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Abstract: The statistical properties of fast Alfvénic solar wind turbulence have been analyzed by
means of empirical mode decomposition and the associated Hilbert spectral analysis. The stringent
criteria employed for the data selection in the Wind spacecraft database, has made possible to sample
multiple k‖ field-aligned intervals of the three magnetic field components. The results suggest that the
spectral anisotropy predicted by the critical balance theory is not observed in the selected database,
whereas a Kolmogorov-like scaling (E(k‖) ∼ k−5/3) and a weak or absent level of intermittency are
robust characteristics of the Alfvénic slab component of solar wind turbulence.
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1. Introduction

The solar wind (SW) is the most studied environment for plasma turbulence [1]. Among the
most interesting features of space plasmas, the existence of a strong ambient magnetic field leads to
turbulence anisotropy [2] related to the preferential energy transfer in a perpendicular direction with
respect to the mean magnetic field, as theoretically predicted [3–5]. Observations show different forms
of such anisotropy. For example, elongation or deformation of eddies in the mean magnetic field
direction, called wavevector anisotropy, produces k⊥ > k‖). On the other hand, different power levels
in different directions relative to the local field, called power anisotropy, result in power spectra of
different amplitude P(k⊥) 6= P(k‖). Finally, different scaling in different directions, measured through
the power spectrum slope β⊥ 6= β‖ (where β represents the power-law exponent), is usually called
spectral index anisotropy [1,6].

In the phenomenology of Alfvénic turbulence, the ratio between the linear Alfvén timescale and
the nonlinear decay timescale regulates the balance of the energy flux across scales, thus determining
the strength of turbulence. The linear Alfvén timescale, defined as τA ' `‖/υA, represents the
typical propagation time of an Alfvén wave along a structure of size `‖, υA being the Alfvén
speed. The nonlinear decay time τnl ' `⊥/δu(`⊥) represents the perpendicular eddy turnover
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time, where δu(`⊥) is the fluctuation velocity across a structure of size `⊥. When ratio of these two
quantities χ = τA/τnl ' `‖δu/`⊥υA � 1, oppositely propagating Alfvén wave packets may interact
multiple times before their energy is transferred to smaller scales [7,8]. On the contrary, for χ � 1
Alfvénic fluctuations undergo multiple decays before they interact. Both conditions naturally evolve
towards comparable nonlinear and Alfvén timescales (χ ' 1), so that the nonlinear cascade occurs
within one single interaction [3,9] (the reader is referred to Refs. [4,10] for more details on the MHD
turbulence theory and on the evolution of the nonlinearity parameter χ).

In this case, it is possible to show that the scaling relation between perpendicular and parallel
wave vectors is k‖ ∝ k2/3

⊥ . Under this particular condition, usually called “critically balanced” state [4],
wavevector anisotropy k⊥ � k‖ would appear at small scales, as resulting from the anisotropy of the
spectral index: E(k⊥) ∝ k−5/3

⊥ and E(k‖) ∝ k−2
‖ . Therefore, the critical balance condition can be tested

by measuring the spectral index at various angles from SW measurements, a complicated issue using
typical single-spacecraft SW measurements. Wavelet analysis has been often used to study the local
mean magnetic field and to collect information on fluctuations at a particular local angle θVB between
the local mean magnetic field and the flow direction. The resulting spectral slope was close to −5/3
when θVB ∼ 90◦ and −2 when the angle is θVB ∼ 0◦, providing an evidence for the critical balance
theory [11–14]. Multi-point measurement techniques provided similar results [6,15]. The observed
spectral anisotropy is also compatible with the presence of discontinuities in the SW, as for example
current sheets [2,16]. Removal of intermittent events from data was accompanied by flatter parallel
spectra [17].

However, both local mean-field calculation and removal of intermittent events might result in
systematic errors in the reconstruction of the parallel spectrum. The observation of local alignment
between magnetic field and wind direction is indeed prevented by pervasive large-amplitude Alfvénic
fluctuations. Thus, very long time series are required to build the parallel spectrum [13] using randomly
distributed data points, possibly uncorrelated, and artificially introducing the discontinuities that
might generate the spectral anisotropy.

In order to study the SW turbulence in a direction parallel to the mean background magnetic
field, a novel approach was recently proposed. A search of continuous Alfvénic, fast SW intervals
was performed, producing a database mostly populated by k‖ fluctuations. This allows to avoid the
possible introduction of discontinuities and inhomogeneities. The selected intervals were studied using
the Hilbert spectral analysis, so to remove the possible influence of small-scale noise and large-scale
structures from spectral and intermittency properties in the inertial range. Preliminary results showed
that spectral anisotropy is incompatible with the critical balance scenario. This work represents a
follow-up of the results presented in [18]. Here, an in-depth statistical study based on the Hilbert
spectral analysis and a different resampling method have been conducted on a subset of the intervals
presented in the previous work, showing the robustness of the observations. In particular, despite of
the power anisotropy, present in all samples, the distribution of the spectral exponents obtained from
the resampling (and their relative scaling exponents) is characterized by a mean value fully compatible
with the classical Kolmogorov spectrum (within the 95% of prediction interval), revealing the presence
of short-range correlations.

2. Data Selection Criteria for k‖ Magnetic Fluctuation

Alfvénic turbulence can be usually split in two components: a slab component, for fluctuations
propagating along to background magnetic field B0, and a 2D component, whose magnetic fluctuations
lie on a plane perpendicular to B0 [19–22]. Therefore, wavevectors of the slab and 2D components are
respectively parallel (k‖) and perpendicular (k⊥) to the global mean magnetic field.

Testing the critical balance model in SW fluctuations requires a reliable estimate of the spectral
exponents of the slab (k‖). However, sampling the SW in a purely parallel direction is rather
challenging, in particular when Alfvénic turbulence is dominating. Indeed, even when the global
mean background magnetic field is aligned to the sampling direction (which coincides with that of
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the bulk flow), the presence of high amplitude Alfvénic fluctuations can locally disrupt the alignment.
As a result, the measured Alfvénic turbulence includes contributions from fluctuations along both k⊥
and k‖ directions.

In this work, a systematic search of SW intervals that provide k‖ sampling has been performed
using over 12 years of SW magnetic field observations, recorded by the Wind spacecraft between
2005 and 2016, with sampling frequency of ∆ω ≈ 11 Hz. In order to be selected as a k‖ sample, a SW
interval must satisfy the following requirements:

1. Magnetic field and velocity must be aligned within 15◦ at all scales in the turbulent inertial range
for the whole interval, i.e., both local and global mean magnetic field must be aligned with the
bulk velocity;

2. The total duration cannot be less than 1 hour, with maximal percentage of missing data ≤20%;
3. The whole interval must be enclosed within a fast SW stream (V ≥ 550 km s−1);
4. It must have low magnetic compressibility (CB ≤ 25%), measured in the inertial range at scale

of 20 min, where CB is defined as the ratio between the variance of the magnetic field intensity
fluctuations and the total variance of the fluctuations, CB = σ2

|B|/ ∑i=x,y,z σ2
Bi

[23];

5. The total pressure Pm = 2nkBT + B2/(8π) (with n, T, and B are, respectively, the proton number
density, the temperature, and magnetic field intensity) must satisfy the condition Pm < 0.05 nPa,
in order to avoid discontinuities or shocks [24].

If all of these conditions are fulfilled, the selected sample guarantees k‖ fluctuations, due to
undisturbed Alfvénic fast SW turbulence. Indeed, local sampling of parallel fluctuations requires
angles between B and V vectors tan−1[δB/B] ≤ 17◦ − 22◦ (δB/B ≥ 0.3− 0.4 at the injection scales).
The more stringent criterion adopted here ensures thus local sampling of purely k‖ fluctuations.

All selected samples are immersed in trailing edges of high-speed streams, in the strong turbulence
regime. Some relevant parameters relative to the selected intervals are collected in Table 1: SW speed
〈V〉, total pressure Pm, magnetic compressibility evaluated at the fluid scale 20 min 〈CB〉, and the mean
angle 〈θVB〉 between the velocity and magnetic field vectors.

Table 1. Parameters of wind data considered for the analysis: the SW bulk speed, proton number
density and temperature were measured by the Solar Wind Experiment (SWE) instrument [25] at
∆ω ≈ 0.01 Hz resolution; magnetic field at resolution ∆ω ≈ 11 Hz was measured by the Magnetic
Field Investigation (MFI) magnetometer [26]. The magnetic compressibility CB has been evaluated at
scale of 20 min, within in the inertial range.

Date Start Time End Time 〈V〉 [km s−1] 〈Pm〉 [nPa] 〈CB〉 [%] 〈θV B〉 [deg]

2005/01/03 13:36:56 14:36:43 631.7 0.026 22 10.07
2005/05/09 10:06:10 11:16:43 639.2 0.033 8 7.13
2006/06/18 14:02:36 15:13:07 579.6 0.014 23 13.20
2006/07/28 21:13:08 22:28:15 564.0 0.007 19 9.60
2006/12/23 23:33:56 00:33:43 640.9 0.017 7 9.75
2007/09/03 07:39:48 08:50:19 592.8 0.014 10 10.64
2007/10/27 00:24:16 01:51:39 576.9 0.028 16 9.63
2011/04/13 01:31:56 02:31:43 554.9 0.020 10 10.04
2014/06/09 01:06:48 02:55:39 588.8 0.016 18 10.41
2015/03/22 14:00:40 15:28:03 647.0 0.044 13 9.99
2016/07/13 01:14:48 02:17:39 575.4 0.021 21 9.67
2016/07/13 05:17:04 07:25:51 574.7 0.018 15 9.10

As customary, the link between the frequency space and the wavevector space is obtained by
using the Taylor frozen hypothesis [1,27], which holds for all the intervals in this work. In Figure 1
are shown, as examples, the SW bulk velocity for sample 2005/01/03, and 2007/09/03. In all cases,
the velocity is steady and with small fluctuations (with respecct to the bulk speed) during the whole
interval. In the last panel of Figure 1 the power spectral density (in dimensional form) is shown for
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sample 2005/01/03, in the wavevector space. A clear power law scaling k−5/3 is observed in a range
of wavevector k ∈ [10−4, 10−3] km−1.

It should be pointed out that in the selected intervals foreshock particles from the Earth’s bow
shock are unlikely but cannot be excluded [28,29]. However their possible role in the selected intervals
is beyond the scope of this analysis, and it will be left out for a future work.
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Figure 1. Left panel: Temporal evolution of the SW bulk speed V (upper plots), zoom of the
velocity on the 1-hour region of interest (central plots), and the magnitude of the magnetic field
|B| (bottom plots) for the sample dated 2005/01/03. The velocity is steady on the whole interval.
Central panels: same as previous plot but for sample dated 2007/09/03. Right panel: Power spectral
density (in dimensional form) for the three components of the magnetic field Bx, By, and Bz in the
wavevector space, obtained via the traditional Taylor frozen hypothesis [1]. The dashed line represents
the theoretical Kolmogorov scaling k−5/3.

3. Empirical Mode Decomposition and Arbitrary Order Hilbert Spectra

In the Empirical Mode Decomposition (EMD) framework [30,31], the three components of the
magnetic field B ≡

[
Bx(t), By(t), Bz(t)

]
can be decomposed each into a finite number n of oscillating

basis functions, of increasing characteristic time scale τ, known as intrinsic mode functions (IMFs)
Xj ≡

[
φj(t), ψj(t), θj(t)

]
:

Bi(t) =
n

∑
j=1

Xi,j(t) + Ri(t) , (1)

where i .
= {Bx, By, Bz} or {φj, ψj, θj}. The residual Ri (being R ≡

[
Rφ(t), Rψ(t), Rθ(t)

]
) in Equation (1)

describes the mean trend. EMD is based on the local properties of the data [30], allowing to characterize
non-stationary and nonlinear processes, and does not necessarily require a continuous time series,
since it can be also applied to time series with non uniformly sampled data [32,33]. The decomposition
process, called sifting process, consists principally of two stages: the local extrema of Bi are identified
and subsequently interpolated through cubic spline. Once interpolated, the envelopes of local maxima
and local minima are defined; subsequently, the mean of the two envelope functions is subtracted from
the original data. This difference is considered an IMF only if: (i) the number of local extrema and zero
crossings does not differ by more than 1; (ii) at any point ti, the mean value of the extrema envelopes is
zero. If the difference does not meet these criteria, the sifting procedure is repeated [30]. A general rule
to stop the sifting is defined by a Cauchy-type convergence criterion, defining a standard deviation σ,
evaluated from two consecutive steps of the algorithm. The iterative sifting stops when σ is smaller
than a fixed threshold, usually σthresh ≈ 0.2. An alternative method for stopping the sifting procedure
is the so called 3-thresholds stoppage criterion, and was introduced in order to guarantee globally
small fluctuations in the mean, while taking into account locally large amplitude variations [31]. In this
work this second stoppage criterion has been adopted. The three threshold parameters used here are
δ = 0.05, ξ1 = 0.05, and ξ2 = 10ξ1, in accordance with their typical values [31]. An example of the
IMFs φj(t) for the component B1 ≡ Bx(t) and the associated residual Rφ(t) extracted from sample
2005/01/03, are shown in the left panel of Figure 2.
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Figure 2. Left panel: Intrinsic Mode Functions (IMFs) j ∈ [3, 13] and the associated residual rφ ,
obtained through Empirical Mode Decomposition (EMD) for sample dated 2005/01/03. Modes j = 1, 2
have been excluded from the plot for readability. Central panel: Log-linear plot of the average IMF
period as a function of the mode j (sample 2005/01/03); error bars represent the 95% confidence bounds;
the dashed lines represent the relation τj = α× γj, with γ = 1.97± 0.01. Right panel: Comparison of
Fourier power spectral density (black line) for sample 2005/01/03 with the Fourier power spectrum of
different IMFs φj(ω) (j ∈ [1, 13]), as a function of frequency ω (the curves have been vertically shifted
for clarity); the band-like structure of each IMF shows the dyadic nature of the decomposition.

Note that mode j = 1 (not shown) contains the fastest timescale, in many cases associated with the
experimental noise embedded in the data-set. Once the IMFs have been obtained, an Hilbert transform
is applied on each mode:

X?
i,j(t) =

1
π

P
∫ +∞

−∞

Xi,j(t′)
t− t′

, (2)

where P represents the Cauchy principle value. This transformation allows to extract a time-dependent
instantaneous frequency ωi,j(t) and a time-dependent amplitude modulation Ai,j(t), from the

analytical signal Z = Xi,j(t) + iX?
i,j(t) ≡ Ai,j(t)e

iΦi,j(t) [34]. Central panel of Figure 2 shows the
characteristic periods τ2,j (component B2(t), in log-linear plot), evaluated as the average inverse
instantaneous frequency of the j-th mode: τ2,j = 〈ω2,j〉−1

t (〈·〉t representing a temporal average) [30],
where ωi,j = 2π−1dΦi,j(t)/dt is the temporal variation of the instantaneous phase Φi,j(t) [30].
Moreover, the Hilbert spectrum, defined as H(ω, t) = A2(ω, t), provides energy information in
the time-frequency domain [35].

When the EMD is applied on turbulent processes [36–38] or multifractal processes [39,40],
it intrinsically acts as a dyadic filter bank [41–44], where each IMF captures a narrow band in
frequency space, and their characteristic period τj follows an exponential law of the form: τj = α× γj,
where γ = 2 for an exact dyadic decomposition. The dashed line in the central panel of Figure 2
represents the least square fit of the exponential relation obtained for τj, with γ = 1.97 ± 0.01,
showing very good agreement with the theoretical expectation. Moreover, the dyadic structure
can be observed by analyzing the Fourier power spectral density (PSD) of the various IMFs, reported in
Figure 2, right panel. The PSD of the data (black line) presents a power-law decay well reproduced
by the superposition of the various IMFs Fourier spectra. The superposition behaves as a power-law
of the form Mφ(ω) ≡ Max[φ̂(ω)] ∼ ω−β [35,45,46], with the same spectral exponent as the original
PSD (Figure 2 right panel). In the classical, self-similar Kolmogorov theory [47,48], the spectral
exponent β is linked to the scaling exponent of the second-order structure function (SF) via the relation
E(ω) ∼ ω−β → β− 1 = ζ(2).

A marginal integration performed on H(ω, t) provides the Hilbert marginal spectrum
h(ω) = T−1

∫ T
0 H(ω, t)dt, defined as the energy density at frequency ω [30,49]. Moreover, from the

Hilbert spectrum, a joint probability density function P(ω, A) can be extracted, using the instantaneous
frequency ωi,j and the amplitude Ai,j of the j-th IMF as: h(ω) =

∫ ∞
0 P(ω, A)A2dA, which corresponds
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to a second-order statistical moment [35]. This procedure can be generalized to the arbitrary order
q ≥ 0 by defining the instantaneous ω-dependent q-th-order statistical moments:

Lq =
∫ ∞

0
P(ω, A)AqdA. (3)

The second-order moment h(ω) ≡ L2 is the analogous of the Fourier spectral energy density,
and can be interpreted as the energy associated to the frequency ω. It should be pointed out
that the definition of frequency in h(ω) is different from the definition in the Fourier framework.
The interpretation of the Hilbert marginal spectrum should thus be given with more caution [30,35,50].

Figure 3 (left panel) shows an example of the second order moment L2(ω) obtained for
the different components Bi of the magnetic field of sample 2005/01/03. From the analysis,
it is evident that the Bx component is characterized by a lower power with respect to the two
perpendicular components By and Bz. In Figure 3, the central panel shows the average isotropy
ratioR(ω?) =

〈
Lx

2(ω
?)/Lα

2(ω
?)
〉

(where α = z, y), obtained by averaging on all frequencies enclosed
in the inertial range ω? ∈ [10−2, 10−1]. For comparison, the theoretical value for homogeneous and
isotropic turbulenceR(ω?) = 3/4, obtained from the Kolmogorov’s second similarity hypothesis [51],
is also indicated. in all cases, R(ω?) is always different from 3/4, indicating that the effects of the
power anisotropy are always present despite of the short length of the samples. In addition, the the
ratio x/z is always comparable with the ratio x/y, within the error. The PSD for sample 2005/01/03
(Bx component) is plotted in Figure 2, right panel. The slope β2 of the Hilbert spectra L2(ω) is fully
compatible with the Fourier PSD, and clear power-law scaling. The right panel of Figure 3 displays a
comparison between the Fourier and Hilbert spectra with the standard second-order structure function,
S2(`t), plotted against the inverse scale `−1

t in order to match the frequency range. From the results,
the agreement between the slope β2 ≈ 1.61± 0.10 and the exponent ζ(2) = 0.57± 0.02 is evident,
and both are in good agreement with the theoretical result ζ(2) ≡ β− 1 obtained from the classical
Fourier PSD [48]. Similar values were found for all intervals selected for the analysis.
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Figure 3. Left panel: Hilbert marginal spectrum, L2(ω), for the components Bx(t), By(t), and Bz(t) of
the magnetic field (sample 2005/01/03). In all cases the slope of L2(ω) is perfectly comparable with
the slope of the PSD. The power anisotropy among the parallel and perpendicular direction is observed
in all samples. Central Panel: value of the average ratioR(ω?) (with the 95% of confidence bounds)
between the parallel and perpendicular components of the magnetic field B(t), for all frequency in
the inertial range ω? ∈ [10−2, 10−1] (sample 2005/01/03). The horizontal dashed line represent
the theoretical value for the isotropy ratio from the Kolmogorov’s second similarity hypothesis
R(ω?) = 3/4 for homogeneous and isotropic turbulence [51]. Right panel: Comparison of the Hilbert
spectrum, L2(ω) (circles) with the classical Fourier PSD E(ω) (solid line), and the second-order
structure function S2(`

−1
t ) (squares, `−1

t represent the inverse time scale), relative to the component
Bz(t) of sample 2006/07/28. The power-law behavior in the inertial range is clearly observable with
all methods. The scaling exponent, obtained via least square fit are: β2 = 1.61± 0.10 (dashed line) and
ζ(2) = 0.57± 0.02. The curves have been vertically shifted for clarity.
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4. Statistical Analysis of HSA Slopes and Scaling Exponents for Alfvénic Turbulence

In order to construct a prediction interval for the various βq, a bootstrapping procedure has been
adopted [52]. The bootstrap method is a general resampling procedure useful for the estimation of
the distributions of statistics based on independent observations. The basic idea is that inference
about a population can be modelled by resampling the data and performing inference from resampled
data [52,53]. This allows to create multiple smaller data-sets (of equal size), by randomly extracting
elements from the original data-set, calculating their statistic, and taking the average of the calculated
statistics [54].

In order obtain a statistical distribution of the spectral slopes, two possibles approaches can be
used. The first approach, known as residual resampling, consists of performing a least square fit on the
original data, and the residuals are then resampled and added to the prediction of the original fit in
order to obtain a new data-set, which will be fitted as a function the original frequency ω [52,55]. In the
second approach, the original data Lq(ω) and the corresponding frequencies ω are both resampled in
order to construct the smaller subsets, and then least square fitted [56,57]. All those points have been
selected in a range of frequency ω slightly larger than 1 decade in the inertial range. Both methods
provided compatible results.

As a rule of thumb, for a simple statistical test the number Nsamp of random samples is usually
chosen in the interval Nsamp ∈ [50, 100]. Indeed, while Nsamp = 50 provides a relatively good standard
error estimate [55], for Nsamp > 100 the improvement in the estimation of standard errors becomes
negligible [58]. On the other hand, when evaluating confidence or prediction interval a higher number
of replicas are required. Here values Nsamp ∈ [600, 1000] have been selected, in accordance with
recommended values [59].

The resampling has been performed on all intervals, and for all orders q. The PDFs of slopes
β2 (component Bz(t)), constructed for different replica number Nsamp, are shown in Figure 4. It is
evident that all the curves collapse on the same distribution, indicating good statistical convergence.
Moreover, the distributions exhibits a peak at a value β2 ≈ 5/3, consistently with previous results
from six-minute intervals, with similar physical properties, reported in the literature [60].
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Figure 4. Distribution of slopes β2 for two samples (component Bz), and for three different number of
replicas Nsamp. The PDFs have been constructed by using the residual resampling method.

Figure 5 presents the PDFs of the slopes βq obtained from the Hilbert spectra Lq(ω) for the three Bi
components. The maximum order qmax = 3 was selected using the approximate rule qmax ≈ log N − 1.
For each component Bi, distributions have been built by bootstrapping the ensemble of all the intervals
listed in Table 1. The bin width ∆ was selected in accordance with the classical Freedman–Diaconis
rule, ∆ = 2IQR[βq]n−1/3, where IQR is the interquartile range of βq, and n the number of samples.
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Since no a priori assumption has been made on the distribution, this rule represents a suitable choice,
as it is able to evidence the possible presence of heavy tails in the data.
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Figure 5. Distribution of the slopes βq constructed with all the results obtained from the resampling,
and from all intervals, relatives to the three component of the magnetic field B(t). The spectral slope
β2 (analogous of the Fourier spectral slope) is characterized by a slope β2 ≈ 5/3 fully compatible with
the classical Kolmogorov spectrum.

From the results of the second order Hilbert spectra, a slope β2 ≈ 5/3 has been found, indicating
that the parallel magnetic turbulence in fast, Alfvénic SW is characterized by the typical Kolmogorov
spectrum. This was observed for all components Bi [18,61]. Table 2 collects the slopes corresponding
to various percentiles of the distribution of Figure 5, p2.5, p50, and p97.5, used to represent the 95% of
prediction interval. Values are given for the three orders q of the various components Bi. As discussed
before, a relation between the PSD index and the scaling exponent of the second order SF ζ(2) exists.
Such relationship can be extended to any arbitrary order q, allowing to define a family of generalized
scaling exponents ξ(q) through the generalized Hilbert spectra Lq [36,37,46] as ξ(q) ≡ βq − 1. Thus,
the set of exponents ξ(q) is the Hilbert analogue of the standard set of scaling exponents of the structure
functions or, if necessary, of their Extended Self-Similarity equivalent [62,63].

Table 2. Various percentile obtained from PDFs of Figure 5, for the three order Hilbert spectra Lq: p2.5,
p50, and p97.5.

Component Order q Percentile p
p2.5 p50 P97.5

1 1.21 1.31 1.39
Bx 2 1.55 1.65 1.75

3 1.83 2.01 2.31

1 1.26 1.36 1.47
By 2 1.55 1.70 1.80

3 1.75 2.00 2.24

1 1.26 1.33 1.44
Bz 2 1.56 1.68 1.83

3 1.81 2.02 2.24

Relation 3, therefore, represents an alternative method of extracting the spectral slope β and the
SF scaling exponents, with the advantage of constraining the effects of noise and large-scale structures.
The dependence of the scaling exponents on the order, and in particular its deviation from a linear
relation, are useful for a quantitative estimate of the intermittency level [35,45,48].

The relation between ζ(q) and the Hurst exponentH is well known. In the classical Kolmogorov
theory, the exponents are related to the qth-order moment of the fluctuations via the relation ζ(q) = qH,
where the Hurst exponent describes the dynamical properties of the process: persistence (correlated
fluctuations, long-term memory), or anti-persistence (anticorrelated fluctuations, short-term memory).
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The scaling exponent for q = 1, therefore, coincides with the Hurst exponent itself, ζ(1) = H.
By exploiting the above relation ξ(q) = βq − 1 ∝ ζ(q), it is possible to define the generalized scaling
exponent as ξ(q) + 1 ≡ qH+ 1.

Examples of PDFs of ξ(q), with the values associated to percentiles p2.5, p50, and p97.5 indicated by
vertical bars, are shown in Figure 6 for the sample dated 2005/01/03, as obtained from the generalized
Hilbert spectra.
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Figure 6. Histograms of the measured scaling exponents ξ(q) for the first three orders q = 1, 2, 3
(form left to right columns), for the three magnetic components x, y, z (top to bottom), for sample
2005/01/03. Vertical bars indicate the various percentiles: p2.5 (dashed line), p50 (dotted line), and p97.5

(dash-dotted line), respectively.

Finally, Figure 7 shows the order q dependence of the scaling exponents ξ(q), estimated through
the HSA in the inertial range, for the three magnetic components (color coded) and for three of the
samples used here (the three different panels). Markers and error bars represent the median and
the uncertainty of the ensemble, obtained as described above as the p2.5, p50, and p97.5 percentiles



Universe 2020, 6, 116 10 of 14

of the distributions. The dashed lines represent linear dependency of the exponents on the order,
expected for homogeneous, non-intermittent scaling of the fluctuations. The Hurst exponentsH are
thus computed through a simple least-square fit of the linear relation, and the resulting values are
included in each panel. From the analysis of the scaling exponents ξ(q), three different scenarios have
emerged: (I) all the components of B(t) field have the same Hurst numberH (Figure 7); (II) the three
H are substantially different for the components of B(t); (III) two components are similar and the
third is different. Despite the small differences observed in the various Bi components, the Hurst
exponent never reach the value for uncorrelated processes. For all samples the Hurst exponent
present a valueH < 0.5 (Figure 7), revealing (consistently) the presence of an anti-persistent dynamic
(short-range correlations), compatible with the Kolmogorov scaling observed in the tradiational fluid
turbulence. In some cases, a small deviation from the pure linear scaling is observed as the moment q
increase, signature of the presence of a weak intermittentcy level. The Kolmogorov-like scaling k−5/3

‖
(nearly self-similar) and a weak intermittency, could be characteristics features of the slab component
(k‖ magnetic fluctuations) of the Alfvénic SW turbulence. Relatively weak levels of intremittency,
or even its complete absence, have been observed in another experimental study, performed in the
inverse cascade range of the two-dimensional turbulence, for an electromagnetically driven flow [64].
However, it should be pointed out that, contrary to what shown in Figure 3, in the 2D experiment no
significant difference was found between parallel and perpendicular fluctuations [64].
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Figure 7. Scaling exponents ξ(q) obtained through the HSA, in the inertial range, for three differents
samples (solid symbols).

Similar results have been reported also for others SW intervals [13,17] (in accordance with the
selection criteria presented in this work). In particular it has been found that by removing the
intermittency from the data, the PSD slope becomes close to k−5/3 losing the angle dependence
between the local mean magnetic field and the flow direction.

5. Conclusions

In the attempt to describe the statistical properties of the k‖ magnetic fluctuations of the fast
Alfvénic solar wind, the EMD and the HSA have been applied to accurately selected Wind data
intervals. By evaluating the generalized q-th order Hilbert spectra Lq(ω), the analogous of the scaling
exponents of the structure functions have been evaluated from the data. In order to obtain a robust
indication of the scaling properties of the various samples, a bootstrap resampling procedure have
been applied in order to construct a prediction interval for the spectral slopes βq, and scaling exponents
ξ(q), measured via the Hilbert spectra Lq, in the fast Alfvénic fast solar wind data. From the PDFs
for the various slopes β2, estimated through the second order HSA analogous of the Fourier PSD,
it has been found that βx

2 ≈ 1.65, β
y
2 ≈ 1.70, and βz

2 ≈ 1.68, which robustly indicate that the parallel
magnetic spectrum in fast, Alfvénic solar wind are characterized by the classical Kolmogorov β = 5/3
spectral index. Moreover, the scaling exponents ξ(q) shows an almost linear dependence on the order
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q, and despite the small differences among the three components Bi, the Hurst number H ≡ ξ(1)
never reaches the threshold value for uncorrelated processes. In other words, H < 0.5, revealing
the anti-persistent behavior (short range correlations) of the k‖ magnetic fluctuations. The relatively
weak level of intermittency (or its absence) could also represents a key characteristics of k‖ magnetic
fluctuations. In light of this, since intermittency is a fundamental for the nonlinear turbulent cascade,
it can be argued that the k‖ turbulent properties could arise from a superposition of uncorrelated
Alfvénic fluctuations, rather than from a fully developed nonlinear cascade. In this framework,
the turbulent cascade could be activated among oppositely directed Alfvén modes, indicating that quasi
uni-directional propagating Alfvén waves may produce a Kolmogorov-like turbulent spectrum [22].

The results presented in this work will be relevant to the Parker Solar Probe and Solar Orbiter
missions, whose orbital characteristics are likely to sample solar wind intervals with the required
characteristics to better confirm our observations and additionally study the radial evolution of
such turbulence.
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