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ABSTRACT Hydrologic changes modify microbial community structure and ecosys-
tem functions, especially in wetland systems. Here, we present 24 metagenomes from a
coastal freshwater wetland experiment in which we manipulated hydrologic conditions
and plant presence. These wetland soil metagenomes will deepen our understanding of
how hydrology and vegetation influence microbial functional diversity.

Microbial community structure, soil physicochemical properties, and the abun-
dance and composition of vegetation interact to influence biogeochemical func-

tions (1). Changes in wetland hydrology due to drought, draining, and rewetting cause
shifts in soil redox potential, microbial community composition, and associated eco-
system processes such as greenhouse gas (GHG) production (2–6). Vegetation also
affects microbial processes by facilitating the transport of oxygen into the root zone
and the transport of methane from the root zone into the atmosphere (7, 8). Here, we
present wetland soil metagenomes from a mesocosm experiment in which we manip-
ulated hydrology and plant presence to examine microbial community responses.
These data complement targeted amplicon sequencing data, GHG fluxes, and soil
physicochemical properties from the wetland mesocosm experiment (9).

We collected wetland soils from a restored coastal freshwater wetland at the Timberlake
Observatory for Wetland Restoration on the Albemarle Peninsula in Tyrell County, North
Carolina (latitude, 35.8959; longitude, �76.1658). We collected soils from three locations
with different water table levels (�20 cm, �10 cm, and 0 cm) (10). We altered redox
conditions by manipulating hydrology over 8 weeks. The experimental design and sam-
pling details were published by Bledsoe and Peralta (9). We collected and combined six soil
cores (3-cm diameter, 10-cm depth) from plant or no-plant areas. We completed 16S rRNA
amplicon sequencing (NCBI BioProject PRJNA636184), GHG flux measurements, and soil
environmental analyses (9). We sequenced metagenomes that represented the most
distinct microbial communities based on amplicon sequencing, and we chose the
following samples: wetland soils sampled from field sites at which the water table measured
�20cm and 0cm, to capture “mesocosm baseline” (n � 8) functional diversity, and a subset of
samples at the end of the 8-week hydrologic manipulation (i.e., prolonged drying or wetting
only) in the presence or absence of vegetation (n � 16) (9).

We used the Qiagen DNeasy PowerMax soil kit to extract genomic DNA from
freeze-dried soils. Purified DNA products were sent to the U.S. Department of Energy
(DOE) Joint Genome Institute (JGI) for sequencing and analysis. Metagenomes were
sequenced at the DOE JGI (GitHub [see SupplementalTableS1_MetagenomeSummary_
Peralta_et_al.csv at https://doi.org/10.5281/zenodo.4042110]), and project information
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can be accessed under GOLD (11) study project accession number Gs0142547 and NCBI
BioProject accession number PRJNA641216. Plate-based DNA library preparation for
Illumina sequencing was performed according to published protocols in GitHub (see
Supplemental_Methods_Details_MRA_WetlandSoilMetagenomes.txt at https://doi.org/
10.5281/zenodo.4042110). The sequencing project resulted in 583.2 Gbp of raw se-
quence data. The average read length for each metagenome is found in GitHub (see
SupplementalTableS1_MetagenomeSummary_Peralta_et_al.csv at https://doi.org/10
.5281/zenodo.4042110). These data were processed using the DOE JGI Metagenome
Annotation Pipeline using IMG/M v.5.0.9 (12–14). Initial sequence quality control
details can be found in GitHub (see Supplemental_Methods_Details_MRA_Wetland
SoilMetagenomes.txt at https://doi.org/10.5281/zenodo.4042110). Illumina reads
were quality control filtered according to the protocol described in GitHub (see
Supplemental_Methods_Details_MRA_WetlandSoilMetagenomes.txt at https://doi.org/
10.5281/zenodo.4042110).

Annotation and gene calling resulted in 600,507 � 172,049 annotated contigs per
sample (mean � standard deviation [SD]), with a mean of 998,604 gene features (SD,
307,431 gene features) identified in each (Table 1). Based on phylogenetic associations
(determined on the basis of bidirectional best hits to genes in other genomes), the
estimated alpha diversity across all metagenomes is 10,365 � 837 operational taxo-
nomic units (OTUs) (mean � SD) (GitHub [see SupplementalTableS1_Metagenome
Summary_Peralta_et_al.csv at https://doi.org/10.5281/zenodo.4042110]).

Data availability. Metagenomes were sequenced at the DOE JGI, and the study
information can be found under GOLD study project accession number Gs0142547 and
NCBI BioProject accession number PRJNA641216. Additional sample-specific meta-
genomestatisticscanbefoundinGitHub(seeSupplementalTableS1_MetagenomeSummary_
Peralta_et_al.csv at https://doi.org/10.5281/zenodo.4042110). Details on metagenomic
library preparation and sequence filtering can be found in GitHub (see Supplemental_
Methods_Details_MRA_WetlandSoilMetagenomes.txt at https://doi.org/10.5281/zenodo
.4042110).
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