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ABSTRACT

A sunflower with r petals is a collection of  sets so that the inter-
section of each pair is equal to the intersection of all. Erdés and
Rado proved the sunflower lemma: for any fixed r, any family of
sets of size w, with at least about w" sets, must contain a sunflower.
The famous sunflower conjecture is that the bound on the number
of sets can be improved to ¢* for some constant c. In this paper, we
improve the bound to about (log w)". In fact, we prove the result
for a robust notion of sunflowers, for which the bound we obtain is
tight up to lower order terms.
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1 INTRODUCTION

Let X be a finite set. A set system ¥ on X is a collection of subsets
of X. We call ¥ a w-set system if each set in ¥ has size at most w.

“Research supported by an NSF Graduate Research Fellowship.

Research supported by NSF award 1614023.

*Research Supported by NSF grant CCF-1763299 and Salil Vadhan’s Simons Investiga-
tor Award.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC °20, June 22-26, 2020, Chicago, IL, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6979-4/20/06. .. $15.00
https://doi.org/10.1145/3357713.3384234

624

Shachar Lovett®
University of California, San Diego
United States
shachar.lovett@gmail.com

Jiapeng Zhang*
Harvard University
United States
jpeng.zhang@gmail.com

Definition 1.1 (Sunflower). A collection of sets S, .
r-sunflower if

..,Srisan

SiNSj=81N---NS, Vi #j.

We callK = S1N---NS, the kernel and S\ K, . .., S, \ K the petals
of the sunflower.

Erdés and Rado [13] proved that large enough set systems must
contain a sunflower. The name “sunflower" is due to Peter Frankl.

LEMMA 1.2 (SUNFLOWER LEMMA [13]). Letr > 3 and ¥ be a w-set
system of size |F| = w! - (r — 1)V. Then F contains an r-sunflower.

Erdés and Rado conjectured in the same paper that the bound in
Lemma 1.2 can be drastically improved.

CONJECTURE 1.3 (SUNFLOWER CONJECTURE [13]). Letr > 3. There
exists ¢(r) such that any w-set system ¥ of size |F| > c(r)" contains
an r-sunflower.

The bound in Lemma 1.2 is of the form w*1*°(1) where the o(1)
depends on r. Despite nearly 60 years of research, the best known
bounds towards the sunflower conjecture were still of the form
ww(+0()) even for r = 3. More precisely, Kostochka [27] proved
that any w-set system of size || > cw!- (logloglog w/loglog w)"
must contain a 3-sunflower for some absolute constant c. Recently,
Fukuyama [17] claimed an improved bound for r = 3 to w(3/4+o(1)w
but this proof has yet to be verified.

In this paper, we vastly improve the known bounds. We prove
that any w-set system of size (log w)*1*°() must contain a sun-
flower. More precisely, we obtain the following:

THEOREM 1.4 (MAIN THEOREM, SUNFLOWERS). Let r > 3. Any
w-set system F of size |F| > (logw)™(r - loglog w)°™") contains
an r-sunflower.

1.1 Robust Sunflowers

We consider a “robust” generalization of sunflowers, the study
of which was initiated by Rossman [40], who was motivated by
questions in complexity theory. Later, it was studied by Lovett,
Solomon and Zhang [29] in the context of the sunflower conjecture.

First, we define a more “robust” version of the property of hav-
ing disjoint sets. Given a finite set X, we denote by U(X,p) the
distribution of sets Y C X, where each element x € X is included in
Y independently with probability p (there are sometimes referred
to as “p-biased distributions”).
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Definition 1.5 (Satisfying set system). Let 0 < a,f < 1. A set
system F on X is (a, f)-satisfying if

Pr

ISeF,SCcY]>1-5.
Y~(L{(X,a)[ ] ﬂ

As aforementioned, the property of being satisfying is a robust
analogue of the property of having disjoint sets.

LEmMA 1.6 ([29]). If F is a (1/r,1/r)-satisfying set system and
0 ¢ F, then F contains r pairwise disjoint sets.

PRrOOF. Let # be a set system on X. Consider a random r-coloring
of X, where each element obtains any of the r colors with equal
probability. Let Yi,...,Y, denote the color classes, which are a
random partition of X. Fori = 1,...,r, let &; denote the event that
¥ contains an i-monochromatic set, namely,

Ei=[3SeF.SCY;].

Note that Y; ~ U(X,1/r), and since we assume ¥ is (1/r,1/r)-
satisfying, we have

Pr[&i] > 1-1/r.

By the union bound, with positive probability all &, ..., &, hold.
In this case, F contains a set which is i-monochromatic for each
i =1,...,r.Such sets must be pairwise disjoint. O

Given a set system # on X and a set T C X, the link of ¥ at T is
Fr={S\T:SeF,TcCS}.

We now formally define a robust sunflower (which was called a
quasi-sunflower in [40] and an approximate sunflower in [29]).

Definition 1.7 (Robust sunflower). Let 0 < a,f < 1, ¥ be a set
system, and let K = (gc# S be the common intersection of all sets
in ¥. ¥ is an (a, f)-robust sunflower if (i) K ¢ ¥ and (ii) Fx is
(a, p)-satistying. We call K the kernel.

Lemma 1.8 ([29]). Any (1/r,1/r)-robust sunflower contains an
r-sunflower.

Proor. Let ¥ be a (1/r,1/r)-robust sunflower, and let K
NseF S be the common intersection of the sets in 7. Note that
by assumption, Fx does not contain the empty set as an element.
Lemma 1.6 gives that Fx contains r pairwise disjoint sets Sy, . .., Sr.

Thus S; UK, ...,S, UK is an r-sunflower in . |

The proof of Theorem 1.4 follows from the following stronger
theorem, by setting @ = § = 1/r and applying Lemma 1.8. The
theorem verifies a conjecture raised in [29], and answers a question
of [40].

THEOREM 1.9 (MAIN THEOREM, ROBUST SUNFLOWERS). Let 0 <
a,f < 1. Any w-set system F of size |F| = (logw)" - (loglogw -
log(l/ﬁ)/a)o(w) contains an (a, f)-robust sunflower.

The bound of (log w)w(1+o() for robust sunflowers is sharp; it
cannot be improved beyond (log w)w-o() e give an example
demonstrating this in Lemma 2.1.
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1.2 Connections to Computer Science

The sunflower lemma has had many applications in mathematics
and computer science. Here we briefly discuss some of the computer
science applications. While it is reasonable to assume that some of
the bounds obtained using the sunflower lemma can be improved
using our new results, we have not attempted a thorough literature
survey to see which ones can be improved, and leave this for future
work.

Circuit lower bounds. Alon, Karchmer, and Wigderson [1] used
the sunflower lemma to prove a lower bound for the number of
wires in a circuit that computes the Hadamard transform by depth-
2 circuits. Jukna [25] extended this work, and also used the sun-
flower lemma to prove similar lower bounds for approximating the
Hadamard transform. As aforementioned, Rossman [40] defined
robust sunflowers, motivated by an application to monotone cir-
cuit lower bounds. The improved (robust) sunflower lemma has
been used by Cavalar, Kumar, and Rossman [6] to improve previous
monotone circuit lower bounds.

Hardness of approximation. Dinur and Safra [11] used sunflowers
in the soundness analysis of their proof of hardness of approxima-
tion for the Minimum Vertex Cover problem.

Matrix multiplication. Alon et al. [2] studied variants of the sun-
flower conjecture and their connections with fast matrix multipli-
cation algorithms.

Pseudorandomness. Gopalan, Meka, and Reingold [20] used the
robust sunflowers for DNF sparsification, which gives better pseu-
dorandom generators fooling small-width DNFs and faster deter-
ministic algorithm counting satisfying assignments of DNFs.

Cryptography. Luby et al.[32] studied broadcast encryption sys-
tem, and proved a trade-off between the number of establishment
keys held by each user and the number of transmissions needed
to establish a new broadcast key, where their lower bounds relies
on the sunflower lemma. Naor et al.[35] extended this to a wider
regime of parameters. Gentry et al.[19] proved that the bounds are
optimal using a weaker notion of sunflowers.

Dachman-Soled et al. [8] studied locally decodable and updatable
non-malleable codes. They showed that a sunflower structure in
the codewords allows for a rewind attack.

Komargodski et al. [26] showed that finding a sunflower (or a
pair of duplicate sets), where the underlying set system is given by
the output of a succinct circuit, is hard assuming the existence of
collision resistant hash functions.

Data structure lower bound. In the bit probe model, Frandsen
et al. [15] used the sunflower lemma to prove lower bounds for
dynamic word problems, Mortensen et al. [34] used it to prove
trade-offs in two stage greater-than functions, and Rahman [37]
used it to analyze the increment operation for integers.

In cell probe model, Gal et al. [18] used the sunflower lemma
to prove lower bounds for the redundancy/query time trade-off of
solutions to static data structure problems, and Natarajan et al. [36]
used a weaker notion of sunflowers to analyze non-adaptive data
structures computing the minimum, median, and predecessor.
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In the CRCW PRAM model, the sunflower lemma was used to
prove lower bounds by Berkman et al. [5] and incomparability
results by Grolmusz et al. [21] in various models.

Property testing. Haviv et al. [23] showed that a refutation of
a variant of the sunflower conjecture implies a super-polynomial
lower bound on the query complexity of the canonical tester for
cycle freeness. Balaji et al. [4] used the sunflower lemma to obtain
lower bounds on the query complexity of graph properties in the
node query setting.

Fixed parameter complexity. The sunflower lemma is a common
kernelization technique used in FPT algorithms [7, 12]. For example,
it was used for hitting set problems by Flum et al. [14], for constraint
satisfaction problem under finite Boolean constraint families by
Marx et al. [33], for the subgraph test problem by Jansen et al. [24],
and for set matching problems by Dell et al. [9]. The last two works
also use it for graph packing problems.

Thresholds in random graphs. The technique developed in this
paper has been used by Frankston, Kahn, Narayanan, and Park [16]
to resolve a conjecture of Talagrand in random graph theory.

1.3 Proof Overview

In this section, we explain the high level ideas underlying the proof
of Theorem 1.9. Our framework builds upon the work of Lovett,
Solomon and Zhang [29]. Their main idea was to apply a structure
vs. pseudo-randomness approach. However, the proof relied on
a certain conjecture on the level of pseudo-randomness needed
for the argument to go through. Our main technical result is a
resolution of this conjecture.

To be concrete, we consider the problem of finding a 3-sunflower,
which corresponds in our framework to finding a (1/3, 1/3)-robust
sunflower (see Lemma 1.8). Given w > 2, our goal is to find a
parameter k = k(w) such that any w-set system of size ¥* must
contain a (1/3, 1/3)-robust sunflower, and hence also a 3-sunflower.

Recall the definition of links: 7 = {S\T : S € F,T C S}.
We say that a w-set system is k-bounded if (i) || > x"; and (ii)
|F7| < ¥~T| for all non-empty T (The actual definition needed
in the proof is more delicate, see Definition 3.1 for details).

Let ¥ be a w-set system of size |F| > «". Then either ¥ is
x-bounded, or otherwise there is a link F7 of size || > k™~ IT1.
In the latter “structured” case, we can pass to the link and apply
induction. (This argument is implicit in the proof of Lemma 3.4.)

Thus it suffices to consider the “pseudo-random” case of w-set
systems which are x-bounded. In [28, 29], it was conjectured that
for some absolute C, a (log w) -bounded F is necessarily (1/3,1/3)-
satisfying. We show that there is some k = (log w)+e() js sufficient
(see Theorem 3.5), which represents our main technical contribution.
This completes the proof of Theorem 1.9. We also show that k =
(log w)l=o() jg necessary (see Lemma 2.1), so this is tight.

We next explain how we obtain the bound on k. Let # be a w-set
system which is k-bounded. In [29] it was conjectured that there
exists a (w/2)-set system ¥ that “covers” F; for any set S € F,
there exists S’ € ¥’ such that S’ ¢ S, and #’ is x’-bounded for
k’ ~ k. If this conjecture is true, then it is sufficient to prove that ¥’
is (1/3, 1/3)-satisfying, as this would imply that 7 is also (1/3, 1/3)-
satisfying (in the language of [29], this corresponds to “upper bound
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compression for DNFs”. For more details on the connection to DNF
compression see [29-31]).

What we show is that this conjecture is true with two modifica-
tions: we are allowed to remove a small fraction of the sets in ¥,
and also remove a small random fraction of the elements in the base
set X. To be more precise, sample W ~ U(X, p) for p = O(1/log w).
We show that with high probability over W, for most sets S € F,
there exists a set S’ € ¥ such that: i) S’ \ W < S\ W; and (ii)
|S” \ W| < w/2. Thus we can move to study the set system ¥’
comprised of the S’ \ W above, which “approximately covers” .
Note that #” is a (w/2)-set system which is x’-bounded for k¥’ = k.
In the actual proof, we will replace w/2 with (1 — €)w for a small ¢
to improve the bounds. For details see Lemma 3.6. Applying this
“reduction step” iteratively ¢ = log w times reduces the size w dras-
tically, and then we can apply standard tools (Janson’s inequality,
see Lemma 3.9). We get that if we sample Wy,...,W; ~ U(X,p)
(formally, they are disjoint, but we ignore this detail here), then with
good probability there exists S € ¥ such that S ¢ Wy U --- U W;.
Setting p - t = 1/3 and the good probability to be 2/3 gives that 7
is (1/3,1/3)-satisfying, as desired.

To conclude, let us comment on how we prove the reduction
step (Lemma 3.6). The main idea is to use an encoding lemma,
inspired by Razborov’s proof of Hastad’s switching lemma [22, 39].
Concretely, for W ¢ X and S € 7, we say that the pair (W, S)
is bad if there is no S’ € ¥ such that i) S’ \ W < S\ W; and
(ii) |S” \ W| < w/2. We show that bad pairs can be efficiently
encoded, crucially relying on the x-boundedness condition. This
allows to show that for a random W it is very unlikely that there
will be many bad sets. The (w/2)-set system F is then taken to be
F'={S\W:58 e€F,|S"\W| <w/2}.

1.4 Other Related Works

Other than the works already mentioned, there are two more related
works that should be mentioned. The term “sunflower” was coined
by Deza and Frankl [10], as the original term used by Erdés and
Rado was A-systems. After the current work was made available on
the arXiv, Rao [38] simplified the proof using information theory
techniques.

Paper organization. We give an example showing that our bounds
for robust sunflowers are essentially tight in Section 2. We prove
our main technical result, Theorem 1.9, in Section 3.

2 LOWER BOUND FOR ROBUST
SUNFLOWERS

In this section, we construct an example of a w-set system without
robust sunflower, even though it has size (log w)W(1=e(1) For con-
creteness we fix @« = § = 1/2, but the construction can be easily
modified for any other constant values of a, . We assume that w
is large enough.

LEMMA 2.1. There exists a w-set system of size ((log w)/S)W_W =
(log W)W(l_o(l)) which does not contain a (1/2,1/2)-robust sunflower.

Letc > 1be determined later. Let X1, . . ., X,, be pairwise disjoint

sets of size m = log(w/c), and let X be their union. Let ¥ = X; X
-+ X X,, be the w-set system containing all sets which contain
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exactly one element from each of the X;. We first argue that Fis
not satisfying.

CLam 2.2. Forc > 1, F is not (1/2,1/2)-satisfying.

PrOOF. Let Y ~ U(X, 1/2). We analyze the probability that some
X; is disjoint from Y, which implies that no set in F is contained
in Y. The probability is 1 — (1 —27™)" =1 — (1 — ¢/w)", which is
more than 1/2 for ¢ > 1. O

Unfortunately, F does containa (1/2, 1/2)-robust sunflower with
a large kernel. For example, if T contains exactly one element from
each of X1,..., X, -1, then %T is isomorphic to X,,, and in partic-
ular is (1/2, 1/2)-satisfying.

To _overcome this, let ¢ > 0 be determined later, and choose
¥ C F to be a subsystem that satisfies:

ISNS| <(1-¢e)w, VS, 8" e F,S+ 5.

For example, we can obtain ¥ by a greedy procedure, each time
choosing an element S in F and deleting all S” such that [SN S’| >
(1 — £)w. The number of such S’ is at most (Eva)mfw < 2¥mév
Hence we can obtain F of size |F| > 2~-Wm{1=€)W.

Cram 2.3. Forc > 1/¢e, F does not contain a (1/2,1/2)-robust
sunflower.

Proor. Consider any set K C X. We need to prove that # does
not contain a (1/2, 1/2)-robust sunflower with kernel K. If it does,
Fx must contain at least two sets, which implies that |[K N X;| < 1
for all i, and that in addition |K| < (1 — ¢)w. However, in this case
we claim even %K is not (1/2, 1/2)-satisfying.

To prove this, let I = {i : |[K N X;| = 0} where |I| > ew. Let
Y ~ U(X,1/2). The probability that there exists i € I such that Y
is disjoint from X; is 1 — (1 — 27| > 1 — (1 - ¢/w)*" which is
more than 1/2 for ¢ > 1/e. O

To conclude the proof of Lemma 2.1 we optimize the parameters.
Set ¢ = 1/£. We have || > 2% (log(ew))(1=€)W_ Setting ¢ = 1/yw
gives |F| = ((log w)/8)W VW = (log w)(1=oM)w,

3 PROOF OF THEOREM 1.9

We proceed to prove Theorem 1.9. The main idea is to apply a
structure vs. pseudo-randomness paradigm, following the approach
outlined in [29]. Let ¥ be a set system, and let o : F - Qx( be a
weight function that assigns non-negative rational weights to sets
in ¥ which are not all 0. For simplicity, we do not permit irrational
weights. We call the pair (7, o) a weighted set system. For a subset
F' c F we write 0(F’) = Y seq 0(S) the sum of the weights of
the sets in 7.

A weight profile is a vector s = (so;S1,...,Sk) where 1 > sp >
§] = -+ = s > 0 are rational numbers. We assume implicitly that
si=0foralli> k.

Definition 3.1 (Bounded weighted set system). Let s be a weight
profile that s = (so;s1,...,5w). A weighted set system (¥, o) is
s-bounded if

(@) o(F) = so;
(ii) o(#1) < 57| for any link F7 with non-empty T.
In particular, ¥ is a w-set system.
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Definition 3.2 (Bounded set system). Let s be a weight profile. A set
system ¥ is s-bounded if there exists a weight function o : ¥ — Q4
such that (F, o) is s-bounded.

We note that one may always normalize a weight profile to have
so = 1. However, keeping so as a free parameter helps to simplify
some of the arguments later.

The main idea is to show that set systems which are s-bounded,
for s appropriately chosen, are “random looking” and in particular
must be (a, f)-satisfying. This motivates the following definition.

Definition 3.3 (Satisfying weight profile). Let 0 < a,f < 1. A
weight profile s is («, f)-satisfying if any s-bounded set system is
(a, p)-satistying.

The following lemma underlies our proof of Theorem 1.9. This
is implicitly where the “induction” on the “structured part” of the
set family is occurring.

LEMMA 34. Let 0 < a,f < 1andw = 2. Let k = k(w) >
1 be a non-decreasing function of w such that the weight profile
(15 k1 K_f) is (a, p)-satisfying for all £ = 1,...,w. Then any
w-set system F of size |F| > «" must contain an (a, )-robust
sunflower.

PRrROOF. Assume a contradiction, and let 7 be a w-set system on
X of size |F| > k» without an (a, §)-robust sunflower. Choose ¥
to minimize w. Let K C X be maximal so that |Fx| > kW~ IKI Note
that we cannot have |K| = w, as in this case |Fx| = 1 = k%, and so
IK| < w—1.Let ¥/ = Fx \ {0}. Note that |F’| > k¥~ K| where for
any non-empty set T disjoint from K, |F}| = [Fxur| < kW IKI=IT]
Let 6(S) = 1/|F’| for S € F’. Then (F’,0) is (1;x1,. ..,k ¢)-
bounded for £ = w — |K|, so by minimality, ¥ is («, f)-satisfying,
and hence {SUK : S € ¥’} is an («, §)-robust sunflower contained
in F. m]

Lemma 3.4 motivates the following definition. For 0 < o, f < 1
and w > 2, let x(w, @, ) be the least x such that (1;x71,..., k™)
is (a, p)-satisfying. Theorem 1.9 follows by combining Lemma 3.4
with the following theorem, which bounds x(w, @, f).

THEOREM 3.5. k(w,a, ) < logw - (loglogw - log(l/ﬂ)/a)o<1>.

We note that Theorem 3.5 proves a conjecture raised in [29]. We
prove Theorem 3.5 in the remainder of this section.

3.1 A Reduction Step

Let ¥ be a w-set system on X, and fix w’ < w. The main goal in
this section is to reduce ¥ to a w’-set system ¥’. We prove the
following lemma in this section.

LEMMA 3.6. Lets = (so; 51, .- .,Sw) be a weight profile, w' < w,
& > 0 and defines’ = (1 = 8)s0; 51, - - -, Sw). Assume s’ is (a’, p’)-
satisfying. Then for any p > 0, s is («, p)-satisfying for
(4/p)" sw
=p + .
)B ﬂ 550
Let W C X. Given a set S € F, the pair (W, S) is said to be good
if there exists a set S’ € ¥ (possibly with S’ = §) such that
() S'\WcS\W.
@) |S"\ W] < w'.

a=p+(1-pya’,
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Ifno such $’ exists, we say that (W, S) is bad. Note that if W contains
asetin ¥ (i.e. S” ¢ W for some S’ € F) then all pairs (W, S) are
good.

LEMMA 3.7. Let (F,0) be ans = (so; 51, . - -, Sw)-bounded weigh
-ted set system on X. Let W C X be a uniform subset of size |W|
pIX| and BW) = {S € F : (W, S) is bad}. Then Ey [c(B(W))]
(4/p)" sw.

<

Proor. First, we simplify the setting a bit. We may assume by
scaling o and s by the same factor that ¢(S) = Ng,S € ¥ are all
integers. Let N = 3} Ng > so. We can identify (¥, o) with the multi-
set system ¥/ = {S1,...,SN}, where every set S € F is repeated
Ns times. Observe that | 77| = o(¥7) and that (W, ) is bad in
iff (W, S;) is bad in ¥’ where S; = S is any copy of S. Thus

o(BW)) = |{i : S; € ¥/ and (W, S;) is bad}|.

Assume that (W, S;) is bad in #”. In particular, this means that
W does not contain any set in . We describe (W, S;) with a small
amount of information. Let |[X| = n and |W| = pn. We encode
(W, S;) as follows:

(1) The first piece of information is W U S;. The number of
options for this is

I L B

(2) Given W U §;, let j be minimal such that S; ¢ W U S;; in
particular, this is equivalent to S; \ W C S; \ W. There are
fewer than 2" possibilities for A = 5;NS; given that we know
Sj. As such, we will let A be the second piece of information.

(3) Note that as (W, S;) is bad, |A| = |S; \ W| > w’. So we know
a subset A of S; of size larger than w’. The number of the
sets in # which contain A is || < s,,/. The third piece of
information will be which one of these is S;.

(4) Finally, once we have specified S;, we will specify S; N W,
which is of course one of 2" possible subsets of S;.

From these four pieces of information one can uniquely recon-
struct (W, S;). Thus the total number of bad pairs (W, S;) is bounded

by
P (pnn) 2% sy -2 = (4/p) Y sw (Pnn).

The number of sets W C X of size |W| = p|X| is (p"n). The lemma

follows by taking expectation over W. O

The following is a corollary of Lemma 3.7, where we replace
sampling W C X of size |W| = p|X| with sampling W ~ U(X, p).

COROLLARY 3.8. Let (¥,0) be an's = (so;$1,...,Sw)-bounded
weighted set system on X. Let W ~ U(X,p) and B(W) = {S € F :
(W, S) is bad}. Then Eyy [a(B(W))] < (4/p)% sy

Proor. The proof is by a reduction to Lemma 3.7. Replace the
base set X with a much larger set X’ (without changing ¥, so the
new elements do not belong to any set in ). Let W/ C X’ be a
uniform set of size |[W’| = p|X’|, and let W = W’ N X. Then as X’
gets bigger, the distribution of W’ approaches U(X, p), while the
conclusion of the lemma depends only on W. ]
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PrROOF OF LEMMA 3.6. Let (¥, o) be an s-bounded weighted set
system on X and s = (so;S1, - . ., Sw). Let W ~ U(X, p). Say that W
is 6-bad if o(B(W)) > dsp. By applying Corollary 3.8 and Markov’s
inequality, we obtain that

Elc(BWD] _ (4/p)"sw

P is 5-
r[W is §-bad] < 5% 550

Fix W which is not d-bad. By assumption, if (W, S) is good for
S € ¥, then there exists 7(S) = S’ € F (possibly with S’ = S) such
that (i) "\ W c S\ W and (ii) |S” \ W| < w’. Choose such & with
the smallest possible image so that if S, S” in the image of & are
distinct then S" \ W # S”" \ W.

Define a new weighted set system (F’,0’) on X’ = X \ W as
follows:

F'={n(S)\W:Sec F\BW)}, o' (S \W)=a(x"'(5)).

We claim that ¥’ is s’ = ((1 — §)s0; 1, - - - » Sw’)-bounded. To see
that, note that ¢’(¥”’) = o(F \ B(W)) > (1 — §)sp and that for any
set T C X/,

I(F)= ), I )= 3 o)< Y, 0l8) =) < syry

S'ST S:m(8)>T SoT

Finally, all sets in ' have size at most w’. Thus, if we choose
W’ ~ UX’,a’) then we obtain that with probability more than
1—f’, there exist S* € F” such that S* ¢ W’. Recall that $* = S\W
for some S € . Thus S ¢ W U W’, which is distributed according
to UX,p+(1-p)a). O

3.2 A Final Step

In this section, we directly show that bounded set systems (with
very good bounds) are satisfying. A similar argument appears in
[40].

LEMMA 3.9. Let0 < a, f < 1, w > 2, and setk = (2 + 41n(1/p)) -
w/a. Let (F,o0) be an's = (so;$1,. . .,Sw)-bounded weighted set
system wheres; < k™' - so. Then F is (a, f)-satisfying.

Proor. We can assume by scaling that Ng = o(S) for S € F
are all integers. Let F be the multi-set system, where each S € F
is repeated Ng times and || > k". Then we may also assume
that all sets in F have size exactly w, by adding different dummy
elements to each set of size below w.Let N = >, Ng > sg and denote
F’ ={S1,...,Sn}, where each S; is of width w. Note that this ¥’
satisfies the assumption of the lemma, and that for any set W c X,
if W contains a set of ¥’ then it also contains a set of .

The proof is by Janson’s inequality (see for example [3, Theorem
8.1.2]). Let W ~ U(X, a) and Z; be the indicator variable for S;
W.Denote i ~ j if S, S; intersect. Define

p= Y EZi], A=) EIZZ
i i~j

We have p = Na™. To compute A, let p, denote the fraction of
pairs (i, j) such that [S; N Sj| = £. Then

w
A= ZpgNZ(XZW_Z.
=1
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To bound pyg, note that for each S; € ¥, and any R C S; of size

[R| = ¢, the number of S; € ¥ such that R C §; is |[FRr| < N/K‘Rl,

Thus we can bound
Y w ¢ V4 hud w 4
—C A2 2w— 2
Asgg_l(f)’c Na S(;_El(_aK) He.

Let k = qw/a for ¢ > 2. Then A < 242/q. Note that in addition
A > p, as we include in particular the pairs (i, i) in A. Thus by
Janson’s inequality,

2

Pr[Vi,Z; = 0] < exp {—S—A} < exp {—%} .

The lemma follows by setting ¢ = 2 + 4In(1/p).

3.3 Putting Everything Together

We prove Theorem 3.5 in this subsection, where our goal is to bound
k(w, a, ). We will apply Lemma 3.6 iteratively, until we decrease
w enough to apply Lemma 3.9.

Fix w > 2 throughout, and let x > 1 to be optimized later. We first
introduce some notation. For 0 < A < 1,¢ > 1, define weight profile
s(A,0) =(1-A; ko, K_f). Let A(A, €), B(A, £) be bounds such

that any s(A, €)-bounded set system is (A(A, €), B(A, €))-satisfying.

Lemma 3.6 applied to w’ > w’’ and p, § gives the bound
AN, W) < AA+6,w) +p,
/)"
51 = Aw”’
We apply this iteratively for some widths wy, . .

B(A,w’) < B(A+68,w'") +

L, Wr. Setwg =w

and wit+1 = [(1 — &)w;] for some ¢ as long as w; > w* for some w*.

In particular, we need w* > 1/¢ to ensure wit+1 < w; and we will
optimize &, w* later. The number of steps is thus r < (ulogw)/e
for some constant u > 0. Let p1,...,pr and 81, .. ., 8, be the values
we use for p, § at each iteration. To simplify the notation, let A; =
81 + -+ + 8; and Ay = 0. Furthermore, define
@fp)m
B e
Thenfori=1,...,r, we have
ABi—1, wi-1) < A(Ai, wi) + pi,
Vi
8i(1= A1)’
Set p; = a/(2r) and §; = +fy;. We will select the parameters so

that A; < 1/2 for all i. Thus

A0, w) < A(Ar, wr) +a/2 < A(1/2,w") + a/2,

B(0,w) < B(Ay, wy) + 2A, < B(1/2,w") + 2A,.

B(Aj—1,wi-1) < B(Aj, wi) +

Plugging in the values for §;, we compute the sum

r wi_
T N DR ki
i=1

x(1=&)wi
< Z ulogw k/2<2 ulogw w2
- eaxl=e —\eaxl—e ’
k>w*

= Q ((log w)/(ea)). More precisely, if we take k so

r

2

i=1

assuming k!¢
that K-l
-ulogw
e = 2 EOBY sy

ea
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then A, < 2K™%'/2,

Next, we apply Lemma 3.9 to bound A(1/2,w*) < «/2 and
B(1/2,w*) < B/2. Observe that (1/2;x7%, ..., k=" )-bounded set
systems are also (1; (x/2)71,. . ., (x/2)"")-bounded, in which case
we can apply Lemma 3.9 and obtain that we need

Kk > Q((1+log(1/8) - w*/a).

Let us now put the bounds together. We still have the freedom
to choose € > 0 and w* > 1/e. To obtain A(0, w) < @, B(0,w) < f3,
we also need A, < /2 < 1/2. Thus all the constraints are:

1) w* > 1/g
(2) k7% = (K - ulog w)/(ea) for some constant K > 4;

(3) x 2 Q((1 +log(1/p)) - w*/a);

(4) 2K™V'/2 < B/2 = w* > Q(log(1/p)/log K).

Set ¢ = 1/loglog w and w* = ¢ - max {loglog w, log(1/f)} for some
¢ > 1. Then we obtain that the result holds whenever

1 1+2/loglog w
k = Q[ max (—)
o

~(log(1/p)"

2
3
log wloglog w,

1
p log(1/p)loglogw )
In particular, it suffices to set k = log w- (loglog w- log(l/ﬂ)/a)o(l),
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