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ABSTRACT
A sunflower with r petals is a collection of r sets so that the inter-

section of each pair is equal to the intersection of all. Erdős and

Rado proved the sunflower lemma: for any fixed r , any family of

sets of sizew , with at least aboutww
sets, must contain a sunflower.

The famous sunflower conjecture is that the bound on the number

of sets can be improved to cw for some constant c . In this paper, we

improve the bound to about (logw)w . In fact, we prove the result

for a robust notion of sunflowers, for which the bound we obtain is

tight up to lower order terms.

CCS CONCEPTS
• Mathematics of computing → Combinatorics; • Theory of
computation → Pseudorandomness and derandomization; Com-
plexity theory and logic.
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1 INTRODUCTION
Let X be a finite set. A set system F on X is a collection of subsets

of X . We call F aw-set system if each set in F has size at mostw .
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Definition 1.1 (Sunflower). A collection of sets S1, . . . , Sr is an

r -sunflower if

Si ∩ Sj = S1 ∩ · · · ∩ Sr , ∀i , j .

We call K = S1 ∩ · · · ∩Sr the kernel and S1 \K , . . . , Sr \K the petals
of the sunflower.

Erdős and Rado [13] proved that large enough set systems must

contain a sunflower. The name “sunflower" is due to Peter Frankl.

Lemma 1.2 (Sunflower lemma [13]). Let r ≥ 3 and F be aw-set
system of size |F | ≥ w! · (r − 1)w . Then F contains an r -sunflower.

Erdős and Rado conjectured in the same paper that the bound in

Lemma 1.2 can be drastically improved.

Conjecture 1.3 (Sunflower conjecture [13]). Let r ≥ 3. There
exists c(r ) such that anyw-set system F of size |F | ≥ c(r )w contains
an r -sunflower.

The bound in Lemma 1.2 is of the formww (1+o(1)
where the o(1)

depends on r . Despite nearly 60 years of research, the best known

bounds towards the sunflower conjecture were still of the form

ww (1+o(1))
, even for r = 3. More precisely, Kostochka [27] proved

that anyw-set system of size |F | ≥ cw! · (log log logw/log logw)w

must contain a 3-sunflower for some absolute constant c . Recently,

Fukuyama [17] claimed an improved bound for r = 3 tow(3/4+o(1))w
,

but this proof has yet to be verified.

In this paper, we vastly improve the known bounds. We prove

that anyw-set system of size (logw)w (1+o(1))
must contain a sun-

flower. More precisely, we obtain the following:

Theorem 1.4 (Main theorem, sunflowers). Let r ≥ 3. Any
w-set system F of size |F | ≥ (logw)w (r · log logw)O (w ) contains
an r -sunflower.

1.1 Robust Sunflowers
We consider a “robust" generalization of sunflowers, the study

of which was initiated by Rossman [40], who was motivated by

questions in complexity theory. Later, it was studied by Lovett,

Solomon and Zhang [29] in the context of the sunflower conjecture.

First, we define a more “robust" version of the property of hav-

ing disjoint sets. Given a finite set X , we denote by U(X ,p) the
distribution of sets Y ⊂ X , where each element x ∈ X is included in

Y independently with probability p (there are sometimes referred

to as “p-biased distributions”).
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Definition 1.5 (Satisfying set system). Let 0 < α , β < 1. A set

system F on X is (α , β)-satisfying if

Pr

Y∼U(X ,α )
[∃S ∈ F , S ⊂ Y ] > 1 − β .

As aforementioned, the property of being satisfying is a robust

analogue of the property of having disjoint sets.

Lemma 1.6 ([29]). If F is a (1/r , 1/r )-satisfying set system and
∅ < F , then F contains r pairwise disjoint sets.

Proof. LetF be a set system onX . Consider a random r -coloring
of X , where each element obtains any of the r colors with equal

probability. Let Y1, . . . ,Yr denote the color classes, which are a

random partition of X . For i = 1, . . . , r , let Ei denote the event that
F contains an i-monochromatic set, namely,

Ei = [∃S ∈ F , S ⊂ Yi ] .

Note that Yi ∼ U(X , 1/r ), and since we assume F is (1/r , 1/r )-
satisfying, we have

Pr[Ei ] > 1 − 1/r .

By the union bound, with positive probability all E1, . . . ,Er hold.

In this case, F contains a set which is i-monochromatic for each

i = 1, . . . , r . Such sets must be pairwise disjoint. □

Given a set system F on X and a setT ⊂ X , the link of F atT is

FT = {S \T : S ∈ F ,T ⊂ S}.

We now formally define a robust sunflower (which was called a

quasi-sunflower in [40] and an approximate sunflower in [29]).

Definition 1.7 (Robust sunflower). Let 0 < α , β < 1, F be a set

system, and let K =
⋂
S ∈F S be the common intersection of all sets

in F . F is an (α , β)-robust sunflower if (i) K < F ; and (ii) FK is

(α , β)-satisfying. We call K the kernel.

Lemma 1.8 ([29]). Any (1/r , 1/r )-robust sunflower contains an
r -sunflower.

Proof. Let F be a (1/r , 1/r )-robust sunflower, and let K =⋂
S ∈F S be the common intersection of the sets in F . Note that

by assumption, FK does not contain the empty set as an element.

Lemma 1.6 gives that FK contains r pairwise disjoint sets S1, . . . , Sr .
Thus S1 ∪ K , . . . , Sr ∪ K is an r -sunflower in F . □

The proof of Theorem 1.4 follows from the following stronger

theorem, by setting α = β = 1/r and applying Lemma 1.8. The

theorem verifies a conjecture raised in [29], and answers a question

of [40].

Theorem 1.9 (Main theorem, robust sunflowers). Let 0 <
α , β < 1. Any w-set system F of size |F | ≥ (logw)w · (log logw ·

log(1/β)/α)O (w ) contains an (α , β)-robust sunflower.

The bound of (logw)w (1+o(1))
for robust sunflowers is sharp; it

cannot be improved beyond (logw)w (1−o(1))
. We give an example

demonstrating this in Lemma 2.1.

1.2 Connections to Computer Science
The sunflower lemma has had many applications in mathematics

and computer science. Here we briefly discuss some of the computer

science applications. While it is reasonable to assume that some of

the bounds obtained using the sunflower lemma can be improved

using our new results, we have not attempted a thorough literature

survey to see which ones can be improved, and leave this for future

work.

Circuit lower bounds. Alon, Karchmer, and Wigderson [1] used

the sunflower lemma to prove a lower bound for the number of

wires in a circuit that computes the Hadamard transform by depth-

2 circuits. Jukna [25] extended this work, and also used the sun-

flower lemma to prove similar lower bounds for approximating the

Hadamard transform. As aforementioned, Rossman [40] defined

robust sunflowers, motivated by an application to monotone cir-

cuit lower bounds. The improved (robust) sunflower lemma has

been used by Cavalar, Kumar, and Rossman [6] to improve previous

monotone circuit lower bounds.

Hardness of approximation. Dinur and Safra [11] used sunflowers
in the soundness analysis of their proof of hardness of approxima-

tion for the Minimum Vertex Cover problem.

Matrix multiplication. Alon et al. [2] studied variants of the sun-

flower conjecture and their connections with fast matrix multipli-

cation algorithms.

Pseudorandomness. Gopalan, Meka, and Reingold [20] used the

robust sunflowers for DNF sparsification, which gives better pseu-

dorandom generators fooling small-width DNFs and faster deter-

ministic algorithm counting satisfying assignments of DNFs.

Cryptography. Luby et al.[32] studied broadcast encryption sys-

tem, and proved a trade-off between the number of establishment

keys held by each user and the number of transmissions needed

to establish a new broadcast key, where their lower bounds relies

on the sunflower lemma. Naor et al.[35] extended this to a wider

regime of parameters. Gentry et al.[19] proved that the bounds are

optimal using a weaker notion of sunflowers.

Dachman-Soled et al. [8] studied locally decodable and updatable

non-malleable codes. They showed that a sunflower structure in

the codewords allows for a rewind attack.

Komargodski et al. [26] showed that finding a sunflower (or a

pair of duplicate sets), where the underlying set system is given by

the output of a succinct circuit, is hard assuming the existence of

collision resistant hash functions.

Data structure lower bound. In the bit probe model, Frandsen

et al. [15] used the sunflower lemma to prove lower bounds for

dynamic word problems, Mortensen et al. [34] used it to prove

trade-offs in two stage greater-than functions, and Rahman [37]

used it to analyze the increment operation for integers.

In cell probe model, Gal et al. [18] used the sunflower lemma

to prove lower bounds for the redundancy/query time trade-off of

solutions to static data structure problems, and Natarajan et al. [36]

used a weaker notion of sunflowers to analyze non-adaptive data

structures computing the minimum, median, and predecessor.
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In the CRCW PRAM model, the sunflower lemma was used to

prove lower bounds by Berkman et al. [5] and incomparability

results by Grolmusz et al. [21] in various models.

Property testing. Haviv et al. [23] showed that a refutation of

a variant of the sunflower conjecture implies a super-polynomial

lower bound on the query complexity of the canonical tester for

cycle freeness. Balaji et al. [4] used the sunflower lemma to obtain

lower bounds on the query complexity of graph properties in the

node query setting.

Fixed parameter complexity. The sunflower lemma is a common

kernelization technique used in FPT algorithms [7, 12]. For example,

it was used for hitting set problems by Flum et al. [14], for constraint

satisfaction problem under finite Boolean constraint families by

Marx et al. [33], for the subgraph test problem by Jansen et al. [24],

and for set matching problems by Dell et al. [9]. The last two works

also use it for graph packing problems.

Thresholds in random graphs. The technique developed in this

paper has been used by Frankston, Kahn, Narayanan, and Park [16]

to resolve a conjecture of Talagrand in random graph theory.

1.3 Proof Overview
In this section, we explain the high level ideas underlying the proof

of Theorem 1.9. Our framework builds upon the work of Lovett,

Solomon and Zhang [29]. Their main idea was to apply a structure

vs. pseudo-randomness approach. However, the proof relied on

a certain conjecture on the level of pseudo-randomness needed

for the argument to go through. Our main technical result is a

resolution of this conjecture.

To be concrete, we consider the problem of finding a 3-sunflower,

which corresponds in our framework to finding a (1/3, 1/3)-robust

sunflower (see Lemma 1.8). Given w ≥ 2, our goal is to find a

parameter κ = κ(w) such that any w-set system of size κw must

contain a (1/3, 1/3)-robust sunflower, and hence also a 3-sunflower.

Recall the definition of links: FT = {S \ T : S ∈ F ,T ⊂ S}.
We say that a w-set system is κ-bounded if (i) |F | ≥ κw ; and (ii)

|FT | ≤ κw−|T |
for all non-empty T (The actual definition needed

in the proof is more delicate, see Definition 3.1 for details).

Let F be a w-set system of size |F | ≥ κw . Then either F is

κ-bounded, or otherwise there is a link FT of size |FT | ≥ κw−|T |
.

In the latter “structured" case, we can pass to the link and apply

induction. (This argument is implicit in the proof of Lemma 3.4.)

Thus it suffices to consider the “pseudo-random" case ofw-set

systems which are κ-bounded. In [28, 29], it was conjectured that

for some absoluteC , a (logw)C -bounded F is necessarily (1/3, 1/3)-

satisfying. We show that there is someκ = (logw)1+o(1) is sufficient

(see Theorem 3.5), which represents ourmain technical contribution.

This completes the proof of Theorem 1.9. We also show that κ =

(logw)1−o(1) is necessary (see Lemma 2.1), so this is tight.

We next explain how we obtain the bound on κ. Let F be aw-set

system which is κ-bounded. In [29] it was conjectured that there

exists a (w/2)-set system F ′
that “covers” F ; for any set S ∈ F ,

there exists S ′ ∈ F ′
such that S ′ ⊂ S , and F ′

is κ ′-bounded for

κ ′ ≈ κ. If this conjecture is true, then it is sufficient to prove that F ′

is (1/3, 1/3)-satisfying, as this would imply that F is also (1/3, 1/3)-

satisfying (in the language of [29], this corresponds to “upper bound

compression for DNFs”. For more details on the connection to DNF

compression see [29–31]).

What we show is that this conjecture is true with two modifica-

tions: we are allowed to remove a small fraction of the sets in F ,

and also remove a small random fraction of the elements in the base

set X . To be more precise, sampleW ∼ U(X ,p) for p = O(1/logw).

We show that with high probability overW , for most sets S ∈ F ,

there exists a set S ′ ∈ F such that: (i) S ′ \W ⊂ S \W ; and (ii)

|S ′ \W | ≤ w/2. Thus we can move to study the set system F ′

comprised of the S ′ \W above, which “approximately covers” F .

Note that F ′
is a (w/2)-set system which is κ ′-bounded for κ ′ ≈ κ.

In the actual proof, we will replacew/2 with (1 − ε)w for a small ε
to improve the bounds. For details see Lemma 3.6. Applying this

“reduction step” iteratively t = logw times reduces the sizew dras-

tically, and then we can apply standard tools (Janson’s inequality,

see Lemma 3.9). We get that if we sampleW1, . . . ,Wt ∼ U(X ,p)
(formally, they are disjoint, but we ignore this detail here), then with

good probability there exists S ∈ F such that S ⊂ W1 ∪ · · · ∪Wt .

Setting p · t = 1/3 and the good probability to be 2/3 gives that F

is (1/3, 1/3)-satisfying, as desired.

To conclude, let us comment on how we prove the reduction

step (Lemma 3.6). The main idea is to use an encoding lemma,

inspired by Razborov’s proof of Håstad’s switching lemma [22, 39].

Concretely, forW ⊂ X and S ∈ F , we say that the pair (W , S)
is bad if there is no S ′ ∈ F such that (i) S ′ \W ⊂ S \W ; and

(ii) |S ′ \W | ≤ w/2. We show that bad pairs can be efficiently

encoded, crucially relying on the κ-boundedness condition. This
allows to show that for a randomW it is very unlikely that there

will be many bad sets. The (w/2)-set system F ′
is then taken to be

F ′ = {S ′ \W : S ′ ∈ F , |S ′ \W | ≤ w/2}.

1.4 Other Related Works
Other than the works alreadymentioned, there are twomore related

works that should be mentioned. The term “sunflower” was coined

by Deza and Frankl [10], as the original term used by Erdős and

Rado was ∆-systems. After the current work was made available on

the arXiv, Rao [38] simplified the proof using information theory

techniques.

Paper organization. Wegive an example showing that our bounds

for robust sunflowers are essentially tight in Section 2. We prove

our main technical result, Theorem 1.9, in Section 3.

2 LOWER BOUND FOR ROBUST
SUNFLOWERS

In this section, we construct an example of aw-set system without

robust sunflower, even though it has size (logw)w (1−o(1))
. For con-

creteness we fix α = β = 1/2, but the construction can be easily

modified for any other constant values of α , β . We assume thatw
is large enough.

Lemma 2.1. There exists aw-set system of size ((logw)/8)w−
√
w =

(logw)w (1−o(1)) which does not contain a (1/2, 1/2)-robust sunflower.

Let c ≥ 1 be determined later. LetX1, . . . ,Xw be pairwise disjoint

sets of sizem = log(w/c), and let X be their union. Let F̂ = X1 ×

· · · × Xw be the w-set system containing all sets which contain
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exactly one element from each of the Xi . We first argue that F̂ is

not satisfying.

Claim 2.2. For c ≥ 1, F̂ is not (1/2, 1/2)-satisfying.

Proof. LetY ∼ U(X , 1/2). We analyze the probability that some

Xi is disjoint from Y , which implies that no set in F̂ is contained

in Y . The probability is 1 − (1 − 2
−m )w = 1 − (1 − c/w)w , which is

more than 1/2 for c ≥ 1. □

Unfortunately, F̂ does contain a (1/2, 1/2)-robust sunflower with

a large kernel. For example, if T contains exactly one element from

each of X1, . . . ,Xw−1, then F̂T is isomorphic to Xw , and in partic-

ular is (1/2, 1/2)-satisfying.

To overcome this, let ε > 0 be determined later, and choose

F ⊂ F̂ to be a subsystem that satisfies:

|S ∩ S ′ | ≤ (1 − ε)w, ∀S, S ′ ∈ F , S , S ′.

For example, we can obtain F by a greedy procedure, each time

choosing an element S in F̂ and deleting all S ′ such that |S ∩ S ′ | >
(1 − ε)w . The number of such S ′ is at most

( w
εw

)
mεw ≤ 2

wmεw
.

Hence we can obtain F of size |F | ≥ 2
−wm(1−ε )w

.

Claim 2.3. For c ≥ 1/ε , F does not contain a (1/2, 1/2)-robust
sunflower.

Proof. Consider any set K ⊂ X . We need to prove that F does

not contain a (1/2, 1/2)-robust sunflower with kernel K . If it does,
FK must contain at least two sets, which implies that |K ∩ Xi | ≤ 1

for all i , and that in addition |K | ≤ (1 − ε)w . However, in this case

we claim even F̂K is not (1/2, 1/2)-satisfying.

To prove this, let I = {i : |K ∩ Xi | = 0} where |I | ≥ εw . Let

Y ∼ U(X , 1/2). The probability that there exists i ∈ I such that Y

is disjoint from Xi is 1 − (1 − 2
−m ) |I | ≥ 1 − (1 − c/w)εw which is

more than 1/2 for c ≥ 1/ε . □

To conclude the proof of Lemma 2.1 we optimize the parameters.

Set c = 1/ε . We have |F | ≥ 2
−w (log(εw))(1−ε )w . Setting ε = 1/

√
w

gives |F | ≥ ((logw)/8)w−
√
w = (logw)(1−o(1))w .

3 PROOF OF THEOREM 1.9
We proceed to prove Theorem 1.9. The main idea is to apply a

structure vs. pseudo-randomness paradigm, following the approach

outlined in [29]. Let F be a set system, and let σ : F 7→ Q≥0 be a

weight function that assigns non-negative rational weights to sets

in F which are not all 0. For simplicity, we do not permit irrational

weights. We call the pair (F ,σ ) a weighted set system. For a subset

F ′ ⊂ F we write σ (F ′) =
∑
S ∈F′ σ (S) the sum of the weights of

the sets in F ′
.

A weight profile is a vector s = (s0; s1, . . . , sk ) where 1 ≥ s0 ≥

s1 ≥ · · · ≥ sk ≥ 0 are rational numbers. We assume implicitly that

si = 0 for all i > k .

Definition 3.1 (Bounded weighted set system). Let s be a weight
profile that s = (s0; s1, . . . , sw ). A weighted set system (F ,σ ) is
s-bounded if

(i) σ (F ) ≥ s0;
(ii) σ (FT ) ≤ s |T | for any link FT with non-empty T .

In particular, F is aw-set system.

Definition 3.2 (Bounded set system). Let s be aweight profile. A set

systemF is s-bounded if there exists aweight functionσ : F 7→ Q+
such that (F ,σ ) is s-bounded.

We note that one may always normalize a weight profile to have

s0 = 1. However, keeping s0 as a free parameter helps to simplify

some of the arguments later.

The main idea is to show that set systems which are s-bounded,
for s appropriately chosen, are “random looking” and in particular

must be (α , β)-satisfying. This motivates the following definition.

Definition 3.3 (Satisfying weight profile). Let 0 < α , β < 1. A

weight profile s is (α , β)-satisfying if any s-bounded set system is

(α , β)-satisfying.

The following lemma underlies our proof of Theorem 1.9. This

is implicitly where the “induction” on the “structured part” of the

set family is occurring.

Lemma 3.4. Let 0 < α , β < 1 and w ≥ 2. Let κ = κ(w) >

1 be a non-decreasing function of w such that the weight profile
(1;κ−1, . . . ,κ−ℓ) is (α , β)-satisfying for all ℓ = 1, . . . ,w . Then any
w-set system F of size |F | > κw must contain an (α , β)-robust
sunflower.

Proof. Assume a contradiction, and let F be aw-set system on

X of size |F | > κw without an (α , β)-robust sunflower. Choose F

to minimizew . Let K ⊂ X be maximal so that |FK | > κw−|K |
. Note

that we cannot have |K | = w , as in this case |FK | = 1 = κ0, and so

|K | ≤ w−1. Let F ′ = FK \{∅}. Note that |F ′ | ≥ κw−|K |
, where for

any non-empty setT disjoint fromK , |F ′
T | = |FK∪T | ≤ κw−|K |− |T |

.

Let σ (S) = 1/|F ′ | for S ∈ F ′
. Then (F ′,σ ) is (1;κ−1, . . . ,κ−ℓ)-

bounded for ℓ = w − |K |, so by minimality, F ′
is (α , β)-satisfying,

and hence {S ∪K : S ∈ F ′} is an (α , β)-robust sunflower contained
in F . □

Lemma 3.4 motivates the following definition. For 0 < α , β < 1

andw ≥ 2, let κ(w,α , β) be the least κ such that (1;κ−1, . . . ,κ−w )

is (α , β)-satisfying. Theorem 1.9 follows by combining Lemma 3.4

with the following theorem, which bounds κ(w,α , β).

Theorem 3.5. κ(w,α , β) ≤ logw · (log logw · log(1/β)/α)O (1).

We note that Theorem 3.5 proves a conjecture raised in [29]. We

prove Theorem 3.5 in the remainder of this section.

3.1 A Reduction Step
Let F be a w-set system on X , and fix w ′ ≤ w . The main goal in

this section is to reduce F to a w ′
-set system F ′

. We prove the

following lemma in this section.

Lemma 3.6. Let s = (s0; s1, . . . , sw ) be a weight profile, w ′ ≤ w ,
δ > 0 and define s′ = ((1 − δ )s0; s1, . . . , sw ′). Assume s′ is (α ′, β ′)-
satisfying. Then for any p > 0, s is (α , β)-satisfying for

α = p + (1 − p)α ′, β = β ′ +
(4/p)wsw ′

δs0
.

LetW ⊂ X . Given a set S ∈ F , the pair (W , S) is said to be good
if there exists a set S ′ ∈ F (possibly with S ′ = S) such that

(i) S ′ \W ⊂ S \W .

(ii) |S ′ \W | ≤ w ′
.
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If no such S ′ exists, we say that (W , S) is bad. Note that ifW contains

a set in F (i.e. S ′ ⊂ W for some S ′ ∈ F ) then all pairs (W , S) are
good.

Lemma 3.7. Let (F ,σ ) be an s = (s0; s1, . . . , sw )-bounded weigh
-ted set system on X . LetW ⊂ X be a uniform subset of size |W | =

p |X | and B(W ) = {S ∈ F : (W , S) is bad}. Then EW [σ (B(W ))] ≤

(4/p)wsw ′ .

Proof. First, we simplify the setting a bit. We may assume by

scaling σ and s by the same factor that σ (S) = NS , S ∈ F are all

integers. Let N =
∑
NS ≥ s0. We can identify (F ,σ )with the multi-

set system F ′ = {S1, . . . , SN }, where every set S ∈ F is repeated

NS times. Observe that |F ′
T | = σ (FT ) and that (W , S) is bad in F

iff (W , Si ) is bad in F ′
where Si = S is any copy of S . Thus

σ (B(W )) = |{i : Si ∈ F ′
and (W , Si ) is bad}|.

Assume that (W , Si ) is bad in F ′
. In particular, this means that

W does not contain any set in F . We describe (W , Si ) with a small

amount of information. Let |X | = n and |W | = pn. We encode

(W , Si ) as follows:

(1) The first piece of information is W ∪ Si . The number of

options for this is

w∑
i=0

(
n

pn + i

)
≤

(
n +w

pn +w

)
≤ p−w

(
n

pn

)
.

(2) GivenW ∪ Si , let j be minimal such that Sj ⊂ W ∪ Si ; in
particular, this is equivalent to Sj \W ⊂ Si \W . There are

fewer than 2
w
possibilities forA = Si∩Sj given that we know

Sj . As such, we will let A be the second piece of information.

(3) Note that as (W , Si ) is bad, |A| = |Sj \W | > w ′
. So we know

a subset A of Si of size larger than w ′
. The number of the

sets in F ′
which contain A is |F ′

A | ≤ sw ′ . The third piece of

information will be which one of these is Si .
(4) Finally, once we have specified Si , we will specify Si ∩W ,

which is of course one of 2
w
possible subsets of Si .

From these four pieces of information one can uniquely recon-

struct (W , Si ). Thus the total number of bad pairs (W , Si ) is bounded
by

p−w
(
n

pn

)
· 2w · sw ′ · 2w = (4/p)wsw ′

(
n

pn

)
.

The number of setsW ⊂ X of size |W | = p |X | is
( n
pn

)
. The lemma

follows by taking expectation overW . □

The following is a corollary of Lemma 3.7, where we replace

samplingW ⊂ X of size |W | = p |X | with samplingW ∼ U(X ,p).

Corollary 3.8. Let (F ,σ ) be an s = (s0; s1, . . . , sw )-bounded
weighted set system on X . LetW ∼ U(X ,p) and B(W ) = {S ∈ F :

(W , S) is bad}. Then EW [σ (B(W ))] ≤ (4/p)wsw ′ .

Proof. The proof is by a reduction to Lemma 3.7. Replace the

base set X with a much larger set X ′
(without changing F , so the

new elements do not belong to any set in F ). LetW ′ ⊂ X ′
be a

uniform set of size |W ′ | = p |X ′ |, and letW =W ′ ∩ X . Then as X ′

gets bigger, the distribution ofW ′
approachesU(X ,p), while the

conclusion of the lemma depends only onW . □

Proof of Lemma 3.6. Let (F ,σ ) be an s-bounded weighted set

system on X and s = (s0; s1, . . . , sw ). LetW ∼ U(X ,p). Say thatW
is δ -bad if σ (B(W )) ≥ δs0. By applying Corollary 3.8 and Markov’s

inequality, we obtain that

Pr[W is δ -bad] ≤
E[σ (B(W ))]

δs0
≤

(4/p)wsw ′

δs0
.

Fix W which is not δ -bad. By assumption, if (W , S) is good for

S ∈ F , then there exists π (S) = S ′ ∈ F (possibly with S ′ = S) such
that (i) S ′ \W ⊂ S \W and (ii) |S ′ \W | ≤ w ′

. Choose such π with

the smallest possible image so that if S ′, S ′′ in the image of π are

distinct then S ′ \W , S ′′ \W .

Define a new weighted set system (F ′,σ ′) on X ′ = X \W as

follows:

F ′ = {π (S) \W : S ∈ F \ B(W )}, σ ′(S ′ \W ) = σ (π−1(S ′)).

We claim that F ′
is s′ = ((1 − δ )s0; s1, . . . , sw ′)-bounded. To see

that, note that σ ′(F ′) = σ (F \ B(W )) ≥ (1 − δ )s0 and that for any

set T ⊂ X ′
,

σ ′(F ′
T ) =

∑
S ′⊃T

σ ′(S ′) =
∑

S :π (S )⊃T

σ (S) ≤
∑
S ⊃T

σ (S) = σ (FT ) ≤ s |T | .

Finally, all sets in F ′
have size at most w ′

. Thus, if we choose

W ′ ∼ U(X ′,α ′) then we obtain that with probability more than

1−β ′, there exist S∗ ∈ F ′
such that S∗ ⊂W ′

. Recall that S∗ = S \W
for some S ∈ F . Thus S ⊂W ∪W ′

, which is distributed according

to U(X ,p + (1 − p)α ′). □

3.2 A Final Step
In this section, we directly show that bounded set systems (with

very good bounds) are satisfying. A similar argument appears in

[40].

Lemma 3.9. Let 0 < α , β < 1,w ≥ 2, and set κ = (2 + 4 ln(1/β)) ·
w/α . Let (F ,σ ) be an s = (s0; s1, . . . , sw )-bounded weighted set
system where si < κ−i · s0. Then F is (α , β)-satisfying.

Proof. We can assume by scaling that NS = σ (S) for S ∈ F

are all integers. Let F̂ be the multi-set system, where each S ∈ F

is repeated NS times and |F | > κw . Then we may also assume

that all sets in F̂ have size exactlyw , by adding different dummy

elements to each set of size beloww . LetN =
∑
NS ≥ s0 and denote

F ′ = {S1, . . . , SN }, where each Si is of widthw . Note that this F ′

satisfies the assumption of the lemma, and that for any setW ⊂ X ,

ifW contains a set of F ′
then it also contains a set of F .

The proof is by Janson’s inequality (see for example [3, Theorem

8.1.2]). LetW ∼ U(X ,α) and Zi be the indicator variable for Si ⊂
W . Denote i ∼ j if Si , Sj intersect. Define

µ =
∑
i
E[Zi ], ∆ =

∑
i∼j
E[ZiZj ].

We have µ = Nαw . To compute ∆, let pℓ denote the fraction of

pairs (i, j) such that |Si ∩ Sj | = ℓ. Then

∆ =
w∑
ℓ=1

pℓN
2α2w−ℓ .
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To bound pℓ , note that for each Si ∈ F , and any R ⊂ Si of size

|R | = ℓ, the number of Sj ∈ F such that R ⊂ Sj is |FR | ≤ N /κ |R |
.

Thus we can bound

∆ ≤

w∑
ℓ=1

(
w

ℓ

)
κ−ℓN 2α2w−ℓ ≤

w∑
ℓ=1

( w
ακ

)ℓ
µ2.

Let κ = qw/α for q ≥ 2. Then ∆ ≤ 2µ2/q. Note that in addition

∆ ≥ µ, as we include in particular the pairs (i, i) in ∆. Thus by
Janson’s inequality,

Pr[∀i,Zi = 0] ≤ exp

{
−
µ2

2∆

}
≤ exp

{
−
q

4

}
.

The lemma follows by setting q = 2 + 4 ln(1/β). □

3.3 Putting Everything Together
We prove Theorem 3.5 in this subsection, where our goal is to bound

κ(w,α , β). We will apply Lemma 3.6 iteratively, until we decrease

w enough to apply Lemma 3.9.

Fixw ≥ 2 throughout, and letκ > 1 to be optimized later.We first

introduce some notation. For 0 < ∆ < 1, ℓ ≥ 1, define weight profile

s(∆, ℓ) = (1 − ∆;κ−1, . . . ,κ−ℓ). Let A(∆, ℓ),B(∆, ℓ) be bounds such
that any s(∆, ℓ)-bounded set system is (A(∆, ℓ),B(∆, ℓ))-satisfying.

Lemma 3.6 applied tow ′ ≥ w ′′
and p,δ gives the bound

A(∆,w ′) ≤ A(∆ + δ ,w ′′) + p,

B(∆,w ′) ≤ B(∆ + δ ,w ′′) +
(4/p)w

′

δ (1 − ∆)κw
′′ .

We apply this iteratively for some widthsw0, . . . ,wr . Setw0 = w
andwi+1 = ⌈(1 − ε)wi ⌉ for some ε as long aswi > w∗

for somew∗
.

In particular, we need w∗ ≥ 1/ε to ensure wi+1 < wi and we will

optimize ε,w∗
later. The number of steps is thus r ≤ (u logw)/ε

for some constant u > 0. Let p1, . . . ,pr and δ1, . . . ,δr be the values
we use for p,δ at each iteration. To simplify the notation, let ∆i =
δ1 + · · · + δi and ∆0 = 0. Furthermore, define

γi =
(4/pi )

wi−1

κwi
.

Then for i = 1, . . . , r , we have

A(∆i−1,wi−1) ≤ A(∆i ,wi ) + pi ,

B(∆i−1,wi−1) ≤ B(∆i ,wi ) +
γi

δi (1 − ∆i−1)
.

Set pi = α/(2r ) and δi =
√
γi . We will select the parameters so

that ∆i ≤ 1/2 for all i . Thus

A(0,w) ≤ A(∆r ,wr ) + α/2 ≤ A(1/2,w∗) + α/2,

B(0,w) ≤ B(∆r ,wr ) + 2∆r ≤ B(1/2,w∗) + 2∆r .

Plugging in the values for δi , we compute the sum

∆r =
r∑
i=1

δi ≤
r∑
i=1

√
(4/p)wi−1

κ(1−ε )wi−1

≤
∑
k≥w∗

(
u logw

εακ1−ε

)k/2
≤ 2

(
u logw

εακ1−ε

)w∗/2

,

assuming κ1−ε = Ω ((logw)/(εα)). More precisely, if we take κ so

that

κ1−ε =
K · u logw

εα
, K ≥ 4,

then ∆r ≤ 2K−w∗/2
.

Next, we apply Lemma 3.9 to bound A(1/2,w∗) ≤ α/2 and

B(1/2,w∗) ≤ β/2. Observe that (1/2;κ−1, . . . ,κ−w
∗

)-bounded set

systems are also (1; (κ/2)−1, . . . , (κ/2)−w
∗

)-bounded, in which case

we can apply Lemma 3.9 and obtain that we need

κ ≥ Ω((1 + log(1/β)) ·w∗/α).

Let us now put the bounds together. We still have the freedom

to choose ε > 0 andw∗ ≥ 1/ε . To obtain A(0,w) ≤ α ,B(0,w) ≤ β ,
we also need ∆r ≤ β/2 < 1/2. Thus all the constraints are:

(1) w∗ ≥ 1/ε ;
(2) κ1−ε = (K · u logw)/(εα) for some constant K ≥ 4;

(3) κ ≥ Ω((1 + log(1/β)) ·w∗/α);

(4) 2K−w∗/2 ≤ β/2 ⇐= w∗ ≥ Ω(log(1/β)/logK).

Set ε = 1/log logw andw∗ = c ·max {log logw, log(1/β)} for some

c ≥ 1. Then we obtain that the result holds whenever

κ = Ω

(
max

{ (
1

α

)
1+2/log logw

logw log logw,

1

α
(log(1/β))2,

1

α
log(1/β) log logw

})
.

In particular, it suffices to set κ = logw · (log logw · log(1/β)/α)O (1)
.
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