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ABSTRACT
A decision list is an ordered list of rules. Each rule is specified by a

term, which is a conjunction of literals, and a value. Given an input,

the output of a decision list is the value corresponding to the first

rule whose term is satisfied by the input. Decision lists generalize

both CNFs and DNFs, and have been studied both in complexity

theory and in learning theory.

The size of a decision list is the number of rules, and its width is

the maximal number of variables in a term. We prove that decision

lists of small width can always be approximated by decision lists

of small size, where we obtain sharp bounds. This in particular re-

solves a conjecture of Gopalan, Meka and Reingold (Computational

Complexity, 2013) on DNF sparsification.

An ingredient in our proof is a new random restriction lemma,

which allows to analyze how DNFs (and more generally, decision

lists) simplify if a small fraction of the variables are fixed. This is

in contrast to the more commonly used switching lemma, which

requires most of the variables to be fixed.

CCS CONCEPTS
•Theory of computation→ Pseudorandomness and derandomiza-

tion; Complexity theory and logic; •Mathematics of computing
→ Combinatorics.
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1 INTRODUCTION
Decision lists are a model to represent boolean functions, first

introduced by Rivest [24]. A decision list is given by a list of rules

(C1,v1), . . . , (Cm ,vm ). A rule is composed of a condition, given

by a term Ci , which is a conjunction of literals (variables or their

negations); and an output value vi in some set V . A decision list

computes a function f : {0, 1}n → V as follows:

If C1(x) = True then output v1,
else if C2(x) = True then output v2,
. . . ,

else if Cm (x) = True then output vm .

The last rule is the default value, where we assume thatCm ≡ True.
Decision lists generalize both CNFs and DNFs. For example, a

DNF is a decision list with v1 = · · · = vm−1 = 1 and vm = 0, and a

CNF is a decision list with v1 = · · · = vm−1 = 0 and vm = 1. It can

be shown that decision lists are a strict generalization of both DNFs

and CNFs [17, 24]. Following Rivest’s original work, decision lists

have been studied both in complexity theory [2, 5, 6, 8, 11, 18, 26]

and in learning theory [3, 7, 12, 15, 20, 27, 28].

Complexity measures of decision lists. There are two natural

complexity measures of decision lists: size and width. Let L =
((Ci ,vi ))i ∈[m] be a decision list. Its size is the number of rules

in it (namelym), and its width is the maximal number of variables

in a term Ci .

Decision list approximation. A decision list L ε-approximates

another decision list L′ if the two agree on a (1 − ε) fraction of

the inputs. It is straightforward to see that small-size decision lists

can be approximated by small-width decision lists, by removing

rules of large width. Concretely, a decision list of size m can be

ε-approximated by a decision list of widthw = log(m/ε), simply by

removing all rules with terms of width more thanw . The reverse

direction is the main focus of this work. We prove the following

result, which provides sharp bounds on approximating small-width

decision lists by small-size decision lists.

Theorem 1.1 (Main result). Let w ≥ 1, ε > 0. Any width-w
decision list L can be ε-approximated by a decision list L′ of widthw

and size s =
(
2 + 1

w log
1

ε

)O (w )
. Moreover, L′ is a sub-decision list of

L, obtained by keeping s rules in L and removing the rest. The bound

on s is optimal, up to the unspecified constant in the O(w) term.

The proof of Theorem 1.1 appears in Section 2. We note that the

size bound can be simplified, depending on whether the required

error ε is below or above 2
−w

:(
2 +

1

w
log

1

ε

)O (w )
=


2
O (w ) ε ≥ 2

−w(
2

w log
1

ε

)O (w )
ε ≤ 2

−w .
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In both cases, the bound we obtain is sharp, up to the unspecified

constant in the O(w) term. We give examples demonstrating this

in Section 3.

1.1 Random Restrictions
Random restrictions are an essential ingredient of the proof of

Theorem 1.1. Håstad’s switching lemma [4, 13, 22] is based on

the fact that small-width DNFs simplify under random restrictions.

More concretely, a random restriction that fixes a 1−O(1/w) fraction
of the inputs simplifies a width-w DNF to a small-depth decision

tree. In this work, we study random restrictions where a small

constant fraction of the variables is fixed.

A good example to keep in mind is the TRIBES function: a read-

once DNF with 2
w

terms of width w on disjoint variables. The

TRIBES function does not simplify significantly under a random

restriction, unless one really fixes a 1−O(1/w) fraction of the inputs.
For example, if we randomly fix 50% of the inputs, say, then the

TRIBES function simplifies to what is essentially a smaller TRIBES

function (more formally, it simplifies with high probability to a

read-once DNF of width Ω(w)). However, we show that this is in

essence the worst possible example.

The following lemma is a special case of Lemma 2.12 applied

to DNFs (the full lemma deals with decision lists). Given a DNF

f : {0, 1}n → {0, 1}, let ρ ∈ {0, 1, ∗}n be a restriction, and let

f ↾ρ be the restricted DNF. Clearly, some terms in f might become

redundant in f ↾ρ . For example, they could be false, or they could be

implied by other terms. A term that is not redundant is called useful.

We show that after fixing even a small fraction of the variables (say,

1%), a width-w DNF simplifies to have at most 2
O (w )

useful terms,

and hence cannot be “too complicated”.

Lemma 1.2 (DNFs simplify after mild random restrictions).

Let f be a width-w DNF, and let f ↾ρ be a restriction of f obtained

by restricting each variable with probability β , where the restricted
variables take values 0 and 1 with equal probability. Then the expected

number of useful terms in f ↾ρ is at most (4/β)w .

1.2 Applications
We discuss some applications of Theorem 1.1 below.

1.2.1 DNF sparsification. This decision list compression problem

is a natural generalization of the DNF sparsification problem, intro-

duced by Gopalan, Meka and Reingold [10] as a means to obtain

pseudorandom generators fooling small-width DNFs. Their main

structural result can be summarized as follows.

Theorem 1.3 ([10]). Any width-w DNF can be ε-approximated by

a DNF of widthw and size (w log(1/ε))O (w ).

They conjectured that a better bound is possible.

Conjecture 1.4 ([10]). Any width-w DNF can be ε-approximated

by a DNF of widthw and size s(w, ε), where:

• Weak version: s(w, ε) = c(ε)w for some function c .

• Strong version: s(w, ε) = (log(1/ε))O (w ).

The weak version was resolved by Lovett and Zhang [19], where

they showed that c(ε) = (1/ε)O (1) suffices. Our main result, Theo-

rem 1.1, verifies the strong version of their conjecture (and in fact,

proves a sharper bound than the one conjectured).

Corollary 1.5 (This work). Any width-w DNF can be ε-approx

-imated by a DNF of widthw and size

(
2 + 1

w log
1

ε

)O (w )
.

We remark that Corollary 1.5 is also tight, up to the unspecified

constant in theO(w) term. The proof is very similar to the proof in

Section 3 that Theorem 1.1 is tight. We sketch the proof here:

• For 2
−2w ≤ ε ≤ 1/3, Claim 3.1 shows the existence of a func-

tion f : {0, 1}w → {0, 1} that cannot be (1/3)-approximated

by any decision list of widthw and sizeO(2w /w). In particu-

lar, f cannot be approximated by a DNF of widthw and size

O(2w /w). Note that f can trivially be computed by a DNF of

width w and size 2
w
, and that 2

Ω(w ) =
(
2 + 1

w log
1

ε

)Ω(w )
in this regime.

• For ε ≤ 2
−2w

, consider exactly computing the Threshold-w
function on log(1/ε) variables, which amounts to approxi-

mation with any error < ε . This requires a width-w DNF of

size

(
log(1/ε )

w
)
=

(
2 + 1

w log
1

ε

)Ω(w )
.

1.2.2 Junta theorem. A k-junta is a function depending on at most

k variables. Friedgut’s junta theorem [9] shows that boolean func-

tions of small influence can be approximated by juntas. For the

relevant definitions see for example [21].

Theorem 1.6 (Friedgut’s junta theorem [9]). Assume boolean

function f has total influence I . Then for any ε > 0, f can be ε-

approximated by a k-junta for k = 2
O (I/ε )

.

It is well known that width-w DNFs have total influence I =
O(w), which implies by Theorem 1.6 that width-w DNFs can be

ε-approximated by 2
O (w/ε )

-juntas. Since a width-w size-s decision
list is a (sw)-junta, as a corollary of Theorem 1.1, we improve the

bound, and generalize it to decision lists.

Corollary 1.7 (This work). Any width-w decision list can be

ε-approximated by a k-junta for k =
(
2 + 1

w log
1

ε

)O (w )
.

This improves previous bounds, even when restricted to DNFs

or CNFs. By combining the results in [10, 19] one gets the bound

k = min {w log(1/ε), 1/ε}O (w ) for width-w DNFs or CNFs. It can

be verified that our new result is indeed better; for example for ε =

w−w we obtain (logw)O (w ) instead ofwO (w )
. It is also worthwhile

noting that the result of [19], which obtained the bound (1/ε)O (w ),
can be extended to decision lists with minimal changes.

1.2.3 Learning small-width DNFs. A class of boolean functions

is said to be (ε,δ )-PAC learnable using q queries if there exists a

learning algorithm that, given query access to an unknown func-

tion in the class, returns with probability (1 − δ ) a function which

ε-approximates the unknown function, while making at most q
queries. In our context we consider membership queries, where the

learning algorithm can query the value of the unknown function

on any chosen input.

A celebrated result of Jacskson [14] shows that polynomial-size

DNFs can be PAC learned under the uniform distribution using

membership queries.

Theorem 1.8 (Jackson’s harmonic sieve [14]). The class of

n-variate DNFs of size s is (ε,δ )-PAC learnable under the uniform

distribution with q = poly(s,n, 1/ε, log(1/δ )) membership queries.
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Using Theorem 1.1, we can extend Jackson’s result to small-width

DNFs. Note that the DNF sparsification bound from [10, 19] also

works here, if we replace the bound on s with their corresponding

bound.

Corollary 1.9 (This work). The class of n-variate DNFs of width
w is (ε,δ )-PAC learnable under the uniform distribution with q =
poly(s,n, 1/ε, log(1/δ )) membership queries, where

s =

(
2 +

1

w
log

1

ε

)O (w )
.

Proof Sketch. Jackson’s algorithm combines a weak learner

based on Fourier analysis and a boosting algorithm that converts

this weak learner to a strong learner. Let f (x) be the target DNF
that we are trying to learn. The weak learner solves the following

problem: given a distribution D on {0, 1}n , output a set S such that

the parity χS (x) =
⊕

i ∈S xi is correlated with f under the distri-

bution D. Initially D is the uniform distribution, but the boosting

algorithm keeps adapting D to focus on inputs where it made many

mistakes.

In Jackson’s algorithm, the existence of such S is shown by

observing that for a size-s DNF, at least one of the terms must be

1/s correlated to the function; and each term’s contribution can be

attributed to the parities supported on it. For width-w terms, this

leads to at most a 2
−w

decrease in the correlation.

Assume now that f (x) is a width-w DNFwith too many terms, so

we cannot apply the previous argument directly. Apply Theorem 1.1

with error γ (to be determined soon), to obtain an approximate

width-w DNF д(x) which γ -approximates f (x), where д has at

most s =
(
2 + 1

w log
1

γ

)O (w )
terms. Crucially, we obtain д(x) by

removing some of the terms in f (x), and hence д(x) ≤ f (x) for all
inputs x . In particular, Prx∼D [f (x) = 1] ≥ Prx∼D [д(x) = 1].

Assume that we know that the distribution D is not too far from

uniform. Concretely, that D(x) ≤ K2−n for some parameter K . This
implies that

Pr

x∼D
[f (x) = 1] ≤ Pr

x∼D
[д(x) = 1] + γK .

We will choose γ = 1/12K . We may assume that Prx∼D [f (x) =
1] ∈ [1/3, 2/3], otherwise the constant 1 function correlates with f
under D. Thus Prx∼D [д(x) = 1] ∈ [1/4, 3/4]. This implies, by the

same argument as in the original paper of Jackson, there there is a

term C of д which is Ω(1/s)-correlated with д. One can verify that

as д(x) ≤ f (x), C is also Ω(1/s)-correlated with f .
Finally, we need to bound K . It is known (see for example [16])

that boosting algorithms can be restricted to have K = ε−O (1),
which completes the proof. □

1.3 Proof Overview
We give a high-level overview of the proof of Theorem 1.1. Let

L = ((Ci ,vi )) be a decision list of widthw and sizem.

General Framework. Given a subset J ⊂ [m], we denote by L|J
the decision list restricted to the rules in J , where we delete the rest.
Our goal is to find a small subset J ⊂ [m] such that L|J approximates

L. We say that a rule (Ci ,vi ) of L is hit by an input x if Ci (x) = 1

and Cj (x) = 0 for j < i; in this case, L(x) = vi . The main intuition

underlying our approach is:

If a rule is rarely hit by random inputs, then we can safely remove it.

Armed with this intuition, our approach is to choose J to be the

set of rules with the highest probability of being hit. We show

that in order to get an ε-approximation, it suffices to keep the top(
2 + 1

w log
1

ε

)O (w )
rules.

Our general approach follows that of Lovett and Zhang [19].

They combined two central results in the analysis of boolean func-

tions: random restrictions and noise stability. The main innovation in

the current work is that we apply random restrictions that fix only

a small fraction of the inputs; this is in contrast to the common use

of random restrictions, such as in the proof of Håstad’s switching

lemma [13], where most variables are fixed. The ability to handle

random restrictions which fix only a small fraction is what allows

us to obtain improved bounds.

Mild random restrictions. An index i ∈ [m] is said to be useful

if there exists an assignment x such that the evaluation of L(x)
hits the i-th rule (and hence outputs vi ). We denote the number of

useful indices in L by #useful (L). This notion is natural, as we can

always discard rules if no assignment hits them. The main point

is that restrictions can render some rules in a decision list useless.

Let ρ be a random restriction that keeps each variable alive with

probability α . We show that on average, the restricted decision list

L ↾ρ has a small number of useful indices:

E
ρ

[
#useful

(
L ↾ρ

) ]
≤

(
4

1 − α

)w
.

The proof is based on an encoding argument. Let ρ be a restric-

tion for which L ↾ρ has T useful indices. Let t ∈ [T ] be uniformly

chosen. We construct a new restriction ρ ′ by further restricting the

variables in the t-th useful rule so that this rule is satisfied. Then

from ρ ′ and some small additional information a, we can recover

both ρ and t . This shows that the probability ofT being too large is

very low, as the entropy of (ρ ′,a) is much lower than that of (ρ, t).

Noise Stability. Since there is no guarantee about the value on

each rule of the decision list, it is convenient to consider the follow-

ing index function. Let L = ((Ci ,vi ))i ∈[m] be a decision list on n
variables. The index function of L outputs for an input x the index

i of the first term in L satisfied by x . Equivalently, IndL is given by

the decision list IndL = ((Ci , i))i ∈[m].
We make two important definitions. What we want to analyze

are the quantities

pL(i) := Pr

x
[IndL(x) = i] ,

where x is taken from the uniform distribution of the input. In

particular, we want to show that there is a small set of indices J
such that

∑
i ∈J pL(i) ≥ 1 − ε . What we can analyze using random

restrictions are the quantities

qL(α , i) = Pr

ρ

[
index i is useful in L ↾ρ

]
,

since it holds that∑
i
qL(α , i) = Eρ

[
#useful

(
L ↾ρ

) ]
≤

(
4

1 − α

)w
.

We use noise stability to bridge between the two.
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Let β = 1 − α . For any x ∈ {0, 1}n , the noise distribution

y ∼ Nβ (x) is sampled by taking Pr [yi = xi ] =
1+β
2

independently

for i ∈ [n]. Consider sampling x ∈ {0, 1}n uniformly andy ∼ Nβ (x).
We can equivalently sample the pair (x ,y) by first sampling a com-

mon restriction ρ, where each variables stays alive with probability

α , and then sample its completion for x and y independently. Let

StabL(β, i) := Pr

x,y
[IndL(x) = IndL(y) = i] .

We show that pL(i) and qL(α , i) are both polynomially related, by

relating them to StabL(β, i):

pL(i)
2

qL(1 − β, i)
≤ StabL(β , i) ≤ pL(i)

2

1+β .

The upper bound is proven by hypercontrativity, and the lower

bound by a somewhat delicate Cauchy-Schwarz inequality. This

allows us to obtain that

pL(i) ≤ qL(1 − β , i)
1+β
2β .

Finally, we put everything together by optimizing the value of β .

Related works. We already discussed the works of Gopalan, Meka

and Reingold [10] and Lovett and Zhang [19] which gave weaker

bounds for DNF sparsification than those in Theorem 1.1.

There have been previousworks studying how small-widthDNFs

simplify under mild random restrictions that fix a small fraction of

the variables (say, 1%). Segerlind, Buss and Impagliazzo’s work [25],

improved by Razborov [23], show that width-w DNFs simplify to

a decision tree of depth 2
O (w )

. We obtain bounds on size (namely,

number of useful terms) in Theorem 1.1, which are better than

bounds on depth. However, we only bound the first moment (that

is, expected number of useful terms), while [23] bounds higher

moments as well. So to some extent, the results are incomparable.

We believe that with some further work, one can improve our

techniques to obtain bounds on higher moments as well (this was

unnecessary for the current work). Finally, it is also worthwhile

to mention the work by the authors and Alweiss [1], where mild

random restrictions (of a somewhat different flavor) were used to

obtain improved bounds for the sunflower lemma in combinatorics.

Paper Organization. In Section 2, we prove the upper bound on

decision list compression. In Section 3, we give the lower bounds

to show the tightness of our result.

2 UPPER BOUNDS
We start by make some definitions formal. We denote {1, 2, . . . ,n}
as [n], variables are x1, . . . ,xn , and literals are x1,¬x1, . . . ,xn ,¬xn .
A term is a conjunction of literals.

Definition 2.1 (Decision list). A width-w size-m decision list is a

list L = ((Ci ,vi ))i ∈[m] of rules. A rule is a pair (Ci ,vi ), where Ci is
a term containing at mostw literals and each vi is a value in some

finite set V . We assume Cm ≡ 1, and (Cm ,vm ) is the final default
rule.

For any J ⊆ [m] withm ∈ J , we denote by L|J = ((Cj ,vj ))j ∈J
the restriction of L to the rules in J , where elements of J are taken
in ascending order.

The evaluation of L given assignment x is to find the first index

i such that Ci (x) = 1 and then to output L(x) = vi . We make

additional remarks for the decision list to avoid potential pitfalls.

• Ifm < J , we will consider L|J invalid, as it does not have a
default rule at the end.

• No variable appears in any single term more than once,

which rules out x1 ∧ x1 and x1 ∧ ¬x1.

Our goal in this section is to prove the following theorem, which

is the upper bound part in Theorem 1.1.

Theorem 2.2. Let L = ((Ci ,vi ))i ∈[m] be a width-w decision list.

Then for every ε > 0, there exists J ⊆ [m],m ∈ J of size |J | =(
2 + 1

w log
1

ε

)O (w )
such that Pr

[
L(x) , L|J (x)

]
≤ ε .

2.1 Useful Indices
Since there is no guarantee about the value on each rule of the

decision list, it is convenient to consider the index function. Let

L = ((Ci ,vi ))i ∈[m] be a decision list on n variables. The index

function of L is a function IndL : {0, 1}n → [m], given by

IndL(x) = min {i ∈ [m] | Ci (x) = 1} .

Equivalently, IndL is given by the decision list IndL = ((Ci , i))i ∈[m].
Using the index function, it suffices to discard some rules of L and

show it still approximates the index function.

Claim 2.3. Let L = ((Ci ,vi ))i ∈[m] be a decision list. Then for any

J ⊆ [m],m ∈ J , we have

Pr

[
L(x) , L|J (x)

]
≤ Pr [IndL(x) < J ] .

Proof. This follows as if IndL(x) = j ∈ J , then L(x) = L|J (x) =
vj . □

Obviously, if a rule of a decision list is covered by some previous

rules, then we can safely remove it. For example, in (x1, 1), (x1 ∧
x2, 2) the second rule is useless. To make this more formal, we

introduce the following notion of a useful index.

Definition 2.4 (Useful index). Given size-m decision list L, an
index i ∈ [m] is said to be useful if there exists an assignment

x such that IndL(x) = i . We denote by #useful (L) the number of

useful indices in L.

Example 2.5. Let L = ((x1,a), (x1 ∧ ¬x2,b), (1, c), (x1,d), (1, e)).
Then indices 1, 3 are useful, but indices 2, 4, 5 are not. So we have

#useful (L) = 2.

The main intuition underlying our approach is that rules that

are hardly hit by random inputs can be removed. Motivated by this,

we define hit probability

pL(i) := Pr [IndL(x) = i] .

Claim 2.6. For any size-m decision list L, we have
∑m
i=1 pL(i) = 1.

Proof. This follows as the events [IndL(x) = i] are a partition
of the probability space. □

The following is our main technical lemma.
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Lemma 2.7. Let L = ((Ci ,vi ))i ∈[m] be a width-w decision list. Sort

[m] = {j1, . . . , jm } such that pL(j1) ≥ pL(j2) ≥ · · · ≥ pL(jm ). For
any ε > 0, let

t =

(
2 +

1

w
log

1

ε

)O (w )
.

Then for J = {j1, . . . , jt ,m} it holds that Pr [IndL(x) < J ] ≤ ε .

The proof of Theorem 2.2 follows immediately, by combining

Lemma 2.7 and Claim 2.3.

2.2 Random Restrictions and Encoding
A restriction on n variables is ρ ∈ {0, 1, ∗}n . An (n,k)-random re-

striction is the uniform distribution over restrictions ρ ∈ {0, 1, ∗}n

with exactly k stars, which we denote by R(n,k). An (n,α)-random
restriction, which we denote by U (n,α), assigns independently
each bit of the restriction ρ to 0, 1, ∗ with probability

1−α
2
, 1−α

2
,α

respectively. Given a decision list L : {0, 1}n → V , its restriction

under ρ is L ↾ρ : {0, 1}
ρ−1(∗) → V .

Definition 2.8 (Useful probability). Given size-m decision list L
and α ∈ (0, 1), the useful probability of an index i ∈ [m] is

qL(α , i) := Pr

ρ∼U (n,α )

[
index i is useful in L ↾ρ

]
.

Note that we assume L initially does not contain useless rules,

so for any α and i , we always have qL(α , i) > 0. We also have the

following simple fact regarding useful probability.

Claim 2.9. For any size-m decision list L, we have
∑m
i=1 qL(α , i) =

Eρ∼U (n,α )
[
#useful

(
L ↾ρ

) ]
.

Proof. Let 1ρ,i be the indicator of index i being useful in L ↾ρ .
Then

E
ρ∼U (n,α )

[
#useful

(
L ↾ρ

) ]
= E

ρ

[ m∑
i=1

1ρ,i

]
=

m∑
i=1

qL(α , i).

□

Now we present an encoding/decoding scheme for random re-

striction and analyze the expectation in Claim 2.9 explicitly. Let

α ∈ (0, 1) be such that αn is an integer. Define:

U :=

{
(ρ, s)

����ρ ∈ R(n,αn), s ∈ {1, . . . , #useful
(
L ↾ρ

)
}

}
V :=

{
(ρ ′,a)

����ρ ′ ∈ w⋃
k=0

R(n,αn − k),a ∈ {Old,New}w

}
.

We define two deterministic algorithms Enc : U → V and

Dec : Enc(U) ⊆ V → U such that Dec(Enc(ρ, s)) = (ρ, s) holds
for any (ρ, s) ∈ U.

The following claim proves the correctness of the encoding and

decoding algorithms.

Claim 2.10. Dec(Enc(ρ, s)) = (ρ, s) holds for any (ρ, s) ∈ U.

Proof. Sort literals in each term of L = ((Ci ,vi ))i ∈[m] arbitrarily.
To justify the correctness, let (ρ ′,a) = Enc(ρ, s), then we need to

ensure:

Algorithm 1: Encoding algorithm Enc(ρ, s)

Input: restriction and index (ρ, s) ∈ U
Output: restriction and string (ρ ′,a) ∈ V

1 I ←
{
i | i is a useful index in L ↾ρ

}
2 j ← the s-th element in I

3 ρ ′ ← ρ,a ← �

/* Assume Cj =
∧c
k=1 yjk ,yjk ∈

{
x jk ,¬x jk

}
, c ≤ w */

4 for k = 1 to c do
5 if ρ(x jk ) ∈ {0, 1} then
6 Append a with Old /* x jk is already set by ρ

*/
7 else
8 Append a with New /* x jk is newly set to

satisfy this term */

9 if yjk = x jk then Update ρ ′(x jk ) ← 1 else Update
ρ ′(x jk ) ← 0

10 end
11 Complete a arbitrarily to lengthw

12 end
13 return (ρ ′,a)

Algorithm 2: Decoding algorithm Dec(ρ ′,a)

Input: restriction and string (ρ ′,a) ∈ Enc(U) ⊆ V
Output: restriction and index (ρ, s) ∈ U

1 j ← index of the first satisfied term in L ↾ρ′

2 ρ ← ρ ′

/* Assume Cj =
∧c
k=1 yjk ,yjk ∈

{
x jk ,¬x jk

}
, c ≤ w */

3 for k = 1 to c do
4 if ak = New then /* x jk was not set by ρ */
5 Update ρ(x jk ) ← ∗

6 end
7 end
8 I ←

{
i | i is a useful index in L ↾ρ

}
9 s ← rank of j in I

10 return (ρ, s)

• Dec(ρ ′,a) obtains the same j in line 1 as Enc(ρ, s) does in
line 2:

During Enc(ρ, s), index j is useful in L ↾ρ , thus setting un-

fixed variables to satisfy Cj will not make any term Ci for
i < j satisfied. Hence the first satisfied term in L ↾ρ′ is Cj .

• Dec(ρ ′,a) in line 8 obtains the correct ρ:
Since each term is sorted in advance, and a encodes which

variable in Cj is set by Enc(ρ, s) rather than ρ, the loop in

Dec(ρ ′,a) will set these variables back to ∗ and recover ρ.

□

Corollary 2.11. |U| ≤ |V|.

Proof. Enc is an injection fromU to Enc(U) ⊂ V . □
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Lemma 2.12. Let L be a width-w decision list on n variables and

let α ∈ (0, 1). Then

E
ρ∼U (n,α )

[
#useful

(
L ↾ρ

) ]
≤

(
4

1 − α

)w
.

Proof. We first prove the bound for ρ ∼ R(n,αn) and then

increase the number of variables to infinity, by adding dummy vari-

ables. This proves the desired bound as for n′ →∞, the restriction
of R(n′,αn′) to the first n variables converges to U (n,α). We have

E
ρ∼R(n,αn)

[
#useful

(
L ↾ρ

) ]
=

1

|R(n,αn)|

∑
ρ ∈R(n,αn)

#useful

(
L ↾ρ

)
=

|U|

|R(n,αn)|
≤

|V|

|R(n,αn)|
≤

(∑w
k=0

( n
αn−k

)
2
(1−α )n+k

)
× 2w( n

αn
)
2
(1−α )n

≤

(∑w
k=0

( n
αn−k

) )
× 4w( n

αn
) ≤

(n+w
αn

)
× 4w( n

αn
) ≤

(
4

1 − α

)w
.

□

2.3 Noise Stability
We use noise stability as a bridge between pL(i) and qL(α , i).

Definition 2.13 (Noisy distribution). Given x ∈ {0, 1}n and a

noise parameter β ∈ (0, 1), we denote by Nβ (x) the distribution

over y ∈ {0, 1}n , where Pr [yi = xi ] =
1+β
2
, Pr [yi , xi ] =

1−β
2

independently for all i ∈ [n].

Definition 2.14 (Stability). Let д : {0, 1}n → {0, 1} be a boolean

function. The β-stability of д is

Stabβ (д) = Pr

x ∈{0,1}n,y∼Nβ (x )
[д(x) = д(y) = 1] .

The hypercontractive inequality (see for example [21], page 259)

allows us to bound the stability of a boolean function by its accep-

tance rate.

Fact 2.15. Let д : {0, 1}n → {0, 1} and β ∈ (0, 1). Then

Stabβ (д) ≤ (Pr [д(x) = 1])
2

1+β .

Next, we define index stability and relate it to useful probability

qL(·, ·) and hit probability pL(·).

Definition 2.16 (Index stability). Given a size-m decision list L on

n variables, the β-stability of index i ∈ [m] is

StabL(β, i) := Pr

x ∈{0,1}n,y∼Nβ (x )
[IndL(x) = IndL(y) = i] .

Lemma 2.17 (Bridging lemma). Let L be a size-m width-w deci-

sion list on n variables. Then for any index i ∈ [m] and β ∈ (0, 1), we
have

pL(i)
2

qL(1 − β , i)
≤ StabL(β, i) ≤ pL(i)

2

1+β .

Proof. We first prove the upper bound. Let д : {0, 1}n → {0, 1}

be an indicator boolean function for IndL(x) = i . Then using

Fact 2.15, we have

StabL(β , i) = Stabβ (д) ≤ (Pr [д(x) = 1])
2

1+β

= (Pr [IndL(x) = i])
2

1+β = pL(i)
2

1+β .

We now turn to prove the lower bound. Let α = 1 − β . Observe
that we can sample (x ,y) where x ∈ {0, 1}n ,y ∼ Nβ (x) as follows:

• Sample restriction ρ ∼ U (n,α);

• Sample uniform x ′ ∈ {0, 1}ρ
−1(∗)

and complete stars in ρ
with it as x ;

• Sample uniform y′ ∈ {0, 1}ρ
−1(∗)

and complete stars in ρ
with it as y.

We thus have

StabL(β , i) = Pr

ρ,x ′,y′

[
IndL ↾ρ (x

′) = IndL ↾ρ (y
′) = i

]
.

We now make a seemingly redundant, but surprisingly useful, con-

ditioning. Let E(ρ, i) denote the event

E(ρ, i) :=
[
i is useful in L ↾ρ

]
.

Then we can equivalently write

StabL(β , i) = Pr

ρ,x ′,y′

[
IndL ↾ρ (x

′) = IndL ↾ρ (y
′) = i ∧ E(ρ, i)

]
.

For any fixed ρ, define

rρ (i) := Pr

x ′

[
IndL ↾ρ (x

′) = i
]
.

Since x ′,y′ are independent for any fixed restriction, we have

StabL(β, i)

= Pr
ρ
[E(ρ, i)] · Pr

ρ,x ′,y′

[
IndL ↾ρ (x

′) = IndL ↾ρ (y
′) = i

����E(ρ, i)]
=qL(α , i) · Eρ

[
rρ (i)

2

����E(ρ, i)]
≥qL(α , i) ·

(
E
ρ

[
rρ (i)

����E(ρ, i)] )2 (Cauchy-Schwarz inequality)

=
1

qL(α , i)

(
qL(α , i) · Eρ

[
rρ (i)

����E(ρ, i)] )2
=

1

qL(α , i)

(
Pr

ρ,x ′

[
IndL ↾ρ (x

′) = i ∧ E(ρ, i)
] )2

=
1

qL(α , i)

(
Pr

ρ,x ′

[
IndL ↾ρ (x

′) = i
] )2

=
1

qL(α , i)

(
Pr

x
[IndL(x) = i]

)
2

=
pL(i)

2

qL(α , i)
.

□

Corollary 2.18. Let L be a size-m width-w decision list. Then for

any index i ∈ [m] and β ∈ (0, 1), we have

pL(i) ≤ qL(1 − β , i)
1+β
2β .

As a remark, we note that Lemma 2.17 can be generalized to

arbitrary boolean functions with a similar proof.
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Lemma 2.19. Let д : {0, 1}n → {0, 1} be a boolean function which

is not identically zero. Set |д | = Pr [д(x) = 1]. Then for any β ∈ (0, 1),
we have

|д |2

Pr

ρ∼U (n,1−β )
[д ↾ρ. 0]

≤ Stabβ (д) ≤ |д |
2

1+β .

2.4 Putting Everything Together
Now we put everything together and give the proof of Lemma 2.7.

Proof of Lemma 2.7. Recall that we sorted [m] = {j1, . . . , jm }
such that pL(j1) ≥ pL(j2) ≥ · · · ≥ pL(jm ). Let J = {j1, . . . , jt ,m}
for t to be optimized later.

Next, let β ∈ (0, 1) to be optimized later and set α = 1 − β .
Sort [m] = {i1, . . . , im } such that qL(α , i1) ≥ qL(α , i2) ≥ · · · ≥
qL(α , im ). By Claim 2.9 and Lemma 2.12, we have

m∑
k=1

qL(α , ik ) = E
ρ∼U (n,α )

[
#useful

(
L ↾ρ

) ]
≤

(
4

1 − α

)w
=

(
4

β

)w
.

Note that we have sorted qL in decreasing order, so

qL(α , ik ) ≤
1

k

(
4

β

)w
.

Observe that j1, . . . , jt have the largest hit probability, and apply

Corollary 2.18, then∑
j<J

pL(j) ≤
m∑

k=t+1

pL(jk ) ≤
m∑

k=t+1

pL(ik ) ≤
m∑

k=t+1

qL(α , ik )
1+β
2β

≤

(
4

β

)w× 1+β
2β ∑

k≥t+1

(
1

k

) 1+β
2β

≤

(
4

β

)w× 1+β
2β
×

2β

1 − β
× t
−

1−β
2β .

If we restrict β ≤ 1/2 and choose

t =

(
1

ε

) 2β
1−β

(
4

β

)w× 1+β
1−β

(
2β

1 − β

) 2β
1−β
≤ 4

(
1

ε

)
4β (

4

β

)
3w
,

then

Pr [IndL(x) < J ] =
∑
j<J

pL(j) ≤ ε .

Now we divide ε into two cases. Assume ε = 2
−ℓw

. Then:

• If ℓ ≤ 2 we set β = 1/2 and get t = 2
O (w )

.

• If ℓ ≥ 2 we set β = 1/ℓ and get t = ℓO (w ).

One can verify that in either case we get

t =

(
2 +

1

w
log

1

ε

)O (w )
.

□

3 LOWER BOUNDS
In this section, we prove two lower bounds for decision list com-

pression, which show that the bounds in Theorem 1.1 are tight up

to constants.

Claim 3.1. For any w , there exists a width-w decision list L :

{0, 1}w → {0, 1} such that

Pr

[
L(x) , L′(x)

]
> 1/3

for any width-w decision list L′ of size at most 2
w /100w .

Proof. Since any boolean function on w variables can be ex-

pressed as some width-w decision list, there are 2
2
w
possible L. On

the other hand, for any fixed L′, it can approximate at most(
2
w

2
w /3

)
× 22

w /3 ≤ 2
0.97×2w

different boolean functions within distance 1/3; and for fixed size

m, there are at most (3w × 2)m distinct size-m width-w decision

lists. As small-size decision lists can be embedded in larger ones,

when restricted to size at most 2
w /100w , width-w decision lists

only approximate at most(
3
w × 2

) 2
w

100w × 20.97×2
w
< 2

2
w

different boolean functions onw variables. □

Claim 3.2. For anyw and n > 2w , there is a width-w decision list

L : {0, 1}n → {0, 1} which is not equivalent to any width-w decision

list L′ of size smaller than

(n
w
)
/n2.

Proof. Letm =
(n
w
)
and sort all

(n
w
)
subsets of [n] with size w

as {S1, . . . , Sm } arbitrarily. For any i ∈ [m], define Ci =
∧
j ∈Si x j .

For any v ∈ {0, 1}m , let Lv = ((C1,v1), . . . , (Cm ,vm ), (1, 0)) be a
size-(m + 1) width-w decision list.

As small-size decision lists can be embedded in larger ones,

assume towards a contradiction that any Lv is equivalent to some

size-(m/n2) width-w decision list L′v . Given L′v , we can recover Lv
by enumerating all assignments, since all rules in Lv are useful.

Thus, by counting argument, the number of possible L′v is upper

bounded by (
2 ×

w∑
k=0

2
k
(
n

k

))(nw)/n2

≤

(
n

w

)
2m/n2

< 2
m .

□

Now the general lower bound follows immediately.

Corollary 3.3. For anyw and ε ≤ 1/3, there is a width-w decision

list L such that

Pr

[
L(x) , L′(x)

]
> ε

holds for any width-w decision list L′ of size at most(
2 +

1

w
log

1

ε

)O (w )
.

Proof. For ε ≥ 2
−2w

, let L be the decision list in Claim 3.1. Then

it cannot be approximated within ε < 1/3 by a decision list L′ of
size at most

2
w

100w
=

(
2 +

1

w
log

1

ε

)O (w )
.
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For ε < 2
−2w

, let L be the decision list in Claim 3.2 withn = log(1/ε).
Since now ε = 2

−n
, the desired L′ must be equivalent to L. Thus it

cannot be realized by a decision list L′ of size at most(n
w
)

n2
=

(
log

1

ε
w

)O (1)
=

(
2 +

1

w
log

1

ε

)O (w )
.

□
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