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Abstract— A 2U CubeSat, (20cm by 10 cm by 10 cm) is being 

developed to make impedance measurements of plasma in the 

ionosphere at 400 km altitude. Because the new instrument is able 

to make measurements rapidly, and because of the severe power 

and size constraints of the satellite, special care is needed in storing 

the measurement data and transmitting it to Earth.  For both the 

measurements and for general housekeeping functions, the 

software of the CubeSat must be able to respond rapidly to events 

and operate in a manner that is not only flexible and extensible but 

also power efficient.  This work outlines the process by which the 

software was designed to satisfy the constraints of the mission.  
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I. INTRODUCTION 

Designing an instrument to measure the properties of the 
ionosphere requires design of a space-borne instrument which, 
in turn, imposes severe limitations on size, power, 
communications bandwidth, and processor capability.  
Conversely, there is a clear scientific motivation for the 
instrument to gather as much data as possible.  The trade-off of 
the two competing sets of goals drives the design of a suitable 
system. 

A team of students and faculty at the University of South 
Alabama is designing and constructing a small-form-factor 
satellite or “CubeSat” to make the measurements.  Specifically, 
the satellite will debut a new instrument called a Time Domain 
Impedance Probe (TDIP) which is designed to measure the 
impedance versus frequency of ionospheric plasma. [1] 

This paper describes the software architecture of the satellite 
that was optimized for power efficiency and ease of 
development, and analyzes some of the data flows inside the 
satellite. 

II. REVIEW OF LITERATURE 

A. Time Domain Impedance Probe 

The goal of the instrument being designed is to make 
measurements of absolute electron density and electron neutral 
collision frequency, both properties of the plasma in Earth’s 

ionosphere, at an extremely fine spatial resolution.  The core of 
the technique is to make a single impulsive measurement, 
relying on the property that an impulse in the time domain 
contains frequency content over a broad range of frequencies 
[1]. 

As opposed to older techniques that sweep across 
frequencies (i.e. make a series of measurements at different 
frequencies), the new time-domain impedance probe (TDIP) 
samples the neighboring plasma in a single measurement taking 
100 µs [1]. 

At the sampling speed employed by the TDIP, the satellite is 
able to make a measurement every 0.7 meters, at an orbital 
velocity of 7 km/s. Thus there is a substantial gap between the 
instrument’s ability to gather data and the satellite’s ability to 
send the data back to Earth. Further, the small size of the satellite 
constrains the area available for solar power, and that, in turn, 
imposes severe constraints on the power and energy available 
both for the instrument and for the computing infrastructure 
needed to operate the satellite autonomously. 

B. Small satellites 

A popular method for cost-effective deployment of space-
borne instruments is to use small satellites known as “CubeSats” 
[2,3].  A typical CubeSat is a 10 cm cube, and many are larger.  
Often CubeSats are launched in connection with commercial 
satellite launches, and so the incremental cost to launch a 
CubeSat is nearly zero.  The CubeSat being designed in this 
project is a 2U Cubesat, which means that it is the size of two 
stacked 10-cm. cubes (20 cm x 10 cm x 10 cm). 

The unique problems of space systems, and especially the 
issue of transmitting large volumes of scientific data over 
relatively slow channels, has been widely studied [4]. 

III. DESCRIPTION OF INSTRUMENT AND SATELLITE 

The TDIP is designed to be housed in the CubeSat, and the 
CubeSat will provide the systems necessary for the TDIP to 
function, including power and communications. 
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A. Time Domain Impedance Probe 

The new version of the TDIP is designed to make a 
measurement in 100 µs by sampling data at 40 MS/s.  (The 
version described in the literature sampled at 5 MS/s [1] and 
future enhancements are being considered [5]). 

This is accomplished by having two digital FIFOs feeding 
two 12-bit DACs (to create the waveform applied to the probe 
and to create a reference waveform) and having one digital FIFO 
at the output of a 12-bit ADC to capture the resulting signal.  
Since the signal being captured is the difference of the signal at 
the spacecraft probe and the reference signal, only one signal 
needs to be captured. 

At 40 MS/s, the measurement requires the capture of 4000 
digital samples, each 12 bits in size.  Thus a single measurement 
is 6000 bytes large. 

In a single orbit, if the instrument is operated continuously, 
there will be 61 million measurements. This amount of data will 
be too large to telemeter in a reasonable amount of time to 
ground. Thus the TDIP will only be operated in the dusk side 
between 1700 to 1900 MLT (mean local time), and at selected 
intervals during a month. 

The complete TDIP consists of two main components.  The 
first is a circuit board to house the analog circuitry, the FIFO 
chips, the ADCs and DAC, a microcontroller, and glue logic.  
The second is the actual probe antenna, which is designed to 
unfold in space. 

B. CubeSat Architecture 

The remainder of the CubeSat is designed to house the 
circuit board and probe and provide all of the necessary support 
functions. 

Power is provided by a combination of solar cells, batteries, 
and a charging circuit.  The board housing the circuit is called 
“EPS.” 

The satellite will need to operate at a known orientation and 
at known locations.  These functions will be provided by an 
attitude determination and control system (ADCS) which will 
use magnetorquers (coils that provide torque in the Earth’s 
magnetic field) and reaction wheels to orient the craft.  The 
board housing the circuitry is called “ADCS.” 

The satellite will need a control system to maintain a 
schedule, monitor power and orientation, coordinate making 
measurements, and coordinate sending the data back to Earth.  
The board housing the microcontroller that performs these tasks 
is called Command and Data Handling or “C&DH”.  Since 
C&DH will manage the schedule, it has an on-board SD card to 
maintain it.  (An SD card is preferred in case the satellite loses 
power.) 

Communications will be provided through a third-party 
company.  The software to establish and use a downlink to Earth 
runs on a Beagle Bone Black board, and the board runs Linux 
and has access to its own SD card for storage. 

The communications system includes a low-bitrate 
omnidirectional simplex system, which functions almost like a 
text-messaging system, and a high-bitrate directional duplex 

system. The latter system can send data down to Earth at data 
rates up to 256 kilobits per second (kbit/s). While the simplex 
system operates in the L-band, the high-speed duplex system 
works in the S-band. Both systems use planar printed antennas 
without requiring any deployment mechanism. Radios will use 
Globalstar’s 32 LEO satellites. Through the duplex system, the 
CubeSat will be able to communicate with three satellites at a 
time.  

The architecture of the satellite is shown below in Fig. 1. 

 

Fig. 1. Block diagram of the complete CubeSat.  Note that both C&DH and 
the TDIP board have access to non-volatile storage. 

For most of the communications between boards, the 
industry-standard CAN bus has been selected.  CAN provides 
layers of error detection and correction, and has been widely 
adopted by the automotive industry [6].  It is also widely used in 
CubeSats because of its robustness [7]. 

As will be explained below, there are other communications 
options available for board-to-board communications, including 
CAN, SPI, I2C, and UARTs. The Kinetis family of low-power 
microcontrollers was selected for the mission, and all four of 
these interfaces are supported. 

C. Design Constraints 

The satellite’s design imposes several constraints. 

One of the more obvious constraints is that of power and 
energy.  The total energy is limited by the energy storage of the 
batteries, and the power is limited by the capacity of the on-
board DC-DC converters.   

Since the satellite is solar powered, tasks that require more 
power than the solar panels can provide and tasks that must be 
performed in the Earth’s shadow must use the batteries.  In such 
cases, the batteries will need to charge between tasks, but the 
duty cycle (the time between tasks) can be spaced out as needed 
to recharge. 

One subtle power constraint is the Beagle Bone Black that 
runs the communications software.  The board runs Linux and 
uses DRAM and, as a result, consumes 1-2 orders of magnitude 
more power than the other boards.  (Another reason for the 
disparity is that the Kinetis family of microcontrollers is 
optimized for extremely low power consumption.) 

Another constraint is space.  The complete satellite will be a 
“2U” design, meaning it is the size of 2 10-cm cubes placed side-
by-side, and so each circuit board is roughly a 10-cm square.  As 
a result, the TDIP board does not have enough room for its own 
SD card. 

Another constraint has to do with making measurements and 
communicating.  The satellite probes should be perpendicular to 
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the direction of motion in order to make the TDIP measurement.  
In order to transmit, however, the satellite needs to be oriented 
with the antenna facing away from Earth. In other words, 
between making the measurement and transmitting the results, 
the satellite needs to change its orientation.  Since physical 
motion requires energy, it is possible that the satellite will lose 
power during the time it is being reoriented.  This, in turn, 
creates a requirement that the data be stored in a non-volatile 
medium while the satellite is being reoriented. 

The only way to satisfy these constraints is to store the TDIP 
measurement data on the TDIP for subsequent transfer to the 
BeagleBoneBlack to Earth.. 

The remainder of the paper explains how the software was 
designed with the constraints in mind, and how the TDIP / BBB  
interface was designed and optimized. 

IV. SOFTWARE ARCHITECTURE 

The architecture of the JagSat software stack began with the 
design of the C&DH software. 

A. C&DH Software Architecture 

The original goal of the software architecture was to develop 
the software for the Command and Data Handling board.  Since 
the C&DH is designed to manage the overall schedule of the 
satellite, it needs to receive updates from all of the other boards, 
maintain a schedule, and issue commands to all of the other 
boards.  For example, it must notify TDIP when to make a 
measurement, notify ADCS went to re-orient to transmit 
scientific data, and notify TDIP and the BBB when it is time to 
transfer the data and send it to Earth. 

The first observation was that DRAM is relatively power-
hungry, and so the software was designed to fit inside the 
footprint of the Kinetis microcontroller’s on-board SRAM.  The 
second observation was that the C&DH must respond to a 
variety of events, and that the nature of the events may change 
as the software and hardware design proceeds.  That is, the input 
must be flexible and extensible.  The third observation was that 
scheduled events could be mapped in such a way to appear to be 
just like all other real-time events. 

The software was then structured as follows.   

First, each of the interrupt handlers for input events, such as 
the CAN interrupt handler, was designed to place incoming 
messages into a single, central queue of incoming events.  The 
data structure of the elements of the queue was developed to 
include both the payload of the message and sufficient metatdata 
about the origin of the message to permit the rest of the software 
to understand the message’s origin and significance. 

Second, a periodic interrupt was created to poll the calendar.  
The calendar is the primary list of scheduled events, and a 
polling event entails a simple check to see if the time of the next 
event has arrived.  If so, the event is then added to the central 
incoming-event queue.  That is, the event is handled in a manner 
identical with all other events.  This enables the rest of the 
software to process scheduled events in a manner completely 
uniformly with treatment of real-time events. 

Third, a central dispatcher is being created to dequeue input 
events and route each to its appropriate handler.  This enables 
the software developers to create and add handlers as needed, 
and to map key functions of the satellite to appropriate handlers.  
For example, one handler might be dedicated to determining the 
overall operational state of the satellite, while another might be 
dedicated to managing the batteries and solar panels.  The 
handlers will require shared access to a global data structure that 
represents the overall running state of the C&DH board, and will 
have read and write access to the state.  As another example, a 
message from the duplex communications system could require 
an update to the onboard schedule of events. 

Fourth, an output queue can be created of outgoing 
commands and messages.  These are the commands that each 
handler issues in response to state updates.  For example, a 
scheduled event to make a scientific measurement will be 
processed by the schedule handler and result in a command to 
the TDIP board to perform a measurement cycle. 

Fifth, the queue can be connected to another dispatcher that 
routes the outgoing messages to the correct communications 
interface.  In other words, this dispatcher is the dual of the 
incoming-event dispatcher.  One of the interfaces is a calendar-
update handler, and so this is how the calendar is updated. 

This architecture is illustrated below in Fig. 2. 

Fig. 2. Overall architecture of the C&DH software.  This implements an efficient real-time control system. 
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One interface that is not shown in Fig. 2 is the interface to 
the GPS board.  The GPS board will be mounted onto the C&DH 
board, and the interface to it will be via a serial port.  The C&DH 
will be able to poll the GPS and update the last known location 
in the state information. 

The resulting architecture is both extremely efficient, in 
terms of memory footprint, and extensible.  New handlers can 
be added, and new communication paths can be enabled. 

B. Remaining Boards 

Once the design of the C&DH software was completed, the 
observation was made that essentially the same architecture 
could be used on all of the remaining boards. 

Consider ADCS.  The periodic-interrupt facility can be used 
to create a polling loop for the main control loop of the satellite.  
The loop will likely be based on an Enhance Kalman Filter, 
which performs best if updated in regular and periodic intervals.  
Once it reaches the time for an update, the timer handler for 
ADCS can poll all of the motion- and position-sensing elements, 
update its estimate of orientation, and issue commands as 
needed to actuators.  This is illustrated below in Fig. 3. 

 

Fig. 3. Example of architecture ported to ADCS board.  The state information 
includes position and orientation estimates, and some of the outgoing interfaces 
are directly to actuators to change position, such as magnetorquers and reaction 
wheels. 

The exact rate gyro for the ADCS is still being determined, 
as testing results from the model initially selected was less than 
desirable.  This is an example of the advantage of the current 
software approach – the handler for polling the rate gyro can be 
updated, without requiring any other software changes. 
Likewise, the selection of a control loop only affects a single 
software entity. 

In the case of EPS, the polling facility can be used to update 
charge-status information and broadcast it to the rest of the 
satellite via CAN.  It can also respond to commands from 
C&DH (received via CAN) to power down unneeded functions. 

In the case of TDIP, it can respond to commands from 
C&DH to make (and store) scientific measurements and, when 
ready, send the measurements to the BBB for transmission to 
Earth. 

With the architecture in place, it remains to be decided how 
to route the scientific data inside the satellite. 

V. HANDLING SCIENTIFIC DATA 

The process of handling the data acquired by the TDIP was 
designed taking the constraints into account.  

A. Board-to-Board Communications 

Communications between boards can be accomplished via 
one of four different interfaces. 

The Serial Peripheral Interface (SPI) is a popular method for 
connecting embedded systems [8].  For example, NAND flash 
often supports a SPI interface, as do many magnetometers and 
accelerometers.   

The basic data format is usually a single-byte address 
followed by some bytes of data, although formats vary 
considerably.  For the purpose of this analysis, it is assumed that 
there is a one-byte address (or possibly data sequence number) 
followed by 16 bits of data. 

The transmission speed of SPI can be relatively high (on the 
order of megabits per second), but the fact that the data is 
traveling between boards lowers the practical data rate.  A speed 
of 200 kbit/s is assumed. 

The Inter-IC (IIC or I2C) bus is another popular embedded 
interface, often found with sensors.  Its data format is one byte 
of device address, one byte of register address, and one byte of 
data. Because I2C uses an open-drain driver, the speed is usually 
constrained to be on the order of 100 kbit/s, especially when 
traveling off-board [8]. 

The Controller Area Network (CAN) is found often in 
automotive applications, and was selected here as the primary 
control bus because of its robustness.  A typical CAN frame is 
about 14 bytes in size and carries 8 bytes of data. Typical CAN 
speeds are 100 kbit/s to about 1 Mbit/s, and, since CAN was 
designed for automobiles, it can run considerable distances 
robustly [6].  A data rate of 200 kbit/s is assumed here.  

Finally, RS-232 communications, via dedicated UARTs, is 
another option [8].  RS-232 typically only operates up to about 
115 kbit/s.  It natively has very low overhead, but also has no 
mechanisms for error detection or recovery.  Here it is assumed 
a protocol like Kermit is in use, which has about 14% overhead 
[9]. 

The selection of a communications bus must take into 
account both the data rate and the overhead of the bus.  For 
example, I2C transmits 3 bytes on the bus for every 1 byte of 
data.  The communication options are summarized below in 
Table 1. 

The message size is the size of a single message on the bus.  
The payload size is the amount of data each message can carry, 
and the efficiency is the ratio of payload to message.  The size 
of data, as dictated by TDIP, is 6000 bytes.  Each bus then carries 
the combination of the 6000-byte payload and the overhead.  
The total time to transmit the payload can then be calculated. 

SPI results in the fastest data transmission time. Its relatively 
high overhead is offset by its faster data rate.  The UART option 
is quite fast – its relatively slow 115 kbps data rate compares 
well to other embedded standards – but CAN has an almost 
identical data-transmission time because its faster rate offsets its 
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higher overhead. Since CAN is already in use, and since CAN 
offers multiple levels of error detection and recovery (unlike a 
UART), its use should also be considered. 

TABLE I.  COMPARISON OF COMMUNICATION BUSES 

Property 
Communication Bus 

SPI I2C CAN UART 

Message 
Size 

(Bytes) 

3 3 14.375 1.16 

Data 
Payload 

Size 
(Bytes) 

2 1 7 1 

Efficiency 66.7% 33.3% 48.7% 86.0% 

Data Rate 
(bits/s) 

200,000 100,000 200,000 115,200 

Size of 
Data 

(Bytes) 

6000 6000 6000 6000 

Size of 
Message 
(Bytes) 

9000 18000 12322 6977 

Board-to-
board 

transmit 
time (s) 

0.360 1.440 0.493 0.484 

B. Storage 

There are two options for storing the data.  The first is to 
store it temporarily on the TDIP board SD card, and the second 
is to store it on the Comms Beagle Bone Black SD card.  While 
storing it on the Beagle Bone Black seems obvious – it also 
manages communications and so the data would be ready for 
transmission – the Beagle Bone Black also takes quite a bit of 
time to boot up and consumes quite a bit more current than the 
other boards.  The trade-off of boot time and power consumption 
will be detailed below. 

C. Data Transmission to Earth 

The final step is the transmission of the data to Earth.  At 256 
kbit/s, the 6000-byte payload will take about 0.2 seconds to 
transmit.  The radio will consume about 5 Watts of power while 
transmitting. This step is invariant – it must be taken regardless 
of the data storage method that is selected. 

Data compression has been considered, but will likely not be 
implemented.  Since this is the first time a TDIP will have been 
flown in orbit, the artifacts created by data compression are 
unknown, and there is a clear concern that the compression may 
average out the features that the probe detects. 

Simpler operations, such as averaging results from multiple 
TDIP measurements, may be performed in flight.  There is a 
trade-off that needs to be peformed, that of performing the 
calculations on the relatively slower, but much lower-powered, 
Kinetis microcontroller versus the much faster, but higher-
powered, Beagle Bone Black.  Benchmarking of the software to 

perform the averaging will be needed to determine which option 
consumes lesser energy (computation time times power 
consumption while computing). 

D. Energy Budget and Selection of Architecture 

There are three options for handling the scientific data. The 
first is to store the data on the TDIP board right after it is 
acquired, and then transfer it to the communications board at 
downlink time.  The second is to transfer the data to the 
communications board right after it is acquired, then power 
down the communications board and reboot it at downlink time.  
The third is to transfer the data to the communications board 
right after it is acquired, then transmit the data soon afterwards. 
However, the satellite must be reoriented between data 
acquisition and transmission, so this option cannot be used. 

In comparing the first two options, the difference between 
them lies in the board that stores the data.  In the first option, the 
TDIP board stores the data, goes to sleep, wakes up, and 
transfers the data for downlink. In the second option, the 
communications board is awakened, stores the data, goes to 
sleep, wakes up, and transfers the data for downlink.  In other 
words, the difference lies in the amount of energy required to 
operate the board used for temporary data storage (and to store 
the data temporarily). 

The Kinetis-based TDIP board consumes about 20 mW of 
power and, because it is running a very lean run-time kernel, 
“boots” (that is, wakes up) in a few ms. 

The communications board (which is a Beagle Bone Black 
embedded computer) requires about 10 seconds to boot and 
consumes 2.3 Watts while booting. 

Thus the communications board expends about 23 Joules of 
energy to boot, while the TDIP board expends a few mJ. Thus 
using TDIP is clearly the preferred option. 

Another clear advantage of the approach is that, because the 
communications system only has to be booted once, the energy 
to boot is amortized over both the data-transfer process from 
TDIP and the data transfer to Earth.  

VI. CONCLUSIONS AND FUTURE WORK 

Based on the analysis, the SPI interface offers the prospect 
of the fastest data rate.  However, CAN offers layers of error 
detection and recovery and also has an advantage that it has 
already been selected for board-to-board communications. 

Future work will be needed to address the downlink to Earth, 
taking into account the actual data rate of the link, the 
directionality of the pointing requirements needed to attain data 
rates, and the possibility of data compression. 
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