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Opportunities and Challenges for
Artificial Intelligence Applications in
Infrastructure Management During
the Anthropocene

Samuel A. Markolf*, Mikhail V. Chester and Braden Allenby

School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ, United States

Pervasive and accelerating climatic, technological, social, economic, and institutional
change dictate that the challenges of the future will likely be vastly different and more
complex than they are today. As our infrastructure systems (and their surrounding
environment) become increasingly complex and beyond the cognitive understanding of
any group of individuals or institutions, artificial intelligence (Al) may offer critical cognitive
insights to ensure that systems adapt, services continue to be provided, and needs
continue to be met. This paper conceptually links Al to various tasks and leadership
capabilities in order to critically examine potential roles that Al can play in the management
and implementation of infrastructure systems under growing complexity and uncertainty.
Ultimately, various Al techniques appear to be increasingly well-suited to make sense
of and operate under both stable (predictable) and chaotic (unpredictable) conditions.
The ability to dynamically and continuously shift between stable and chaotic conditions
is critical for effectively navigating our complex world. Thus, moving forward, a key
adaptation for engineers will be to place increasing emphasis on creating the structural,
financial, and knowledge conditions for enabling this type of flexibility in our integrated
human-Al-infrastructure systems. Ultimately, as Al systems continue to evolve and
become further embedded in our infrastructure systems, we may be implicitly or explicitly
releasing control to algorithms. The potential benefits of this arrangement may outweigh
the drawbacks. However, it is important to have open and candid discussions about the
potential implications of this shift and whether or not those implications are desirable.

Keywords: climate change, infrastructure, artificial intelligence, complexity, anthropocene

INTRODUCTION

If future infrastructure resembles that of the past, or even of today, it will represent a profound
failure on the part of engineers and infrastructure managers. Pervasive and accelerating climatic,
technological, social, economic, and institutional change signal that the challenges of the future
will likely be vastly different and more complex than they are today (Allenby, 2011; Marchant
et al,, 2011; Markolf et al., 2018). The relationship of the human species to the planet is changing
dramatically given a rapidly urbanizing global population of roughly 7.7 billion, and a parallel
growing middle class with changing consumption and food demands. These dynamics play a
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key role in driving and accelerating the integration of human,
natural, and built systems to create complex, interlinked, and
rapidly evolving systems at all scales—from local infrastructure
to regional and global systems (Lo and Yeung, 1998; NRC (US
National Research Council)., 2003; Chester et al., 2019).

The need for infrastructure to adapt, transform, and perform
competently under conditions of complexity and accelerating
change is increasingly being met by integrating infrastructure and
information systems [including various artificial intelligence (AI)
capabilities] into infrastructure design, construction, operation,
and maintenance. However, successfully implementing this
strategy requires a clear and concise understanding of relevant
information, communication, and computational frameworks,
as well as how they functionally couple together in practice—
a particularly difficult task in today’s environment. Therefore,
it is not surprising that the rise of a new global infrastructure
with profound implications for humans, their institutions, and
their planet has gone both unperceived and unremarked. This
is the cognitive infrastructure, and it already permeates virtually
every aspect of our world (Allenby, 2019). In particular, each
infrastructure system and sector has its own companies, experts,
investors, and users. But what is often not recognized is that many
of these infrastructures and technologies are not only coherent
entities themselves, but also being integrated into an emergent
infrastructure that includes integrated functionality from many
sources: the “cognitive infrastructure.”

Taking a functional definition of “cognition” (i.e., information
processing, reasoning, remembering, learning, problem-solving,
decision-making, etc.) (Squire, 2009), the accelerating rise of
cognitive infrastructure becomes evident. For example, machine-
to-machine connections are anticipated to increase from 6.1
billion in 2018 to 14.7 billion in 2023 (Cisco, 2020). Similarly,
spending on sensors and other technologies related to the
Internet-of-Things (IoT) is expected to reach $1.2 Trillion in
2022 (Columbus, 2018). Most of these sensors and devices will
generate vast amounts of data and integrate some cognitive
capability via accelerating deployment of AI technology such
as neural nets (Lee, 2018). In short, accelerating capability and
capacity across a number of apparently unrelated infrastructures
and technologies is generating an infrastructure, tied together by
AT and a vast array of institutional structures, that (1) contains
the functional components of cognition and ever-more powerful
networks operationally linking them together, (2) is distributed
around the world, and (3) contains evolving and emergent
systemic and behavioral capabilities. Simply put, we are building
a pervasive cognitive infrastructure without fully recognizing it,
and we are doing so rapidly and at global scale.

Cognitive infrastructure offers challenges that more
traditional infrastructure systems do not. For one, it operates at
a level that humans can neither fully understand nor perceive—
people are relatively low bandwidth cognitive mechanisms
in a world where even contemporary cognitive infrastructure
operates at far higher bandwidths, much faster speeds, and
higher levels of complexity than individuals can access. This
can unfortunately be seen in the tragic Lion Air Flight 610
and Ethiopian Airlines Flight 302 incidents. Although many
factors appeared to have been at play, the disconnect between
the development of the automated flight control systems in the

Boeing 737-MAX planes and the training and implementation
by the pilots was a key element in the accidents (Gelles, 2019;
Wise, 2019; Herkert et al., 2020; U.S. House Committee on
Transportation Infrastructure., 2020). Thus, determining
how to effectively integrate human and machine cognition
into infrastructure systems becomes a significant professional
challenge that, so far, appears to have not been adequately and
effectively considered.

Integrating cognitive infrastructure is a critical capability
as engineers, technologists, and policymakers try to develop
infrastructure systems that are as resilient, agile, and adaptive
as current (and future) conditions demand. But knowing
that incorporating sensor and Al-driven adaptability into
infrastructure can make it more efficient and responsive to
changing conditions is only the beginning. Understanding the
cognitive infrastructure as a whole is required to fully and
responsibly meet the demands for better infrastructure.
For example, designers of IoT devices embed sensors
and communication capabilities in their products as a
matter of required functionality. But, absent a systemic
perspective on security and the devices place within the
overarching cognitive infrastructure, there is the potential for
underappreciating/misunderstanding issues like the vulnerability
to adversarial attacks that the embrace of AI technologies can
create. These potential drawbacks are ultimately a symptom of
understanding a few of the constituent technologies (e.g., AI)
in isolation, but failing to understand that it is the cognitive
infrastructure, not just those individual technologies, that their
infrastructure design is integrating.

It is premature to consider tantalizing questions such as
how humans should respond as critical cognitive functions
migrate to higher level techno-human systems embedded in a
global cognitive infrastructure. However, it is not premature to
recognize that this new infrastructure, itself a reflection and
driver of the complexity and challenges of the Anthropocene,
is already emergent. Additionally, trying to perceive and
understand some of these implications is an increasingly
imperative and necessary professional responsibility. Without
that first step, ethical, rational, and appropriate infrastructure
design, construction, operation, maintenance (as well as the
educational and institutional structures to support them) will
remain beyond reach. As such, this paper provides a broad
discussion about what Al is and how it relates to infrastructure.
We then explore various tasks and services within infrastructure
systems that may be enhanced and/or replaced by Al Finally, we
conclude with a discussion of some of the broader implications
that may emerge as Al and infrastructure systems become
increasingly entwined in the coming decades.

Al AND INFRASTRUCTURE LEADERSHIP
IN THE CONTEXT OF COMPLEXITY

“AI” is a fuzzy term. As the U. S. National Science and
Technology Council says in its 2016 report, “There is no single
definition of AI that is universally accepted by practitioners.
Some define Al loosely as a computerized system that exhibits
behavior that is commonly thought of as requiring intelligence.
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Others define Al as a system capable of rationally solving complex
problems or taking appropriate actions to achieve its goals in
whatever real world circumstances it encounters.” Herein, we
use “AI” to include big data and analytics dimensions, but
ultimately describe the leadership and intelligence capabilities
that are needed to replace or augment people. In doing so we
envision a future where humans employ Al to make sense of an
increasingly complex world.

In managing dynamic and complex systems and
environments, several leadership capabilities are needed to
address continually changing conditions (Uhl-Bien et al., 2007).
Administrative Leadership, what we largely practice today, is
well-suited for stable conditions and is made up of bureaucracies
that formalize the structure and function of organizations.
However, in the changing or chaotic conditions that define
complex environments, Adaptive Leadership is preferred.
Under this approach, adaptability, creativity, and learning are
emphasized in order to make sense of and navigate complex and
uncertain conditions. Perhaps of most importance is Enabling
Leadership, the ability to shift between Administrative and
Adaptive Leadership practices as conditions shift from stable
to chaotic. Enabling Leadership involves creating structural,
financial, and knowledge conditions for flexibility (Uhl-Bien
et al., 2007). In assessing the AI landscape, evaluating which
techniques are best positioned to support each leadership style is
increasingly useful.

Given this context, there are several tasks for which Al
applications in infrastructure are well-suited, including pattern
recognition, classification, clustering, categorization, system
control, function approximation (e.g., regression analysis),
optimization, and prediction/forecasting (Chen et al., 2008;
Brynjolfsson and Mcafee, 2017; Eggimann et al., 2017). In
order to accomplish these tasks, a variety of techniques and
approaches can be applied, such as rule-based systems (RBS),
genetic algorithms, cellular automata, Fuzzy Systems, Multi-
agent systems, Swarm Intelligence, Case-based reasoning (CBR),
and Artificial Neural Networks (ANN) (Chen et al., 2008). For
example, Al (particularly genetic algorithms, Artificial Neural
Networks, and Deep Learning) has been applied in a variety
of civil engineering contexts including optimum design of
structures (Hajela and Berke, 1991; Adeli and Park, 1995; Camp
et al., 2003; Hadi, 2003), concrete strength modeling (Yeh, 1999;
Ni and Wang, 2000; Lee and Ahn, 2003; Al-Salloum et al., 2012),
predicting geotechnical settlement and liquefaction (Shahin et al.,
2002; Young-Su and Byung-Tak, 2006), earthquake engineering
(Lee and Han, 2002; Arslan, 2010; Yilmaz, 2011), concrete design
mix (Jayaram et al., 2009), prediction and forecasting of water
resources and flooding (Maier and Dandy, 2000; Mitra et al.,
2016; Alexander et al., 2018; Lin et al., 2018; Yu et al., 2018;
Zamanisabzi et al., 2018; Li et al,, 2019), water quality and
sediment modeling (Nagy et al., 2002; Zhang et al., 2010; Barzegar
et al., 2016; Sabouri et al., 2016), irrigation and water-delivery
scheduling (Nixon et al., 2001; Karasekreter et al., 2013), rainfall-
runoft modeling (Minns and Hall, 1996; Tokar and Johnson,
1999; Cheng et al., 2005, 2017; Dixon, 2005; Jeong and Kim,
2005; Abrahart and See, 2007; Young et al., 2017), and evapo-
transpiration modeling (Tabari et al., 2010; Kumar et al., 2020)—
additional examples can also be found in Figure 1 (e.g., Liu et al,,

2016; Mounce et al., 2016; Amanollahi et al., 2017; Beh et al.,
2017; Connift, 2017; Ghalehkhondabi et al., 2017; Matias, 2017;
Rezaeianzadeh et al., 2017; Yang et al., 2017; Zhang et al., 2017,
2018; Corominas et al., 2018; Pisa et al., 2019; Rastegaripour
et al.,, 2019; Suh, 2019). The scope and purpose of this article
is not to provide a comprehensive overview and discussion of
these different techniques. For that, we refer the readers to works
by Flood and Kartam, 1994a,b; Kartam et al., 1997; Adeli, 2001;
Flood, 2001; Flintsch and Chen, 2004; Chandwani et al., 2013;
Ye et al,, 2019); and (Falcone et al., 2020). Nonetheless, a brief
discussion about the ways in which various Al techniques may (or
may not) support infrastructure leadership in stable and chaotic
environments appears warranted and is included below.

Some AI techniques may be well-suited for enhancing
operations during stable conditions, while others may be more
appropriate for supporting leadership during unstable times
(e.g., extreme events, funding uncertainty, pandemics, etc.). For
example, techniques that establish algorithms to solve novel
problems by recalling and referencing similar problems from
the past (e.g., CBR) are particularly suitable for the well-defined
and stable conditions endemic of Administrative Leadership.
In this context, these approaches can be particularly useful
for applications related to system control, planning, prediction,
and diagnosis (Chen et al., 2008). Conversely, techniques that
mimic the manner in which human brains process information
via a series of layered and interconnected processing units
(e.g., ANN) are increasingly well-suited for the complex, data-
intensive, multivariable, and dynamic conditions (i.e., instability)
that warrant Adaptive Leadership. In this context, Al can help
make predictions (based on a series of input patterns) and/or
intuit relationships between various inputs—even in situations
where the underlying rules and structure of the problem may
be unknown or hard to express (Chen et al,, 2008). Overall,
various forms of Al appear poised to greatly complement (or even
in some cases replace) Administrative and Adaptive Leadership
activities and roles within our infrastructure systems. In turn,
the humans and institutions that interact with and govern
our infrastructure systems may play an increasingly important
role as the primary source of Enabling Leadership within our
systems. Thus, it will be crucial for humans and institutions to
recognize the benefits and tradeoffs among the different types of
leadership, roles, and services provided by various Al Perhaps
most importantly, additional consideration appears warranted
regarding the frameworks, resources, structures, and knowledge
systems that may be needed to facilitate the smooth and agile
transition between leadership approaches as future conditions
continually fluctuate between stable and chaotic. The following
section explores this issue further by examining some of the
various roles and tasks AI may fill in infrastructure systems
moving forward.

Al INTELLIGENCES AND TASKS WITHIN
INFRASTRUCTURE SYSTEMS

Evaluating the potential for Al to augment or replace existing
capabilities requires a critical examination of the intelligences
involved. Huang and Rust (2018) assert that AI job replacement
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fundamentally occurs at the task level, and that “lower”
intelligence tasks (e.g., repetitive, routine tasks) are easier
for Al to replace than “higher” intelligence tasks (e.g.,
highly emotional/empathetic tasks). Given that, at their core,
infrastructure systems are service providers, we adapt Huang
and Rust’s framework to (1) link various infrastructure services
to the four types of intelligences described by Huang and Rust
(i.e., Mechanical, Analytical, Intuitive, and Empathetic), and (2)
outline cases (and examples where possible) of how AT has and/or
could potentially replace various infrastructure-related tasks at
each level of intelligence—see Figure 1.

Mechanical Intelligence
The “lowest” level of intelligence is Mechanical, which is defined
by routine and repeated tasks, minimal creativity, and an
emphasis on efficiency and consistency (Huang and Rust, 2018).
Al at this level are rule-based and are well-suited for homogenous
tasks that are repetitive, performed often, and unsophisticated
(Sawhney, 2016; Huang and Rust, 2018). As a result, Al at
this level often have an advantage over humans with respect to
consistency, reliability, and work-rate (Huang and Rust, 2018).
One of the primary challenges associated with Mechanical Al
is that it can be difficult to scale to the systems level, which in
turn can limit its applicability to the large-scale and dynamic
infrastructure systems typical of modern cities. Mechanical tasks
are typically conducted by a single unit (or small, tightly
integrated group of components). As a result, this type of Al is
best suited for well-bounded and tightly constrained situations.
Thus, increasing the network, scale, and/or state of operations
adds complexity that can eventually overwhelm the system.
Under these circumstances, Al at higher levels of intelligence will
likely be more appropriate and effective.

Analytical Intelligence

The second level of intelligence is Analytical, which relies on
the ability to process information, make decisions, problem
solve, and adjust to new information (Huang and Rust, 2018).
Analytical Intelligence is defined by tasks that can be complex
(often data-intensive), yet consistent and predictable. Al at this
level use algorithms to iteratively learn and gain insights from
large and/or continuous data sets. Analytical Al increasingly
consist of networked units rather than a stand-alone machine.
Human interpretation and intuition are still vital complements
to Al at this level. AI provides increasingly varied and valuable
decision support, but humans are still the ones ultimately making
the decision.

One of the biggest potential challenges with Analytical Al
is that it is likely not well-suited for problems that do not
have similar analogs from the past (Chen et al, 2008). This
drawback is particularly important to consider in the context
of managing infrastructure systems under a changing climate.
Non-stationarity, the concept that past conditions and data are
not indicative of future trends and conditions, is increasingly
a reality for urban and infrastructure systems (Milly et al.,
2008; Koutsoyiannis, 2011; Lins, 2012). Thus, Analytical Al
should not be treated as an “off-the-shelf” or “plug-and-
play” solution for a wide range of problems. Engineers and

infrastructure managers should take great care to understand
the nuances, strengths, and weaknesses of AI when applying it
to infrastructure that has significant interaction with climatic
variables (e.g., weather prediction, stormwater systems, flood
management systems, etc.).

Intuitive Intelligence

The next level of intelligence is Intuitive, which relies on
experience-based thinking and creativity. Tasks related to
Intuitive Intelligence are contextual, chaotic, complex, and
idiosyncratic (Huang and Rust, 2018). AI at this level function
in a more human-like manner by learning and adapting based
on previous experience and new information. Understanding a
problem or situation based on context and prior experience is a
hallmark characteristic of Intuitive Intelligence in both humans
and AL

One potential challenge with Intuitive Al is that the problems
to which it may be applied are often “wickedly complex”
and do not have one “right” solution (e.g., the allocation and
management of natural resources) (Chester and Allenby, 2019a).
The algorithms supporting this type of AI often learn from
human-defined data as to what the outcome should be. Thus,
the training of and learning by the AI can be severely inhibited
in situations where the outcome/solution is not clear (Meserole,
2018). Under these circumstances, Al can still be very helpful in
generating, exploring, and analyzing various scenarios. However,
human stakeholders will ultimately be responsible for deciding
on the final outcomes or course of action.

Another potential challenge associated with Intuitive Al is
that there can be a “black-box” element to the analysis and
outcomes due to the fact that it provides solutions and insights
with minimal knowledge of the underlying systems and processes
(Chen et al., 2008). For example, the AI may produce outputs
that are non-intuitive and/or fail to converge on a solution, and
it may be difficult to ascertain why. Ultimately, some level of this
“black box” is likely unavoidable. Presumably, one of the main
reasons to deploy Intuitive Al is because the system in question
is already operating at a scale and/or level of complexity beyond
human cognitive capabilities. If total understanding and mastery
of system dynamics and complexity (i.e., elimination of the “black
box”) is achievable, then Intuitive Al was likely not needed in
the first place. Thus, the critical question is not “how do we
eliminate the black-box?,” but rather, “what degree of black-box
are we comfortable with?” As Al systems continue to evolve and
become further embedded in our infrastructure systems, we may
be implicitly or explicitly releasing control of our infrastructure
systems to software and algorithms. The potential benefits of
this arrangement may very well outweigh the drawbacks in
certain circumstances. However, it is important for communities,
policy-makers, and infrastructure managers to have open and
candid discussions about the potential implications of this shift
in control and whether or not those implications are desirable.

Empathetic Intelligence

The “highest” level of intelligence is Empathetic, which relies
on empathy, social interaction, and communication. Empathetic
tasks relate to the ability to understand emotions, appropriately
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respond to emotions in others, and influence other’s emotions
(Huang and Rust, 2018). Al at this level “relates to, arises
from, or influences emotions (Picard, 1995), and behaves
as if it has feeling. Empathetic Al are still in the nascent
stages of development, with initial applications tending to
relate to emotional analytics (Abou-Zeid and Ben-Akiva, 2010;
Quercia et al., 2014). Nonetheless, the high level of social and
communication skills needed for Empathetic Intelligence seem
to indicate that humans will remain integral at this level for the
foreseeable future.

Similar to Intuitive Al, aspects of wicked complexity and
wicked problems can be especially challenging for Empathetic
Al One of the elements of a wickedly complex problem is the
presence of a wide degree of norms and values among the various
stakeholders within the system. These values/interests may not
always be clearly stipulated or coded in anyway. Additionally,
they can shift and fluctuate over time. As a result, it is very
difficult for the AI to understand the different (and often
conflicting) values among the stakeholders, let alone “train” the
Al around a centrally agreed upon solution/outcome (Baum,
2020).

Related to the issue above, Empathetic Al can be particularly
susceptible to various biases. The biases may be implicit or
explicit, and can be the result of the individuals who wrote the
algorithms or the data from which the algorithm was trained
(Tomer, 2019). For example, facial recognition AT has been found
to contain racial bias (Grother et al., 2019). It is unlikely that
biases can fully be eliminated from Empathetic (and other) Al
systems. Thus, similar to the “black box” issue, perhaps the best
approach is for citizens, decision makers, and Al developers
to have open and candid discussions about the appropriate
applications of Empathetic Al given the potential unintended
consequences that may result from these biases.

Figure1 provides a summary of the key elements of
each intelligence, examples from infrastructure systems, and
current/potential applications of Al in infrastructure across each
level of intelligence.

How Might Al Disrupt Infrastructure

Services and Introduce New Capabilities?

Exploration of the four levels of intelligences in the context
of infrastructure systems reveals a few key insights. First, it
appears that Al (or at least automation) has already been widely
implemented for Mechanical tasks. Although there is still some
potential for AI growth and evolution at this level, it appears
that we may have already reached a saturation point, thereby
making fundamental transformations less likely. This outcome
further underscores the potential for AI to complement and
supplement Administrative Leadership roles within infrastructure
systems. On the other hand, Analytical tasks are where Al appears
poised to have the largest disruption (at least in the near-to-
medium term). As Al capabilities continue to improve (especially
due to the combination of ever-increasing data availability, ever-
decreasing computing costs, and advancements in techniques
like ANNs), Analytical tasks (and Adaptive Leadership roles)
will increasingly be accomplished by AIL Considering that

the vast majority of engineering and infrastructure jobs are
analytical by nature, the augmentation and/or replacement
of Analytical tasks by AI is likely to have a fundamental,
profound, and transformative impact on infrastructure systems
as we know them. Thus, moving forward, a key adaptation
for engineers and infrastructure managers will be to strengthen
and place increasing emphasis on Intuitive and Empathetic
tasks/intelligences, which in turn should strengthen Enabling
Leadership capabilities. This is particularly important, because
even though humans exhibit much higher levels of Intuitive and
Empathetic Intelligence than AI (and are likely to remain that
way for quite a while), there is still room for improvement.
Human error is always a concern when operating under
both mundane and surprise conditions. Similarly, Empathetic
Intelligence currently does not appear to be widely incorporated
or considered in the development of engineered/infrastructure
systems. Thus, in order to most effectively balance the Mechanical
(i.e., Administrative Leadership) and Analytical (i.e., Adaptive
Leadership) advantages of AI with the Intuitive and Empathetic
(i.e., Enabling Leadership) advantages of humans, we (humans)
will need to continually learn from past mistakes and develop
skills to make effective decisions under surprise conditions.
Additionally, substantial and continual efforts should be made
toward enhancing our ability to incorporate social, emotional,
and equity dynamics into engineering/infrastructure planning
and implementation.

DISCUSSION AND CONCLUSION

It is useful to consider how AI technologies in infrastructure
are likely to create new capabilities that, if leveraged correctly,
can help us adapt to the rapidly changing conditions in which
infrastructure systems must thrive. As evidence emerges of
the accelerating and increasingly uncertain conditions that
characterize infrastructure environments (Steffen et al., 2015),
design and management must be able to respond to these
conditions with agility and flexibility (Chester and Allenby,
2019b; Gilrein et al., 2019). With any new technology, control
processes are created to harness and guide the new capabilities
toward the goals of the managing institution (Beniger, 1989).
For example, the advent of engines and novel processes during
the industrial revolution released energy at rates and scales
never before seen. In turn, these technological advancements
required new institutions and processes to channel this power.
Whether AI follows historical patterns of technological control
is questionable. AI technologies are fundamentally focused on
augmenting and replacing cognition. Cognitive infrastructure
that learns and makes decisions for us implies that control may
not be fully attainable (like it was for the steam engines in the
industrial era). Instead, our control efforts may need to focus
on establishing relationships with AI that recognize that cyber-
technologies will be guiding us in ways that we may not always
fully understand.

Al may be uniquely positioned to help us learn about
and navigate increasingly complex environments. In designing
knowledge systems, institutions enable sensing and analytical
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Task Description:

* Routine, repeated tasks

* Minimal creativity

« Consistency and efficiency are
paramount

Mechanical

* Process information

* Problem-solving

* Decision-making

* Learn from new information
« Data/ information intensive
* Tasks can be complex, yet

Ana'ytica| systematic, consistent, and
. predictable
Intelligence
* Experience-based thinking
* Creativity/ creative problem
solving
* Tasks can be complex, chaotic,
contextual, idiosyncratic
Intuitive
Intelligence
N/
O
* Recognize/ understand
emotions
* Respond (appropriately) to
other’s emotions
. nfluence other’s emotions
Empathetlc * Relies on communication,
Intelligence empathy, and social interaction

©

FIGURE 1 | Summary of the “Four Intelligences,” examples from infrastructure systems, and current/potential applications of Al to infrastructure systems across each

level of intelligence.

Examples from
Infrastructure Systems:

* System components (e.g.,
traffic lights, water pumps, etc.)

* Traditional thermostats

« ‘Simple’ supply/ demand
systems based on time-of-day
(e.g., time-of-day scheduling of
traffic lights, time-of-day pricing
and provision of water)

* Fixed schedule airport trams/
people movers

« Intelligent Transportation
Systems (e.g., cameras and loop
detectors to alter timing and
sequence of traffic lights)

* Electricity load management
and demand forecasting (e.g.,
real-time pricing, real-time
demand management)

mart’ thermostats and
irrigation systems

* Navigation/ traffic routing (e.g.,
incorporation of network
conditions and travel behavior
in system routing)

* Long-term forecasting (e.g., 10-
year plans by regional water
suppliers and electric utilities)

* User and/or system manager
improvisation during abnormal/
surprise conditions

* Project/ location specific design
changes based on local
variables & past experiences
(e.g., designing a bridge
foundation more robust than
minimum standards due to
potential local extremes)

* Planning based on ‘quality of
life’/sense of place/ community

* Incorporating equity and social
justice issues into planning/
implementation

* Understanding how people feel
about comfort/ safety/ etc. of
different infrastructure systems

Al Capabilities:

* Al with minimal learning and
adapting

« Actions are efficient, consistent,
and precise

* Actions and reactions are
repetitive and based on
observation

* Al learn/ adapt systematically
based on data

* Actions are logical, rational, and
rule-based

« Al learn and adapt intuitively
based on understanding

* Al function in more flexible and
‘human-like’ manners

* Unlikely that that the same
mistake is made twice

* Al learn and adapt
empathetically based on
experience

* Decisions/ outputs incorporate
emotions

« Signified by affective
computing, emotion
recognition, and highly
advanced communication

Al Applicationsin
Infrastructure Systems:

* Simple rule-based controllers
(e.g., automated diversion of
water through pipe network)
Drones/Robots for
infrastructure inspection
Limited (Level 3) vehicle
automation (e.g., Smart Circuit
Bus in Columbus, OH)
Wastewater treatment control
and operation (Zhang et al,
2017; Corominas et al., 2018)
Water quality and pollution
control (Liu et al., 2016;
Mounce et al., 2016)

Automated maintenance
scheduling based on factors
such as system age, use, or
projected demand

Navigation and traffic
management informed by
citywide cell-phone data and
environmental sensors

‘Highly’ (Level 4) autonomous
transportation systems
Forecasting of water demand
(Yang et al., 2017)

Estimating & controlling water
quality (Amanollahi et al., 2017;
Pisa et al., 2019)

Predicting precip. /water levels
(Rezaeianzadeh et al., 2017)

Intelligent air traffic control
systems

‘Fully’ (Level 5) autonomous
transportation systems
Automated allocation and
dispatch of resources (e.g.,
dynamic public transportation
supply and routing)

Disaster evacuation/
preparedness (e.g., predictive &
automated resource diversion)
Water demand forecasting
(Ghalehkhondabi et al., 2017)
Optimization and planning of
water infrastructure (Beh et al.,
2017; Zhang et al, 2018;
Rastegaripour et al.,2019)

Communicating service
outages/ quality changes
Automated disaster planning
and recovery based on
community emotions, needs,
and capabilities

Al for negotiating wicked
problems across various
stakeholders

Social nudges for behavioral
change/demand management
(Conniff, 2017; Matias, 2017;
Suh, 2019; Baum, 2020)
Altering service provision based
on emotional analytics/needs
(Abou-Zeid & Ben-Akiva, 2010;
Quercia et al., 2014)
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capabilities (coupled with different leadership styles) to operate
in both calm and chaotic environments (Miller and Munoz-
Erickson, 2018). As our systems, and the environments in
which they operate, become increasingly complex and beyond
the cognitive understanding of any group of individuals or
institutions, Al may offer critical cognitive insights to ensure
that systems adapt, services continue to be provided, and needs
continue to be met.

The mapping of Al applications to intelligences and leadership
roles appears to support the varying approaches needed to
address domains of complexity. The Cynefin framework classifies
systems as simple, complicated, complex, or chaotic, and as
we transition from one domain to another, disorder governs
(Snowden and Boone, 2007; Chester and Allenby, 2019a). Each
domain requires a fundamentally different approach to address
challenges. Infrastructure have historically been complicated
systems and are now increasingly viewed as complex (Chester
and Allenby, 2019b). A complicated system calls for data
collection, analyzing and decision-making, while a complex
system shifts toward probing, testing, and a commitment
to adaptability and transformation. The intelligence mapping
presented in Figure 1 provides a useful set of AI applications
that can be applied to infrastructure in complicated and complex
environments. The Mechanical and Analytical Intelligences
appear to align well with complicated situations where the
emergent behaviors of systems are predictable and their
environments somewhat stable. The Intuitive and Empathetic
Intelligences appear to align with complex systems, where
perturbations can result in unpredictable emergent behaviors,
and “satisficing” is needed to manage wicked problems across
technical and social requirements (Chester and Allenby, 2019a).
While all intelligences are needed at various times during the
operation of a system, the development and deployment of
Intuitive and Empathetic Intelligences (and Enabling Leadership)
in humans and institutions, as well as the development and
deployment of Administrative and Adaptive Leadership via Al
appears necessary to address the growing complexity and non-
stationarity of our systems and the environments in which
they operate.

Ultimately, we are in the nascent stages of Al development
and application to infrastructure systems. The topics in this
paper are intended to be an initial discussion of some of the key
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