Decision List Compression by Mild Random Restrictions

Shachar Lovett’ Kewen Wu Jiapeng Zhang"
University of California, San Diego Peking University Harvard University
United States China United States
shachar.lovett@gmail.com shlw_kevin@pku.edu.cn jpeng.zhang@gmail.com
ABSTRACT 1 INTRODUCTION

A decision list is an ordered list of rules. Each rule is specified by a
term, which is a conjunction of literals, and a value. Given an input,
the output of a decision list is the value corresponding to the first
rule whose term is satisfied by the input. Decision lists generalize
both CNFs and DNFs, and have been studied both in complexity
theory and in learning theory.

The size of a decision list is the number of rules, and its width is
the maximal number of variables in a term. We prove that decision
lists of small width can always be approximated by decision lists
of small size, where we obtain sharp bounds. This in particular re-
solves a conjecture of Gopalan, Meka and Reingold (Computational
Complexity, 2013) on DNF sparsification.

An ingredient in our proof is a new random restriction lemma,
which allows to analyze how DNFs (and more generally, decision
lists) simplify if a small fraction of the variables are fixed. This is
in contrast to the more commonly used switching lemma, which
requires most of the variables to be fixed.

CCS CONCEPTS

« Theory of computation — Pseudorandomness and derandomiza-
tion; Complexity theory and logic; « Mathematics of computing
— Combinatorics.

KEYWORDS

Decision lists, DNF sparsification, switching lemma

ACM Reference Format:

Shachar Lovett, Kewen Wu, and Jiapeng Zhang. 2020. Decision List Com-
pression by Mild Random Restrictions. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing (STOC °20), June 22-26,
2020, Chicago, IL, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3357713.3384241

“Research supported by NSF award 1614023.
Research Supported by NSF grant CCF-1763299 and Salil Vadhan’s Simons Investiga-
tor Award.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC °20, June 22-26, 2020, Chicago, IL, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6979-4/20/06. .. $15.00
https://doi.org/10.1145/3357713.3384241

247

Decision lists are a model to represent boolean functions, first
introduced by Rivest [24]. A decision list is given by a list of rules
(C1,v1),...,(Cm,vm). A rule is composed of a condition, given
by a term C;, which is a conjunction of literals (variables or their
negations); and an output value v; in some set V. A decision list
computes a function f : {0,1}" — V as follows:

If C1(x) = True then output vy,

else if Cy(x) = True then output vy,

else if Cp,(x) = True then output vy,.

The last rule is the default value, where we assume that Cp,, = True.

Decision lists generalize both CNFs and DNFs. For example, a
DNF is a decision list withv; = --- = v;—1 = land vy, = 0,and a
CNF is a decision list with v; = - -+ = v;—1 = 0 and v, = 1. It can
be shown that decision lists are a strict generalization of both DNFs
and CNFs [17, 24]. Following Rivest’s original work, decision lists
have been studied both in complexity theory [2, 5, 6, 8, 11, 18, 26]
and in learning theory [3, 7, 12, 15, 20, 27, 28].

Complexity measures of decision lists. There are two natural
complexity measures of decision lists: size and width. Let L =
((Ci,vi))ie[m] be a decision list. Its size is the number of rules
in it (namely m), and its width is the maximal number of variables
in a term C;.

Decision list approximation. A decision list L e-approximates
another decision list L if the two agree on a (1 — ¢) fraction of
the inputs. It is straightforward to see that small-size decision lists
can be approximated by small-width decision lists, by removing
rules of large width. Concretely, a decision list of size m can be
e-approximated by a decision list of width w = log(m/¢), simply by
removing all rules with terms of width more than w. The reverse
direction is the main focus of this work. We prove the following
result, which provides sharp bounds on approximating small-width
decision lists by small-size decision lists.

THEOREM 1.1 (MAIN RESULT). Let w > 1,¢ > 0. Any width-w
decision list L can be e-approximated by a decision list L” of width w

w)
and size s = (2 + % log %) . Moreover, L’ is a sub-decision list of
L, obtained by keeping s rules in L and removing the rest. The bound

on s is optimal, up to the unspecified constant in the O(w) term.

The proof of Theorem 1.1 appears in Section 2. We note that the
size bound can be simplified, depending on whether the required
error ¢ is below or above 27:

O(w) 20(w)

(% log %)O(W)

1
(2+—log—
w £


https://doi.org/10.1145/3357713.3384241
https://doi.org/10.1145/3357713.3384241
https://doi.org/10.1145/3357713.3384241

STOC 20, June 22-26, 2020, Chicago, IL, USA

In both cases, the bound we obtain is sharp, up to the unspecified
constant in the O(w) term. We give examples demonstrating this
in Section 3.

1.1 Random Restrictions

Random restrictions are an essential ingredient of the proof of
Theorem 1.1. Hastad’s switching lemma [4, 13, 22] is based on
the fact that small-width DNFs simplify under random restrictions.
More concretely, a random restriction that fixesa 1-O(1/w) fraction
of the inputs simplifies a width-w DNF to a small-depth decision
tree. In this work, we study random restrictions where a small
constant fraction of the variables is fixed.

A good example to keep in mind is the TRIBES function: a read-
once DNF with 2% terms of width w on disjoint variables. The
TRIBES function does not simplify significantly under a random
restriction, unless one really fixes a 1—O(1/w) fraction of the inputs.
For example, if we randomly fix 50% of the inputs, say, then the
TRIBES function simplifies to what is essentially a smaller TRIBES
function (more formally, it simplifies with high probability to a
read-once DNF of width Q(w)). However, we show that this is in
essence the worst possible example.

The following lemma is a special case of Lemma 2.12 applied
to DNFs (the full lemma deals with decision lists). Given a DNF
f:{0,1}" — {0,1}, let p € {0,1,*}" be a restriction, and let
f Tp be the restricted DNF. Clearly, some terms in f might become
redundant in f [ ,. For example, they could be false, or they could be
implied by other terms. A term that is not redundant is called useful.
We show that after fixing even a small fraction of the variables (say,
1%), a width-w DNF simplifies to have at most 20(W) yseful terms,
and hence cannot be “too complicated”.

LEMMA 1.2 (DNFs SIMPLIFY AFTER MILD RANDOM RESTRICTIONS).
Let f be a width-w DNF, and let f [, be a restriction of f obtained
by restricting each variable with probability f, where the restricted
variables take values 0 and 1 with equal probability. Then the expected
number of useful terms in f 1, is at most (4/B)".

1.2 Applications

We discuss some applications of Theorem 1.1 below.

1.2.1  DNF sparsification. This decision list compression problem
is a natural generalization of the DNF sparsification problem, intro-
duced by Gopalan, Meka and Reingold [10] as a means to obtain
pseudorandom generators fooling small-width DNFs. Their main
structural result can be summarized as follows.

THEOREM 1.3 ([10]). Any width-w DNF can be e-approximated by
a DNF of width w and size (w log(l/e))o(w).
They conjectured that a better bound is possible.
CONJECTURE 1.4 ([10]). Any width-w DNF can be e-approximated
by a DNF of width w and size s(w, €), where:
o Weak version: s(w, €) = c(e)" for some function c.
e Strong version: s(w, €) = (log(l/e))O(W>.
The weak version was resolved by Lovett and Zhang [19], where
they showed that c(¢) = (1/£)°0 suffices. Our main result, Theo-

rem 1.1, verifies the strong version of their conjecture (and in fact,
proves a sharper bound than the one conjectured).

248

Shachar Lovett, Kewen Wu, and Jiapeng Zhang

COROLLARY 1.5 (THIS WORK). Any width-w DNF can be e-approx
O(w)
-imated by a DNF of width w and size (2 + % log %) .

We remark that Corollary 1.5 is also tight, up to the unspecified
constant in the O(w) term. The proof is very similar to the proof in
Section 3 that Theorem 1.1 is tight. We sketch the proof here:

e For 272% < ¢ < 1/3, Claim 3.1 shows the existence of a func-
tion f : {0,1}" — {0, 1} that cannot be (1/3)-approximated
by any decision list of width w and size O(2" /w). In particu-
lar, f cannot be approximated by a DNF of width w and size

O(2Y /w). Note that f can trivially be computed by a DNF of

Q(w)
width w and size 2V, and that 2Q(w) = (2 + % log %) v

in this regime.

e For ¢ < 272%, consider exactly computing the Threshold-w
function on log(1/¢) variables, which amounts to approxi-
mation with any error < ¢. This requires a width-w DNF of

Q
size (IOgS/'g)) = (2 + % log %) (W).

1.2.2  Junta theorem. A k-junta is a function depending on at most
k variables. Friedgut’s junta theorem [9] shows that boolean func-
tions of small influence can be approximated by juntas. For the
relevant definitions see for example [21].

THEOREM 1.6 (FRIEDGUT’S JUNTA THEOREM [9]). Assume boolean
function f has total influence I. Then for any ¢ > 0, f can be ¢-
approximated by a k-junta fork = 20U7e),

It is well known that width-w DNFs have total influence I =
O(w), which implies by Theorem 1.6 that width-w DNFs can be
¢-approximated by 2°("/#)_juntas. Since a width-w size-s decision
list is a (sw)-junta, as a corollary of Theorem 1.1, we improve the
bound, and generalize it to decision lists.

CoROLLARY 1.7 (THIS WORK). Any width-w decision list can be
O(w)
e-approximated by a k-junta fork = (2 + % log %) .

This improves previous bounds, even when restricted to DNFs
or CNFs. By combining the results in [10, 19] one gets the bound
k = min {wlog(1/e), 1/e}°™) for width-w DNFs or CNFs. It can
be verified that our new result is indeed better; for example for ¢ =
w~" we obtain (log w)O9") instead of wO™). 1t is also worthwhile
noting that the result of [19], which obtained the bound (1/ £)OWw),
can be extended to decision lists with minimal changes.

1.2.3 Learning small-width DNFs. A class of boolean functions
is said to be (¢, §)-PAC learnable using g queries if there exists a
learning algorithm that, given query access to an unknown func-
tion in the class, returns with probability (1 — §) a function which
e-approximates the unknown function, while making at most ¢
queries. In our context we consider membership queries, where the
learning algorithm can query the value of the unknown function
on any chosen input.

A celebrated result of Jacskson [14] shows that polynomial-size
DNFs can be PAC learned under the uniform distribution using
membership queries.

THEOREM 1.8 (JACKSON’S HARMONIC SIEVE [14]). The class of
n-variate DNFs of size s is (¢,0)-PAC learnable under the uniform
distribution with q = poly(s,n, 1/¢,log(1/5)) membership queries.



Decision List Compression by Mild Random Restrictions

Using Theorem 1.1, we can extend Jackson’s result to small-width
DNFs. Note that the DNF sparsification bound from [10, 19] also
works here, if we replace the bound on s with their corresponding
bound.

CoRrOLLARY 1.9 (THIs WORK). The class of n-variate DNFs of width

w is (&, 8)-PAC learnable under the uniform distribution with q =
poly(s,n, 1/¢,1og(1/8)) membership queries, where

1. 1\°™)

s=|(2+ —log-

w e

PROOF SKETCH. Jackson’s algorithm combines a weak learner
based on Fourier analysis and a boosting algorithm that converts
this weak learner to a strong learner. Let f(x) be the target DNF
that we are trying to learn. The weak learner solves the following
problem: given a distribution D on {0, 1}", output a set S such that
the parity ys(x) = ;g xi is correlated with f under the distri-
bution D. Initially D is the uniform distribution, but the boosting
algorithm keeps adapting D to focus on inputs where it made many
mistakes.

In Jackson’s algorithm, the existence of such S is shown by
observing that for a size-s DNF, at least one of the terms must be
1/s correlated to the function; and each term’s contribution can be
attributed to the parities supported on it. For width-w terms, this
leads to at most a 27" decrease in the correlation.

Assume now that f(x) is a width-w DNF with too many terms, so
we cannot apply the previous argument directly. Apply Theorem 1.1
with error y (to be determined soon), to obtain an approximate
width-w DNF g(x) which y-approximates f(x), where g has at

most s = (2 + % log %) Y terms. Crucially, we obtain g(x) by
removing some of the terms in f(x), and hence g(x) < f(x) for all
inputs x. In particular, Pry~p[f(x) = 1] = Pry~p[g(x) = 1].
Assume that we know that the distribution D is not too far from
uniform. Concretely, that D(x) < K27" for some parameter K. This

implies that
P =1]< P = 1] + K.
Prifeo=1=< Priglx)=1]+y

We will choose y = 1/12K. We may assume that Pry.p[f(x) =
1] € [1/3,2/3], otherwise the constant 1 function correlates with f
under D. Thus Pry.p[g(x) = 1] € [1/4,3/4]. This implies, by the
same argument as in the original paper of Jackson, there there is a
term C of g which is Q(1/s)-correlated with g. One can verify that
as g(x) < f(x), Cis also Q(1/s)-correlated with f.

Finally, we need to bound K. It is known (see for example [16])
that boosting algorithms can be restricted to have K = g0,

which completes the proof. O

1.3 Proof Overview

We give a high-level overview of the proof of Theorem 1.1. Let
L = ((Ci,v;)) be a decision list of width w and size m.

General Framework. Given a subset J C [m], we denote by L|;
the decision list restricted to the rules in J, where we delete the rest.
Our goal is to find a small subset J C [m] such that L|; approximates
L. We say that a rule (Cj,v;) of L is hit by an input x if C;(x) = 1
and Cj(x) = 0 for j < i; in this case, L(x) = v;. The main intuition
underlying our approach is:

249

STOC 20, June 22-26, 2020, Chicago, IL, USA

If a rule is rarely hit by random inputs, then we can safely remove it.

Armed with this intuition, our approach is to choose J to be the
set of rules with the highest probability of being hit. We show
that in order to get an e-approximation, it suffices to keep the top

O(w)
(2 + Llog %)

Our general approach follows that of Lovett and Zhang [19].
They combined two central results in the analysis of boolean func-
tions: random restrictions and noise stability. The main innovation in
the current work is that we apply random restrictions that fix only
a small fraction of the inputs; this is in contrast to the common use
of random restrictions, such as in the proof of Hastad’s switching
lemma [13], where most variables are fixed. The ability to handle
random restrictions which fix only a small fraction is what allows
us to obtain improved bounds.

rules.

Mild random restrictions. An index i € [m] is said to be useful
if there exists an assignment x such that the evaluation of L(x)
hits the i-th rule (and hence outputs v;). We denote the number of
useful indices in L by #useful (L). This notion is natural, as we can
always discard rules if no assignment hits them. The main point
is that restrictions can render some rules in a decision list useless.
Let p be a random restriction that keeps each variable alive with
probability a. We show that on average, the restricted decision list
L T has a small number of useful indices:

4 w
1- a) '

The proof is based on an encoding argument. Let p be a restric-
tion for which L [, has T useful indices. Let ¢ € [T] be uniformly
chosen. We construct a new restriction p’ by further restricting the
variables in the ¢-th useful rule so that this rule is satisfied. Then
from p’ and some small additional information a, we can recover
both p and ¢. This shows that the probability of T being too large is
very low, as the entropy of (p’, a) is much lower than that of (p, £).

IE,[#useful (L rp)] < (

Noise Stability. Since there is no guarantee about the value on
each rule of the decision list, it is convenient to consider the follow-
ing index function. Let L = ((C;, vi));¢[m] be a decision list on n
variables. The index function of L outputs for an input x the index
i of the first term in L satisfied by x. Equivalently, IndL is given by
the decision list IndL = ((Ci, ));e[m]-

We make two important definitions. What we want to analyze
are the quantities

pL(i) = Pr[IndL(x) = i],

where x is taken from the uniform distribution of the input. In
particular, we want to show that there is a small set of indices J
such that 3;¢ 7 pr(i) > 1 — e. What we can analyze using random
restrictions are the quantities

qr(a,i) = I;r [index iisusefulin L Tp] s

4 w
1—a) '

We use noise stability to bridge between the two.

since it holds that

Z qr(a,i) = IE) [#useful (L fp)] < (




STOC 20, June 22-26, 2020, Chicago, IL, USA

Let § = 1 — a. For any x € {0,1}", the noise distribution
_ 1+

y ~ Npg(x) is sampled by taking Pr[y; = x;] = —5~ independently
fori € [n]. Consider sampling x € {0, 1}" uniformly andy ~ Ng(x).
We can equivalently sample the pair (x, y) by first sampling a com-
mon restriction p, where each variables stays alive with probability

@, and then sample its completion for x and y independently. Let

Stabr (6, 1) = 51; [IndL(x) = IndL(y) = i] .

We show that py (i) and g1 (e, i) are both polynomially related, by
relating them to Staby (B, i):
pr(i)

qL(1-p.1)
The upper bound is proven by hypercontrativity, and the lower
bound by a somewhat delicate Cauchy-Schwarz inequality. This
allows us to obtain that

< Staby (8. 1) < pr.() 7.

Hp
pr() < qr(1-B,i)*F .
Finally, we put everything together by optimizing the value of f.

Related works. We already discussed the works of Gopalan, Meka
and Reingold [10] and Lovett and Zhang [19] which gave weaker
bounds for DNF sparsification than those in Theorem 1.1.

There have been previous works studying how small-width DNFs
simplify under mild random restrictions that fix a small fraction of
the variables (say, 1%). Segerlind, Buss and Impagliazzo’s work [25],
improved by Razborov [23], show that width-w DNFs simplify to
a decision tree of depth 20(W)_ We obtain bounds on size (namely,
number of useful terms) in Theorem 1.1, which are better than
bounds on depth. However, we only bound the first moment (that
is, expected number of useful terms), while [23] bounds higher
moments as well. So to some extent, the results are incomparable.
We believe that with some further work, one can improve our
techniques to obtain bounds on higher moments as well (this was
unnecessary for the current work). Finally, it is also worthwhile
to mention the work by the authors and Alweiss [1], where mild
random restrictions (of a somewhat different flavor) were used to
obtain improved bounds for the sunflower lemma in combinatorics.

Paper Organization. In Section 2, we prove the upper bound on
decision list compression. In Section 3, we give the lower bounds
to show the tightness of our result.

2 UPPER BOUNDS

We start by make some definitions formal. We denote {1,2, ...
as [n], variables are x1, . . ., x,, and literals are x1, =x1, . .
A term is a conjunction of literals.

,n}

.y Xp, T Xp.

Definition 2.1 (Decision list). A width-w size-m decision list is a
list L = ((Ci,vi))ie[m] of rules. A rule is a pair (C;, v;), where C; is
a term containing at most w literals and each v; is a value in some
finite set V. We assume Cy,, = 1, and (Cy,, vy, ) is the final default
rule.

For any J C [m] with m € J, we denote by L|; = ((Cj,v)))jes
the restriction of L to the rules in J, where elements of J are taken
in ascending order.

250

Shachar Lovett, Kewen Wu, and Jiapeng Zhang

The evaluation of L given assignment x is to find the first index
i such that Cj(x) = 1 and then to output L(x) = v;. We make
additional remarks for the decision list to avoid potential pitfalls.
e If m ¢ J, we will consider L|; invalid, as it does not have a
default rule at the end.
e No variable appears in any single term more than once,
which rules out x; A x1 and x1 A —x7.
Our goal in this section is to prove the following theorem, which
is the upper bound part in Theorem 1.1.

THEOREM 2.2. Let L = ((Ci,vi));e[m] be a width-w decision list.
Then for every ¢ > 0, there exists ] C [m],m € J of size |J| =

O(w)
(2 + % log %) " such that Pr [L(x) * L|J(x)] <e

2.1 Useful Indices

Since there is no guarantee about the value on each rule of the
decision list, it is convenient to consider the index function. Let
L = ((Ci,vi))ie[m] be a decision list on n variables. The index
function of L is a function IndL : {0,1}" — [m], given by

IndL(x) = min {i € [m] | Ci(x) = 1}.

Equivalently, IndL is given by the decision list IndL = ((C;, 1));e[m]-
Using the index function, it suffices to discard some rules of L and
show it still approximates the index function.

Cramv 2.3. Let L = ((Ci, vi));e[m) e a decision list. Then for any
J € [m],m € J, we have

Pr [L(x) # L|j(x)] < Pr[IndL(x) ¢ J].

Proor. This follows as if IndL(x) = j € J, then L(x) = L|j(x) =
Vj. O
Obviously, if a rule of a decision list is covered by some previous
rules, then we can safely remove it. For example, in (x1, 1), (x1 A
X3, 2) the second rule is useless. To make this more formal, we
introduce the following notion of a useful index.

Definition 2.4 (Useful index). Given size-m decision list L, an
index i € [m] is said to be useful if there exists an assignment
x such that IndL(x) = i. We denote by #useful (L) the number of
useful indices in L.

Example 2.5. Let L = ((x1, a), (x1 A =x2,b),(1,¢), (x1,d), (1, €)).
Then indices 1, 3 are useful, but indices 2, 4, 5 are not. So we have
#useful (L) = 2.

The main intuition underlying our approach is that rules that
are hardly hit by random inputs can be removed. Motivated by this,
we define hit probability

pr(i) := Pr[IndL(x) = i] .
Cram 2.6. For any size-m decision list L, we have 3,72, pr (i) = 1.

Proor. This follows as the events [IndL(x) = i] are a partition
of the probability space. O

The following is our main technical lemma.



Decision List Compression by Mild Random Restrictions

LemmA 2.7. Let L = ((Ci, vi))ie[m] be a width-w decision list. Sort
[m] = {j1.....jm} such that p(j1) = pr(j2) = -+ = pr(im). For
anye > 0, let

t=(2+—log-— .
w €

Then for J = {j1,. -

The proof of Theorem 2.2 follows immediately, by combining
Lemma 2.7 and Claim 2.3.

., jt,m} it holds that Pr [IndL(x) ¢ J] < ¢.

2.2 Random Restrictions and Encoding

A restriction on n variables is p € {0, 1,*}". An (n, k)-random re-
striction is the uniform distribution over restrictions p € {0, 1, x}"
with exactly k stars, which we denote by Z(n, k). An (n, @)-random
restriction, which we denote by % (n, @), assigns independently
each bit of the restriction p to 0, 1, * with probability 1_7“, 1_7’7’, o
respectively. Given a decision list L : {0,1}" — V, its restriction
under pis L [,: {0, 1P Sy

Definition 2.8 (Useful probability). Given size-m decision list L
and « € (0,1), the useful probability of an index i € [m] is

Pr

qr(a,i) == A

| [index iisusefulin L Tp] .

Note that we assume L initially does not contain useless rules,
so for any « and i, we always have g (a, i) > 0. We also have the
following simple fact regarding useful probability.

CramM 2.9. For any size-m decision list L, we have 3. | g1 (a, i) =
B (n,a) |#useful (L 1,)].

ProOF. Let 1, ; be the indicator of index i being useful in L 1.
Then

E

suseful (L 1,)] = E
i o [Puseful (L 1p)] =B

m m
Z 1p,l} = Z CIL(U(’ l)
i=1 i=1
O

Now we present an encoding/decoding scheme for random re-
striction and analyze the expectation in Claim 2.9 explicitly. Let
a € (0, 1) be such that an is an integer. Define:

U = {(p, s)|p € Z(n,an),s € {1,. .., #useful (L rp)}}

w
p’ € U H(n,an —k),a € {OLD, NEW}W} .

V= {(p’,a)
k=0

We define two deterministic algorithms Enc : U — V and
Dec : Enc(U) € V — U such that Dec(Enc(p, s)) = (p,s) holds
for any (p,s) € U.

The following claim proves the correctness of the encoding and
decoding algorithms.

Cram 2.10. Dec(Enc(p,s)) = (p,s) holds for any (p,s) € U.

Proor. Sortliterals in each term of L = ((Ci, v;)); [ ] arbitrarily.
To justify the correctness, let (p’, a) = Enc(p, s), then we need to
ensure:

251

STOC 20, June 22-26, 2020, Chicago, IL, USA

Algorithm 1: Encoding algorithm Enc(p, s)

Input: restriction and index (p, s) € U
Output: restriction and string (p’, a) € V
1]« {i | i is a useful index in L [p}
2 j « the s-th element in I
3p —pa—o

/% Assume Cj = AS_ Vi Yjr € {Xjeo X} e < w */

4 fork =1tocdo

5 if p(xj, ) € {0,1} then

6 Append a with OLp  /* xj, is already set by p
*

7 else ’

8 Append a with NEw /* xj,. is newly set to
satisfy this term x/

9 if yj, = xj, then Update p’(xj, ) < 1 else Update
p'(x,) — 0

10 end

11 Complete a arbitrarily to length w

12 end

—-

3 return (p’, a)

Algorithm 2: Decoding algorithm Dec(p’, a)

Input: restriction and string (p’, a) € Enc(U) € V
Output: restriction and index (p,s) € U
1 j « index of the first satisfied term in L [,/
2pep
/% Assume Cj = A7_ Yje,Yji € {xjk,ﬁxjk},c <w
3 fork = 1to cdo
4 if a; = NEw then

*/

/* xj was not set by p x/

5 ‘ Update p(xj, ) < *
6 end
7 end

8 [« {i | i is a useful index in L [p}
9 s« rankofjinI

=

o return (p,s)

e Dec(p’, a) obtains the same j in line 1 as Enc(p, s) does in
line 2:
During Enc(p, s), index j is useful in L 1, thus setting un-
fixed variables to satisfy C; will not make any term C; for
i < j satisfied. Hence the first satisfied term in L [ is C;.

e Dec(p’, a) in line 8 obtains the correct p:
Since each term is sorted in advance, and a encodes which
variable in Cj is set by Enc(p, s) rather than p, the loop in
Dec(p’, a) will set these variables back to * and recover p.

a
COROLLARY 2.11. U] < |V|.

Proor. Enc is an injection from U to Enc(U) c V.



STOC 20, June 22-26, 2020, Chicago, IL, USA

LEMMA 2.12. Let L be a width-w decision list on n variables and
let @ € (0,1). Then
)W

Proor. We first prove the bound for p ~ Z(n, an) and then
increase the number of variables to infinity, by adding dummy vari-
ables. This proves the desired bound as for n’ — oo, the restriction
of Z(n’, an’) to the first n variables converges to % (n, ). We have

E
p~U (n,a)

[#useful (L 1,)] < (lf

[24

E #useful (L
ity [FOSEL (L 1) ]
1
= #useful (L Tp)
|@(n’an)| peZ(n,an)
~ |7/{| |(V| B (Zk O( )2(1 a)n+k) x 2W
" en)] [ am)] FAESEE

(22 (i) x 4 _ ) xar ( 4

S S B

|

l1-«a

2.3 Noise Stability

We use noise stability as a bridge between py (i) and qr(«, i).
Definition 2.13 (Noisy distribution). Given x € {0,1}" and a

noise parameter € (0, 1), we denote by Ng(x) the distribution

LB prly ] = 2

over y € {0,1}", where Pr[y; = x;]
independently for all i € [n].

Definition 2.14 (Stability). Let g : {0,1}" — {0, 1} be a boolean
function. The f-stability of g is

Stabg(g) = l9() = g(y) = 1].

Pr
x€{0,1}",y~Ng(x)
The hypercontractive inequality (see for example [21], page 259)
allows us to bound the stability of a boolean function by its accep-
tance rate.

Fact 2.15. Letg: {0,1}" — {0,1} and € (0,1). Then

Stabg(g) < (Pr[g(x) = 1) TF .

Next, we define index stability and relate it to useful probability
qL(+, ) and hit probability py (-).

Definition 2.16 (Index stability). Given a size-m decision list L on
n variables, the f-stability of index i € [m] is

Staby (B, i) := [IndL(x) = IndL(y) = i] .

Pr
x€{0,1}",y~Np(x)
LEMMA 2.17 (BRIDGING LEMMA). Let L be a size-m width-w deci-

sion list on n variables. Then for any index i € [m] and € (0, 1), we
have

pri)?

m < Stabp (B,i) < pr(i)+F.

252

Shachar Lovett, Kewen Wu, and Jiapeng Zhang

Proor. We first prove the upper bound. Let g : {0,1}" — {0, 1}
be an indicator boolean function for IndL(x) = i. Then using
Fact 2.15, we have

Staby (8, 1) = Stabj(g) < (Pr [g(x) = 1)) 77
= (Pr[IndL(x) = iN™F = pp.(i) 7.

We now turn to prove the lower bound. Let « = 1 — f8. Observe
that we can sample (x,y) where x € {0, 1}",y ~ Ng(x) as follows:
e Sample restriction p ~ % (n, a);
e Sample uniform x” € {0, 1}/’_1(*) and complete stars in p
with it as x;
e Sample uniform y’ € {0, 1}#"®) and complete stars in p
with it as y.
We thus have

Stabr(f,i) = Pr [IndL I, (x)=IndL I, (y') = i] .
pP-X5Y

We now make a seemingly redundant, but surprisingly useful, con-
ditioning. Let (p, i) denote the event

E(p,i) = [i is useful in L fp] .
Then we can equivalently write
Staby (f,i) = Pr [IndL lp (x”) = IndL Mo (y")=in&p, 1)] .
px' Y
For any fixed p, define
rp(i) :=Pr[IndL 1, (x") = i] .
o
Since x’,y’ are independent for any fixed restriction, we have

Staby (B, 1)

:Ppr[c‘}(p, i)] .p,E’r,y’ [IndL lp (x")=IndL I, (v') = i|8(p, i)]

=qr(a,i)-E [rpo')z

E(p, i)]

rp(i) (Cauchy-Schwarz inequality)

2qr(a, i) - (

E(p, l)])

2
qL(a 5 |arten B [rp(o]a(p, >])

2
[IndL 1, (x") =i A E(p, i)])

2
IIldL X/ =1
/ rp ( ) l])

prL(i)
qL (6(, l) '

r [IndL(x) = l])2 =
m]

COROLLARY 2.18. Let L be a size-m width-w decision list. Then for
any index i € [m] and f € (0, 1), we have
+f
pr(i) < qr(1-B,i) % .
As a remark, we note that Lemma 2.17 can be generalized to
arbitrary boolean functions with a similar proof.



Decision List Compression by Mild Random Restrictions

LEMMA 2.19. Letg : {0,1}™ — {0, 1} be a boolean function which
is not identically zero. Set |g| = Pr [g(x) = 1]. Then for any § € (0, 1),
we have

lgl?
lg Tp# 0]

2
Pr < Stabg(g) < |g|™*F.
p~U (n,1-P)

2.4 Putting Everything Together
Now we put everything together and give the proof of Lemma 2.7.

ProoF oF LEMMA 2.7. Recall that we sorted [m] = {j1,...,jm}
such that pr(j1) 2 pr(jz) = -+ 2 pr(m)- Let J = {j1,....jr.m}
for t to be optimized later.

Next, let § € (0,1) to be optimized later and set « = 1 — f.
Sort [m] = {i1,...,im} such that qr(a,i1) > qr(a,iz) > -+ >

qr(@, im). By Claim 2.9 and Lemma 2.12, we have

D qulesix) =

k=1

4
-«

E

o) [#useful (L )] < (1

W\ W
) =G
Note that we have sorted gy in decreasing order, so

)

k\p)]

Observe that ji, .. ., j; have the largest hit probability, and apply
Corollary 2.18, then

qr(a,ig) <

m m m

144
D)< D el Y pr) < ) quleip) 7
Jj¢J k=t+1 k=t+1 k=t+1
4 WX% 1 %
(37 2
k>t+1
wx B .
< 4 v X 2p xt_lTﬂ.
B 1-

If we restrict f < 1/2 and choose

7 G () ) )
t=|- - S/ Y ) I
£ B 1-p £ B

then
Pr(indL(x) ¢ /1 = ) pr() <.
Jj¢J
Now we divide ¢ into two cases. Assume ¢ = 2~ Then:

o If { < 2weset f=1/2and get t = 20(W),
o If ¢ > 2 we set f = 1/ and get t = £OW),

One can verify that in either case we get
1 O(w)
t=(2+—log- .
w £

3 LOWER BOUNDS

In this section, we prove two lower bounds for decision list com-
pression, which show that the bounds in Theorem 1.1 are tight up
to constants.

253

STOC 20, June 22-26, 2020, Chicago, IL, USA

Cramm 3.1. For any w, there exists a width-w decision list L :
{0,1}" — {0, 1} such that

Pr[L(x) # L'(x)] > 1/3

for any width-w decision list L” of size at most 2" /100w.

ProOF. Since any boolean function on w variables can be ex-
pressed as some width-w decision list, there are 22" possible L. On
the other hand, for any fixed L’, it can approximate at most

( 2” ) 92" /3 < 90972

2w /3 =

different boolean functions within distance 1/3; and for fixed size
m, there are at most (3% x 2)" distinct size-m width-w decision
lists. As small-size decision lists can be embedded in larger ones,
when restricted to size at most 2" /100w, width-w decision lists
only approximate at most

ﬁ w w
(3% x 2) 0w x 20-97X27 < 92

different boolean functions on w variables. ]

Cram 3.2. For anyw and n > 2w, there is a width-w decision list
L:{0,1}" — {0, 1} which is not equivalent to any width-w decision
list L’ of size smaller than (;)/n2

ProOF. Let m = (1) and sort all (;) subsets of [n] with size w
as {S1,...,Sm} arbitrarily. For any i € [m], define C; = /\jes, ;.
For any v € {0,1}™, let L, = ((C1,v1),.--,(Cm,vm),(1,0)) be a
size-(m + 1) width-w decision list.

As small-size decision lists can be embedded in larger ones,
assume towards a contradiction that any L,, is equivalent to some
size-(m/n?) width-w decision list L’,. Given L, we can recover Ly,
by enumerating all assignments, since all rules in L,, are useful.
Thus, by counting argument, the number of possible L}, is upper

bounded by
n G)/n? n 2m/n?
2k ( )) ( ) <2m,
k w

w
(2 x>
Now the general lower bound follows immediately.

<
k=0

COROLLARY 3.3. Foranyw ande < 1/3, there is a width-w decision
list L such that

Pr|L(x) # L'(x)] > ¢
holds for any width-w decision list L” of size at most
) 1 : 1\9w)
+ —log - .
w B

ProoF. Fore > 272Y, let L be the decision list in Claim 3.1. Then
it cannot be approximated within ¢ < 1/3 by a decision list L” of

size at most
O(w)

w 1 1
—— =2+ —log -
100w w €



STOC 20, June 22-26, 2020, Chicago, IL, USA

For ¢ < 272%, let L be the decision list in Claim 3.2 with n = log(1/¢).

Since now ¢ = 27", the desired L’ must be equivalent to L. Thus it
cannot be realized by a decision list L of size at most

n 1,00 O(w)
@:(Ing) :(2+llogl) .
n w w £

ACKNOWLEDGMENTS

We thank Ben Rossman for invaluable discussions. We also thank
Ryan Alweiss and the anonymous reviewers for helpful suggestions
on an earlier version of this paper.

REFERENCES

[1] Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang. 2019. Improved
bounds for the sunflower lemma. arXiv preprint arXiv:1908.08483 (2019).
Vikraman Arvind, Johannes Kobler, Sebastian Kuhnert, Gaurav Rattan, and Yadu

(2]

Vasudev. 2015. On the isomorphism problem for decision trees and decision lists.

Theoretical Computer Science 590 (2015), 38-54.

Giulia Bagallo and David Haussler. 1990. Boolean feature discovery in empirical
learning. Machine learning 5, 1 (1990), 71-99.

Paul Beame. 1994. A switching lemma primer. Technical Report. Technical Report
UW-CSE-95-07-01, Department of Computer Science.

Avrim Blum. 1992. Rank-r decision trees are a subclass of r-decision lists. Inform.
Process. Lett. 42, 4 (1992), 183-185.

Arkadev Chattopadhyay, Meena Mahajan, Nikhil S. Mande, and Nitin Saurabh.
2019. Lower Bounds for Linear Decision Lists. CoRR abs/1901.05911 (2019).
arXiv:1901.05911 http://arxiv.org/abs/1901.05911

Andrzej Ehrenfeucht, David Haussler, Michael Kearns, and Leslie Valiant. 1989. A
general lower bound on the number of examples needed for learning. Information
and Computation 82, 3 (1989), 247-261.

Thomas Eiter, Toshihide Ibaraki, and Kazuhisa Makino. 2002. Decision lists and
related Boolean functions. Theoretical Computer Science 270, 1-2 (2002), 493-524.

Ehud Friedgut. 1998. Boolean functions with low average sensitivity depend on
few coordinates. Combinatorica 18, 1 (1998), 27-35.

Parikshit Gopalan, Raghu Meka, and Omer Reingold. 2013. DNF sparsification
and a faster deterministic counting algorithm. Computational Complexity 22, 2
(2013), 275-310. https://doi.org/10.1007/s00037-013-0068-6

(3]

[10]

254

[11

[12

[13

[14

jpory
&

[16

[17]

(18

[19

&
)

&
)

&
=

S
&,

Shachar Lovett, Kewen Wu, and Jiapeng Zhang

David Guijarro, Victor Lavin, and Vijay Raghavan. 2001. Monotone term decision
lists. Theoretical Computer Science 259, 1-2 (2001), 549-575.

Thomas Hancock, Tao Jiang, Ming Li, and John Tromp. 1996. Lower bounds
on learning decision lists and trees. Information and Computation 126, 2 (1996),
114-122.

Johan Hastad. 1987. Computational Limitations of Small-depth Circuits. MIT
Press, Cambridge, MA, USA.

Jeffrey C Jackson. 1997. An efficient membership-query algorithm for learning
DNF with respect to the uniform distribution. . Comput. System Sci. 55, 3 (1997),
414-440.

Michael Kearns, Ming Li, Leonard Pitt, and Leslie Valiant. 1987. On the learn-
ability of Boolean formulae. In Annual ACM Symposium on Theory of Computing:
Proceedings of the nineteenth annual ACM conference on Theory of computing,
Vol. 1987. Citeseer, 285-295.

Adam R Klivans and Rocco A Servedio. 2003. Boosting and hard-core set con-
struction. Machine Learning 51, 3 (2003), 217-238.

Ron Kohavi and Scott Benson. 1993. Research note on decision lists. Machine
Learning 13, 1 (1993), 131-134.

Matthias Krause. 2006. On the computational power of Boolean decision lists.
computational complexity 14, 4 (2006), 362-375.

Shachar Lovett and Jiapeng Zhang. 2019. DNF sparsification beyond sunflowers.
In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, June 23-26, 2019. 454-460. https://doi.org/10.1145/
3313276.3316323

Ziv Nevo and Ran El-Yaniv. 2002. On online learning of decision lists. Journal of
Machine Learning Research 3, Oct (2002), 271-301.

Ryan O’Donnell. 2014. Analysis of boolean functions. Cambridge University
Press.

Alexander A Razborov. 1995. Bounded arithmetic and lower bounds in Boolean
complexity. In Feasible Mathematics II. Springer, 344-386.

Alexander A Razborov. 2015. Pseudorandom generators hard for k-DNF resolu-
tion and polynomial calculus resolution. Annals of Mathematics (2015), 415-472.
Ronald L Rivest. 1987. Learning decision lists. Machine learning 2, 3 (1987),
229-246.

Nathan Segerlind, Sam Buss, and Russell Impagliazzo. 2004. A switching lemma
for small restrictions and lower bounds for k-DNF resolution. SIAM J. Comput.
33, 5 (2004), 1171-1200.

Gyo6rgy Turan and Farrokh Vatan. 1997. Linear decision lists and partitioning
algorithms for the construction of neural networks. In Foundations of Computa-
tional Mathematics. Springer, 414-423.

Fulton Wang and Cynthia Rudin. 2015. Falling rule lists. In Artificial Intelligence
and Statistics. 1013-1022.

Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2016. Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann.


http://arxiv.org/abs/1901.05911
http://arxiv.org/abs/1901.05911
https://doi.org/10.1007/s00037-013-0068-6
https://doi.org/10.1145/3313276.3316323
https://doi.org/10.1145/3313276.3316323

	Abstract
	1 Introduction
	1.1 Random Restrictions
	1.2 Applications
	1.3 Proof Overview

	2 Upper bounds
	2.1 Useful Indices
	2.2 Random Restrictions and Encoding
	2.3 Noise Stability
	2.4 Putting Everything Together

	3 Lower bounds
	Acknowledgments
	References

