subscheme X ⊆ Pn−1 is the regularity

of its ideal sheaf IX , so

reg(X) := reg(IX) .

We give two simple examples: If X consists of k distinct reduced points then

reg(X) ≤ k. If X ⊆ Pn−1 is a complete intersection of hypersurfaces of degrees

d1, . . . , dk then reg(X) = (d1 + · · · + dk − k + 1), which follows from Koszul’s

resolution.

The relation between the definitions of regularity of a coherent sheaf and

regularity of a graded ideal (or module) is given in [Ei2, Proposition 4.16] and is

due to Eisenbud-Goto [EG].
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In this section, we outline some of the main results related to the Regular-

ity Conjecture. In sharp contrast to the doubly exponential regularity behavior

described in Section 3, a much better bound is expected for a geometrically nice

projective variety X ⊂ Pn−1. Recall from Section 4 that we say that X is non-

degenerate if it does not lie on a hyperplane in Pn−1.

Some of the best known bounds on regularity hold in the case when X is

smooth. The following bound follows from a more general result by Bertram-Ein-

Lazarsfeld [BEL]:

Theorem 5.1. (Bertram-Ein-Lazarsfeld, [BEL]) Let X ⊂ Pn−1 be a smooth irre-

ducible projective variety. If X is cut out scheme-theoretically by hypersurfaces of

degree ≤ s, then

reg(X) ≤ 1 + (s− 1)codim(X) .

For generalizations of this result, see [CU] and [DE]. See also [Ch2] for an

overview. Furthermore, Mumford proved:

Theorem 5.2. (Mumford [BM, Theorem 3.12]) If X ⊂ Pn−1 is a non-degenerate

smooth projective variety, then

reg(X) ≤ (dim(X) + 1)(deg(X)− 2) + 2 .

The bound was improved by Kwak-Park:

Theorem 5.3. (Kwak-Park [KP, Theorem C]) If X ⊂ Pn−1 is a non-degenerate

smooth projective variety with codim(X) ≥ 2, then

reg(X) ≤ dim(X)(deg(X)− 2) + 1 .

In [BM], Bayer and Mumford pointed out that the main missing piece of infor-

mation between the general case and the geometrically nice smooth case is that we

do not have yet a reasonable bound on the regularity of all reduced equidimensional

ideals. Consider a non-degenerate subvariety X ⊂ Pn−1. The following inequality

was first considered in the smooth case:

(5.4) reg(X) ≤ deg(X)− codim(X) + 1 .

It was conjectured by Eisenbud-Goto [EG] for any reduced and irreducible non-

degenerate variety, and they expected that it might even hold for reduced equidi-

mensional X which are connected in codimension 1 [BM]. This is called the Regu-

larity Conjecture. The conjecture is different in flavor than the bounds in Theorems

5.1, 5.2, and 5.3: the bounds in these theorems are not linear in the degree (or the

degree of the defining equations) since there is a coefficient involving the dimension

or codimension.

The Regularity Conjecture was proved in several important cases. Castelnuovo

[Cas] carried out fundamental work in this direction for smooth space curves; the

case for curves was settled by Gruson-Lazarsfeld-Peskine:
12



Theorem 5.5. (Gruson-Lazarsfeld-Peskine [GLP]) The Regularity Conjecture, i.e.

inequality (5.4), holds if X ⊂ Pn−1 is a non-degenerate irreducible reduced curve.

Lazarsfeld, using work of Pinkhum, proved the conjecture for smooth surfaces:

Theorem 5.6. (Lazarsfeld [La], Pinkham [Pi]) The Regularity Conjecture, i.e.

inequality (5.4), holds for smooth irreducible non-degenerate projective surfaces.

The case of mildly singular surfaces was considered by Niu [Ni]. The Regularity

Conjecture was studied for smooth 3-folds by Ran [Ra].

Theorem 5.7. (Kwak [Kw, Kw2]) Let X ⊂ Pn−1 be a smooth irreducible projective

non-degenerate threefold. The bound

reg(X) ≤ deg(X)− codim(X) + 2

holds.

For smooth 3-folds, Kwak [Kw, Kw2] also proved other bounds. Regularity

of 3-folds with rational singularities were studied by Niu-Park [NP]. Furthermore,

nice bounds for lower dimensional smooth varieties were obtained by Kwak [Kw3].

Many other special cases of the Regularity Conjecture and also similar bounds

in special cases are proved, for example, by Brodmann [Br], Brodmann-Vogel [BV],

Derksen-Sidman [DS], Eisenbud-Ulrich [EU], Giaimo [Gia], Herzog-Hibi [HH], Hoa-

Miyazaki [HM], Niu [Ni], Niu-Park [NP], Peeva-Sturmfels [PS2], and Stückrad-

Vogel [SV], and several other authors.

In order to prove inequality (5.4), it is sufficient to show that the following

two properties hold: X is
(
deg(X) − codim(X)

)
-normal and OX is

(
deg(X) −

codim(X)
)
-regular. Recent progress in the smooth case was made by Noma:

Theorem 5.8. (Noma [No, Corollary 5]) Let X ⊂ Pn−1 be a non-degenerate

smooth projective variety of dim(X) ≥ 2. Then OX is
(
deg(X) − codim(X)

)
-

regular if X is not projectively equivalent to any scroll over a smooth projective

curve.

Furthermore, Kwak-Park [KP, Theorem B] obtained the following result; they

also classified the extremal and nearly extremal cases. Their result reduces the

Regularity Conjecture for the smooth case to the problem of finding a Castelnuovo-

type bound for normality [KP].

Theorem 5.9. (Kwak-Park [KP, Theorem B]) Let X ⊂ Pn−1 be a non-degenerate

smooth projective variety. Then OX is
(
deg(X)− codim(X)

)
-regular.

13



6. Homogenization

In this section we describe two versions of a new method for homogenizing (with

respect to the standard grading in a polynomial ring) prime ideals that are ho-

mogeneous with respect to a non-standard grading. Such prime ideals appear for

example as defining ideals of Rees algebras, Rees-like algebras, and toric rings. The

first method, called Step-by-step homogenization was introduced in [MP, Section

4] and has the advantage that it needs fewer new variables. The second method,

called Prime Standardization, was introduced in [MMM]. It needs more variables,

but has the advantage that the codimension of the singular locus is preserved and

that it is not limited to non-degenerate primes. Both versions have the key prop-

erty that they preserve Betti numbers, in contrast to traditional homogenization

(taking projective closure).

6.1. Traditional homogenization (taking projective closure).

We briefly review the construction of traditional homogenization used for taking

the projective closure of an affine variety. Consider the map

Y = C[y1, . . . , yp] −→ Y ′ := Y [y0] = C[y0, y1, . . . , yp]

that sends a polynomial f =
∑

i cimi, written as a C-linear combination of mono-

mials mi with non-zero coefficients ci ∈ C, to

f ′ :=
∑
i

cimiy
deg(f)−deg(mi)
0 ,

called the homogenization of f . The homogenization I ′ of an ideal I ⊂ Y is the

ideal

I ′ =
(
{f ′ | f ∈ I}

)
⊂ Y ′.

Usually, the homogenizations of the polynomials in a minimal set of generators of

I fail to generate I ′. In order to generate I ′ we need to homogenize a Gröbner

basis of I (see for example, [CLO, Theorem 8.4.4]). Suppose that the polynomial

ring Y is positively graded (but non-standard graded) and I is homogeneous with

respect to that grading. Then we have graded Betti numbers βYij (I). Now, ignore

the grading of I which comes from the grading of Y and homogenize I with respect

to the standard grading. The ideal I ′ is homogeneous with respect to the standard

grading of the ring Y ′. However, the graded Betti numbers βY
′

ij (I ′) are usually not

equal to βYij (I) (see Example 6.7 below).

6.2. Step-by-step homogenization.

As discussed in 6.1 above, traditional homogenization requires homogenizing a

Gröbner basis. In contrast, for Step-by-step homogenization, we only need to ho-

mogenize a set of generators of the prime ideal. This makes it much easier to apply
14



(or compute). However, it needs the assumption that the ideal is homogeneous

with respect to some non-standard (weighted) grading.

Consider a polynomial ring Y = C[y1, . . . , yp] positively graded with integer

degrees deg(yi) ≥ 1 for every i. Suppose deg(yi) > 1 for i ≤ q and deg(yi) = 1 for

i > q (for some q ≤ p). Consider the homogenous map (of degree 0)

ν : Y = C[y1, . . . , yp] −→ Y ′ := C[y1, . . . , yp, v1, . . . , vq]

yi 7−→ yiv
degY (yi)−1
i for 1 ≤ i ≤ q ,

yi 7−→ yi for i > q ,

where v1, . . . , vq are new variables and the new polynomial ring Y ′ is standard

graded. Given a homogeneous element g ∈ Y , the map ν homogenizes it with

respect to the standard grading so that g′ := ν(g) ∈ Y ′ has the same degree in

Y ′ as g has in Y . This construction is called Step-by-step-homogenization (since

one can homogenize one step at a time lowering the degree of one variable to 1).

For example, if Y = C[x, y, z] with deg(x) = 3, deg(y) = 2, deg(z) = 1 and

g = xyz − 3y3, which has degree 6, then g′ is obtained by replacing x by xv2
1

and replacing y by yv2, so g′ = (xv2
1)(yv2)z − 3(yv2)3 is a homogeneous degree 6

polynomial in the standard graded polynomial ring Y = C[x, y, z, v1, v2].

Theorem 6.3. ([MP, Theorem 4.5]) Let M be a homogeneous non-degenerate

prime ideal, and let gens(M) be a minimal set of homogeneous generators of M .

The ideal M ′ ⊂ Y ′ generated by the elements ν(gens(M)) is a homogeneous non-

degenerate prime ideal in Y ′. Furthermore, the graded Betti numbers of M ′ over

Y ′ are the same as those of M over Y .

We say that the ideal M ′ is the Step-by-step-homogenization of M .

6.4. Prime Standardization.

An alternate method to make standard graded homogenizations of non-standard

graded prime ideals is introduced in [MMM] by Mantero-McCullough-Miller. The

idea is based on the notion of a prime sequence introduced by Ananyan and

Hochster [AH1]. A sequence of elements g1, . . . , gt ∈ S = C[x1, . . . , xn] is a prime

sequence provided (g1, . . . , gt) is a proper ideal and S/(g1, . . . , gi) is a domain for

all 1 ≤ i ≤ t. Clearly any prime sequence is a regular sequence. Conversely, if

g1, . . . , gt is a homogeneous regular sequence such that S/(g1, . . . , gi) is a domain

for all 1 ≤ i ≤ t, then g1, . . . , gt is a prime sequence and thus so is any permutation

of g1, . . . , gt. The usefulness of this idea is contained in the following result:

Proposition 6.5. (Ananyan and Hochster [AH1, Cor. 2.9, Prop. 2.10]) Suppose

g1, . . . , gt is a homogeneous prime sequence in S and set R = C[g1, . . . , gt]. Let

I ⊂ R be a homogeneous ideal.

(1) The ideals I and IS have the same graded Betti numbers.
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(2) If I is prime, then IS is prime.

Part (1) holds since the inclusion map R −→ S is flat. However, if P is prime

and φ is a flat map, it is not always the case that φ(P ) is prime. (Consider e.g.

C[x2] ↪→ C[x] and the ideal (x2).)

The notion of a prime sequence naturally leads to a way to homogenize non-

standard graded prime ideals, which we call Prime Standardization. One merely

replaces each variable of degree d by a very general form of degree d in many new

variables such that the chosen forms define a prime sequence. The following choice

of forms works in general. Let Y = C[y1, . . . , yn] be a positively graded polynomial

ring with integer deg(yi) ≥ 1. Consider the standard graded polynomial ring

Y ′ := C[ti,j,` | 1 ≤ i ≤ n, 0 ≤ j ≤ n, 1 ≤ ` ≤ deg(yi)]

and let

Fi =
n∑
j=0

deg(yi)∏
`=1

ti,j,` ∈ Y
′ .

Define the graded map of rings ζ : Y −→ Y ′ by setting ζ(yi) = Fi.

Theorem 6.6. (Mantero-McCullough-Miller [MMM, Proposition 3.3]) The el-

ements F1, . . . , Fn form a prime sequence. For any homogeneous prime ideal

M ⊆ Y , the ideal ζ(M) is prime, standard graded, and has the same graded Betti

numbers as M .

This method has the advantage of preserving the codimension of the singular

locus of the ideal; of course, just like with Step-by-step homogenization, the many

new variables mean the dimension of the associated variety grows considerably,

but one may take hyperplane sections and appeal to Bertini’s theorem [Fl] to

compensate for this. An example where the singular locus of the Step-by-step

homogenization differs from that of Prime Standardization is provided in [MMM,

Example 3.2].

Example 6.7. We will illustrate how Step-by-step homogenization and Prime

standardization work and make a comparison to traditional homogenization (tak-

ing projective closure).

We consider the defining ideal of the affine monomial curve parametrized by

(t, t2, t3). It is the prime ideal

E = (x2 − y, xy − z)
16



which is the kernel of the map

Y := C[x, y, z] −→ C[t]

x 7−→ t

y 7−→ t2

z 7−→ t3 .

It is homogeneous with respect to the non-standard grading defined by

deg(x) = 1, deg(y) = 2, deg(z) = 3 .

The non-zero graded Betti numbers of E over Y are

β0,2 = 1, β0,3 = 1, β1,5 = 1

and thus reg(E) = 4.

The traditional homogenization (that is, taking projective closure) of E is

obtained by homogenizing a Gröbner basis. The generators x2−y, xy− z and the

element xz−y2 form a minimal Gröbner basis with respect to the degree-lex order.

Homogenizing them with a new variable w we obtain the homogeneous prime ideal

E′ = (x2 − yw, xy − zw, xz − y2)

in the ring Y ′ = C[x, y, z, w], which is standard graded. The ideal E′ defines the

projective closure of the affine variety V (E) in P3. Note that:

(1) A Gröbner basis computation is needed in order to obtain the generators

of E′.

(2) The non-zero Betti numbers of E′ over Y ′ are β′0,2 = 3, β′1,3 = 2, and so

they are different than those of E over Y . Moreover

reg(E′) = 2 < reg(E) = 4.

The Step-by-step homogenization works by applying Theorem 6.3 to E. We

replace the variable y by yu and replace the variable z by zv2. Thus, we obtain

the homogeneous prime ideal

E′ = (x2 − yu, xyu− zv2)

in the ring Y ′ = C[x, y, z, u, v] which is standard graded (all variables have degree

one). The graded Betti numbers of E′ over Y ′ (and thus also the regularity) are

the same as the graded Betti numbers of E over Y .

The Prime standardization works by applying Theorem 6.6 to E. The homog-

enized ideal E′ is defined by replacing y by
∑3

j=0

∏2
`=1 t2,j,` and replacing z by∑3

j=0

∏3
`=1 t3,j,`. We need not replace x since it has degree 1 already. Thus, E′ is
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generated by the following two elements:

x2 − (t2,0,1t2,0,2 + t2,1,1t2,1,2 + t2,2,1t2,2,2 + t2,3,1t2,3,2),

x(t2,0,1t2,0,2 + t2,1,1t2,1,2 + t2,2,1t2,2,2 + t2,3,1t2,3,2)

− (t3,0,1t3,0,2t3,0,3 + t3,1,1t3,1,2t3,1,3 + t3,2,1t3,2,2t3,2,3 + t3,3,1t3,3,2t3,3,3).

See [MMM, Example 3.8].

7. Rees-like algebras

In Section 3 we presented several examples of homogeneous ideals with high reg-

ularity. Our goal is to produce similar examples with prime ideals. For this, we

need a method which, starting from a homogeneous ideal I, produces a prime

ideal P whose regularity and multiplicity can be estimated. One way to produce

such ideals is to consider Rees algebras, which have been well-studied in Algebraic

Geometry and Commutative Algebra. However, their defining equations (let alone

free resolutions) are difficult to find in general (see for example [Hu], [KPU]). Thus,

the best we can hope to obtain for Rees algebras are bounds on these invariants.

Section 9 is devoted to Rees algebras. We introduced in [MP] another concept,

Rees-like algebras, which has the advantage that we can provide simple explicit

formulas for the defining equations, projective dimension, regularity, gensdeg, mul-

tiplicity, dimension, depth, and codimension of P in terms of numerical invariants

of I. The construction of Rees-like algebras was inspired by Hochster’s example

in [Bec] which, starting with a family of three-generated ideals in a regular local

ring, produces prime ideals with fixed embedding dimension and Hilbert-Samuel

multiplicity but arbitrarily many minimal generators.

Fix a polynomial ring S = C[x1, . . . , xn] with a standard grading defined by

deg(xi) = 1 for every i. Let I be a homogeneous ideal minimally generated by forms

f1, . . . , fm, where m ≥ 2. We consider the prime ideal Q of defining equations of

the Rees-like algebra S[It, t2]. For this purpose, introduce a new polynomial ring

Y = S[y1, . . . , ym, z] graded by deg(z) = 2 and deg(yi) = deg(fi) + 1 for every

i. The ideal Q is the homogeneous prime ideal that is the kernel of the graded

homomorphism

ϕ : Y −→ S[It, t2] ⊂ S[t]

yi 7−→ fit

z 7−→ t2 ,

where t is a new variable of deg(t) = 1. In contrast to the defining ideal of a Rees

algebra, we can describe a set of generators of Q as follows. If p ∈ Z, denote by

S(−p) the shifted free module for which S(−p)i = Si−p for all i. The minimal
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graded presentation (G, d) of I has the form

G : G1

d1=(cij)
−−−−−−→ G0 := S(−a1)⊕ · · · ⊕ S(−am)

d0=(f1 ... fm)−−−−−−−−−−→ I .

Denote by ξ1, . . . , ξm a homogeneous basis of G0 such that d(ξi) = fi for every i.

Let r = rank (G1), and fix a homogeneous basis µ1, . . . , µr of G1 that is mapped

by the differential to a homogeneous minimal system of generators of Ker(d0). Let

C = (cij) be the matrix of the differential d1 in these fixed homogeneous bases.

Thus Syz1(I) = Ker(d0) is the module generated by the elements{
m∑
i=1

cijξi

∣∣∣∣∣ 1 ≤ j ≤ r

}
.

It is clear that the corresponding elements

(7.1) G :=

{
m∑
i=1

cijyi

∣∣∣∣∣ 1 ≤ j ≤ r

}
are in Q. We prove in [MP, Proposition 3.2 and Corollary 3.6] that the ideal Q is

minimally generated by the elements

(7.2) Q =
(
G ∪

{
yiyj − zfifj

∣∣ 1 ≤ i, j ≤ m} ) .
The prime ideal Q is non-degenerate, and so z is a non-zerodivisor on Y/Q. Set

Ȳ := Y/z, and let Q̄ ⊂ Ȳ be the homogeneous ideal (which is the image of Q)

generated by

(7.3) Q̄ =
(
G ,
{
yiyj

∣∣ 1 ≤ i, j ≤ m} ) .
It follows that the graded Betti numbers of Q over Y are equal to those of Q̄ over

Ȳ . The minimal free resolution of Q̄ is obtained in [MP, Theorem 3.10] using a

mapping cone resolution, and we get formulas for its numerical invariants. We

describe this resolution in the next section.

The ideal Q is homogeneous in the polynomial ring Y , which is not standard

graded. Our goal is to construct a prime ideal in a standard graded ring. We

change the degrees of the variables to 1 and homogenize the ideal Q by applying

the Step-by-step homogenization technique described in Section 6. This yields a

homogeneous, non-degenerate prime ideal P in a standard graded polynomial ring.

Since Step-by-step homogenization (or Prime Homogenization) preserves graded

Betti numbers, the formulas for the numerical invariants of Q yield formulas for

the numerical invariants of P .

Theorem 7.4. [MP, Theorem 1.6] Let I be an ideal generated minimally by ho-

mogeneous elements f1, . . . , fm (with m ≥ 2) in the standard graded polynomial

ring S = C[x1, . . . , xn]. Consider the standard graded polynomial ring

R = S[y1, . . . , ym, u1, . . . , um, z, v]
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with n + 2m + 2 variables. Let P be the ideal in R generated by the Step-by-step

homogenizations of the minimal generators of Q listed in (7.1) and (7.2), namely

P is generated by:

(7.5)
{
yiyju

deg(fi)
i u

deg(fj)

j − zvfifj
∣∣ 1 ≤ i, j ≤ m}

and

(7.6)

{
m∑
i=1

cijyiu
deg(fi)
i

∣∣∣∣∣ 1 ≤ j ≤ r
}
.

The ideal P is homogeneous, prime, and non-degenerate. Furthermore:

(1) The above system of generators is minimal.

(2) The maximal degree of a minimal generator of P is:

gensdeg(P ) = max

{
1 + syzdeg(I), 2 gensdeg(I) + 2

}
.

Note that gensdeg(I) = max{deg(fi)|1 ≤ i ≤ m}.
(3) The multiplicity of R/P is

deg(P ) = 2
m∏
i=1

(
deg(fi) + 1

)
.

(4) The Castelnuovo-Mumford regularity and the projective dimension of P are:

reg(P ) = reg(I) + 2 +
m∑
i=1

deg(fi)

pd(P ) = pd(I) +m− 1 .

(5) The depth, the codimension, and the dimension of R/P are:

depth(R/P ) = depth(S/I) +m+ 3

codim(P ) = m

dim(R/P ) = m+ n+ 2 .

The key and striking property of the construction of the ideal P is that it has a

nicely structured minimal free resolution, which makes it possible to express its

regularity, multiplicity, and other invariants in terms of invariants of I.

Example 7.7. We illustrate the constructions and results above. Consider the

ideal I = (x1, x2) ⊂ S = C[x1, x2]. Let Y = S[y1, y2, z]. Then the Rees-like algebra

S[It, t2] of I is isomorphic to Y/Q where

Q = (y1x2 − y2x1, y
2
1 − x

2
1z, y1y2 − x1x2z, y

2
2 − x

2
2z).

The Step-by-step homogenization P ⊆ R of Q is

P = (y1u1x2 − y2u2x1, y
2
1u

2
1 − x

2
1zv, y1u1y2u2 − x1x2zv, y

2
2u

2
2 − x

2
2zv).
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Then P is a homogeneous prime ideal generated by 1 cubic and 3 quartics in a

standard graded polynomial ring over C with

deg(P ) = 2
m∏
i=1

(deg(xi) + 1) = 23 = 8

reg(P ) = reg(I) + 2 +
2∑
i=1

deg(xi) = 1 + 2 + 1 + 1 = 5

pd(P ) = pd(I) +m− 1 = 1 + 2− 1 = 2

depth(R/P ) = depth(S/I) +m+ 3 = 0 + 2 + 3 = 5

codim(P ) = m = 2

dim(R/P ) = m+ n+ 2 = 2 + 2 + 2 = 6.

In particular, R/P is not Cohen-Macaulay, as is the case with any Rees-like algebra

when m ≥ 2. It is easy to check that R/P is not normal either. The projective

variety V (P ) ⊆ P7 is 5-dimensional.

8. The minimal free resolution for a Rees-like algebra modulo a
non-zerodivisor

Notation 8.1. We adopt the following conventions for shifting: If U is a graded

module, denote by U(−1) the shifted module for which U(−1)i = Ui−1 for all i;

thus, we consider the shift that increases the internal degree by 1. If (V, d) is a

complex, we write V[1] for the shifted complex with V[1]i = Vi−1 and differential

(−1)pd; thus, we shift the complex one step higher in homological degree.

In this section we describe the construction of the minimal graded free resolu-

tion of Ȳ /Q̄ over Ȳ , in the notation of the previous section. We will follow [MP,

Construction 3.8] which uses a mapping cone. In view of (7.3) we consider the

ideals

M : = (G)

N : = (y1, . . . , ym)2 ,

so Q̄ = M +N . There is a short exact sequence

0 −→M/(M ∩N)
γ−−→ Ȳ /N −→ Ȳ /(M +N) = Ȳ /Q̄ −→ 0 ,

where γ is the homogeneous map (of degree 0) induced by M ⊂ Ȳ . Let (B, dB)

and (G, dG) be the graded minimal free resolutions of M/(M ∩ N) and Ȳ /N ,

respectively. Let ζ : B −→ G be a homogeneous lifting of γ. Its mapping

cone D is a graded free resolution of Ȳ /Q̄ over Ȳ . It is a complex with modules
21



Dq = Gq ⊕ Bq−1. Thus, as a bigraded (graded by homological degree and by

internal degree) module

D = G⊕B[1] .

The resolution G may be expressed as Ȳ ⊗G′, where G′ is the Eliahou-Kervaire

resolution (or the Eagon-Northcott resolution) that resolves minimally the module

C[y1, . . . , ym]/(y1, . . . , ym)2 over the polynomial ring C[y1, . . . , ym]. Furthermore,

B = KȲ (y1, . . . , ym)⊗Ȳ
(
F(−1)⊗S Ȳ

)
,

where

• KȲ (y1, . . . , ym) is the Koszul complex on y1, . . . , ym over Ȳ .

• F is the minimal S-free resolution of SyzS1 (I).

Formulas for the differentials in this construction are given in [MP, Section 3]. The

following theorem shows that the construction provides the desired minimal free

resolution:

Theorem 8.3. (McCullough-Peeva [MP, Theorem 3.10]) Use the notation above.

The graded minimal Ȳ -free resolution of Ȳ /Q̄ can be described as a bigraded (graded

by homological degree and by internal degree) module by

D =
(
Ȳ ⊗G′

)
⊕
(
KȲ (y1, . . . , ym)⊗ F(−1)

)
[1] ,

where [1] stands for shifting one step higher in homological degree, and (−1) stands

for the shift that increases the internal degree by 1.

9. Rees algebras

Rees algebras are of high interest in Commutative Algebra and Algebraic Geometry

because of their geometric properties, see for example [Cu, Theorem 6.4] for the

relation to blow-ups. Fix a polynomial ring S = C[x1, . . . , xn] with a standard

grading defined by deg(xi) = 1 for every i. Let I be a homogeneous ideal minimally

generated by forms f1, . . . , fm, where m ≥ 2. We consider the prime ideal W of

defining equations of the Rees algebra S[It]. For this purpose, introduce a new

polynomial ring V = S[y1, . . . , ym] graded by deg(yi) = deg(fi) + 1 for every i.

The ideal W is the homogeneous prime ideal that is the kernel of the graded

homomorphism

ϕ : V = S[y1, . . . , ym] −→ S[It] ⊂ S[t]

yi 7−→ fit ,

where t is a new variable and deg(t) = 1.
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The following result provides bounds for the regularity and multiplicity of the

defining ideal of a Rees algebra by comparing it to the corresponding Rees-like

algebra:

Theorem 9.1. Consider the standard graded polynomial ring S = C[x1, . . . , xn].

Let I be a homogeneous ideal minimally generated by forms f1, . . . , fm, where m ≥
2. Consider the Rees algebra S[It] and the Rees-like algebra S[It, t2]. Denote by

Q and W the defining ideals of S[It, t2] and S[It] respectively. Let U and P be the

respective Step-by-step homogenizations of W and Q.

(1) [CCMPV, Theorem 3.2] The degree of the Rees algebra satisfies

deg(U) ≤ 1

2
deg(P ) =

m∏
i=1

(
deg(fi) + 1

)
.

(2) The regularity of the Rees algebra satisfies

reg(U) ≥ gensdeg(U) ≥ syzdeg(I) .

Theorem 9.1(2) follows from Theorem 7.4(2) and the fact that the generators

G in (7.1) are always minimal generators of W . We remark that it is usually very

difficult to determine what other elements are needed to generate W .

10. Rees algebras of ideals generated in one degree

In this section we outline a different approach which has been used in the study

of Rees algebras. If M is an ideal generated by m ≥ 1 forms of the same degree

d ≥ 2 in S, then the Rees algebra S[Mt] can be considered as a standard graded

quotient of the polynomial ring V = S[y1, . . . , ym]. In this case, we have the

following bounds on degree and regularity:

Theorem 10.1. Let M be an ideal generated by m ≥ 1 forms of the same degree

d ≥ 2 in S = C[x1, . . . , xn], and W be the defining ideal of the Rees algebra

S[Mt], which is considered as a standard graded quotient of the polynomial ring

S[y1, . . . , ym].

(1) [CCMPV, Theorem 4.3] The degree of the Rees algebra satisfies

deg(W ) ≤ dmin{m,n} − 1

d− 1
.

(2) The regularity of the Rees algebra satisfies

reg(W ) ≥ gensdeg(W ) ≥ syzdeg(M)− (d− 1) .

Theorem 10.1(2) follows from the fact that the elements in (7.1) are contained

in a minimal system of generators of the ideal W and that we have deg(yi) = 1 =

gensdeg(I)− (d− 1) for every i.
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In order to apply the above theorem, we use the following construction which

replaces a homogeneous ideal I in S by an ideal generated in one degree:

Theorem 10.2. [CCMPV, Construction 4.1] Let I be a homogeneous ideal in S

minimally generated by forms f1, . . . , fm, where m ≥ 2. Set

d = gensdeg(I) = max{deg(fi) | 1 ≤ i ≤ m} .

Consider a new ideal M generated by the forms {xd−aifi} of degree d in the poly-

nomial ring S[x]. For every i,

gensdeg(Syz
S[x]
i (M)) ≥ gensdeg(SyzSi (I)) .

11. A zoo of counterexamples to the Regularity Conjecture

The first counterexample that we present in this paper is a threefold computed by

Macaulay2 [M2]. Another such example is given in [MP, Example 4.6]. In these

examples X ⊂ P5 is 3-dimensional. Note that Kwak [Kw2] proved the inequality

reg(X) ≤ deg(X) − codimX + 1 if X ⊂ P5 is 3-dimensional, non-degenerate,

irreducible, and smooth.

Example 11.1. [MP, Example 4.7] Consider the ideal

I = (u6, v6, u2w4 + v2x4 + uvwy3 + uvxz3)

constructed in [BMN] (where it is denoted by I2,(2,1,2)) in the standard graded

polynomial ring

S = C[u, v, w, x, y, z] .

We consider the defining prime ideal M ⊂ W = S[w1, w2, w3] of the Rees algebra

S[It], with deg(wi) = 1 for i = 1, 2, 3. Computation with Macaulay2 [M2] shows

that gensdeg(M) = 38, deg(M) = 31, and pd(W/M) = 5. As dim(W ) = 9, we

may apply Bertini’s Theorem to obtain a singular projective 3-fold X in P5 whose

degree and regularity are

deg(X) = 31

reg(X) ≥ gensdeg(X) = 38.

10.2. Super-polynomial growth of regularity.

In this subsection, we provide families of counterexamples to the Regularity Con-

jecture, which lead to our main result in [MP]:

Theorem 11.3. [MP, Theorem 1.9] The regularity of non-degenerate homogeneous

prime ideals is not bounded by any polynomial function of the multiplicity, i.e., for

any polynomial Θ(x) there exists a non-degenerate homogeneous prime ideal L in

a standard graded polynomial ring (over C) such that reg(L) > Θ
(
deg(L)

)
.
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In the next three examples we will show how each of the three methods in

Sections 7, 9, 10 can be applied to Koh’s example in Theorem 3.5 in order to

produce families of counterexamples to the Regularity Conjecture. Recall that

for r ≥ 1 the example provides an ideal Ir generated by 22r − 2 quadrics in a

polynomial ring with 22r variables, so that

syzdeg(Ir) ≥ 22
r−1

.

Example 11.4. [MP, Counterexamples 1.8] First, we will apply the Rees-like

algebra construction, from Section 7, to Koh’s example. By Theorem 7.4, the

ideal Ir leads to a homogeneous prime ideal Pr (in a standard graded polynomial

ring Rr over C) whose multiplicity and generating degree are:

deg(Pr) = 2 · 322r−2

reg(Pr) ≥ gensdeg(Pr) ≥ 22
r−1

.

Therefore, Conjecture 4.4 predicts

22
r−1

≤ 2 · 322r−2 ,

which fails for r ≥ 10. Moreover, the difference

reg(Pr)− deg(Pr) ≥ gensdeg(Pr)− deg(Pr) > 22
r−1

− 250r

can be made arbitrarily large by choosing a large r.

Example 11.5. [CCMPV, Theorem 3.3] We will apply the Rees algebra construc-

tion, from Section 9, to Koh’s example. For r ∈ N we consider the Step-by-step

homogenization Ur of the defining ideal Wr of the Rees algebra S[Irt]. By Theo-

rem 9.1, the multiplicity and generating degree of the prime ideal Ur satisfy:

deg(Ur) ≤ 322r−2

reg(Ur) ≥ gensdeg(Ur) ≥ 22
r−1

.

Thus it is a counterexample to the Regularity Conjecture for r ≥ 10.

Example 11.6. [CCMPV, Example 4.2] We will apply the Rees algebra construc-

tion, from Section 10, to Koh’s example. Following the setting in Theorem 10.1,

let Wr be the defining ideal of the Rees algebra S[Irt], which is considered as a

standard graded quotient of a polynomial ring. By Theorem 10.1, the multiplicity

and generating degree of the prime ideal Wr satisfy:

deg(Wr) ≤ 2min{22r−2, 22r} − 1 ≤ 222r−2

reg(Wr) ≥ gensdeg(Wr) ≥ 22
r−1

− 1 .

Thus it is a counterexample to the Regularity Conjecture for r ≥ 10.
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Example 11.7. Alternatively, we can produce families of counterexamples by

applying the three methods in Sections 7, 9, and 10 to the non-prime examples in

Theorems 3.3 and 3.4.

10.8. Counterexamples not based on the Mayr-Meyer construction.

In order to construct counterexamples to the Regularity Conjecture using Rees or

Rees-like algebras, one needs families of ideals whose regularity grows faster than

the product of the degrees of the generators. The families based on the Mayr-

Meyer construction certainly suffice. Here is the only other known example, which

is sufficient to give counterexamples to the Regularity Conjecture without relying

on the Mayr-Meyer ideals.

Example 11.9. [CCMPV, Theorem 7.2] In [Ca, Example 4.2.1], Caviglia showed

that if T = C[z1, z2, z3, z4] and

J = (zd1 , z
d
2 , z1z

d−1
3 − z2z

d−1
4 )

with d ≥ 2, then reg(T/J) = d2 − 2. We set S = T [x, y] and

I =
(
x3, y3, x2zd1 + xy(z1z

d−1
3 − z2z

d−1
4 ) + y2zd2

)
.

Let P be the Step-by-step homogenization of the defining ideal of the Rees-like

algebra S[It, t2] of the ideal I (defined above), as in Theorem 7.4. Then

deg(P ) = 32(d+ 3)

reg(P ) > d2 + d+ 12 .

In particular, the Regularity Conjecture fails when d ≥ 34.

Had we instead computed the defining ideal P ′ of T [Jt, t2], we would obtain

deg(P ′) = 2d3, which is not sufficient for a counterexample.

Note that all counterexamples in this section are counterexamples to the

weaker Conjecture 4.4 as well.

12. High regularity of syzygies relative to degrees of generators

In the counterexamples in the previous section, the multiplicity is smaller than the

maximal degree of a minimal generator of a prime ideal. One may wonder whether

high regularity is mainly caused by high degrees of the minimal generators, or

whether even low degree generators can lead to high regularity exhibited later in

the resolution.

Question 12.1. Are there homogeneous non-degenerate prime ideals for which

the difference between the maximal degree of a minimal generator and the maximal

degree of a minimal first syzygy can be made arbitrarily large?
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In the notation introduced in Section 3, this question asks if we can make the

difference

syzdeg(L)− gensdeg(L)

arbitrarily large.

The answer to Question 12.1 is not easy even if we don’t require the ideal L to

be prime. For non-prime ideals, a positive answer was provided by Theorems 3.3,

3.4, 3.5.

Applying our Rees-like algebra construction to Ullery’s designer ideals in [Ul,

Theorem 1.3] we prove:

Theorem 12.2. [CCMPV, Theorem 6.2] Let s ≥ 9 be a positive integer. There

exists a non-degenerate prime ideal L in a standard graded polynomial ring (over

C) with

gensdeg(L) = 6

syzdeg(L) = s .

Note that Rees algebras are not currently useful for tackling Question 12.1

since we don’t have a suitable upper bound on the degrees of the elements in a

minimal generating set of the defining ideal.

13. Open Problems on Regularity in terms of Multiplicity

12.1. A bound on regularity in terms of multiplicity.

The following example shows that a bound on regularity of primary ideals in terms

of the multiplicity alone does not exist.

Example 13.2. [CCMPV, Examples 5.4] For n ≥ 1, consider the ideal

Jn = (x2, y2, anx+ bny)

in S = C[x, y, a, b]. Then Ass(S/Jn) = {(x, y)}. Therefore the ideal Jn is (x, y)-

primary. Since the length of (S/Jn)(x,y) is 2, it follows from the associativity

formula [HS, Theorem 11.2.4] that deg(Jn) = 2 for all n. Furthermore,

reg(Jn) ≥ gensdeg(Jn) = n+ 1 .

Theorem 11.3 shows that the regularity of prime ideals is not bounded by any

polynomial function of the multiplicity. In view of Example 13.2, it is natural

to wonder if there exists a bound on regularity of prime ideals in terms of the

multiplicity alone. Using the recent work of Ananyan-Hochster [AH1] we prove

the existence of such a bound:
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Theorem 13.3. [CCMPV, Theorem 5.2] Let L be homogeneous non-degenerate

prime ideal in a polynomial ring over C. There exist constants, depending only on

deg(L), bounding the projective dimension, regularity and graded Betti numbers of

the ideal L.

The bound obtained in the proof of Theorem 13.3 relies on a bound in [AH1]

(alternatively, one can use bounds from [ESS1, DLL]), which is very large. One

may wonder how to improve the bound:

Question 13.4. What is an optimal function Φ(x) such that reg(L) ≤ Φ(deg(L))

for any non-degenerate homogeneous prime ideal L in a standard graded polynomial

ring over C?

Since we have doubly exponential bounds for all homogeneous ideals (not only

the prime ideals), the following question is of interest:

Question 13.5. Does there exist a singly exponential bound for regularity of ho-

mogeneous non-degenerate prime ideals (in a standard graded polynomial ring over

C) in terms of the multiplicity alone?

Finding small bounds is motivated by two different topics: Stillman’s conjec-

ture and Computational Algebra. We describe these motivations in Sections 14

and 15.

12.6. The Regularity Conjecture for ideals satisfying additional condi-

tions.

The bound in the Regularity Conjecture is very elegant, so it is of interest to study

if it holds when we impose extra conditions on the prime ideal. At this point some

possible interesting cases seem to be:

(1) smooth varieties;

(2) projectively normal varieties;

(3) toric ideals (in the sense of the definition in [Pe, Section 65]);

(4) projective singular surfaces. (Recall Theorems 5.5 and 5.6. A 3-dimensional

counterexample is given in Example 11.1.)

It seems to us that it is currently unpredictable if the Regularity Conjecture holds

in any of these cases. The reason why it is reasonable to consider them is that in

these cases there are extra tools available, and the examples in Section 11 do not

satisfy these properties.

12.7. Avoiding the Mayr-Meyer construction.

It would be desirable to have families of examples of high regularity that are not

based on the Mayr-Meyer construction. The family of examples in 11.9 gives
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counterexamples to the Regularity Conjecture, but is not sufficient to prove The-

orem 11.3 about super-polynomial growth. The following generalization of 11.9

might be sufficient:

Construction 13.8. Define a family of three-generated ideals in the polynomial

ring

C[x0, x1, . . . , y0, y1, . . .]

recursively as follows. First set

f1 = x2
1, g1 = y2

1, h1 = x1x0 + y1y0.

For r ≥ 2 set

fr = x2r
r , gr = y2r

r , hr = x2
rfr−1 + y2

rgr−1 + xryrhr−1.

Consider the ideal

Ir = (fr, gr, hr) ,

generated by three forms of degree 2r. With this notation we raise the following

question based on computational evidence by Macaulay2:

Conjecture 13.9. (McCullough) The regularity reg(Ir) has super-polynomial growth

(that is, for any polynomial Φ(x) ∈ R[x], there exists a positive integer r such that

reg(Ir) > Φ(r)).

If the conjecture holds, then both the Rees algebra and the Rees-like algebra of

the ideal Ir in Construction 13.8 also have regularity exhibiting super-polynomial

growth while the degree grows asymptotically as Cr3, where the constant C is

independent of r.

14. More Open Problems

13.1. Bounds in terms of other invariants.

As always, it is very interesting to find bounds on regularity in terms of other in-

variants, and/or for classes of interesting ideals. As mentioned in the introduction,

Bayer-Mumford (1993) [BM] wrote:

Problem 14.2. (Bayer-Mumford (1993) [BM]) The biggest missing link between

the general case and the smooth case is to obtain a “decent bound on the regularity

of all reduced equidimensional ideals”.
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In particular, we are interested in a decent bound on the regularity of prime ideals,

possibly in terms of other invariants than multiplicity. At this point, the problem

is widely open.

13.3. Open Problems inspired by Computational Algebra.

Question 13.4 is of interest in Computational Algebra, as indicated in [BS]. Many

computer computations in Commutative Algebra and Algebraic Geometry (for

example, when using the computer algebra systems Cocoa [Co], Macaulay2 [M2],

Singular [DGPS]) use Gröbner bases. Bayer-Stillman [BS2] proved that in generic

coordinates and with respect to reverse lexicographic (revlex) order, one has to

compute up to degree reg(I) in order to compute a Gröbner basis of I. Revlex is

usually the most efficient monomial order according to [BM]. Thus the regularity of

a homogeneous ideal I is the degree-complexity of the Gröbner basis computation

of I. In [BM, Comments after Theorem 3.12] Bayer and Mumford wrote: “We

would conjecture that if a linear bound doesn’t hold, at the least a single exponential

bound, i.e. reg(L) ≤ gensdeg(L)O(n), ought to hold for any reduced equidimensional

ideal. This is an essential ingredient in analyzing the worst-case behavior of all

algorithms based on Gröbner bases.” Since our paper is focused on prime ideals,

we state their conjecture in this case:

Conjecture 14.4. (Bayer-Mumford, 1993, [BM, Comments after Theorem 3.12])

If L is a homogeneous non-degenerate prime ideal in the standard graded ring

S = C[x1, . . . , xn], then

reg(L) ≤ gensdeg(L)O(n) .

Of course, one would also like to have a relation between the prime case and

the general case. In some cases Ravi [Ra] has proven that the regularity of the

radical of an ideal is no greater than the regularity of the ideal itself. For a long

time, there was a folklore conjecture that this would hold for every homogeneous

ideal. It was disproved by Chardin-D’Cruz [CD], who provided examples of ideals

related to monomial curves in P3 (respectively, in P4) such that the regularity of

the radical is essentially the square (respectively, the cube) of that of the ideal.

They constructed the following family of examples:

Example 14.5. (Chardin-D’Cruz [CD, Example 2.5]) For m ≥ 1 and r ≥ 3,

consider the ideal

Jm,r = (ymu2 − xmzv, zr+1 − xur, ur+1 − xvr, ymvr − xm−1zur−1v)
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in the polynomial ring C[x, y, z, u, v]. The regularities of Jm,r and its radical are:

reg(Jm,r) = m+ 2r + 1

reg
(√

Jm,r

)
= m(r2 − 2r − 1) + 1 .

The next best result one might hope for, is described in the following folklore

question which is currently open:

Question 14.6. Is there a singly exponential bound on reg(
√
I) in terms of reg(I)

(and possibly codim(I) or n) for every homogeneous ideal I in a standard graded

polynomial ring over C?

Conjecture 14.4 and Question 14.6 not only have applications in Computational

Algebra, but are very interesting on their own. In order to conjecture reason-

able bounds, it would be very helpful to have a method for producing interesting

examples. In [La2, Remark 1.8.33] Lazarsfeld wrote: “the absence of systematic

techniques for constructing examples is one of the biggest lacunae in the current

state of the theory.”

13.7. Generating Degree.

It is a very basic and natural problem to find a nice bound on the degrees of the

defining equations. The following folklore problem is widely open:

Problem 14.8. (Folklore Problem) Find a decent bound on the generating degree

gensdeg(L) for a homogeneous non-degenerate prime ideal L in a standard graded

polynomial ring over C.

Since gensdeg(L) ≤ reg(L) for every graded ideal L in S, the following weaker

form of the Regularity Conjecture provides an elegant bound: if L is a homoge-

neous non-degenerate prime ideal, then gensdeg(L) ≤ deg(L) . Unfortunately, the

counterexamples in Section 11 refute that weaker conjecture as well. On the other

hand, it was shown by Mumford that this property is true up to radical, meaning:

Theorem 14.9. (Mumford [Mu2]; see also [EHV, Proposition 3.5]) Every homo-

geneous prime ideal L in S is generated up to radical by forms of degree at most

deg(L).

In the smooth case, he obtained:

Theorem 14.10. (Mumford [Mu2]; see also [La2, Example 1.8.38.] A smooth

projective variety X ⊂ Pn−1 is defined scheme-theoretically by forms of degree at

most deg(X).
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15. Applications to Stillman’s Conjecture

In a different direction, Questions 13.4 and 13.5 are also motivated by Stillman’s

Conjecture. A classical construction of Burch [Bu] and Kohn [Ko] shows that

there exist three-generated ideals in polynomial rings whose projective dimension is

arbitrarily large. In particular, this means it is not possible to bound the projective

dimension of an ideal purely in terms of the number of generators. Later Bruns

showed in a very precise sense that all the pathology of minimal free resolutions of

modules is exhibited by the resolutions of ideals with three generators [Br]. Yet,

when applying his argument to create three-generated ideals with arbitrarily large

projective dimension, the degrees of the generators are forced to grow linearly with

the length of the resolution. Motivated by this phenomenon and by computational

complexity issues, Stillman posed the following conjecture:

Stillman’s Conjecture 15.1. [PS1, Problem 3.14] Fix m ≥ 1 and a sequence of

natural numbers d1, . . . , dm. There exist a number p such that reg(I) ≤ p for every

homogeneous ideal I in a polynomial ring with a minimal system of generators of

degrees d1, . . . , dm.

Note that the number of variables in the polynomial ring, where I lives, is

not fixed. The original version of Stillman’s Conjecture replaces regularity by

projective dimension; the equivalence of the two conjectures was proved by Caviglia

[Pe, Theorem 29.5]. The conjecture was first proved by Ananyan-Hochster in

[AH1]. Other proofs of Stillman’s Conjecture were given by Erman-Sam-Snowden

[ESS1] and Draisma-Lasoń-Leykin [DLL].

Next we will explain how Question 13.4 is related to Stillman’s Conjecture.

Let I be an ideal in a standard graded polynomial ring S over C minimally gen-

erated by homogeneous forms of degrees d1, . . . , dm. Let Φ(x) be a function such

that reg(L) ≤ Φ(deg(L)) for any non-degenerate homogeneous prime ideal L in a

standard graded polynomial ring over C. Let P be the prime ideal associated to I

according to Theorem 7.4. Then

reg(I) ≤ reg(P ) ≤ Φ(deg(P )) = Φ

(
2

m∏
i=1

(di + 1)

)
,

where the first inequality holds by Theorem 7.4(4). Thus, Φ
(

2
∏m
i=1 (di + 1)

)
provides a bound on the regularity in terms of the degrees of the generators.

Stillman’s Conjecture is usually studied in terms of projective dimension (in-

stead of regularity). There has been substantial interest in finding tight upper

bounds for more specific cases. Families of ideals with large projective dimension

constructed by McCullough in [Mc] and by Beder, McCullough, Núñez-Betancourt,
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Seceleanu, Snapp, Stone in [BMN], show that any upper bound on projective di-

mension must be large. McCullough constructed a family of ideals Qg generated by

2g quadrics with pdS(S/Qg) = g2 + g . Beder et. al. constructed a family of ideals

Tg generated by three homogeneous elements of degree g2 with pdS(S/Tg) = gg−1.

The following example gives the Betti table of one of these ideals.

Example 15.2. Let S = C[x, y, a, b, c, d] and

I = (x2, y2, ax+ by, cx+ dy) .

Then the Betti table for S/I is

0 1 2 3 4 5 6
0: 1 - - - - - -
1: - 4 - - - - -
2: - - 13 20 15 6 1

In particular, pdS(S/I) = 6, showing that the bounds in [HMMS1] and [HMMS2]

are optimal.

Currently, the best known explicit bounds on projective dimension are:

(i) If I is generated by 3 quadrics, then [MS, Theorem 3.1] provides the

optimal upper bound pd(S/I) ≤ 4.

(ii) If I is generated by 4 quadrics, then [HMMS2, Theorem 1.3] provides the

optimal upper bound pd(S/I) ≤ 6.

(iii) If I is generated by g quadrics and ht(I) = 2, then [HMMS1, Main The-

orem] provides the optimal upper bound pd(S/I) ≤ 2g − 2.

(iv) If I is generated by g quadrics, then pd(S/I) ≤ 2g+1(g − 2) + 4 by [AH2,

Theorem 1.11].

(v) If I is generated by 3 cubics, then [MM1, Theorem 1] provides the optimal

upper bound pd(S/I) ≤ 5.

In the case of quadrics, the first author has asked if (and Ananyan and Hochster

have conjectured that [AH2, Conjecture 11.4])

pd(S/I) ≤ h(g − h+ 1)

for an ideal I generated by g quadrics of height h. More generally, Ananyan and

Hochster conjecture that the optimal bound for the projective dimension of an

ideal generated by g forms of degree at most d is Cdg
d for some positive constant

Cd depending only on d, where d is fixed and g varies. Examples in [Mc] show

that such a bound would be asymptotically optimal. Ananyan and Hochster also

give alternate arguments in [AH2] yielding very large bounds for ideals generated

by cubics and quartics.
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For more details about Stillman’s Conjecture, we refer the reader to the ex-

pository papers [MS, ESS2].
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