CHAPTER

15

Trust-aware control in proximate
human-robot teaming

Auriel Washburn, Sachiko Matsumoto, and
Laurel D. Riek

Computer Science and Engineering, UC San Diego, La Jolla, CA,
United States

Introduction

Proximate interaction is central to a wide variety of rapidly expanding
human-robot interaction (HRI) domains including healthcare, manu-
facturing, and education (see Fig. 1). Recent findings from HRI demon-
strate that human-robot teaming commonly leads to better performance
than humans achieve alone (e.g., de Visser & Parasuraman, 2011;
Dixon & Wickens, 2006; Marble, Bruemmer, Few, & Dudenhoeffer,
2004; McKendrick et al., 2014; Shaw et al., 2010). This work suggests that
proximate human-robot teaming can support notable improvements in
many aspects of everyday life.

A primary goal of HRI research in general is to establish how to achieve
and maintain trust calibration within a human-robot team (Ogreten,
Lackey, & Nicholson, 2010). Trust calibration is the achievement of an
appropriate level of trust given both human and robot capabilities and
serves to support effective cooperation and reliance between agents. This
prevents situations where humans over- or under-rely on their robot
teammates, which can result in ineffective robot monitoring or a lack of
interaction with the robot (Hancock et al., 2011). Human-robot trust cali-
bration is critical to effective proximate human-robot teaming, as such
teaming often occurs in dynamic environments within which human
actions are highly variable and robot errors are likely to occur including
public spaces like hospitals, schools and airports as well as private homes.
The continued development of trust-aware robot control will greatly
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FIG. 1 Examples of robots engaging in proximate HRI from our prior work (clockwise
from top left): collaboratively hanging a banner (Washburn, Adeleye, An, & Riek, 2020),
engaging in rehabilitation exercises (Woodworth, Ferrari, Zosa, & Riek, 2018), stacking boxes
(Matsumoto, Washburn, & Riek, 2018), and implicitly learning from a human (Hayes,
Moosaei, & Riek, 2016). These platforms act in shared spaces with people, illustrating the pri-
mary importance of human safety and robot movement to trust in proximate HRI.

support the maintenance of trust calibration during proximate human-
robot teaming.

This chapter provides the foundation for a new generation of trust-
aware control frameworks specifically designed to support optimal team-
ing during proximate HRI To achieve this we review existing work across
HRI, human-automation interaction, and human-human interaction
(HHI) and highlight opportunities for the advancement of trust-aware
control in proximate HRI, as well current challenges to this progress.

In the “Background” section, we provide background on the modeling
of trust in HRI. In “Critical trust factors within proximate HRI”, we review
the interaction factors that are most likely to affect trust during proximate
HRI. We then propose a set of five aims for trust-aware control in proxi-
mate HRIin “Proposed aims for trust-aware control in proximate HRI”. In
“Existing trust-aware control frameworks for HRI”, we use these aims to
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assess the advantages and shortcomings of two existing human-robot
trust-aware control frameworks with respect to their use in proximate
HRI. Through this process, robot movement behavior emerges as central
to trust dynamics in proximate human-robot teaming, and in
“Advancing trust-aware control of robot movement in proximate
HRI”, we offer suggestions for the further advancement of trust-aware
modeling for proximate human-robot teaming through knowledge
about robot movement behavior. In “Challenges to trust-aware control
in proximate HRI”, we describe continued challenges in achieving
trust-aware control within proximate HRI. Lastly, in “The future of
proximate HRI”, we summarize our recommended priorities for the
development of trust-aware control frameworks designed to optimize
proximate human-robot teaming.

Background

Theoretical framework for understanding trust in HRI

The current theoretical framework for understanding trust in HRI is
largely informed by earlier work on trust in human-automation interac-
tion. Lee and See (2004) articulated one commonly accepted understand-
ing of trust in HRI with respect to trust in human-automation interaction
as “the attitude that an agent will help achieve an individual’s goals in a
situation characterized by uncertainty and vulnerability”. Many HRI
researchers also agree with the assertion by Mayer, Davis, and
Schoorman (1995) that human trust in an automated agent involves recog-
nizing and accepting risk.

Beyond these principle elements, empirical work on trust in HRI reveals
various factors that impact trust. Hancock et al. (2011) conducted a compre-
hensive review of this work and found that these factors generally fall into
three categories: 1) robot-related, 2) human-related, and 3) environmental.
The majority of research on trust in HRI has focused on robot-related fac-
tors, which can be divided into attribute- or performance-based robot char-
acteristics (Hancock et al., 2011). Attribute-based characteristics include the
way a robot appears, whereas performance-based characteristics focus on
the way the robot functions. Attribute-based traits related to trust include
robot type (e.g., fixed arm, mobile manipulator, or autonomous vehicle),
personality, and anthropomorphism. For example, robots with polite per-
sonalities can elicit trust even when they exhibit low reliability
(Parasuraman & Miller, 2004). Performance-based features, including robot
reliability (De Brun et al., 2008; Lee & See, 2004; Ogreten et al., 2010) and
predictability (de Vries, Midden, & Bouwhuis, 2003; Dzindolet, Peterson,
Pomranky, Pierce, & Beck, 2003; Lee & See, 2004), are consistently and
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positively associated with human attributions of trust. Hancock et al. (2011)
identified performance-based robot characteristics as prominent predictors
of human trust during HRI. Among these characteristics, robot reliability
was the most consistent predictor of human trust across studies.

However, Ososky, Schuster, Phillips, and Jentsch (2013) suggested
that trust calibration is more a function of an individual’s understand-
ing of a robot’s abilities and inabilities rather than the ground-truth
performance of the robot. Prior work suggests that individuals with
low expectations for a robot’s capabilities have more positive experi-
ences during HRI (Paepcke & Takayama, 2010). Our recent work
demonstrated that whether or not an individual expects a robot to
make errors significantly affects their experience of trust during inter-
action with a robot that actually makes errors (Washburn et al., 2020).
Specifically, individuals with low expectations reported greater trust
recovery following a robot error than those with high expectations.

Both Paepcke and Takayama (2010) and Washburn et al. (2020) gave
their participants framing information about robot capabilities prior to
interaction, but expectations for robot behavior can also be shaped by
robot morphology. For example, people often attribute a range of social
abilities to humanoid robots and can be disappointed and dissatisfied
when a robot does not exhibit these skills during interaction (Duffy,
2003; Mori, 1970). It is, therefore, important to keep in mind that some
attribute-based, robot-related factors likely impact trust during HRI indi-
rectly by creating a mismatch between human expectations and robot
abilities.

Work in human factors also suggests a robust relationship between
self-confidence and trust (Freedy, DeVisser, Weltman, & Coeyman,
2007; Lee & Moray, 1994; Ogreten et al., 2010). Specifically, individuals
with low self-confidence are more likely to overtrust a robot while those
with high self-confidence are less likely to achieve trust at all. People with
a high propensity to trust other people or things, in general, are more
likely to develop appropriate trust in automation (Lee & See, 2004). This
may also be applied to how humans develop trust in robots (Adams,
Bruyn, Houde, & Angelopoulos, 2003).

Compared to the number of studies focused on identifying the role of
robot-related and human-related factors in human-robot trust, consider-
ably fewer studies investigate the impact of environment-related factors.
At the time of their review, Hancock et al. (2011) identified two studies
that demonstrated an effect of cultural context on trust ratings for robots
(Lee & See, 2004; Li, Rau, & Li, 2010). They also predicted that various ele-
ments of team collaboration (e.g., communication) and task features like
the task type or need for multitasking would influence trust during
human-robot teaming.
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Modeling trust in human-automation teaming

In their previous work, Yanco, Desai, Drury, and Steinfeld (2016) and
Moray and Inagaki (1999) identified five distinct categories of trust models
for human-automation interaction: qualitative, regression, time series,
neural net, and probabilistic models. The authors discuss the pros and
cons of the model categories, ultimately demonstrating that each type
offers different opportunities for supporting trust and trust calibration
during interaction.

Qualitative models consist of relationships and interactions between
independent variables of interest (i.e., robot-related, human-related or
environmental factors) and trust as a dependent variable (e.g., Muir,
1989; Riley, 1994). Regression models use statistical techniques, such as
multiple linear regressions, to examine the relationship between the inde-
pendent variables and the dependent variable, typically trust. They also
identify which independent variables account for the most variance in
trust levels. Time series models leverage the structured nature of time series
data to model fluctuations in trust over the course of interaction. Since
these models incorporate time, they are able to represent dynamic rela-
tionships between independent variables and trust, unlike the regression
models described earlier.

Neural net models train a neural net on collected data to predict a
human’s future behavior or trust level. However, unlike time series
models, the process of generating neural nets does not allow the developer
to extract meaningful information about how the model works. As a
result, a developer may be unaware of the ways in which a neural net
model is unintentionally biased by characteristics of the training data
set. This may make it challenging to correct errors introduced by the train-
ing data or adjust the model for use in related but distinctly different con-
texts. Probabilistic models are meant to approximate high-level human
cognitive activity by identifying the probability that a specific agent or
robot action will support the team’s goal state, as well as the agent’s con-
fidence in its decision.

Aside from purely qualitative models, each of the four other model
types offers opportunities for direct implementation on robotic platforms
to provide online control during interaction. Of these quantitative model
types, time series, neural nets, and probabilistic models can all be
designed to account for the dynamic nature of trust in HRI (Robinette,
Howard, & Wagner, 2015; Rousseau, Sitkin, Burt, & Camerer, 1998;
Salem, Lakatos, Amirabdollahian, & Dautenhahn, 2015). Given the need
for extensive training and the challenges associated with adjusting neural
net models, versions of time series, and probabilistic models are likely to
be best-suited to supporting real-time, trust-aware control of robot
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behavior. As Yanco et al. (2016) discussed, these models could even allow
a robot to engage in corrective behavior during interaction. The continued
progress of proximate HRI depends on the development of quantitative
control models that account for the factors with the greatest impact on
trust within proximate interaction.

Trust in proximate HRI

In proximate HRI, the colocation of the human and robot during team-
ing shapes the influence of many human-related, robot-related, and envi-
ronmental factors on trust. Thus, it is important to distinguish copresent
interaction, in which a human and robot share the same physical space,
from tele-present interaction, in which a human and robot interact with
each other from distinct physical locations. Prior work demonstrates that
copresent HRI engenders a greater degree of human trust than tele-
present interaction with the same robot (Bainbridge, Hart, Kim, &
Scassellati, 2008). With the rapid increase of opportunities for proximate
interaction within healthcare, manufacturing, and education it is crucial
that we understand the features of human-robot trust specific to proxi-
mate HRI (Lasota & Shah, 2015; Riek, 2017).

Critical trust factors within proximate HRI

As noted previously, past work in human-automation interaction
informs a large proportion of work on trust in HRI across proximate
and telepresent contexts. However, Desai, Stubbs, Steinfeld, and Yanco
(2009) cautioned that robotics involves an increased level of uncertainty
and vulnerability beyond that experienced with automation. For instance,
HRI often occurs within unstructured environments. With current robots
depending on noisy sensors, the incomplete information available to them
in these environments can reduce the reliability of robot behaviors (Yanco
et al., 2016). Additionally, while the risk associated with human-
automation interaction tasks can vary widely, the majority of these studies
focus on scenarios in which individuals experience a lower level of risk
than that associated with many HRI tasks (Yanco et al., 2016).

Understanding trust in HRI requires that we consider the unique
experience of interacting with a physically embodied, robotic agent. This
effect is likely to be most profound during proximate HRI, especially in
situations where a human and robot have to physically coordinate their
actions to achieve respective and/or joint goals. Proximity may even
heighten human experiences of vulnerability, increasing the influence of
trust on performance outcomes. These “performance-based”, proximate
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interaction scenarios (Lewis, Sycara, & Walker, 2018) are the primary focus
of this chapter. As one might expect, in performance-based interactions the
kinds of performance-based robot characteristics identified by Hancock
et al. (2011) have a large effect on trust (Lewis et al., 2018).

A meaningful account of trust within performance-based proximate
HRI will require integration of (1) knowledge about trust from human-
automation interaction, (2) awareness of the differences between
human-automation interaction and HRI, and (3) acknowledgment of the
most salient robot-, human-, or environment-related factors within prox-
imate HRI. Human-automation interaction research generates meaningful
information about trust that is often relevant to HRI. However, HRI tasks
often involve greater risk than the human-automation interaction tasks
that are frequently studied (Yanco et al., 2016). For example, human inter-
action with remotely controlled unmanned ground robots, like urban
search and rescue, involve a very high risk of success or failure. Proximate
HRlI s less likely to involve this kind of risky task, but more likely to pose a
physical safety risk to human teammates. For example, in the US, the
Occupational Safety and Health Administration (OSHA) identified seven
categories of potential hazards to humans working with robots in
manufacturing contexts, such as automobile production, that can result
in physical safety risks including collision, trapping, and electrical haz-
ards (OSHA, 2006).

Robot-, human-, and environment-related factors will all contribute to
people’s objective and subjective experiences of their safety during prox-
imate HRI. However, we expect that performance-based robot character-
istics will still be some of the strongest predictors of trust in proximate
HRI. Specifically, performance-based robot characteristics related to phys-
ical movement are most critical. The close relationship between robot
movement and human safety and the apparent role of these elements
within trust in proximate HRI across domains are evident in Fig. 1.

As opportunities for proximate HRI become more common, models
specifically designed to account for trust in proximate HRI will support
optimal teaming. In the following section, we outline a set of five proposed
aims to guide the development of proximate trust-aware control. We then
discuss these aims within the context of two existing trust-aware robot
control frameworks.

Proposed aims for trust-aware control in proximate HRI

Based on the current understanding of trust modeling and proximate
HRI, we propose a set of five aims for trust-aware control in
proximate HRI.
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Aim 1: Establish quantitative models that can be used online to inform robot
behavior during interaction. As we discussed above, quantitative models are
distinct from qualitative models in their ability to support the direct
prediction of trust from robot-related, human-related, and environmental
factors (Yanco et al., 2016). Quantitative models are therefore necessary for
robots to properly adapt their behavior to a person’s level of trust through-
out an interaction. For example, if the robot estimates that the human’s
trust in it is too high, it could purposefully display less reliable behavior
(Chen, Nikolaidis, Soh, Hsu, & Srinivasa, 2018).

Aim 2: Account for the dynamic nature of trust, allowing for changes in trust
prediction based on whether the interaction is most closely aligned with a forma-
tion, dissolution, or restoration phase. Multiple studies suggest that trust
often changes over the course of interaction, and that the phase of inter-
action may determine which factors will have the greatest influence on
trust (Desai et al.,, 2012; Desai, Kaniarasu, Medvedev, Steinfeld, &
Yanco, 2013; Lewis et al., 2018). Therefore, to accurately predict trust,
robots must weight these factors differently depending on the phase of
the interaction.

Aim 3: Include the measurement of human trust and policies specifying asso-
ciated changes in robot behavior based on this feedback within quantitative models
that regulate robot behavior online during interaction. Different levels of trust
will require varying responses from robots to maintain fluent teaming. As
a result, robot behavioral policies must explicitly take trust measurements
and predictions into account. Doing so will enable robots to actively sup-
port teaming, as opposed to passively observing the human’s state and
behaving reactively.

Aim 4: Prioritize human safety in robot control frameworks. When humans
and robots are colocated, robots have the potential to physically harm people.
Therefore, to ensure that people are not hurt when interacting with robots,
it is imperative that the control strategies of robots involved in proximate
HRI prioritize human safety. Additionally, such control strategies may
make people more comfortable being physically close to the robot, which
would likely lead to more fluent interactions.

Aim 5: Incorporate environmental factors along with robot- and human-
related factors in models that define interactive robot behavior. Given the impact
of environmental factors on trust (Hancock et al., 2011), including such
factors in trust models will likely increase model effectiveness. This is
especially important in dynamic environments, where changing condi-
tions could affect trust levels regardless of human- and robot-related
characteristics.

These aims allow us to assess the ability of existing trust-aware frame-
works to support proximate human-robot teaming and promote the
development of a new generation of trust-aware control frameworks spe-
cifically designed for proximate HRL
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Existing trust-aware control frameworks for HRI

At present, there are two existing frameworks that provide trust-aware
control of robot behavior during human-robot teaming. We provide a
review of these models and their ability to address our five proposed aims
for trust-aware control in proximate HRI below. The relevant details of
each model are also presented in Table 1.

Trust aware robot control framework (TACtiC)

Xu and Dudek (2016) presented the first trust-aware robot control
framework in which real-time estimates of human trust were used to
adjust robot behavior online. This framework integrated two modules:
Adaptive Parameter EXploration (APEX) and the Online Probabilistic
Trust Inference Model (OPTIMo). Together, these modules allow the
framework to achieve robot learning of human task behavior, estimation
of human trust during task execution, and changes in robot behavior fol-
lowing trust loss to support trust restoration. The authors evaluated the
effectiveness of this strategy for human-single robot teams completing a
visual navigation task in which the goal was to continuously track terrain
boundaries.

The APEX module (Xu, Kalmbach, & Dudek, 2014) consisted of a
vision-based boundary tracking algorithm capable of automatically
adjusting system parameters based on human interventions with robot
behavior. The authors did not design this module to directly assess or
influence human trust during interaction, but rather to improve task per-
formance by incorporating human variations in boundary tracking behav-
ior within robot activity (e.g., those corresponding to differences in
terrain).

The authors used the OPTIMo module (Xu & Dudek, 2015) to estimate
human trust during HRI. Prior to testing the full robot control framework,
the researchers customized this module to each human actor’s trust ten-
dencies through a set of initial practice boundary tracking trials. During
these trials, the researchers collected data about human intervention with
robot tracking, and periodic feedback from users about changes in their
trust of the robot behavior (i.e., every five seconds the control interface
prompted users to provide critiques about whether their trust was increas-
ing or decreasing). Xu and Dudek (2015) used this data to establish person-
alized trust triggers for each individual, which they incorporated within a
Dynamic Bayesian Network responsible for generating real-time trust
updates when they employed the full trust-aware control framework.
Ultimately, the OPTIMo inferred trust updates every 3s based on (1)
the robot’s current and recent task performance, (2) the human’s most
recent intervention state referenced to their personalized trust triggers,
(3) periodic human critiques about changes in their trust toward the robot,
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TABLE 1 Assessment of the two existing trust-aware robot control models with respect to use in proximate HRI.

Paper

Xu and Dudek (2016)

Chen et al. (2018)

Model

Robotic Platform
Collaborative Task

Real-Time
Estimation

Algorithmic
Control

Trust

Trust
Calibration

Robot
Movement

Online Probabilistic Trust Inference Model
(OPTIMo) with Trust-Aware Conservative Control
(TACtC)

SL-Commander (all-terrain autonomous vehicle)
Terrain boundary tracking
Estimates real-time unified human trust based on:

- Robot performance (implicit)

- Human intervening commands for robot direction
and speed (implicit)

- Human relative-scale critiques (explicit)

- Human absolute-scale feedback (explicit)

None

Adaptive Parameter Exploration (APEX) uses
human intervention commands to automatically
adapt system parameters for boundary-tracking
TACtC adjusts robot movement in response to trust
loss by:

- Reducing speed
- Smoothing steering signal

Partially observable Markov decision process for
trust (trust-POMDP)

Bespoke robot arm
Table-clearing
Linear Gaussian system estimates trust based on:

- Real-time robot task performance (implicit)
- Real-time human intervention (implicit)

Performance-maximizing policy leads to:

- Robot object selection sequences that build trust
(when the probability of failure is low)

- Intentional robot failure (when the human exhibits
high trust but the probability of robot failure is
high)

Trust-POMDP uses current robot performance and
human intervention information to select object to
move
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Factors Included
in Model

Robot-Related

Human-
Related

Environmental

Robot boundary tracking performance
Individual human trust tendencies

Human intervention with robot behavior
Human trust attitudes about robot behavior

Indirect robot adaptation to terrain change/task
difficulty through robot adaptation to changes in
human behavior

Probability of robot failure (simulation)
Human intervention with robot behavior

Reward/failure/intervention values for object
categories manually specified

Effects of object selection sequences learned from
preliminary experiment
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and (4) infrequent human responses to a trust survey. Thus the model
incorporated the measurement of variables implicitly associated with
human-robot trust as well as explicit human feedback about trust in the
robot.

The TACtC module used the trust information generated by the
OPTIMo module to initiate changes in robot behavior. When OPTIMo
identified a salient loss of trust, the robot behavior became more conser-
vative in order to limit the negative effects of whatever caused the trust
loss and prompt the human to engage with and assist the robot. The sys-
tem exhibited conservative behavior through a reduction in movement
speed and a smoothing of the steering signal. The authors evaluated the
effectiveness of the TACtiC module within the three-part control frame-
work by implementing it on an autonomous vehicle. The full trust-aware
framework reliably predicted human trust, and users reported greater
efficiency when interacting with a mildly conservative agent compared
to one with no conservative control. The authors measured subjective effi-
ciency using self-report items for human users’ experiences of both collab-
oration and trust.

Trust-POMDP framework

Chen et al. (2018) presented the second trust-aware control framework,
a trust-based computational model for robot decision making during
human-robot teaming. In this work, the authors emphasize that robots fre-
quently need to make decisions that would benefit from knowledge about
a human’s hidden mental state. Thus they characterize trust as a latent
variable, which they model using a partially observable Markov decision
process (POMDP). The trust-POMDP model is made up of two main mod-
ules: a human trust dynamics module and a human decision module. The
authors used a data-driven approach to define each module during a
table-clearing task in which a human and robot collaborated to clear five
objects from a table (three plastic water bottles, one fish can, and one wine
glass). To do this, they manually specified a reward function for the set of
possible interactions between each of the three object categories and three
potential task actions (robot clearing success, robot clearing failure, and
human intervention). They then communicated this reward function to
participants before collecting the model training data. The reward func-
tion was as follows: robot succeeds in clearing the bottle (1), fish can
(2), or wine glass (3); robot fails in clearing the bottle (0), fish can (—4),
or wine glass (—9); human intervenes with the bottle (0), fish can (0), or
wine glass (0). Generally speaking, this function is based on the idea that
there is a higher risk associated with robot failure when interacting with
the fish can or wine glass, but also a higher reward.

In the trust dynamics module, the authors model human trust evolu-
tion over the course of HRI as a linear Gaussian system. The resulting
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model relates human trust causally to robot task performance over time
based on the prespecified reward function. At any given time point, the
output of this module can be used within the human decision module
to generate a trust-informed prediction of human behavior. This trust-
based model operates on the assumption that a human’s expectations of
robot success will change over time, depending on their trust in the robot.
The authors compared the performance of this model with a trust-free
model of human behavior in which the human expectation of robot suc-
cess did not change over time.

Chen et al. (2018) designed the human decision module to predict the
action a human would make in response to each possible robot action
based on the current trust estimate provided by the trust dynamics mod-
ule. In the context of the table-clearing task, the options for human action
were to allow the robot to complete an action once it was initiated or inter-
vene in order to prevent an expected failure. When the human decision
module operated based on the trust-free model, it predicted a constant
likelihood of intervention for each object over the course of interaction,
regardless of past robot and human behavior. In contrast, the trust-based
model predicted notable changes in the probability that a person would
intervene corresponding to different trust levels, especially for the
highest-risk object (i.e., the wine glass). Ultimately, the human decision
module used the expected human policy for each possible robot action
predicted by either the trust-based or trust-free behavior model to com-
pute an optimal robot policy. For example, the trust-based model learned
that trust increases over the course of an interaction. It, therefore, calcu-
lated policies for early trials that allowed the robot to demonstrate its
trustworthiness by moving less risky objects first to avoid early human
interventions (e.g., moving three plastic water bottles before moving the
wine glass).

The authors compared the trust-POMDP to the trust-free version of the
model by implementing them both on a robotic arm. Their results revealed
that human-robot team performance, measured via accumulated reward,
was significantly better when the trust-POMDP controlled robot behavior.
A reduction in human intervention rates drove this increase in perfor-
mance. Interestingly, there was not a significant difference in the average
evolution of self-reported trust between the trust-based and trust-free
models. The authors determined that this was because early successes,
especially for the higher risk objects, were associated with greater
increases in trust than later successes.

Chen et al. (2018) acknowledge that while they only included successful
robot behavior in their experimental robot test, robots are likely to fail dur-
ing real-world human-robot interaction. To capture this effect, they used
the learned trust dynamics and human behavior models to compute
robot policy decisions for the context in which robot failure was likely.
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By adjusting the reward function in this new simulation, the authors were
able to induce an “information-seeking” robot policy in which the robot
selected a high-risk object early on during interaction. The human
response (i.e., to intervene or not) to this action indicates whether the indi-
vidual has an appropriate trust calibration to the robot’s failure rate. The
authors also added the opportunity for the robot to fail intentionally in this
simulation, allowing the robot to actively reduce over-trust. With some
modifications to the trust-POMDP they were able to demonstrate that
when robotic failures are possible, a reward-maximizing policy that
involves strategic, trust-reducing actions can lead to better performance
than a trust-maximizing policy.

Ability of existing trust-aware control frameworks to support
proximate HRI

As discussed earlier, Xu and Dudek (2016) and Chen et al. (2018) pre-
sented the first trust-aware control frameworks for real-time human-robot
teaming. Both frameworks are successful in demonstrating the advantage
of incorporating trust-awareness within robot control. Specifically, Xu and
Dudek (2016) saw a significant effect on subjective experience, including
trust reports, and Chen et al. (2018) observed a substantial decrease in the
rate of human intervention with robot behavior. These models share some
characteristics, but are also distinct in the ways they address each of our
stated aims for valuable trust-aware proximate HRI control frameworks.
We summarize each of the models’ contributions to these aims as follows:

Aim 1: Establish quantitative models that can be used online to inform
robot behavior during interaction. Both Xu and Dudek (2016) and Chen
et al. (2018) used quantitative approaches to modeling trust in HRI that
incorporate modular, probabilistic models. They implemented these
models within their respective robot control architectures to guide contin-
uous robot performance and robot decision-making online during
interaction.

Aim 2: Account for the dynamic nature of trust, allowing for changes in
trust prediction based on whether the interaction is most closely aligned
with a formation, dissolution, or restoration phase. Xu and Dudek (2016)
do not explicitly include time within the framework they experimentally
tested. However, they do mention wanting to incorporate updates to the
user trust model, which will reflect the changes that occur as an individual
gets used to working with a robot over time, or use a data-driven approach
to predict long-term changes based on initial user trust thresholds. Chen
et al.’s (2018) trust dynamics module includes a time series model of trust
learned from preliminary data collection for the table-clearing task.
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Aim 3: Include the measurement of human trust and policies specifying
associated changes in robot behavior based on this feedback within quan-
titative models that regulate robot behavior online during interaction. Xu
and Dudek (2016) use an estimate of human trust based on both robot per-
formance and human feedback to determine when to switch to a conser-
vative mode of robot behavior. The selection of optimal robot policies in
Chen et al’s (2018) trust-POMDP similarly reflects both robot perfor-
mance and human behavior. However, the latent variable for trust in this
framework is specific to the reward function for the table-clearing task and
the authors note that a more multidimensional parametrization of trust
that accounts for a wider range of functions and modes of automation
would be advantageous. Both frameworks serve to advance trust-aware
control for use in specific task contexts, but the development of a multi-
dimensional measure that accounts for a greater proportion of trust factors
will support significant advances in trust-aware control for proximate
human-robot teaming. Additionally, determining which measures can
be used across task contexts and which are best in a specific context will
enable better control algorithms for teaming.

Aim 4: Prioritize human safety in robot control frameworks. Neither
model incorporates objective or subjective measures of human safety within
their estimates of trust. However, the TACtiC module (Xu & Dudek, 2016)
does directly control robot movement as a function of real-time human trust.
Specifically, when trust in the robot is low its movements become slower and
smoother. Chen et al.’s (2018) behavioral policies specified which object to
move at what time, but did not take into account the spatial orientation of
the objects, human and robot arm or the kind of movement realized by the
robot arm. The authors acknowledge that the movement characteristics
exhibited by the robot may influence the evolution of trust.

Aim 5: Incorporate environmental factors along with robot-related and
human-related factors in models that define interactive robot behavior.
The APEX module of Xu and Dudek’s (2016) model is capable of adapting
to changes in task difficulty (i.e., terrain conditions) indirectly through
adaptation to changes in human control. Chen et al. (2018) construct
risk-awareness within the table-clearing task by manually specifying
the rewards associated with each object and action. Their trust dynamics
and human behavior modules also include information about the progres-
sion of the table-clearing task learned from preliminary data-collection.

Neither of the trust-aware HRI control frameworks we review here
individually addresses all five of our proposed aims for trust-aware con-
trol in proximate HRI. However, together the frameworks provide exam-
ples of ways to approach each of these aims.

These frameworks also include elements beyond those identified by
our aims that may benefit the ease and effectiveness of their use across
proximate HRI contexts. For instance, Xu and Dudek’s (2016) OPTIMo
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module is customized to each individual using a set of training trials
before the full control framework is deployed autonomously. In some
ways this limits the ease of the framework’s use by increasing the amount
of time required to train the autonomous system for interaction with each
individual user. However, the additional effectiveness afforded by the
resulting individualized trust estimates is likely to make this component
more of a benefit than a limitation. Additionally, Chen et al.’s (2018) trust-
POMDP can actively elicit trust calibration by deliberately behaving in a
way that will increase or decrease human trust. This is likely to increase
the effectiveness of the framework, especially given the authors’ observa-
tion that a performance-maximization policy can be superior to a trust-
maximization policy, and the existing evidence that trust calibration
supports effective teaming (see Ogreten et al., 2010).

The platforms and tasks used to test these control frameworks also have
implications for their use across proximate HRI contexts. Xu and Dudek’s
(2016) autonomous driving task does involve a proximate spatial relation-
ship between a human and robotic system. However, autonomous driving
is a special case within proximate HRI. As a result, the trust dynamics
between a driver and an autonomous vehicle may be different from the
ones that exist during interaction with a robot arm or mobile manipulator.
In the context of autonomous vehicles, the typical effects of physical prox-
imity on trust dynamics may be more relevant to interactions with pedes-
trians. The fact that Xu and Dudek (2016) saw greater errors in their trust
feedback estimates during the autonomous driving test compared to a
previous simulation test indicates that users were more cautious during
autonomous driving. We expect that being able to adapt the OPTIMo to
different levels of actual and perceived risk would extend its effectiveness
across a range of different proximate HRI tasks. It will also be necessary to
define meaningful task-specific robot adaptation and conservative control
behaviors in order to use the three-module framework for proximate HRI
tasks other than boundary-tracking.

Chen et al.’s (2018) table-clearing task and robotic arm are characteristic
of a number of proximate HRI tasks. However, it is important to note that
both modules of the trust-POMDP include task-specific, probabilistic
models that were learned from a sizeable data set. The authors mention
that models for other tasks or domains can be substituted for the ones
associated with the table-clearing task, but this may require additional
data collection and learning which could be a time-consuming process.
Relatedly, the present version of the control framework is based on a
manually designated, task-specific reward function that may not actually
correspond to the human conception of the task and would be irrelevant to
other tasks. The authors acknowledge that a more accurate understanding
of reward could be learned by the trust-POMDP through additional pre-
liminary data collection.
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At present, Chen et al.’s (2018) learned policies assume that robot
capabilities will be static. In reality, it is likely that robot capabilities will
vary over time or with changes in the environment, especially during
proximate human-robot teaming where environments are often dynamic
and noisy. Xu and Dudek (2016) have some ability to account for these
changes by incorporating continuous robot learning of human control
behaviors. Chen et al. (2018) also identified a large variance among users
in the training data set. This indicates that the experience of trust and
reliance on trust during decision-making likely varied by individual.
The kind of individualization included in Xu and Dudek’s (2016) frame-
work provides an opportunity to account for these effects and improve
model performance.

Discussion

Effective models of trust-aware control in proximate HRI will benefit
from continued attention to the five aims outlined in the current work.
The individual customization and behavioral flexibility and adaptation
to human and environmental changes of Xu and Dudek’s (2016) system
along with the understanding of trust evolution and ability to shape trust
calibration featured in Chen et al.s (2018) work will also be especially
valuable. The further advancement of trust-aware control in proximate
HRI will depend on the consideration of factors that are not prioritized
in the existing frameworks, especially subjective and objective human
safety and robot movement behaviors as related to human safety as well
as robot communication. There are some other challenges to proximate
HRI that will need to be addressed to optimize trust-aware control in these
contexts as well.

Advancing trust-aware control of robot movement
in proximate HRI

Critically, neither of the existing trust-aware control frameworks
explicitly account for human safety, which is likely to be central to the suc-
cess of trust-aware, proximate interaction. It follows that the most effective
trust-aware control frameworks for proximate HRI will include additional
consideration of the effects of robot movement during the interaction.
Attention to the trust-aware control of robot movement will not only
improve the objective and subjective safety of proximate HRI, but it will
also provide better opportunities for robots to improve trust calibration
through clear communication of robot capabilities, robot intention, and
human-robot roles and relationships.
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Humans communicate a wide variety of information via natural lan-
guage, but robots are often limited in their ability to process and produce
communication through language. Some platforms are able to achieve
human trust following system errors by communicating via text using a
visual interface (Rezvani et al., 2016). However, many nonverbal behaviors
that are more easily realizable by a range of robots can also convey mean-
ingful information during human-robot teaming. For example, Lee, Knox,
Baumann, Breazeal, and DeSteno (2013) demonstrated that the sequencing
of nonverbal robot gestures influences human perceptions of robot trust-
worthiness during proximate human-robot teaming. Similarly, robot move-
ment characteristics like speed, smoothness, and shape can communicate
information about robot behavior and influence human trust during prox-
imate human-robot teaming (Dragan, Bauman, Forlizzi, & Srinivasa, 2015;
Dragan, Lee, & Srinivasa, 2013; Huang, Bhatia, Abbeel, & Dragan, 2018;
Riek et al., 2010; Xu & Dudek, 2016).

Chen et al. (2018) ran a simulation in which they used intentional,
movement-related task failures to reduce human trust when their trust-
POMDP control framework detected over-trust in a robot. Specifically,
the robot dropped an object during movement, communicating a lower
level of reliability than the simulated human previously attributed to it.
By simulating this policy the authors demonstrated that the effective com-
munication of robot capabilities and appropriate calibration of human
trust would ultimately support greater team performance. Other
researchers proposed that similar demonstrations of robot capabilities
are beneficial during preliminary training for human-robot teams. For
example, researchers investigating trust in automation noted that intro-
ducing failures during training is likely to help set human expectations,
which in turn supports effective trust calibration (Schaefer, Chen,
Szalma, & Hancock, 2016) and reduces complacency as well as the inher-
ent bias to trust automation (Bahner, Huper, & Manzey, 2008).

Robot movement can also be used to communicate intention. Dragan
et al. (2013, 2015) demonstrated that the kind of path used to achieve
goal-directed robot arm movement has a significant impact on collabora-
tive proximate human-robot teaming. They found that legible movement
trajectories, generated to prioritize the expression of robot intent, led to
more fluent collaboration than predictable trajectories, which matched
what a human co-actor would expect given a specific end-goal. Individ-
uals preferred both of these movement styles to functional trajectories,
which are based purely on reaching a goal and avoiding collisions.

Some participants leaned away from the robot more during functional
movement and modified their movements to maintain greater distance
(Dragan et al., 2015). This indicates that these individuals felt less safe
when interacting with the robot exhibiting functional movement,
although the authors note that participants reported disliking the func-
tional movement mainly because it was difficult to coordinate their
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movements within the shared task space. Regardless of whether legible
movement primarily supports effortless and efficient human-robot coor-
dination or human experiences of safety, it is likely to have a meaningful
effect on trust during proximate HRI. Similarly, Che, Okamura, and
Sadigh (2020) recently used a combination of robot movement character-
istics and haptic feedback to communicate robot intention during a spatial
navigation task. This planning framework increased users’ trust in the
robot compared to a simple collision avoidance algorithm.

The coordination of coactor behavior can be understood as an indicator
of team cohesion. Researchers investigating HHI identified strong connec-
tions between interpersonal physical coordination and experiences of
social connection such as liking and affiliation (e.g., Miles, Griffiths,
Richardson, & Macrae, 2010; Miles, Lumsden, Richardson, & Neil
Macrae, 2011). Such coordination also augments functional teaming
dynamics through positive effects on cooperation and collaborative
problem-solving (Miles, Lumsden, Flannigan, Allsop, & Marie, 2017).
Launay, Dean, and Bailes (2013) showed a direct, positive association
between synchronization and trust for humans coordinating their finger
taps with a virtual agent. It is likely that a similar relationship exists for
movement coordination between human-robot teammates. In fact, in their
recent work on human-agent teaming, Wynne and Lyons (2018) identified
synchrony as one of six key factors that influence human perceptions of
autonomous agent teammate-likeness, the extent to which they see the
agent as a capable partner rather than an instrumental tool.

Robot movement behavior can also be used to communicate informa-
tion about the roles of human and robot coactors within a team structure.
Within the supervisor-worker dynamic of Xu and Dudek’s (2016) auton-
omous vehicle study, a switch to conservative robot behavior signals a
need for the human to provide additional guidance. The researchers are
able to elicit this guidance by having the vehicle produce a slower and
smoother movement. These conservative behaviors were inspired by pre-
vious work demonstrating that humans experience robots as more teach-
able when they exhibit long action delays during early interaction
(Tanaka, Ozeki, & Oka, 2010), as well as work indicating that humans
can understand human-like hesitation gestures exhibited by robots
(Moon, Parker, Croft, & Van der Loos, 2013). The ability of a robot to signal
a need for additional human assistance through these kinds of movement
delays and hesitation behaviors is a valuable tool for supporting appropri-
ate trust calibration in proximate human-robot teaming.

Challenges to trust-aware control in proximate HRI

Many challenges to achieving effective and efficient HRI are especially
relevant within proximate HRI. Igbal and colleagues articulated how sev-
eral of these challenges affect robot perception and action (Igbal,
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Gonzales, & Riek, 2015; Igbal, Rack, & Riek, 2016; Igbal, Shah, & Riek, 2018;
Igbal & Riek, 2017). First, the unpredictable nature of human behavior and
human environments makes it difficult for robots to sense and understand
human behavior accurately and to respond accordingly. Similarly, while
robots are capable of signaling a change in their contribution to teaming
(e.g., by displaying hesitation behaviors as in Xu & Dudek, 2016), they
may have trouble-detecting changes in team dynamics initiated by a
human coactor. This limits the ability of a human-robot team to fluently
transition between role distributions during an ongoing task.

Igbal and Riek (2017) also identify the limitations that arise as a result of
limited behavioral flexibility in robots as many robots are designed to per-
form a single task. This is especially restrictive in proximate teaming con-
texts, where robots are often expected to perform multiple tasks and
support trust while also approximating human social behaviors.

In addition to the technical challenges facing robot platforms for use in
proximate HRI, the measurement of trust is also an obstacle to the success
of trust-aware control. Recent work demonstrated that there is not always
a significant relationship between trust attitudes, as measured via self-
report and behavioral reliance during proximate human-robot teaming
(Lohani, Stokes, McCoy, Bailey, & Rivers, 2016). This makes explicit mea-
sures of trust attitudes potentially unreliable for assessing meaningful
behavioral human reliance during teaming.

The alternative is to monitor implicit measures associated with trust
and reliance during ongoing human-robot teaming. Human intervention
in robot behavior is a common implicit metric for reliance (e.g., Chenetal.,
2018; Xu & Dudek, 2016). Researchers have also begun to identify other
physiological and behavioral patterns associated with human states of
trust and reliance (e.g., Khalid, Liew, Voong, & Helander’s, 2018 use of
facial expression, voiced speech, and heart rate).

As we discussed, it is also important to be able to capture the dynamic
nature of trust over the course of proximate human-robot teaming. Yang,
Unhelkar, Li, and Shah (2017) illustrated this by showing that the “trust of
entirety”, or trust over a person’s entire experience with a robot, is better
understood by examining the evolution of trust over time than by taking a
single measure of trust at the end of the interaction. This evolution can be
quantified by measuring the area under the curve (AUTC) for a variable,
or multidimensional variable, representing trust (Desai et al., 2013). This
method for estimating trust is likely to be very valuable within trust-aware
control. However, it depends on identifying variables that can be mea-
sured continuously or frequently while also being accurate indicators of
trust, which may be difficult depending on the proximate HRI task.

Lastly, HRI researchers only recently started to draw attention to the
importance of human trustworthiness (Basu & Singhal, 2016; Takeda,
2016). For example, Takeda (2016) demonstrated that drivers who display
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overreliance on an automated driving system also display greater devia-
tion in gaze behavior. This indicates that gaze behavior may be useful for
establishing the trustworthiness of a human in an automated driving con-
text. In turn, this can inform trust-aware control decisions. The need to be
able to measure human trustworthiness as well as human trust in robotic
systems in order to support safe, effective control is relevant to a number
of other proximate HRI contexts as well. Thus continued work on trust-
aware control in proximate HRI should aim to include the measurement
of both human trust in a robot coactor and human trustworthiness.

The future of proximate HRI

In this chapter, we provided the first in-depth discussion of how trust-
aware control can be used to advance teaming in the kinds of proximate
HRI scenarios that are becoming increasingly common across healthcare,
manufacturing, and education. In doing this, we identified the trust-
related factors that are most likely to be critical specifically within proxi-
mate HRI contexts. Based on these factors we outlined five primary aims
for trust-aware control in proximate HRI and discussed how the elements
of the two existing trust-aware control frameworks for HRI succeed or fail
to address these aims.

Through this process, the importance of robot movement in trust-aware
control emerged as a primary motivation for ongoing work. Robot move-
ment characteristics can be used to communicate robot capabilities, robot
intention, and human-robot roles and relationships. As we discussed,
each of these movement behaviors can act to shape trust during proximate
human-robot teaming. We acknowledged that there are a number of tech-
nical challenges to the fluent and flexible use of current robotic systems
within proximate HRI, as well as difficulties in measuring trust in ways
that are meaningful to trust-aware control frameworks. The progress of
teaming within proximate HRI will require continued attention to these
challenges. Ultimately, however, it is work on the trust-aware control of
robot movement behavior via the methods we discussed in this chapter
that will offer opportunities for transformative advances in
proximate HRI.

References

Adams, B. D., Bruyn, L. E., Houde, S., & Angelopoulos, P. (2003). Trust in automated systems
literature review (DRDC Toronto No. CR-2003-096). Toronto, Canada: Defence Research
and Development Canada.

III. Trust in human-robot teaming


http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0010
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0010
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0010

374 15. Trust-aware control in proximate human-robot teaming

Bahner, J. E., Huper, A. D., & Manzey, D. (2008). Misuse of automated decision aids: Com-
placency, automation bias and the impact of training experience. International Journal of
Human-Computer Studies, 66(9), 688—699. https:/ /doi.org/10.1016/j.ijhcs.2008.06.001.

Bainbridge, W. A., Hart, J., Kim, E. S., & Scassellati, B. (2008, August). The effect of presence
on human-robot interaction. In RO-MAN 2008-The 17th IEEE international symposium on
robot and human interactive communication (pp. 701-706). IEEE. https://doi.org/10.1109/
ROMAN.2008.4600749.

Basu, C., & Singhal, M. (2016, March). Trust dynamics in human autonomous vehicle inter-
action: A review of trust models. In 2016 AAAI spring symposium series.

Che, Y., Okamura, A. M., & Sadigh, D. (2020). Efficient and trustworthy social navigation via
explicit and implicit robot-human communication. IEEE Transactions on Robotics. arXiv
preprint arXiv:1810.11556.

Chen, M., Nikolaidis, S., Soh, H., Hsu, D., & Srinivasa, S. (2018). Trust-aware decision making
for human-robot collaboration: Model learning and planning. In Proceedings of the 2018
ACM/IEEE international conference on human-robot interaction (pp. 307-315). ACM.

De Brun, M. L., Moffitt, V. Z., Franke, J. L., Yiantsios, D., Housten, T., Hughes, A., et al. (2008).
Mixed-initiative adjustable autonomy for human/unmanned system teaming. In AUVSI
unmanned systems North America conference.

de Visser, E., & Parasuraman, R. (2011). Adaptive aiding of human-robot teaming: Effects of
imperfect automation on performance, trust, and workload. Journal of Cognitive Engineer-
ing and Decision Making, 5(2), 209-231. https://doi.org/10.1177 /1555343411410160.

de Vries, P., Midden, C., & Bouwhuis, D. (2003). The effects of errors on system trust, self-
confidence, and the allocation of control in route planning. International Journal of Human-
Computer Studies, 58(6), 719-735. https:/ /doi.org/10.1016/51071-5819(03)00039-9.

Desai, M., Kaniarasu, P., Medvedev, M., Steinfeld, A., & Yanco, H. A. (2013). Impact of robot
failures and feedback on real-time trust. In Proceedings of the 8th ACM/IEEE international
conference on human-robot interaction (pp. 251-258). IEEE Press.

Desai, M., Medvedev, M., Vazquez, M., McSheehy, S., Gadea-Omelchenko, S., Bruggeman, C.,
etal. (2012). Effects of changing reliability on trust of robot systems. In Proceedings of the sev-
enth annual ACM/IEEE international conference on human-robot interaction (pp. 73-80). ACM.

Desai, M., Stubbs, K., Steinfeld, A., & Yanco, H. (2009). Creating trustworthy robots: Lessons
and inspirations from automated systems. In Proceedings of the society for the study of arti-
ficial intelligence and the simulation of behaviour (AISB) convention, new frontiers in human-
robot interaction. https://doi.org/10.1184/R1/6552464.v1.

Dixon, S. R., & Wickens, C. D. (2006). Automation reliability in unmanned aerial vehicle con-
trol: A reliance-compliance model of automation dependence in high workload. Human
Factors, 48(3), 474-486. https:/ /doi.org/10.1518/001872006778606822.

Dragan, A. D., Bauman, S., Forlizzi, ., & Srinivasa, S. S. (2015, March). Effects of robot motion
on human-robot collaboration. In Proceedings of the tenth annual ACM/IEEE international
conference on human-robot interaction (pp. 51-58). ACM.

Dragan, A. D., Lee, K. C., & Srinivasa, S. S. (2013, March). Legibility and predictability of
robot motion. In Proceedings of the 8th ACM/IEEE international conference on human-robot
interaction (pp. 301-308). IEEE Press. https://doi.org/10.1145/2696454.2696473.

Duffy, B. R. (2003). Anthropomorphism and the social robot. Robotics and Autonomous Sys-
tems, 42(3-4), 177-190.

Dzindolet, M. T., Peterson, S. A., Pomranky, R. A., Pierce, L. G., & Beck, H. P. (2003). The role
of trust in automation reliance. International Journal of Human-Computer Studies, 58(6),
697-718. https:/ /doi.org/10.1016/51071-5819(03)00038-7.

Freedy, A., DeVisser, E., Weltman, G., & Coeyman, N. (2007, May). Measurement of trust in
human-robot collaboration. In 2007 International symposium on collaborative technologies and
systems (pp. 106-114). IEEE. https:/ /doi.org/10.1109/CTS.2007.4621745.

Hancock, P. A, Billings, D. R, Schaefer, K. E., Chen, ]J. Y. C, de Visser, E. ], &
Parasuraman, R. (2011). A meta-analysis of factors affecting trust in human-robot

III. Trust in human-robot teaming


https://doi.org/10.1016/j.ijhcs.2008.06.001
https://doi.org/10.1109/ROMAN.2008.4600749
https://doi.org/10.1109/ROMAN.2008.4600749
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0025
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0025
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0030
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0030
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0030
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0035
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0035
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0035
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0040
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0040
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0040
https://doi.org/10.1177/1555343411410160
https://doi.org/10.1016/S1071-5819(03)00039-9
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0055
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0055
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0055
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0060
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0060
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0060
https://doi.org/10.1184/R1/6552464.v1
https://doi.org/10.1518/001872006778606822
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0075
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0075
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0075
https://doi.org/10.1145/2696454.2696473
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0085
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0085
https://doi.org/10.1016/S1071-5819(03)00038-7
https://doi.org/10.1109/CTS.2007.4621745

References 3 75

interaction. Human Factors: The Journal of the Human Factors and Ergonomics Society, 53(5),
517-527. https:/ /doi.org/10.1177 /0018720811417254.

Hayes, C. J., Moosaei, M., & Riek, L. D. (2016, August). Exploring implicit human responses
to robot mistakes in a learning from demonstration task. In 2016 25th IEEE international
symposium on robot and human interactive communication (RO-MAN) (pp. 246-252). IEEE.
https://doi.org/10.1109/ROMAN.2016.7745138.

Huang, S. H., Bhatia, K., Abbeel, P., & Dragan, A. D. (2018, October). Establishing appro-
priate trust via critical states. In 2018 IEEE/RS] international conference on intelligent
robots and systems (IROS) (pp. 3929-3936). IEEE. https://doi.org/10.1109/
IROS.2018.8593649.

Igbal, T., Gonzales, M. |., & Riek, L. D. (2015, September). Joint action perception to enable
fluent human-robot teamwork. In 2015 24th IEEE international symposium on robot and
human interactive communication (RO-MAN) (pp. 400-406). IEEE. https://doi.org/
10.1109/ROMAN.2015.7333671.

Igbal, T., Rack, S., & Riek, L. D. (2016). Movement coordination in human-robot teams:
A dynamical systems approach. IEEE Transactions on Robotics, 32(4), 909-919. https://
doi.org/10.1109/TRO.2016.2570240.

Igbal, T., & Riek, L. D. (2017). Human-robot teaming: Approaches from joint action and
dynamical systems. In Humanoid robotics: A reference (pp. 2293-2312). https://doi.org/
10.1007/978-94-007-7194-9 137-1.

Igbal, T., Shah, A., & Riek, L. D. (2018). Toward a real-time activity segmentation method for
human-robot teaming. In Proc. of the robotics: Science and systems (RSS), towards a framework
for joint action: What about theory of mind workshop.

Khalid, H., Liew, W. S., Voong, B. S., & Helander, M. (2018, August). Creativity in measuring
trust in human-robot interaction using interactive dialogs. In Congress of the international
ergonomics association (pp. 1175-1190). Cham: Springer.

Lasota, P. A., & Shah, J. A. (2015). Analyzing the effects of human-aware motion planning on
close-proximity human-robot collaboration. Human Factors, 57, 21-33.

Launay, J., Dean, R. T., & Bailes, F. (2013). Synchronization can influence trust following vir-
tual interaction. Experimental Psychology, 60(1), 53-63. https://doi.org/10.1027/1618-
3169/a000173.

Lee, J. J., Knox, B., Baumann, J., Breazeal, C., & DeSteno, D. (2013). Computationally model-
ing interpersonal trust. Frontiers in Psychology, 4, 893. https://doi.org/10.3389/
fpsyg.2013.00893.

Lee, J. D., & Moray, N. (1994). Trust, self-confidence, and operators’” adaptation to automa-
tion. International Journal of Human-Computer Studies, 40(1), 153-184. https://doi.org/
10.1006/1JHC.1994.1007.

Lee, ].D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human
Factors: The Journal of the Human Factors and Ergonomics Society, 46, 50-80. https:/ /doi.org/
10.1518/hfes.46.1.50 30392.

Lewis, M., Sycara, K., & Walker, P. (2018). The role of trust in human-robot interaction.
In Foundations of trusted autonomy (pp. 135-159). Springer.

Li, D, Rau, P.P., & Li, Y. (2010). A cross-cultural study: Effect of robot appearance and task.
International Journal of Social Robotics, 2(2), 175-186.

Lohani, M., Stokes, C., McCoy, M., Bailey, C. A., & Rivers, S. E. (2016, March). Social inter-
action moderates human-robot trust-reliance relationship and improves stress coping.
In 2016 11th ACM/IEEE international conference on human-robot interaction (HRI)
(pp- 471-472). IEEE. https://doi.org/10.1109/HRI.2016.7451811.

Marble, J. L., Bruemmer, D. J., Few, D. A., & Dudenhoeffer, D. D. (2004, January). Evaluation
of supervisory vs. peer-peer interaction with human-robot teams. In Proceedings of the 37th
annual Hawaii international conference on system sciences, 2004. IEEE. https://doi.org/
10.1109/HICSS.2004.1265326. 9 pp.

III. Trust in human-robot teaming


https://doi.org/10.1177/0018720811417254
https://doi.org/10.1109/ROMAN.2016.7745138
https://doi.org/10.1109/IROS.2018.8593649
https://doi.org/10.1109/IROS.2018.8593649
https://doi.org/10.1109/ROMAN.2015.7333671
https://doi.org/10.1109/ROMAN.2015.7333671
https://doi.org/10.1109/TRO.2016.2570240
https://doi.org/10.1109/TRO.2016.2570240
https://doi.org/10.1007/978-94-007-7194-9 137-1
https://doi.org/10.1007/978-94-007-7194-9 137-1
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0130
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0130
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0130
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0135
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0135
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0135
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0145
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0145
https://doi.org/10.1027/1618-3169/a000173
https://doi.org/10.1027/1618-3169/a000173
https://doi.org/10.3389/fpsyg.2013.00893
https://doi.org/10.3389/fpsyg.2013.00893
https://doi.org/10.1006/IJHC.1994.1007
https://doi.org/10.1006/IJHC.1994.1007
https://doi.org/10.1518/hfes.46.1.50 30392
https://doi.org/10.1518/hfes.46.1.50 30392
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0170
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0170
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0175
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0175
https://doi.org/10.1109/HRI.2016.7451811
https://doi.org/10.1109/HICSS.2004.1265326
https://doi.org/10.1109/HICSS.2004.1265326

376 15. Trust-aware control in proximate human-robot teaming

Matsumoto, S., Washburn, A., & Riek, L. D. (2018). Human-robot co-manipulation demon-
stration. In: Technology showcase for the contextual robotics institute forum.

Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational
trust. Academy of Management Review, 20(3), 709-734. https://doi.org/10.5465/
amr.1995.9508080335.

McKendrick, R., Shaw, T., de Visser, E., Sager, H., Kidwell, B., & Parasuraman, R. (2014).
Team performance in networked supervisory control of unmanned air vehicles: Effects
of automation, working memory, and communication content. Human Factors, 56(3),
463-475. https:/ /doi.org/10.1177 /0018720813496269.

Miles, L. K., Griffiths, J. L., Richardson, M. J., & Macrae, C. N. (2010). Too late to coordi-
nate: Contextual influences on behavioral synchrony. European Journal of Social Psychol-
ogy, 40(1), 52-60. https:/ /doi.org/10.1002/ejsp.721.

Miles, L. K., Lumsden, J., Flannigan, N., Allsop, ]. S., & Marie, D. (2017). Coordination mat-
ters: Interpersonal synchrony influences collaborative problem-solving. Psychology, 8,
1857-1878.

Miles, L. K., Lumsden, J., Richardson, M. J., & Neil Macrae, C. (2011). Do birds of a feather
move together? Group membership and behavioral synchrony. Experimental Brain
Research, 211(3), 495-503. https:/ /doi.org/10.1007/s00221-011-2641-z.

Moon, A., Parker, C. A., Croft, E. A., & Van der Loos, H. F. (2013). Design and impact of hes-
itation gestures during human-robot resource conflicts. Journal of Human-Robot Interaction,
2(3), 18-40. https://doi.org/10.5898 /JHRI.2.3.Moon.

Moray, N., & Inagaki, T. (1999). Laboratory studies of trust between humans and machines in
automated systems. Transactions of the Institute of Measurement and Control, 21(4-5),
203-211. https:/ /doi.org/10.1177/014233129902100408.

Mori, M. (1970). The uncanny valley, translated by K. F. MacDorman and T. Minato. Energy,
7(4), 33-35.

Muir, B. M. (1989). Operators’ trust in and percentage of time spent using the automatic controllers
in supervisory process control task. Doctoral dissertationUniversity of Toronto.

Occupational Safety and Health Administration (2006). OSHA technical manual TED 01-00
015. Washington, DC: US Department of Labor.

Ogreten, S., Lackey, S., & Nicholson, D. (2010, May). Recommended roles for uninhabited
team members within mixed-initiative combat teams. In 2010 International symposium
on collaborative technologies and systems (pp. 531-536). IEEE. https://doi.org/10.1109/
CTS.2010.5478468.

Ososky, S., Schuster, D., Phillips, E., & Jentsch, F. G. (2013, March). Building appropriate trust
in human-robot teams. In 2013 AAAI spring symposium series.

Paepcke, S., & Takayama, L. (2010, March). Judging a bot by its cover: An experiment on
expectation setting for personal robots. In 2010 5th ACM/IEEE international conference on
human-robot interaction (HRI) (pp. 45-52). IEEE.

Parasuraman, R., & Miller, C. A. (2004). Trust and etiquette in high-criticality automated sys-
tems. Communications of the ACM, 47(4), 51-55.

Rezvani, T., Driggs-Campbell, K., Sadigh, D., Sastry, S. S., Seshia, S. A., & Bajcsy, R. (2016,
November). Towards trustworthy automation: User interfaces that convey internal and
external awareness. In 2016 IEEE 19th International conference on intelligent transportation
systems (ITSC) (pp. 682-688). IEEE.

Riek, L. D. (2017). Healthcare robotics. Communications of the ACM, 60(11), 68-78.

Riek, L. D., Rabinowitch, T. C., Bremner, P., Pipe, A. G., Fraser, M., & Robinson, P. (2010,
March). Cooperative gestures: Effective signaling for humanoid robots. In Proceedings
of the 5th ACM/IEEE international conference on human-robot interaction (pp. 61-68). IEEE
Press.

Riley, V. A. (1994). Human use of automation. Dissertation Abstracts International: Section B:
The Sciences and Engineering, 55(6-B), 2425.

III. Trust in human-robot teaming


http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0190
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0190
https://doi.org/10.5465/amr.1995.9508080335
https://doi.org/10.5465/amr.1995.9508080335
https://doi.org/10.1177/0018720813496269
https://doi.org/10.1002/ejsp.721
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0210
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0210
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0210
https://doi.org/10.1007/s00221-011-2641-z
https://doi.org/10.5898/JHRI.2.3.Moon
https://doi.org/10.1177/014233129902100408
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0230
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0230
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0235
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0235
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0240
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0240
https://doi.org/10.1109/CTS.2010.5478468
https://doi.org/10.1109/CTS.2010.5478468
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0250
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0250
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0255
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0255
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0255
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0265
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0265
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0270
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0270
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0270
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0270
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0275
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0280
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0280
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0280
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0280
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0285
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0285

References 377

Robinette, P., Howard, A. M., & Wagner, A. R. (2015, October). Timing is key for robot trust
repair. In International conference on social robotics (pp. 574-583). Springer.

Rousseau, D. M., Sitkin, S. B., Burt, R. S., & Camerer, C. (1998). Not so different after all:
A cross-discipline view of trust. Academy of Management Review, 23(3), 393-404.
https://doi.org/10.5465/amr.1998.926617.

Salem, M., Lakatos, G., Amirabdollahian, F., & Dautenhahn, K. (2015, March). Would you
trust a (faulty) robot?: Effects of error, task type and personality on human-robot cooper-
ation and trust. In Proceedings of the tenth annual ACM/IEEE international conference on
human-robot interaction (pp. 141-148). ACM.

Schaefer, K. E., Chen, ]. Y. C.,Szalma, J. L., & Hancock, P. A. (2016). A meta-analysis of factors
influencing the development of trust in automation: Implications for understanding
autonomy in future systems. Human Factors, 58(3), 377-400. https://doi.org/
10.1177/0018720816634228.

Shaw, T., Emfield, A., Garcia, A., de Visser, E., Miller, C., Parasuraman, R. , et al. (2010).
Evaluating the benefits and potential costs of automation delegation for supervisory con-
trol of multiple uavs. Proceedings of the Human Factors and Ergonomics Society Annual Meet-
ing, 54(19), 1498-1502. https://doi.org/10.1177 /154193121005401930.

Takeda, K. (2016). Modeling and detecting excessive trust from behavior signals: Overview
of research project and results. Human-harmonized information technology (pp. 57-75). Vol. 1
(pp- 57-75). Tokyo: Springer. https:/ /doi.org/10.1007 /978-4-431-55867-5 3.

Tanaka, K., Ozeki, M., & Oka, N. (2010, March). The hesitation of a robot: A delay in its
motion increases learning efficiency and impresses humans as teachable. In Proceedings
of the 5th ACM/IEEE international conference on human-robot interaction (pp. 189-190). IEEE
Press.

Washburn, A., Adeleye, A, An, T., & Riek, L. D. (2020). Robot errors in proximate HRI: How
functionality framing affects perceived reliability and trust. ACM Transactions on Human-
Robot Interaction (THRI), 9(3), 19.

Woodworth, B., Ferrari, F., Zosa, T. E., & Riek, L. D. (2018). Preference learning in assistive
robotics: Observational repeated inverse reinforcement learning. F. Doshi-Velez, ].
Fackler, K. Jung, D. Kale, R. Ranganath, B. Wallace, & J. Wiens (Eds.), Proceedings of the
3rd machine learning for healthcare conference (pp. 420-439). Proceedings of machine learning
research: Vol. 85(pp. 420-439). Palo Alto, CA: PMLR.

Wynne, K. T., & Lyons, J. B. (2018). An integrative model of autonomous agent teammate-
likeness. Theoretical Issues in Ergonomics Science, 19(3), 353-374.

Xu, A., & Dudek, G. (2015, March). Optimo: Online probabilistic trust inference model for
asymmetric human-robot collaborations. In Proceedings of the tenth annual ACM/IEEE inter-
national conference on human-robot interaction (pp. 221-228). ACM. https://doi.org/
10.1145/2696454.2696492.

Xu, A., & Dudek, G. (2016, October). Maintaining efficient collaboration with trust-seeking
robots. In 2016 IEEE/RS] international conference on intelligent robots and systems (IROS)
(pp- 3312-3319). IEEE. https://doi.org/10.1109/IR0S.2016.7759510.

Xu, A., Kalmbach, A., & Dudek, G. (2014, May). Adaptive parameter EXploration (APEX):
Adaptation of robot autonomy from human participation. In 2014 IEEE international con-
ference on robotics and automation (ICRA) (pp. 3315-3322). IEEE. https://doi.org/10.1109/
ICRA.2014.6907336.

Yanco, H. A., Desai, M., Drury, J. L., & Steinfeld, A. (2016). Methods for developing trust
models for intelligent systems. In Robust intelligence and trust in autonomous systems
(pp. 219-254). Springer.

Yang, X.]., Unhelkar, V. V., Li, K., & Shah,]. A. (2017, March). Evaluating effects of user expe-
rience and system transparency on trust in automation. In 2017 12th ACM/IEEE interna-
tional conference on human-robot interaction (HRI) (pp. 408-416). IEEE. https://doi.org/
10.1145/2909824.3020230.

III. Trust in human-robot teaming


http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0290
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0290
https://doi.org/10.5465/amr.1998.926617
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0300
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0300
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0300
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0300
https://doi.org/10.1177/0018720816634228
https://doi.org/10.1177/0018720816634228
https://doi.org/10.1177/154193121005401930
https://doi.org/10.1007/978-4-431-55867-5 3
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0320
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0320
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0320
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0320
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf9070
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf9070
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf9070
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0330
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0330
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0330
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0330
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0330
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0335
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0335
https://doi.org/10.1145/2696454.2696492
https://doi.org/10.1145/2696454.2696492
https://doi.org/10.1109/IROS.2016.7759510
https://doi.org/10.1109/ICRA.2014.6907336
https://doi.org/10.1109/ICRA.2014.6907336
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0355
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0355
http://refhub.elsevier.com/B978-0-12-819472-0.00015-0/rf0355
https://doi.org/10.1145/2909824.3020230
https://doi.org/10.1145/2909824.3020230

	Trust-aware control in proximate human-robot teaming
	Introduction
	Background
	Theoretical framework for understanding trust in HRI
	Modeling trust in human-automation teaming

	Trust in proximate HRI
	Critical trust factors within proximate HRI
	Proposed aims for trust-aware control in proximate HRI
	Existing trust-aware control frameworks for HRI
	Trust aware robot control framework (TACtiC)
	Trust-POMDP framework

	Ability of existing trust-aware control frameworks to support proximate HRI

	Discussion
	Advancing trust-aware control of robot movement in proximate HRI
	Challenges to trust-aware control in proximate HRI
	The future of proximate HRI

	References




