
Complete Problems for Multi-Pseudodeterministic1

Computations2

Peter Dixon3

Department of Computer Science, Iowa State University, USA.4

tooplark@iastate.edu5

A. Pavan6

Department of Computer Science, Iowa State University, USA.7

pavan@cs.iastate.edu8

N. V. Vinodchandran9

Department of Computer Science and Engineering, University of Nebraska, Lincoln USA.10

vinod@cse.unl.edu11

Abstract12

We exhibit several computational problems that are complete for multi-pseudodeterministic compu-13

tations in the following sense: (1) these problems admit 2-pseudodeterministic algorithms (2) if there14

exists a pseudodeterministic algorithm for any of these problems, then any multi-valued function15

that admits a k-pseudodeterministic algorithm for a constant k, also admits a pseudodeterministic16

algorithm. We also show that these computational problems are complete for Search-BPP: a pseudo-17

deterministic algorithm for any of these problems implies a pseudodeterministic algorithm for all18

problems in Search-BPP.19

2012 ACM Subject Classification Theory of computation → Probabilistic Computation; Theory of20

computation → Problems, reductions and completeness21

Keywords and phrases Pseudodeterminism, Completeness, Collision Probability, Circuit Acceptance,22

Entropy Approximation23

Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.7124

Funding Supported in part by NSF grants 1934884, 1849053, 184904825

Acknowledgements We thank Oded Goldrecih for comments and suggestions on an earlier draft of26

this paper. We also thank anonymous reviewers for helpful comments.27

1 Introduction28

Consider the search problem of producing a witness that two multi-variate polynomials29

f and g over a field are different. A simple probabilistic polynomial-time algorithm for30

this problem randomly picks an element t from the domain and outputs it if f(t) 6= g(t).31

Even though this algorithm is simple and efficient and the error probability can be made32

arbitrarily small, Gat and Goldwasser [3] pointed out a deficiency: two different runs of33

the algorithm can produce two different witnesses with very high probability. Well-known34

probabilistic algorithms for several search problems, such as finding a large prime number or35

computing generators of cyclic groups, also exhibit this deficiency. This raises the question36

of whether we can design a probabilistic algorithm for search problems that will output37

the same witness on multiple executions, with high probability. Motivated by the above38

question, Gat and Goldwasser [3] introduced the notion of pseudodeterministic algorithms1.39

Informally, a probabilistic algorithm M is pseudodeterministic if for every x, there exists a40

1 Originally termed Bellagio algorithms

© Peter Dixon, A. Pavan, N. V. Vinodchandran;
licensed under Creative Commons License CC-BY

12th Innovations in Theoretical Computer Science Conference (ITCS 2021).
Editor: James R. Lee; Article No. 71; pp. 71:1–71:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tooplark@iastate.edu
mailto:pavan@cs.iastate.edu
mailto:vinod@cse.unl.edu
https://doi.org/10.4230/LIPIcs.ITCS.2021.71
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


71:2 Complete Problems for Multi-Pseudodeterministic Computations

unique value v such that Pr[M(x) = v] is high. Pseudodeterministic algorithms are appealing41

in several contexts, such as distributed computing and cryptography, where it is desirable42

that different invocations of an algorithms by different parties should produce the same43

output. In complexity theory, the notion of pseudodeterminism clarifies the relationship44

between search and decision problems in the context of randomized computation. It is not45

known whether derandomizing BPP to P implies derandomization of probabilistic search46

algorithms. However, BPP = P implies that pseudodeterministic search algorithms can be47

made deterministic [5].48

Prior Work49

Since its introduction, pseudodeterminism and its generalizations have received consider-50

able attention. In particular, designing pseudodeterministic algorithms for problems that51

admit polynomial-time randomized algorithms but without known deterministic algorithms52

continues to be a key line of research with some success. Gat and Goldwasser showed that53

there exist polynomial-time pseudodeterministic algorithms for algebraic problems such as54

finding quadratic non-residues and finding certificates that two multivariate polynomials55

are different [3]. Goldwasser and Grossman exhibited a pseudodeterministic NC algorithm56

for computing matchings in bipartite graphs [8]. Grossman designed a pseudodeterministic57

algorithm for computing primitive roots whose runtime matches the best known Las Vegas58

algorithm [11]. Oliveira and Santhanam [13] showed that there is a sub-exponential time59

pseudodeterministic algorithm for generating primes that works at infinitely many input60

lengths.61

Subsequent works extended pseudodeterminism to several other scenarios. Works of62

Goemans, Goldwasser, Grossman, and Holden investigated pseudodeterminism in the context63

of interactive proofs [9, 4]. Goldwasser, Grossman, Mohanty and Woodruff [10] investig-64

ated pseudodeterminism in the data stream model. They showed that certain streaming65

problems admit faster pseudodeterministic algorithms in comparison to their deterministic66

counterparts. They also obtain space lower bounds for sketch based pseudodeterministic67

estimation of `2 norm. Goldreich, Goldwasser, and Ron [5] investigated pseudodeterminism68

in the context of sublinear-time algorithms. Dixon, Pavan, and Vinodchandran [2] studied69

pseudodeterminism in the context of approximation algorithms and showed that making70

Stockmeyer’s [16] well-known approximate counting algorithm pseudodeterministic will yield71

new circuit lower bounds. Oliveira and Santhanam studied pseudodeterminism in the con-72

text of learning algorithms and showed that some randomized learning algorithms can be73

made pseudodeterministic under certain complexity theoretic assumptions [14]. Since then74

a few generalizations of pseudodeterminism such as reproducible algorithms, influential bit75

algorithms and multi-pseudodeterministic algorithms have been introduced [12, 7].76

Multi-Pseudodeterminism77

Our main focus is on the notion ofmulti-pseudodeterminism recently introduced by Goldreich [7].78

Consider the problem of estimating the average value of a function that is defined over a79

large but finite universe. It is well known that there is an efficient additive error, probabilistic80

approximation for this problem. So far, we do not know how to make this algorithm pseudode-81

terministic. Suppose that we relax the restriction of pseudodeterminism - instead of requiring82

that the algorithm outputs an unique approximation, the algorithm must output one of two83

approximate values with high probability. Then it is very easy to obtain such probabilistic al-84

gorithms [7]. Motivated by this, Goldreich introduced the notion of multi-pseudodeterminism.85



P. Dixon, A. Pavan, N. V. Vinodchandran 71:3

For a positive integer k, a probabilistic algorithm A is k-pseudodeterministic if, for every86

input x, there exists a set Sx of size at most k such that A(x) belongs to Sx with probability at87

least k+1
k+2 . Thus a pseudodeterministic algorithm is 1-pseudodeterministic. Goldreich’s work88

established several key properties of multi-pseudodeterministic algorithms. This work showed89

that, as with the case of probabilistic and pseudodeterministic algorithms, error reduction90

is possible for multi-pseudodeterministic algorithms. Goldreich’s work also established an91

equivalence between multi-pseudodeterminism and reproducible algorithms introduced by92

Grossman and Liu [12] and presented a composition result for multi-pseudodeterministic93

algorithms.94

Our Contributions95

Our main focus is on the notion ofmulti-pseudodeterminism. The notion of multi-pseudodeterminism96

is especially interesting because there are computational problems that admit 2-pseudodeterministic97

algorithms for which we do not know of any pseudodeterministic algorithms. As men-98

tioned earlier, it can be shown that randomized approximation algorithms can be made99

2-pseudodeterministic (see Section 2). Thus it is significant to investigate the possibility of100

designing pseudodeterministic algorithms for problems that admit k-pseudodeterministic101

algorithms for small values of k.102

Our main contribution is to show the existence of complete problems for multi-pseudodeterministic103

computations in the following sense: (1) these computational problems admit 2-pseudodeterministic104

algorithms, and (2) if there exists a pseudodeterministic algorithm for any of these problems,105

then all multi-valued functions that admit k-pseudodeterministic algorithms for a constant106

k, also admit pseudodeterministic algorithms.107

The computational problems we consider are the following. We note that all of these108

problems admit 2-pseudodeterministic algorithms.109

I Definition 1 (Computational Problems).110

111 - Collision Probability Estimation Problem. Given a Boolean circuit C : {0, 1}n →112

{0, 1}, give a (ε, δ)-additive approximation of the collision probability of C.113

- Acceptance Probability Estimation Problem: Given a Boolean circuit C :114

{0, 1}n → {0, 1}, give a (ε, δ)-additive approximation for Prx∈Un
[C(x) = 1].115

- Entropy Estimation Problem: Given a Boolean circuit C : {0, 1}n → {0, 1}, give an116

(ε, δ)-additive approximation of the entropy of the distribution C(Un).117

We first show that if any of the above problems have a pseudodeterministic algorithm,118

then all 2-pseudodeterministic algorithms can be made pseudodeterministic and thus any119

(ε, δ)-approximation algorithm for a function f can be made pseudodeterministic.120

Result 1: If any of the problems from Definition 1 admits a pseudodeterministic algorithm,121

every function that has a (ε, δ)-approximation algorithm has a pseudodeterministic (ε, δ)-122

approximation algorithm.123

Next we extend this result to k-pseudodeterminism.124

Result 2: If any of the problems from Definition 1 admits a pseudodeterministic algorithm,125

then any multivalued function that admits a k-pseudodeterministic algorithm also admits a126

pseudodeterministic algorithm.127

Note that the above result holds for any multivalued function computation. Search128

problems are multivalued functions whose outputs have an efficient verification procedure.129

Much of the work on pseudodeterminism focuses on problem in the class Search-BPP: search130

ITCS 2021



71:4 Complete Problems for Multi-Pseudodeterministic Computations

problems that have randomized algorithms whose outputs can be verified in BPP [6]. We131

extend the above result to problems in Search-BPP.132

Result 3: If any of the problems from Definition 1 admits a pseudodeterministic algorithm,133

then any problem in Search-BPP has a pseudodeterministic algorithm.134

Extending this result on Search-BPP to other classes of multivalued functions is an135

interesting question. Note that there are natural multivalued functions that admit efficient136

probabilistic algorithms but are not known to be in Search-BPP (because of the lack of an137

efficient verification procedure). For example the problem of outputting a Boolean function138

with high circuit complexity has a simple probabilistic algorithm but not known to be in139

Search-BPP.140

2 Pseudodeterminism in Approximation Algorithms141

In this section, we establish that Collision Probability Estimation Problem is com-142

plete. We first define the notions of pseudodeterminism and multi-pseudodeterminism for143

approximation algorithms formally. In general, an approximation algorithm can output144

different good approximations on different random choices. For an approximation algorithm145

A to be k-pseudodeterministic, A has to output with high probability at most k good146

approximations for any input.147

I Definition 2 (Multiplicative Approximation). Let f be a function whose range is the148

integers. We say that a probabilistic algorithm A is an (ε, δ)-multiplicative approxima-149

tion algorithm for f if for every x, the random variable A(x) has the following property:150

Pr
[
f(x)

(1+ε) ≤ A(x) ≤ (1 + ε)f(x)
]
≥ (1− δ). We say that A is an (ε, δ) k-pseudodeterministic151

multiplicative approximation algorithm for f if for every x there exists a set of integers Vx152

such that |Vx| ≤ k and for every v ∈ Vx153

f(x)
(1 + ε) ≤ v ≤ (1 + ε)f(x) and Pr[A(x) ∈ Vx] ≥ 1− δ.154

When k = 1, we call the algorithm pseudodeterministic.155

I Definition 3 (Additive Approximation). Let f be a function whose range is [0, 1]. We say that156

a probabilistic polynomial-time algorithm A is an (ε, δ)-additive approximation algorithm for f157

if for every x, the random variable A(x) has the following property: Pr [(f(x)− ε ≤ A(x) ≤ f(x) + ε] ≥158

(1− δ). We say that A is an (ε, δ) k-pseudodeterministic additive approximation algorithm159

for f if for every x there exists a set Vx ⊆ [0, 1] such that for all v ∈ Vx160

f(x)− ε ≤ v ≤ f(x) + ε and Pr[A(x) ∈ Vx] ≥ 1− δ.161

When k = 1, we call the algorithm pseudodeterministic.162

Remark. In general, for (ε, δ) approximation algorithms (additive or multiplicative), error163

reduction is possible when δ < 1/2 and is bounded away from 1/2. This is done by repeating164

the algorithm multiple times and taking the median value. Thus without loss of generality,165

we may assume that for every (ε, δ) approximation algorithm, δ ≤ 1/2n. Similarly, the error166

probability of (ε, δ) pseudodeterministic approximation algorithms can be reduced to less167

than 1/2n.168

Goldreich [7] observed that every additive error approximation algorithm can be made169

2-pseudodeterministic; this extends to multiplicative approximation algorithms as well.170



P. Dixon, A. Pavan, N. V. Vinodchandran 71:5

I Proposition 4. Every optimization problem that admits an (ε, δ) multiplicative approx-171

imation algorithm admits a (2ε+ ε2, δ) 2-pseudodeterministic multiplicative approximation172

algorithm. Similarly, every optimization problem that admits an (ε, δ) additive approximation173

algorithm admits a (2ε, δ) 2-pseudodeterministic additive approximation algorithm.174

Proof. We give a proof for the multiplicative case. A similar argument holds for additive175

approximation algorithms. Let f be a function and let A be an (ε, δ)-multiplicative approx-176

imation algorithm for f . The proposed 2-pseudodeterministic algorithm B will first run A(x)177

to get an approximation v. B outputs vi from a set of points P (defined next) by choosing178

the smallest vi ∈ P that is larger than v. P is defined as the set of points {vi | i ∈ N} where179

vi =
⌈
(1 + ε)i

⌉
.180

Observe that vi+1 = (1 + ε)vi for all i. For any input x, A(x) outputs a value in the181

range
[
f(x)

(1+ε) , (1 + ε)f(x)
]
and this range will contain at most 2 values from P . Hence B182

is 2-pseudodeterministic. Rounding up to the nearest value in P makes the approximation183

factor at most (1 + ε)2 = 1 + 2ε+ ε2.184

J185

2.1 Completeness of Collision Probability Estimation186

In this section, we prove that Collision Probability Estimation Problem is complete187

for approximation algorithms in the context of pseudodeterminism. We start with the188

following observation.189

I Proposition 5. Collision Probability Estimation Problem admits (ε, δ) 2-pseudodeterministic190

additive approximation algorithms for every ε < 1 and δ < 1.191

Proof. We can estimate collision probability of C by generating O(1/ε2 log 1/δ) independent192

pairs of strings 〈xi, yi〉 and counting the number of times C(xi) = C(yi). Simple application193

of Chernoff bound implies that this is a (ε, δ) additive approximation algorithm. By the194

previous proposition, we can convert this algorithm into a 2-pseudodeterministic algorithm.195

J196

We now prove the main theorem of the section.197

I Theorem 6. There exists ε′ > 0 such that if Collision Probability Estimation198

Problem has an (ε′, δ)-pseudodeterministic additive approximation algorithm, then every199

function f that admits a (ε, δ) multiplicative approximation algorithm (resp. additive), has a200

(2ε+ ε2, δ)-pseudodeterministic multiplicative approximation algorithm (resp. additive).201

Proof. We first provide intuition behind the proof. By Proposition 4, we can assume that f202

has a (ε′, δ) 2-pseudodeterministic algorithm A, where ε′ = 2ε+ ε2. The idea is to combine203

two strategies. For an input x, let a and b be the two good outputs of A(x). Consider the204

case when one of the good outputs, say a, has a noticeably higher probability of occurrence205

than b. In that case we can run A several times and output the most frequent output. With206

high probability A(x) will output a. Another case is when both a and b appear with roughly207

equal probability. In this case, we can run A several times and output the smallest value.208

Since a and b appear with equal probability, the probability that in several runs of A we will209

see both a and b is very high and hence, this strategy will output min{a, b}. The challenge is210

to decide which of these cases holds (note that these cases are not disjoint). However, if we211

have a pseudodeterministic algorithm for Collision Probability Estimation Problem,212

then we show that we can pseudodeterministically choose a good strategy. Now we provide213

details.214

ITCS 2021



71:6 Complete Problems for Multi-Pseudodeterministic Computations

Let B be a pseudodeterministic algorithm that estimates collision probabilities of Boolean215

circuits. In particular, assume that B can pseudodeterministically estimate the collision216

probability of a circuit, CP(C), with additive error 1/49 with probability ≥ 11
12 . Without217

loss of generality we assume that the success probability of A is ≥ 48/49. Assume that A218

uses m random bits on input x. Consider the following algorithm A′.219

Algorithm A′: On input x, A′(x) constructs a Boolean circuit Cx : {0, 1}m → {0, 1} that220

on input r, simulates A(x, r), where A′(x) runs B on Cx to obtain an estimate of CP(Cx).221

If B(Cx) ≥ 51
98 , A

′ runs A(x) three times and outputs the most frequent result. Otherwise, if222

B(Cx) < 51
98 , A

′ runs A(x) 16 times and outputs the smallest value. End Of Algorithm.223

Now we will show that A′ is a pseudodeterministic algorithm for f . Since A is 2-224

pseudodeterministic, there exists a set Sx of size at most 2 such that Pr[A(x) ∈ Sx] ≥ 48/49225

and every element in Sx is a (1 + ε′) multiplicative approximation of f(x). We first consider226

the case where the size of Sx is 1, say Sx = {a}. Note that in this case CP(Cx) is at least227

(48/49)2 > 0.9. Thus A′(x) runs A three times and outputs the most frequent result, which228

is a with probability at least (48/49)3 ≥ 0.9. Thus A′(x) is pseudodeterministic. Thus, in229

the rest of the proof, assume that Sx = {a, b}. Let p = Pr[A(x) = a] and q = Pr[A(x) = b].230

Assume without loss of generality that p ≥ q. We first establish a relationship among p, q231

and CP(Cx).232

B Claim 7. If CP(Xx) > 25
49 , then p > q + 1/7233

Proof. We prove the contrapositive: if p ≤ q+1/7, then CP(Cx) ≤ 25
49 . Notice that CP(Cx) is234

maximized when p = q+ 1
7 and δ = 0, where δ is the error probability of A. Since p+q+δ = 1,235

it follows that p = 4/7 and q = 3/7. Thus, CP(Cx) ≤ (4/7)2 + (3/7)2 = 25/49. J236

B Claim 8. If CP(Cx) < 26
49 , then q >

1
7237

Proof. We prove the contrapositive: if q ≤ 1
7 , then Pr [CP(Cx)] ≥ 26

49 . Note that CP(Cx) is238

minimized when p is as close to q as possible, and all other outputs are different from a and239

b. Then q = 1
7 and p = 1− 1

7 −
1

49 = 41
49 ≥

5
7 . Thus CP(Cx) ≥

( 1
7
)2 +

( 5
7
)2 = 26

49 J240

B Claim 9. If p > q + 1/7, then the probability that in 3 independent runs A(x) outputs a241

at least twice is ≥ 57/100.242

Proof. The worst case is when p = q+1/7 and δ = 1/49. In this case, p = 55
98 and q = 41

98 . The243

probability that A(x) outputs a at least twice in three runs is ≥
( 55

98
)3 + 3

( 57
98
)2 44

98 ≥
57

100 .244

J245

B Claim 10. Let E be following event: “Among 16 independent runs of A(x), every run246

outputs either a or b and at least one run outputs a and at least one run outputs b”. If q ≥ 1
7 ,247

then Pr[E] ≥ 3/5.248

Proof. Note that the probability of E is at most the sum of the probabilities of i) A(x) /∈249

{a, b}, ii) Every run of A(x) outputs only a, and iii) Every run of A(x) outputs only250

b. This sum is maximized when q = 1/7, δ = 1/49, p = 1 − 1/7 − 1/49. In this case,251

Pr
[
E
]
≤ 1− (1− δ)16p16 + q16 ≤

( 6
7
)16 +

( 1
7
)16 + 1−

( 48
49
)16

< 2
5 . J252

B Claim 11. A′ is pseudodeterministic253

Let y be the pseudodeterministic output of the probability estimator B on input Cx. If254

y > 51
98 , then CP(Cx) ≥ 25

49 . By Claim 7, p > q + 1/7. By Claim 9, the probability that A(x)255



P. Dixon, A. Pavan, N. V. Vinodchandran 71:7

outputs a more often than b among three runs is at least 57
100 . Since y >

51
98 , A

′ will run A 3256

times and output the most frequent result; this will output a with probability ≥ 57
100 .257

On the other hand, if y ≤ 51
98 , then CP(Cx) ≤ 53

98 . By Claim 8, q ≥ 1/7. Since y ≤ 51
98 ,258

A′ will run A 16 times and output the lexicographically smallest result. By Claim 10, Pr[A259

outputs only a and b, and outputs a and b at least once] ≥ 3
5 , so Pr[A′ outputs min(a, b)] ≥ 3

5 .260

So, given that B outputs y, A′ will output one particular value x with probability ≥ 57
100 .261

Pr[A′ outputs x] ≥ Pr[B outputs y] Pr[A′ outputs x|B outputs y] ≥ 11
12

57
100 ≥

52
100 . This can262

be increased to 1− 1
n using standard amplification techniques. J263

3 Pseudodeterminism for Multi-valued Functions264

In this section, we generalize the results from the previous section to k-pseudodeterminism.265

Goldreich [7] defined the notion of k-pseudodeterminism for search problems and this definition266

can be extended to multivalued functions. A function f is multivalued if f(x) is a subset267

of the range (possibly empty set). Note that search problems can be cast as multivalued268

functions: Let R be a binary relation associated with a search problem, and define f(x) as269

the set of all y such that 〈x, y〉 ∈ R.270

I Definition 12. Let f be a multivalued function, i.e, f(x) is a set. We say that f admits271

pseudodeterministic algorithms if there is a probabilistic polynomial-time algorithm A such272

that for every x, there exists a v ∈ f(x) such that A(x) = v with probability at least 2/3. The273

function f admits k-pseudodeterministic algorithms if there is a probabilistic polynomial-time274

algorithm A such that for every x, there exists a set Sx ⊆ f(x) of size at most k and the275

probability that A(x) ∈ S(x) is at least k+1
k+2 .276

Goldreich [7] showed that if we threshold success probability to at least k+1
k+2 , the the277

success probability for k-pseudodeterministic algorithms can be amplified to 1− 1/2p(n) for278

any polynomial p(·).279

We show that if Collision Probability Estimation Problem can be made pseudo-280

deterministic, then any k-pseudodeterministic algorithm for a multi-valued function problem281

can be made pseudodeterministic for a constant k. We first show how to reduce the size of282

the output set from k to k − 1.283

I Theorem 13. If Collision Probability Estimation Problem has a (ε, δ)-pseudodeterministic284

additive approximation algorithm with ε = 1/100, then for every multi-valued function f that285

admits a k-pseudodeterministic algorithm, f has a (k − 1)-pseudodeterministic algorithm.286

Proof. Let B be a pseudodeterministic algorithm for Collision Probability Estimation287

Problem. In particular, assume that B, given a circuit C, estimates CP(C) to within 1
100288

additive error with probability 1− δ, where n is the length of the input to C.289

Let A be a k-pseudodeterministic algorithm for a multi-valued function f with error290

probability δ ≤ 1
72k . That is, A, on input x, outputs from a set Sx ⊆ f(x) of size ≤ k, with291

probability ≥ 1− 1
72k . We call the elements of Sx good outputs of A. Let m be the number of292

random bits used by A. We will design a (k− 1)-pseudodeterministic algorithm A′ as follows:293

Algorithm A′: On input x, first construct a circuit Cx that gets as input r and outputs294

A(x, r). Then compute B(Cx).295

If B(Cx) < 65
100 , run A n times on independent random bits. Output the lexicographically296

smallest element that appears at least n
12k times.297

If B(Cx) ≥ 65
100 , run A n times using independent random bits. Output the most frequent298

value. End of Algorithm.299

ITCS 2021



71:8 Complete Problems for Multi-Pseudodeterministic Computations

As in the proof of Theorem 6, it is easy to see that if the size of Sx is 1, A′(x) is300

pseudodeterministic. Thus in the rest of the proof, we assume that the size of Sx is at least 2.301

For the proof of correctness, we first establish certain claims relating the collision probability302

of Cx and the behavior of A.303

B Claim 14. If CP(CX) ≤ 2
3 , then there exist two good outputs a and b of A so that304

Pr[A(x) = a] ≥ 1
6k and Pr[A(x) = b] ≥ 1

6k .305

Proof. Suppose only one good output a of A has probability ≥ 1
6k . Then that output has306

probability ≥ 5
6 − δ. This is because if the other (k− 1) good outputs have probability < 1

6k ,307

the total probability of outputs other than a is < 1/6 + δ. Thus Pr[A(x) = a] ≥ 5
6 − δ.308

CP(Cx) ≥ Pr[A outputs a on both runs]309

≥
(

5
6 − δ

)2
310

≥ 25
36 − 2δ ≥ 2

3311

312

The last inequality holds since δ ≤ 1
72k and k ≥ 2. J313

B Claim 15. Let a, b be the most and least likely good outputs of A with probabilities p314

and q respectively. If CP(Cx) > 64
100 , then p > q + 1

8k .315

Proof. If p ≤ q + 1
8k , then p ≤

9
8k −

δ
k ≤

9
8k . Then CP(Cx) ≤ k · 81

64k2 + δ2 = 81
64k + δ2. For316

k ≥ 2, and δ ≤ 1
72k , this quantity is ≤ 64

100 .317

J318

Now we will prove correctness of A′. On input x, let y be the pseudodeterministic output319

of B(Cx). We will consider two cases: y ≤ 65
100 and y > 65

100 .320

Case: y ≤ 65
100321

B Claim 16. If y ≤ 65
100 , then there exists a set S′(x) ⊂ Sx of size at most k − 1 such that322

Pr[A′(x) ∈ S′x] ≥ 1− 2e−
n

72k2 − δ323

Proof. Note that B(Cx) outputs y with probability at least 1− δ. Thus, if y ≤ 65
100 , then324

with probability ≥ 1− δ, A′ will run A n times and output the lexicographically smallest325

result that appears at least n
12k times. Since y ≤ 65

100 , CP(Cx) ≤ 66
100 < 2

3 . Therefore by326

Claim 14, there are at least 2 elements a and b from Sx that A outputs with probability327

≥ 1
6k . Let b be the lexicographically larger of the two. We set S′x = Sx \ {b}. Clearly S′x328

contains at most k− 1 elements. Thus the probability that A′(x) outputs an element outside329

of S′x is at most the sum of the probabilities of the following events: i) A′ outputs b ii) A′330

outputs an element that is not in Sx, iii) B(Cx) does not output y.331

We first bound the probability that A′ outputs b. For A′ to output b, it must be the case332

that in the n runs of A the value b is output at least n/12k times and the value a is output333

at most n/12k times. Thus334

Pr[A′(x) = b] ≤ Pr[ A(x) outputs a less than n/12k times among n runs]335

Since the probability that A(x) outputs a is least n/6k, the expected number of times A(x)336

outputs a in n runs is ≥ n
6k . Thus by Chernoff bound, this is at most e−n/72k2 . We now337

bound the probability of the second event. The probability that A(x) does not belong to Sx338



P. Dixon, A. Pavan, N. V. Vinodchandran 71:9

is at most 1/72k. For A′(x) to output an element c that is not in Sx, it must be the case339

that c is output ≥ n/12k times among n runs of A. Again by Chernoff bound, this is at340

most e−n/18k2 . Finally, the probability that B(Cx) does not output y is at most δ. Thus341

A′(x) ∈ S′x with probability at least 1− 2e−n/72k2 − δ.342

J343

Case: y > 65
100344

B Claim 17. If y > 65
100 , there exists a sets S′x ⊆ Sx of size at most k − 1 such that345

Pr[A′(x) ∈ S′x] ≥ 1− 2e− n
8k − δ346

Proof. If y > 65
100 , then with probability ≥ 1− δ, A′ will run A n times and output the most347

frequent result. Also, CP(Cx) > 64
100 . By Claim 15, p > q + 1

8k where p is the probability of348

the most likely element a from Sx and q is the probability of least likely element b from Sx.349

We define S′x as Sx − {b}. As before, the probability that the output of A′ does not belong350

to S′x is at most the sum of the probabilities of: i) A′(x) outputs b ii) the output of A′(x)351

does not belong to Sx iii) B(Cx) does not output y.352

We will first analyze the probability of the event that A′ outputs b. For this, consider the353

event E = ‘A outputs b more often than a in n trials’. Clearly, the probability that A′(x)354

outputs b is at most Pr[E]. Define random variables Xi that take value 0 if A(x) outputs a355

in ith run, 1 if A(x) outputs b in the ith run, and 1/2 otherwise. Note that E[Xi] = 1
2 −

p−q
2 ,356

which is at most 1
2 −

1
16k . Let X =

∑n
i=1 Xi. Now, Pr[E] is Pr[X > n/2].357

Pr [X > n/2] = Pr
[∑

Xi

n
> 1/2

]
358

≤ Pr
[∣∣∣∣∑Xi

n
− E[Xi]

∣∣∣∣ ≥ 1
16k

]
359

≤ e−n/256k2
by Chernoff bound360

To bound the probability of the second event, consider the probability that A(x) outputs an361

element not in Sx more frequently than a in n runs. Since the probability that A(x) outputs362

an element that is not in Sx is at most 1/72k , by the same argument the probability of this363

event is at most e−n/256k2 . Finally the probability that B(Cx) does not output y is at most364

δ. The claim follows. J365

Combining Claims 16 and 17, we have that A′ outputs a value from S′x with probability366

at least 1− 2e−n/72k2 − δ ≥ k
k+1 for large enough n, since δ can be made exponentially small.367

J368

We now state the main result of this section.369

I Theorem 18. If Collision Probability Estimation Problem has a (ε, δ)-pseudodeterministic370

additive approximation algorithm with ε = 1/100, every multi-valued function f that admits371

a k-pseudodeterministic algorithm, has a pseudodeterministic algorithm.372

Proof. Let B be the pseudodeterministic algorithm for Collision Probability Estim-373

ation Problem, where B runs in time nc with error probability ≤ δ. To convert a374

k−pseudodeterministic algorithm to a pseudodeterministic algorithm, we repeatedly apply375

Theorem 13. We start with a k-pseudodeterministic algorithm Ak whose runtime is bounded376

by nt. On input x, Ak−1 constructs CAk,x with size ≤ 4n2t. Ak−1 computes B(C), which377

takes ≤ 4cn2tc time, then runs Ak(x) n times. In total, Ak−1(x) takes ≤ nt+1 +4cn2tc ≤ n4tc.378

ITCS 2021



71:10 Complete Problems for Multi-Pseudodeterministic Computations

Applying this conversion (k − 1) times, we obtain A1, a pseudodeterministic algorithm with379

runtime of O(nt(4c)k ). Since k is a constant the runtime is polynomial. Note that in each380

iteration, the error probability remains the same. Thus A1 is pseudodeterministic. J381

3.1 Circuit Probability Acceptance382

In this subsection we observe the equivalence of Collision Probability Estimation383

Problem and Acceptance Probability Estimation Problem in the context of pseudo-384

determinism.385

I Proposition 19. There exist ε, ε′ > 0 such that Collision Probability Estimation386

Problem has an (ε, δ)-pseudodeterministic additive approximation algorithm if and only387

if Acceptance Probability Estimation Problem has am (ε′, δ)-pseudodeterministic388

additive approximation algorithm.389

Proof. It is easy to see that Acceptance Probability Estimation Problem admits an390

(ε, δ) additive approximation algorithm. Thus by Proposition 4, it has a 2-pseudodeterministic391

(ε, δ) approximation algorithm. By Theorem 6, if Collision Probability Estimation392

Problem admits a pseudodeterministic algorithm, then Acceptance Probability Es-393

timation Problem admits a pseudodeterministic algorithm.394

Let B be a pseudodeterministic algorithm for Acceptance Probability Estimation395

Problem. Consider the following algorithm to estimate the collision probability of a circuit396

C: If B(C) outputs v, output v2 + (1− v)2. Let p = Pr[C(Un) = 1]. If v ∈ (p− ε, p+ ε), then397

the output of B belongs to (CP(C)− 8ε,CP(C) + 8ε). Clearly B is pseudodeterministic. J398

The following result is a corollary of the above proposition and Theorem 18.399

I Theorem 20. There exists ε′ > 0 such that if Acceptance Probability Estimation400

Problem admits an (ε′, δ) pseudodeterministic additive approximation algorithm, then401

every function f that admits an (ε, δ) multiplicative approximation algorithm has a (3ε, δ)-402

pseudodeterministic multiplicative approximation algorithm.403

3.2 Entropy Estimation404

In this subsection we show that Entropy Estimation Problem and Acceptance Prob-405

ability Estimation Problem are equivalent in the context of pseudodeterminism. We406

first observe that Entropy Estimation Problem admits an (ε, δ), 2-pseudodeterministic407

additive approximation algorithm.408

I Proposition 21. There is an (ε, δ) 2-pseudodeterministic approximation algorithm for the409

Entropy Estimation Problem410

Proof. Given a circuit C, let p = Pr[C(Un) = 1]. As in Proposition 5, compute an411

approximate value q of p and output H(q). It follows that H(q) is an approximation412

of H(p) due to the known result that entropy can be approximated by the empirical413

distribution obtained from sampling, for example see [15, 1]. By Proposition 4, we obtain a414

2-pseudodeterministic algorithm. J415

Note that the above proof yields the following.416

I Proposition 22. There exist ε and ε′ such that if Acceptance Probability Estimation417

Problem has an (ε, δ) pseudodeterministic additive error approximation algorithm, then En-418

tropy Estimation Problem has (ε′, δ) pseudodeterministic, additive error approximation419

algorithm.420



P. Dixon, A. Pavan, N. V. Vinodchandran 71:11

Next we reduce Acceptance Probability Estimation Problem to Entropy Es-421

timation Problem. Thus a pseudodeterministic algorithm for Entropy Estimation422

Problem implies a pseudodeterministic algorithm for Acceptance Probability Estima-423

tion Problem.424

The main technical result that we show is that an approximation of the entropy of C(Un)425

can be used to approximate the probability that C(Un) = 1. It is possible that this technical426

result is known or is a folklore; we could not find a reference. Thus, for completeness a proof427

is provided in the appendix.428

I Theorem 23. Suppose that there is a (ε, δ) pseudodeterministic approximation algorithm for429

Entropy Estimation Problem for a sufficiently small ε. Then there is a (1/100, δ+e−O(n))430

pseudodeterministic approximation algorithm for Acceptance Probability Estimation431

Problem.432

Using Proposition 19 and Theorem 23, we obtain that both Acceptance Probab-433

ility Estimation Problem and Entropy Estimation Problem are complete for434

k-pseudodeterministic computations.435

I Theorem 24. There exist ε > 0, such that if either of Acceptance Probability Estima-436

tion Problem or Entropy Estimation Problem admit (ε, δ)-pseudodeterministic, addit-437

ive approximation algorithm, then every multivalued function that has a k-pseudodeterministic438

algorithm has a pseudodeterministic algorithm.439

4 Pseudodeterminism for Search Problems440

In this section we show that if any of the 3 computational problems we consider has pseudode-441

terministic approximation schemes then every problem in Search-BPP has pseudodeterministic442

algorithms. The class Search-BPP was formally introduced by Goldrecich [6]443

I Definition 25 (Search BPP [6]). A search problem is a relation R ⊆ {0, 1}∗ × {0, 1}∗. For444

every x, the witness set Wx of x with respect to R is {y | (x, y) ∈ R}. A search problem R445

is in search-BPP (1) if there exists a probabilistic polynomial-time algorithm A such that446

for every x for which Wx 6= φ, A(x) ∈ Wx with probability ≥ 2/3, (2) and there exists a447

probabilistic polynomial time algorithm B such that if (x, y) ∈ R, then B(x, y) accepts with448

probability > 2/3, and if (x, y) 6∈ R then B(x, y) accepts with probability < 1/3.449

We will first show that if Acceptance Probability Estimation Problem has a450

pseudodeterministic, additive, approximation scheme, then Search-BPP problems can be451

made pseudodeterministic. Then we will use Theorem 20 to prove that if Acceptance452

Probability Estimation Problem has a (ε, δ) pseudodeterministic approximation al-453

gorithm, then Search-BPP problems admit pseudodeterministic algorithms. We first recall454

the definition of approximation scheme.455

I Definition 26. A function f : Σ∗ → Q has an additive, approximation scheme if there is456

a probabilistic polynomial time algorithm A that gets x, ε, and δ as input and457

Pr[f(x)− ε ≤ A(x, ε, δ) ≤ f(x) + ε] ≥ 1− δ458

I Theorem 27. If Acceptance Probability Estimation Problem has a pseudode-459

terministic, additive, approximation algorithm scheme, then every problem in Search-BPP460

has a pseudodeterministic algorithm.461

ITCS 2021



71:12 Complete Problems for Multi-Pseudodeterministic Computations

Proof. Let R be a problem in Search-BPP and let A and B be probabilistic algorithms that462

witness R in search-BPP according to the definition.463

The idea is to use the method of conditional probabilities to construct a good random464

choice zA for A on input x first, and then output A(x, zA). The search for zA will be465

aided by the pseudodeterministic approximation algorithm for Acceptance Probability466

Estimation Problem.467

Consider the following probabilistic algorithm B′ that, on input x of length n, first468

simulates A to get an output y and then runs B(x, y) and accepts if B accepts. Then469

Pr[B′(x) accepts] ≥ 2/5. Let m = p(n) be the polynomial bounding the length of the470

random string of B′. We will view the random string r that B′ uses as rArB where rA471

is the random string that B′ uses to simulate A and rB is to simulate B. Let Aape be a472

pseudodeterministic approximation algorithm for Acceptance Probability Estimation473

Problem. We will use Aape with error ε ≤ 1
n·p(n) and confidence 1− δ ≥ 1− 1

n·p(n) .474

For an input x let C(rArB) be the Boolean circuit that simulates B′ on x using random475

string r = rArB and outputs 1 if and only if B′ accepts x on r. Thus for any x where476

Wx 6= φ, Pr[C = 1] ≥ 2/5. For a binary string z ∈ {0, 1}l, let Cz : {0, 1}m−l → {0, 1} be the477

circuit obtained by fixing the first l bits of C’s input to z. We now describe the algorithm478

AR for the search problem that pseudodeterministically outputs a y ∈Wx.479

Algorithm PseudoAR: On input x, construct the circuit C that gets r = rArB as input480

and outputs 1 if B′ accepts (x, r) on random string r = rArB. Initialize z = λ, the481

empty string. Iterate from i = 1 to m = p(n). At the ith iteration, simulate Aape(Cz0)482

(pseudodeterministically) to approximate Pr[Cz0(r) = 1] up to an additive error ε and483

confidence (1 − δ) to get a value v. If v ≥ 2/5 − (2i + 1)ε then z ← z0 otherwise z ← z1.484

Continue to the next iteration. After the mth iteration let z = zAzB be the binary string of485

length m constructed. Output A(x, zA). End-of-Algorithm486

Correctness: Since error probability of Aape is ≤ 1
n·m , and we are making m calls to Aape,487

by the union bound, the probability that any one of the calls makes an error is ≤ 1/n. For488

the rest of the argument we assume all the calls to Aape pseudodeterministically output an489

approximation to acceptance probability within an additive error of ε.490

B Claim 28. For every i, for the string z constructed at the end of the ith iteration,491

Pr[Cz = 1] ≥ 2
5 − 2iε.492

Proof. We prove this by induction on i. For i = 0, the hypothesis holds since Pr[C = 1] ≥ 2/5.493

Assume the hypothesis holds for i. Consider the (i + 1)th iteration. Using conditional494

probabilities, after the ith iteration, Pr[Cz0 = 1] ≥ 2
5 − 2iε or Pr[Cz1 = 1] ≥ 2

5 − 2iε. Suppose495

at the (i + 1)th iteration the value v returned by Aape(Cz0) is ≥ 2/5 − (2i + 1)ε. Then z496

is updated to z0 by the algorithm and from the approximation guarantee of Aape we have497

that Pr[Cz0 = 1] ≥ 2/5 − (2i + 1)ε − ε = 2/5 − 2(i + 1)ε. On the other hand suppose498

v < 2/5 − (2i + 1)ε. Then z is updated to z1. Also Pr[Cz0 = 1] < v + ε = 2/5 − 2iε and499

hence Pr[Cz1 = 1] ≥ 2/5− 2iε ≥ 2/5− 2(i+ 1)ε J500

Thus for any 1 ≤ i ≤ m Pr[Cz = 1] ≥ 2/3− 1/n and hence the algorithm outputs a z so501

that B′(x, z) accepts. Hence the output of the algorithm A(x, zA) ∈Wx.502

The algorithm PseudoAR can be seen as a deterministic algorithm making subroutine calls503

to the pseudodeterministic algorithm Aape. Hence the overall algorithm is pseudodeterministic.504

The probability of error is bounded by any one of the calls to Aape making an error which is505

≤ 1/n. J506



P. Dixon, A. Pavan, N. V. Vinodchandran 71:13

Next we will show that if Acceptance Probability Estimation admits (ε, δ) pseudode-507

terministic additive approximation, then admits pseudodeterministic additive approximation508

scheme.509

I Proposition 29. There exists ε > 0 such that if Acceptance Probability Estimation510

admits an (ε, δ) pseudodeterministic additive approximation, then it admits a pseudodetermin-511

istic approximation scheme.512

Proof. We first note that Acceptance Probability Estimation Problem admits an513

additive, approximation scheme. By Theorem 20, there is an ε′ > 0 such that if Acceptance514

Probability Estimation Problem has an (ε′, δ) pseudodeterministic approximation515

algorithm, then every (ε, δ)-additive approximation algorithm for a function f can be made516

into a (3ε, δ) pseudodeterministic, additive approximation algorithm. The same proof shows517

that if f admits an approximation scheme, then it can be made into a pseudodeterministic518

approximation scheme.519

J520

The main result of this section is a corollary of the above proposition and Theorem 27.521

I Theorem 30. There exists ε > 0 such that if Acceptance Probability Estimation522

Problem has a (ε, δ) pseudodeterministic approximation algorithm algorithm, then every523

problem in Search-BPP has a pseudodeterministic algorithm.524

References525

1 Jayadev Acharya, Sourbh Bhadane, Piotr Indyk, and Ziteng Sun. Estimating entropy of526

distributions in constant space. In Advances in Neural Information Processing Systems 32:527

Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14528

December 2019, Vancouver, BC, Canada, pages 5163–5174, 2019.529

2 Peter Dixon, A. Pavan, and N. V. Vinodchandran. On pseudodeterministic approximation530

algorithms. In 43rd International Symposium on Mathematical Foundations of Computer531

Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, volume 117 of LIPIcs, pages532

61:1–61:11, 2018.533

3 E. Gat and S. Goldwasser. Probabilistic search algorithms with unique answers and their534

cryptographic applications. Electronic Colloquium on Computational Complexity (ECCC),535

18:136, 2011.536

4 Michel Goemans, Shafi Goldwasser, and Dhiraj Holden. Doubly-efficient pseudo-deterministic537

proofs. arXiv, 2019.538

5 O. Goldreich, S. Goldwasser, and D. Ron. On the possibilities and limitations of pseudode-539

terministic algorithms. In Innovations in Theoretical Computer Science, ITCS ’13, Berkeley,540

CA, USA, January 9-12, 2013, pages 127–138, 2013.541

6 Oded Goldreich. In a world of P=BPP. In Oded Goldreich, editor, Studies in Complexity and542

Cryptography. Miscellanea on the Interplay between Randomness and Computation, volume543

6650 of Lecture Notes in Computer Science, pages 191–232. Springer, 2011.544

7 Oded Goldreich. Multi-pseudodeterministic algorithms. Electronic Colloquium on Computa-545

tional Complexity (ECCC), 26:12, 2019.546

8 S. Goldwasser and O. Grossman. Bipartite perfect matching in pseudo-deterministic NC. In547

44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July548

10-14, 2017, Warsaw, Poland, pages 87:1–87:13, 2017.549

9 S. Goldwasser, O. Grossman, and D. Holden. Pseudo-deterministic proofs. CoRR,550

abs/1706.04641, 2017.551

ITCS 2021



71:14 Complete Problems for Multi-Pseudodeterministic Computations

10 Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff. Pseudo-552

deterministic streaming. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer553

Science Conference, ITCS, volume 151 of LIPIcs, pages 79:1–79:25, 2020.554

11 O. Grossman. Finding primitive roots pseudo-deterministically. Electronic Colloquium on555

Computational Complexity (ECCC), 22:207, 2015.556

12 Ofer Grossman and Yang P. Liu. Reproducibility and pseudo-determinism in log-space. In557

Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA558

2019, San Diego, California, USA, January 6-9, 2019, pages 606–620. SIAM, 2019.559

13 I. Oliveira and R. Santhanam. Pseudodeterministic constructions in subexponential time. In560

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC561

2017, Montreal, QC, Canada, June 19-23, 2017, pages 665–677, 2017.562

14 Igor Carboni Oliveira and Rahul Santhanam. Pseudo-derandomizing learning and approxima-563

tion. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and564

Techniques, APPROX/RANDOM 2018, volume 116 of LIPIcs, pages 55:1–55:19, 2018.565

15 Liam Paninski. Estimating entropy on m bins given fewer than m samples. IEEE Trans. Inf.566

Theory, 50(9):2200–2203, 2004.567

16 L. Stockmeyer. The complexity of approximate counting (preliminary version). In Proceedings568

of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston,569

Massachusetts, USA, pages 118–126, 1983.570

A Proof of Theorem 23571

We first start with the following lemma. Here H is the binary entropy function H(p) =572

−p log p− (1− p) log(1− p).573

B Claim 31. Let 0 ≤ a+ b ≤ 1. H(a+ b) ≥ H(a) + b log 1−a−b
a+b574

Proof.

H(a+ b) = −(a+ b) log(a+ b)− (1− a− b) log(1− a− b)575

= −a log(a+ b)− (1− a) log(1− a− b)− b log(a+ b)− (−b) log(1− a− b)576

≥ −a log(a)− (1− a) log(1− a) + b(log(1− a− b)− log(a+ b))577

= H(a) + b log 1− a− b
a+ b

578
579

where the third line follows by Gibbs’ inequality. J580

We now provide a proof of Theorem 23.581

Proof. Suppose A is a pseudodeterministic algorithm that, given a Boolean circuit C,582

outputs (ε, δ) approximation of H(C(Un)). Let r = Pr[C(Un) = 1]. Our goal is to design a583

pseudodeterministic algorithm to estimate r. Let q be the smaller of 1− r and r. We will584

first design a pseudodeterministic algorithm B that outputs a value p such that p is within585

1/100 of q.586

B(C) runs A(C) to obtain y. If y ≥ H( 1
2 −

1
100 ) + ε, then output 1

2 . Otherwise, do a587

binary search for p in the range (0, 1/2) such that −p log p − (1 − p) log(1 − p) lies within588

[y, y + 1/2n). We consider two cases.589

Case 1: y ≥ H( 1
2 −

1
100 ) + ε. In this case, then clearly 1

2 −
1

100 ≤ r ≤
1
2 + 1

100 . B(C) will590

output 1
2 , which is within 1

100 of r = Pr[C = 1], with probability ≥ 1− δ.591

Case 2: y < H( 1
2 −

1
100 ) + ε. Since |H(p)− y| ≤ 1/2n and |H(q)− y| ≤ ε, we have that592

|H(p) −H(q)| ≤ ε + 1/2n = ε′. Now we bound how far p is from q. For this we need the593

following two technical claims.594



P. Dixon, A. Pavan, N. V. Vinodchandran 71:15

B Claim 32. Let a ≤ 1
2 . If H(a) ≤ H( 1

2 −
1

100 ) + ε′, then a ≤ 1
2 −

1
100 + 1

c , for any c that595

satisfies ε′ ≤ 1
2c log( 102c−200

98c+200 ).596

Proof.

H(a) ≤ H
(

1
2 −

1
100

)
+ 2ε597

≤ H
(

1
2 −

1
100

)
+ 1
c

log
(

102c− 200
98c+ 200

)
598

= H

(
1
2 −

1
100

)
+ 1
c

log
( 1

2 + 1
100 −

1
c

1
2 −

1
100 + 1

c

)
599

≤ H
(

1
2 −

1
100 + 1

c

)
by Claim 31600

601

Thus a ≤ 1
2 −

1
100 + 1

c . J602

B Claim 33. Let a = b+` where a ≤ 1
2 , a, b, ` ≥ 0. IfH(a)−H(b) ≤ ε′ and a ≤ 1

2−
1

100 + 1
c ≤

1
2 ,603

then ` ≤ ε′

log 102c−200
98c+200

604

Proof.

ε′ ≥ H(a)−H(b)605

= H(b+ `)−H(b)606

≥ H(b) + ` log
(

1− b− `
b+ `

)
−H(b)(ByClaim 31)607

= ` log
(

1− a
a

)
608

609

Since a ≤ 1
2 , the minimum value for this is when a is as close to 1

2 as possible.610

≥ ` log
1− ( 1

2 −
1

100 + 1
c )

( 1
2 −

1
100 + 1

c )
611

= ` log 102c− 200
98c+ 200612

⇒ ` ≤ ε′

log 102c−200
98c+200

613

614

J615

B Claim 34. If ε′ is sufficiently small, then there is a constant c satisfying616

ε′

log 102c−200
98c+200

≤ 1
100 and ε′ ≤ 1

2c log
(

102c− 200
98c+ 200

)
617

Proof. It can be verified that when ε′ = 1/42000 and c = 1100, the above inequalities are618

satisfied. J619

Now we are ready to prove that |p− q| ≤ 1
100620

B Claim 35. |p− q| ≤ 1
100621

ITCS 2021



71:16 Complete Problems for Multi-Pseudodeterministic Computations

Proof. First, suppose p > q. Then p = q+ `. Since, y < H( 1
2 −

1
100 ) + ε and |y−H(p)| ≤ 1

2n ,622

so H(p) ≤ H( 1
2 −

1
100 ) + ε+ 1

2n = H( 1
2 −

1
100 ) + ε′.By Claim 34, we have that c = 1/1100.623

By claim 32, p ≤ 1
2 −

1
100 + 1

c . By claim 33, we obtain that ` ≤ ε′

log 102c−200
98c+200

≤ 1/100, thus624

p ≤ q + 1/100. A similar argument shows that if p < q, then p ≥ q − 1/100.625

J626

We found a value p that is 1/100-close to q, and the goal is to estimate r = Pr[C(Un) = 1],627

where q = min{r, 1− r}. Thus p is either close to r or to 1− r. Now we run C(Un), n times;628

if there are more 1s than 0s output 1− p; else output p. Using Chernoff bounds, it follows629

that the output is 1/100-close to q with probability ≤ 1− e−2n/(1102).630

Finally, recall that we needed ε′ = ε+ 1/2n ≤ 1/42000. Thus we can take ε ≤ 1/43000631

(for large enough n). So, if it’s possible to pseudodeterministically estimate H(Pr[C = 1])632

within 1
43000 with probability 1−δ, it’s possible to pseudodeterministically estimate Pr[C = 1]633

within 1
100 with probability 1− δ − e−2n/(1102).634

J635


	Introduction
	Pseudodeterminism in Approximation Algorithms
	Completeness of Collision Probability Estimation

	Pseudodeterminism for Multi-valued Functions
	Circuit Probability Acceptance
	Entropy Estimation

	Pseudodeterminism for Search Problems
	Proof of Theorem 23

