
Perfect Zero Knowledge: New Upperbounds and Relativized
Separations?

Peter Dixon1, Sutanu Gayen2, A. Pavan1, and N. V. Vinodchandran3

1 Iowa State University
{tooplark,pavan}@cs.iastate.edu
2 National University of Singapore

sutanugayen@gmail.com
3 University of Nebraska-Lincoln

vinod@cse.unl.edu

Abstract. We investigate the complexity of problems that admit perfect zero-knowledge interactive
protocols and establish new unconditional upper bounds and oracle separation results. We establish
our results by investigating certain distribution testing problems: computational problems over high-
dimensional distributions represented by succinct Boolean circuits. A relatively less-investigated com-
plexity class SBP emerged as significant in this study. The main results we establish are:

(1) A unconditional inclusion that NIPZK ⊆ CoSBP.
(2) Construction of a relativized world in which there is a distribution testing problem that lies in

NIPZK but not in SBP, thus giving a relativized separation of NIPZK (and hence PZK) from
SBP.

(3) Construction of a relativized world in which there is a distribution testing problem that lies in PZK
but not in CoSBP, thus giving a relativized separation of PZK from CoSBP.

Results (1) and (3) imply an oracle separating PZK from NIPZK. Our results refine the landscape of
perfect zero-knowledge classes in relation to traditional complexity classes.

1 Introduction

The notion of zero-knowledge interactive proof was introduced in the seminal work of Goldwasser, Micali,
and Rackoff. Since their introduction, zero-knowledge proofs have played a central role in the development
of the foundations of cryptography [18]. Informally, it is a protocol between two parties, a prover and a
verifier, where the prover wants to establish possession of certain knowledge without revealing the knowledge
itself. Goldwasser, Micali, and Rackoff formalized this intuitive notion using the language of computational
complexity theory. It is formalized as follows. A language or a promise problem L admits an interactive proof
if there is a computationally unbounded prover P and a randomized polynomial-time verifier V such that for
a positive instance x, V after interacting with P accepts x with high probability. On the other hand, for a
negative instance x for any prover P ∗, the verifier V after interacting with P ∗ accepts x with low probability.
The protocol is a statistical zero-knowledge protocol if for positive instances, the interaction between P and
V can be simulated by a randomized polynomial time simulator S so that the output distribution of the
simulator is statistically close to the distribution of the interaction. The intuition is that the interaction
itself can be simulated efficiently (in randomized polynomial-time) and hence the verifier is not gaining
any additional knowledge other than what she can simulate by herself. The class of problems that admit
statistical zero-knowledge interactive proofs is denoted by SZK. An important restriction is when the output
distribution of the simulator is identical to the distribution of the interaction. Such a protocol is called a
perfect zero-knowledge protocol, and the corresponding class of languages is denoted by PZK [17]. It is also
possible to envision a non-interactive situation where the only communication in the protocol is from the
prover to the verifier. Indeed, Blum, Feldman and Micali [6] and De Santis et al [7] investigated such non-
interactive zero-knowledge proofs and introduced the class NISZK. The corresponding perfect zero-knowledge
class NIPZK was first investigated by Malka [21].

? Research supported in part by NSF grants 1849053, 1849048, 1934884

Zero-knowledge proofs and corresponding classes have played a key role in bridging computational com-
plexity theory and cryptography. Several computationally hard problems that are not known to be NP-
complete, including Graph Isomorphism, Quadratic Residuosity, and certain lattice problems, admit zero-
knowledge proofs (some non-interactive and some perfect zero-knowledge) [12, 23, 14, 13]. Also, several cryp-
tosystems are based on the computational hardness of some of these problems. While these problems are
computationally hard in the sense that they lack efficient algorithms, it is interesting that they are unlikely to
be NP-complete. Establishing the relationships among zero-knowledge classes and proving traditional com-
plexity class (such as PP and sub-classes of the Polynomial Hierarchy) upper bounds for them continues to
be a research focus in complexity theory and cryptography [11, 3, 22, 24]. While there are a few unconditional
upper bound results, most of the results establish the hardness of proving upper bounds in the form of oracle
results. We briefly discuss them below.

Unconditional Upper Bounds: Two main early upper bound results are that SZK is closed under com-
plement [22, 24] and SZK is upper bounded by AM ∩ coAM [11, 3, 22, 24]. The latter result implies that
NP-complete problems cannot have statistical zero-knowledge proofs unless it contradicts the widely held
belief that the Polynomial Hierarchy is infinite [9]. The relationship between zero-knowledge classes and
traditional probabilistic complexity classes has also been explored recently. In particular, Bouland et al.
show that all problems with perfect zero-knowledge proofs admit unbounded probabilistic polynomial-time
algorithms (that is, PZK ⊆ PP) [10].

Relativized Separations: Several significant upper bound questions, including whether various zero-knowledge
classes are closed under complement and whether statistical zero-knowledge classes equal the corresponding
perfect zero knowledge classes, turned out to be difficult to resolve and led to oracle separation results. Lovett
and Zhang showed that the class NISZK is not closed under complement in a relativized world [20]. Bouland
et al., in the same paper where they show PZK ⊆ PP, established a comprehensive set of oracle separation
results. In particular, they showed that there are relativized worlds where NISZK (and thus SZK) is not in
PP, PZK does not equal SZK, and NIPZK and PZK are not closed under complement.

Our Contributions

One of our main contributions is a new unconditional upper bound on the complexity class NIPZK.

Theorem 1. NIPZK ⊆ CoSBP.

The class SBP (Small Bounded-error Probability) was introduced by Böhler, Glaßer, and Meister [8] and
is a bounded-error version of PP. Informally, a language is in PP if there is a probabilistic polynomial-time
machine for which the ratio between the acceptance and the rejection probabilities is more than 1 for all the
positive instances. We obtain the class SBP when we stipulate that this ratio is bounded away from 1, i.e,
(1 + ε) for a fixed constant ε > 0. This restriction greatly reduces the power of the class. In particular, it is
known that SBP is a subset of AM and PP, and contains MA. This class has been studied in other contexts
as well, such as in circuit complexity and quantum computation [5, 2, 19, 1]. Even though the relationship
between SBP and zero knowledge classes has not been studied earlier, a curious connection exists between
them. Watson showed that a certain promise problem regarding the min-entropy of samplable distributions is
a complete problem for SBP [25]. Interestingly, the analogous problem where entropy instead of min-entropy
is considered was shown to be complete for the class NISZK [16]. Our upper bound result improves the known
containments NIPZK ⊆ AM ∩ coAM to NIPZK ⊆ AM ∩ CoSBP and NIPZK ⊆ PP to NIPZK ⊆ CoSBP.

We consider the possibility of establishing other upper bounds for perfect zero-knowledge classes. Since
NIPZK is not known to be closed under complement, is it possible to show that NIPZK ⊆ SBP ∩ CoSBP?
We also consider whether we can show that PZK itself lies in CoSBP. For these two questions, we prove the
following relativized lower bound results.

Theorem 2. There is an oracle O such that NIPZKO (and thus PZKO) is not in SBPO.

This result along with Theorem 1 implies that NIPZK is not closed under complement in a relativized
world, a result that was recently established by Bouland et al. [10].

2

Theorem 3. There is an oracle O such that PZKO is not in CoSBPO.

As Theorem 1 relativizes with respect to any oracle, Theorem 1 and Theorem 3 together implies an
oracle that separates PZK from NIPZK.

Corollary 1. There is an oracle O such that NIPZKO (PZKO.

Figure 1 summarizes the known relationships among perfect zero knowledge classes and other complexity
classes along with the results established in this work.

NIPZK

PZK

SBP

AM

CoNIPZK

CoPZK

CoSBP

CoAMBPPpath

PP

Fig. 1: A→ B indicates that A is a subset of B, A 99K B indicates that there is a relativized world where A
is not a subset of B. Red and Blue arrows indicate new results.

Complexity of Distribution Testing Problems. We establish our results by investigating certain distribu-
tion testing problems: computational problems over high-dimensional distributions represented by succinct
Boolean circuits. Interestingly, it turns out that versions of distribution testing problems characterize var-
ious zero-knowledge classes. The distribution testing problems are best formalized as promise problems. A
promise problem is a pair of sets Π = (ΠY es, ΠNo) such that ΠY es ∩ΠNo = ∅. ΠY es is called the set of ‘yes’
instances, and ΠNo is called the set of ‘no’ instances. Given a Boolean circuit C mapping from m bits to n
bits, the distribution sampled by C is obtained by uniformly choosing x ∈ {0, 1}m and evaluating C on x.
We often use C itself to denote the distribution sampled by the circuit C.

Statistical Difference (SD): Given two distributions sampled by Boolean circuits C and D, ΠY es =
{〈C,D〉 | dist(C,D) ≤ 1/n} and ΠNo = {〈C,D〉 | dist(C,D) ≥ 1− 1/n}.

Here dist denotes the statistical distance between the distributions. When one of the distributions is
the uniform distribution, the above problem is called Statistical Difference to Uniform (SDU). The
seminal work of Sahai and Vadhan showed that SD is complete for the class SZK [24] and Goldreich, Sahai
and Vadhan showed that SDU is complete for NISZK [16].

Entropy Approximation (EA) : Given a samplable distribution C and an integer k,ΠY es = {〈C, k〉 | H(C) ≥
k + 1} and ΠNo = {〈C, k〉 | H(C) ≤ k − 1}, where H is the entropy function.

Goldreich, Sahai and Vadhan showed that Entropy Approximation is complete for NISZK. In the
above problem, if the entropy function H is replaced with the min-entropy function H∞, the corresponding
problem is known as Min-entropy Approximation (MEA). Watson showed that MEA is complete for
SBP [25]. It is interesting to note that while Entropy Approximation is NISZK-complete, the analogous
Min-entropy Approximation problem is complete for SBP.

To establish our results, we study variants of the above distribution testing problems. The following
problem, known as Uniform, is defined by Malka and was shown to be complete for NIPZK [21].

3

Uniform: Given a circuit D : {0, 1}m → {0, 1}n+1, let D[1 . . . n] denote the distribution of the first n bits of
D and let D[n+ 1] denote the distribution of the last bit of D. ΠY es = {〈D〉 | D[1 . . . n] = Un,Pr[D[n+ 1] =
1] ≥ 2/3} and ΠNo = {〈D〉 | |sup(D) ∩ {0, 1}n1| ≤ 2n/3}.

Here Un denotes the uniform distribution over n-bit strings and sup(D) is the support of the distribution
D. We obtain Theorem 1 by showing that Uniform is in CoSBP.

Note that we can obtain relativized versions of the distribution testing problems by providing oracle
access to the circuits involved. To obtain Theorem 2, we consider a promise problem that is a variant of
Uniform.

Uniform-Or-Small: Given a distribution D, ΠY es = {〈D〉 | D = U} and ΠNo = {〈D〉 | |sup(D)| ≤ 2n/2}
We show that a relativized version of this problem is not in SBP. For Theorem 3, we consider a variant

of SD called Disjoint-Or-Identical.

Disjoint-Or-Identical: Given two samplable distributions C and D, ΠY es = {〈C,D〉 | sup(C)∩sup(D) =
∅} and ΠNo = {〈C,D〉 | C = D} (i.e, the distance between C and D is either 1 or 0).

This problem can be shown to be in CoPZK. We construct an oracle relative to which this problem is
not in SBP. Theorems 2 and 3 show that there exist relativized worlds where PZK is neither in SBP nor in
CoSBP. This suggests that we cannot hope to improve the containment PZK ⊆ PP to either SBP or CoSBP
using relativizable techniques.

2 Notation and Definitions

Distributions. All the distributions considered in this paper are over a sample space of the form {0, 1}n for
some integer n. Given a distribution D, we use D(x) to denote the probability of x with respect to D. We
use Un to denote the uniform distribution over {0, 1}n. We consider distributions sampled by circuits. Given
a circuit C mapping m-bit strings to n-bit strings, the distribution encoded/sampled by the circuit C is the
distribution C(Um). We often use C to denote both the circuit and the distribution sampled by it. Note
that given access to the circuit, we can efficiently generate a sample of the distribution by evaluating C on a
uniformly chosen m-bit string. For this reason, we call such distributions efficiently samplable distributions
or just samplable distributions. We use sup(D) to denote the set of strings for which D(x) 6= 0.

Given two distributions C and D over the same sample space S, the statistical distance between them,
denoted by dist(C,D), is defined as follows.

dist(C,D) = max
T⊆S

(C(T)−D(T)) =
∑

C(x)>D(x)

(C(x)−D(x))

Complexity Classes We refer the reader to the textbook by Arora and Barak [4] for definitions of stan-
dard complexity classes. For a complexity class C, CoC denotes the class of complement languages/promise
problems from C. The class SBP was introduced in [8] and is defined as follows.

Definition 1. A promise problem (ΠY es, ΠNo) is said to belong to the complexity class SBP if there exists
a constant ε > 0, a polynomial p(·), and a probabilistic polynomial-time Turing Machine M such that

1. If x ∈ ΠY es then Pr[M accepts] ≥ 1+ε
2p(|x|)

2. If x ∈ ΠNo then Pr[M accepts] ≤ 1
2p(|x|)

,

SBP is sandwiched between MA and AM and is the largest known subclass of AM that is in PP. In fact,
it is known that SBP is contained in the class BPPpath which is a subclass of PP.

Theorem 4 ([8]). MA ⊆ SBP ⊆ AM and SBP ⊆ BPPpath ⊆ PP.

Although we will not be using explicit definitions of zero-knowledge classes, we give necessary definitions
for completeness.

4

Definition 2 (Non-Interactive protocol). A non-interactive protocol is a pair of functions 〈P, V 〉,
the prover and verifier. On input x and random strings rI , rP , P sends a message π = P (x, rP , rI) to V , and
V computes m = V (x, π, rI). V accepts x if m = 1, and rejects if m = 0. The transcript of the interaction
is the tuple 〈x, rI , π,m〉.

Note that the above definition implies that the random string rI is shared between the prover and the
verifier.

Definition 3 (NIPZK[21, 16]). A promise problem 〈ΠY es, ΠNo〉 is in NIPZK (Non-Interactive Perfect
Zero Knowledge) if there is a non-interactive protocol 〈P, V 〉 where V runs in polynomial time, and a ran-
domized, polynomial-time computable simulator S, satisfying the following conditions:

- (Soundness:) For any function P ∗ and any x ∈ ΠNo, Pr[V accepts] ≤ 1/3
- (Completeness:) If x ∈ ΠY es,Pr[V accepts] ≥ 2/3
- (Zero Knowledge:) For any x ∈ ΠY es, the distribution of S(x) is identical to the distribution of the

transcript generated by 〈P, V 〉 on input x.

The class NISZK (Non-Interactive Statistical Zero Knowledge) is defined similarly [16], except that we
only require that the statistical distance between the distribution of S(x) and the distribution of the tran-
script generated by 〈P, V 〉(x) be less than 1/p(n) for every polynomial p(n). Malka [21] showed that the
promise problem Uniform is complete for the class NIPZK.

Theorem 5 ([21]). The promise problem Uniform is complete for NIPZK.

3 NIPZK ⊆ CoSBP

For a given distribution D, let CP(D) denote the collision probability: Prx,y∼D(x = y). The following lemma
is folklore. See [15] for a proof.

Lemma 1. For a given distribution D over {0, 1}n, if dist(D,Un) ≥ ε, then CP(D) ≥ 1+ε2

2n

Theorem 1. NIPZK ⊆ CoSBP
We show the result by proving that the NIPZK-complete problem Uniform is in CoSBP. We start with

the following lemma.

Lemma 2. Let D be a distribution on n + 1 bits, and let T = {x ∈ {0, 1}n | x1 ∈sup(D)}. Suppose that
|T | ≤ 2n/3 and Pr(D[n+ 1] = 1) = 1

3 + ε for some ε ≥ 0. Then dist(D[1 . . . n], Un) is at least ε.

Proof. Recall that dist(D[1 . . . n], Un) = maxS⊆{0,1}n
∣∣Prd∼D[1...n][d ∈ S]− Pru∼Un

[u ∈ S]
∣∣

max
S⊆{0,1}n

∣∣∣∣ Pr
d∼D[1...n]

[d ∈ S]− Pr
u∼Un

[u ∈ S]

∣∣∣∣ ≥ ∣∣∣∣ Pr
d∼D[1...n]

[d ∈ T]− Pr
u∼Un

[u ∈ T]

∣∣∣∣
≥
∣∣∣∣13 + ε− Pr

u∼Un

[u ∈ T]

∣∣∣∣
=

∣∣∣∣13 + ε− |T |
2n

∣∣∣∣
≥ 1

3
+ ε− 2n

3
/2n = ε

Now we prove Theorem 1 by giving a CoSBP algorithm for Uniform.

5

Proof. Recall the definition of Uniform: Given a circuit D : {0, 1}m → {0, 1}n+1, ΠY es = {D : D[1 . . . n] =
Un,Pr[D[n+ 1] = 1] ≥ 2/3} and ΠNo = {D : |sup(D) ∩ {0, 1}n1| ≤ 2n/3}.

Consider the following randomized algorithm: Given D as input, get two samples d0 and d1 from D. If
the first n bits of both d0 and d1 are the same, then accept. Else, obtain k additional samples from D, and
if the last bit of all these samples is 0, then accept, otherwise reject.

If D is a ‘yes’ instance of Uniform, then the probability of accepting at the first step is 1
2n and the

probability of accepting at the second step is at most 1
3k

, so the overall accept probability is ≤ 1
2n + 1

3k
.

Suppose that D is a ‘no’ instance of Uniform. By lemma 2, either D[1 . . . n] is at least 1
6 away from Un, or

D[n+ 1] is 1 with probability at most 1
2 . Suppose that D is at least 1/6 away from the uniform distribution,

then by Lemma 1, the probability that the first n bits of d0 and d1 are the same is at least 37
36

1
2n . Thus

the algorithm accepts with probability at least 37
36

1
2n . Now suppose that D is less than 1/6 away from the

uniform distribution. This implies that the last bit of D is 1 with probability at most 1/2. Thus in this case the
algorithm accepts with probability ≥ 1

2k
. Thus, a no instance is accepted with probability ≥ min

{
37
36

1
2n ,

1
2k

}
.

Choose k = n− log(37/36), so that a no instance is accepted with probability ≥ 37
36

1
2n and a yes instance is

accepted with probability ≤ 1
2n + 3log(37/36)

3n . For large enough n, 37
36

1
2n ≥ (1 + 1

40)(1
2n + 3log(37/36)

3n), so this is
a CoSBP algorithm for for Uniform.

4 Oracle Separations

In this section, we prove Theorems 2 and 3. We first prove a general approach that can be used to construct
relativized worlds where promise problems involving circuits are not in SBP.

Lemma 3. Let Π = 〈ΠY , ΠN 〉 be a promise problem whose instances are circuits. If there is an oracle
circuit family {Cn}n≥0 and a constant c > 1 with the following properties:

– Cn is a oracle circuit that maps n bits to n bits and makes oracle queries only to strings of length cn.
– There exist families of sets {An}n≥0, {Bn}n≥0 ⊆ {0, 1}cn such that for all n, CAn

n ∈ ΠY and CBn
n ∈ ΠN

– For every probabilistic polynomial-time Turing Machine M and infinitely many n, for every Di ∈
{Ai, Bi, ∅}, 1 ≤ i < n

Pr[M (∪n−1
i=1 Di)∪An(C

(∪n−1
i=1 Di)∪An

n)accepts]

Pr[M (∪n−1
i=1 Di)∪Bn(C

(∪n−1
i=1 Di)∪Bn

n)accepts]
< 2,

then there exists an oracle O such that ΠO 6∈ SBPO

Proof. We first note that in this definition of SBP, we can choose ε to be 1 by using amplification techniques.
Thus a promise problem is in SBP if there exists a polynomial p(·) and a probabilistic polynomial-time
machine M such that on positive instances M accepts with probability at least 2/2p(n) and on negative
instances M accepts with probability at most 1/2p(n). We call p(·) the threshold polynomial for M .

Let {Mi}i>0 be an enumeration of the probabilistic polynomial-time machines. We consider an enumera-
tion of tuples 〈Mi, j〉i>0,j>0. In this enumeration considering 〈Mi, j〉 corresponds to the possibility that Mi is
a SBP machine with threshold polynomial nj . We first start with an empty oracle. Let Oi = O∩{0, 1}ci. For
each i, Oi will be one of ∅, Ai or Bi. Consider 〈Mi, j〉 and let n be a length for which On is not yet defined
and for which the inequality from the lemma holds for the machine Mi. Suppose that Mi makes queries of
length ≤ m. Note that by this, we have defined Oi for all i < cn, thus O ⊆ {0, 1}<cn and for every i < n Oi
is either ∅, Ai or Bi. Suppose that the acceptance probability of MO∪An

i (CAn) is less than 2/2n
j

. We set O
at length cn as An and for all the lengths from cn+ 1 to m the oracle O is set to be ∅. Now CAn is a positive
instance for which Mi cannot be a SBP machine with nj as the threshold polynomial. Then we set O at
length cn as An and move to the next tuple in the enumeration. Suppose that MO∪An

i (CAn) accepts with

probability at least 2/2n
j

. Now by the inequality from lemma 3, the acceptance probability of MO∪Bn
i (CBn)

is more than 1/2n
j

. Note that CBn is a negative instance for which Mi is not a SBP machine with threshold
polynomial nj . Thus we make the oracle O at length cn to be Bn. It is easy to see that ΠO is not in SBPO:
Suppose not, and there exists a probabilistic polynomial-time machine Mi with threshold polynomial nj .
When we considered the tuple 〈Mi, j〉, we ensured that Mi does not have threshold polynomial nj on COcn .

6

4.1 Oracle Separation of NIPZK from SBP

In this section we show that Theorem 2 cannot be improved to show that NIPZK is a subset of SBP using
relativizable techniques. For this we show that the oracle version of Uniform-Or-Small is not in SBP.

Theorem 6. There exists an oracle O relative to which Uniform-Or-Small is not in SBPO.

Malka [21] showed that Uniform-Or-Small is in NIPZK, and this proof relativizes. Combining this
with Theorem 6, we obtain Theorem 2. To prove Theorem 6, it suffices to exhibit sets An and Bn that satisfy
the conditions of Lemma 3. We construct these sets via a probabilistic argument. We first provide a brief
overview of this construction.

Remark: There is a alternate proof of the oracle separation between NIPZK from SBP which we describe
here briefly. This was pointed out to us by one of the reviewers of TCC 2020. The proof uses known facts
about the well-studied Permutation Testing Problem (PTP). PTP takes as input a truth table of a function
f : [N] → [N] promised to be either a permutation on [N] or N/3 away in Hamming distance from any
permutation on [N]. The computational goal is to distinguish these two cases. It is known that in the query-
complexity setting, there is a NIPZK protocol where the verifier uses public randomness to pick a uniform
random element x from [N], which is viewed as an element from the range of the function, and the prover
is required to present a preimage of x. Aaronson, in [1] (Theorem 13), gave the construction of an oracle
separating SZK from the Quantum version of SBP using degree arguments. The oracle is derived from the
PTP problem where the author uses a SZK upper bound for PTP. However, as noted above the upper bound
of NIPZK holds for PTP and hence it gives an oracle separation of NIPZK from SBP. Here we provide an
oracle separation using elementary arguments.

Overview of the proof: Consider a non-relativized world with the following restriction on how a probabilistic
polynomial-time machine M can access the input circuit C: At the beginning the machine gets to see a
sequence S of k independent samples from C. After this the machine ignores C. Note that in this model the
underlying machine cannot perform adaptive sampling from C, nor can the machine generate samples that
might be correlated. In this model it is easy to see that if C encodes the uniform distribution, the probability
that M is presented with a specific sequence S of k samples is precisely 1/2nk. Thus the probability that the
machine M accepts is

∑
S

(
1

2nk Pr[M accepts S]
)
, summed over all sequences of size k.

Now given a subset D of {0, 1}n of size 2n/2, let UD be the uniform distribution over D. Consider the
following experiment. Randomly pick D and let CD be a circuit that samples UD. Independently draw a
sequence of k samples S from UD and present them as input to M . (In a non-relativized setting, there may
not be a small circuit that uniformly samples D, but in the relativized worlds we consider, this is not an
issue.) We consider the acceptance probability of M over random choices of D, S and internal coin tosses of
M . By a careful analysis we can show that this probability is very close to

∑
S

(
1

2nk Pr[M accepts S]
)
. Thus

the ratio between the acceptance probabilities of M when given samples from the uniform distributions and
samples drawn from UD (over a random choice of D) is less than 1 + ε for any constant ε. By a probabilistic
argument, there exists a subset D such that the acceptance probability of M on a positive instance (U) and
a negative instance (UD) are the same. Thus M is not a SBP machine.

The crux of the above idea is that when the samples are generated independently and nonadaptively, then
it is possible to argue that a SBP machine cannot distinguish between whether they came from the uniform
distribution or from a distribution with small support size. Now, we need to argue in the more general model,
where a probabilistic machine can do adaptive sampling and generate samples that could be correlated to
each other. A first approach to construct the sets An and Bn is to encode the uniform distribution in An
and the distribution UD in Bn. The set An can be defined as {〈i, j〉 | the ith bit of the jth string of Σn is 1}
(in the standard lexicographical ordering). To define Bn given D, first consider the multiset D that contains
2n/2 copies of each elements of D. Thus the cardinality of D is 2n. Now, the set Bn can be defined as tuples
〈`, j〉 where the `th bit of the jth string of D is 1. Consider the oracle circuit C which is defined as follows:

7

Definition 4 (Oracle Circuit). Let CO be a fixed linear-size oracle circuit, with n inputs and n outputs,
defined as follows: On input j ∈ {1 . . . 2n}, CO(j) outputs O(〈`, j〉) for all ` between 1 and n. In other words,
CO(j) outputs the jth string of O.

Notice that CAn is the uniform distribution and CBn is uniform on D and the goal of the probabilistic
machine is to distinguish between the distributions CAn and CBn . However, if we allow correlated sampling, a
probabilistic machine can easily distinguish CAn and CBn by computing CO(j) and CO(j+1) for appropriate
inputs j and j + 1 and comparing whether they are equal or not. To guard against such behavior, we apply
one more level of randomization - randomize the underlying order of the strings. Thus the tuple 〈`, j〉 will
encode the `th string in an order that is not necessarily the standard lexicographic order. We argue that
when we randomly order {0, 1}n, then adaptive and correlated sampling does not give significantly more
information than independently generated samples. Now, we proceed to give a formal proof.

Detailed proof: From now on, we fix a length n. We use a probabilistic argument to construct An and Bn. For
An we consider 2n! sets Yi and define An to be one of them (using a probabilistic argument), and similarly
for Bn we consider many sets NDi

and define Bn to be one of them.

Definition 5 (Oracle families). Let 1 ≤ i ≤ 2n! index the set of all 2n! permutations of {0, 1}n.
Oracles for Yes instances: Yi = {〈`, j〉: the `th bit of the jth string of the ith permutation of {0, 1}n is 1}.
Oracles for No instances: For each set D of size d = 2m (where m = n/2) let D be the multiset that contains
2n−m copies of each element of D. Thus |D| = 2n, and we define NDi

as: NDi
= {〈`, j〉: the `th bit of the

jth string of the ith permutation of D is 1}.

For the rest of this section, we will use Y to represent an arbitrary Yi oracle, N to represent an arbitrary
NDi oracle, and O to represent an arbitrary Yi or NDi . Note that for every i, CYi is the uniform distribution
and CNDi is the uniform distribution on D and thus has small support.

We first prove the following lemma and show later how to build on it to arrive at the conditions specified
in Lemma 3.

Lemma 4. If i is uniformly chosen from {1, . . . , 2n!} and D is uniformly chosen from all size 2m subsets of
{0, 1}n, then for any constant c > 1 and every probabilistic polynomial-time algorithm A, for large enough
n,

Pri,r[A
Yi accepts CYi]

Pri,r,D[ANDi accepts CNDi]
≤ c

where r is the random choice of A.

Without loss of generality we can assume that any oracle query that AO makes can be replaced by
evaluating the circuit CO, by modifying A in the following way: whenever A queries the oracle O for the ith

bit of the jth string, it evaluates CO(j) and it extracts the ith bit. We refer to this as a circuit query. Let k
be the number of circuit queries made by A, where k is bounded by a polynomial. We will use q1, . . . qk to
denote the circuit queries, and denote the output CO(qi) by ui. We can assume without loss of generality
that all qi are distinct. We use S to denote a typical tuple of answers 〈u1, · · · , uk〉. We will use AS to denote
the computation of algorithm A when the answers to the circuit queries are exactly S in that order. Notice
that the AS does not involve any oracle queries. Once A has received S, it can complete the computation
without any circuit queries. So, the output of AS is a random variable that depends only on the internal
randomness r of A.

Claim. Without loss of generality we can assume that along any random path, A rejects whenever any
ui = uj , i 6= j.

Proof. In a Yes instance, CY is uniform. Since C has n inputs and n outputs, CY is a 1-1 function. By
the earlier assumption, ui will never match any other uj . In a No instance, CN will have 2n−m inputs
for any output. Rejecting any time ui = uj will not affect Pr[A accepts a Yes instance], and it will re-
duce Pr[A accepts a No instance]. Thus the ratio of the probability of accepting an Yes instance and the
probability of accepting a No instance only increases. We will show that this higher ratio is < c.

8

We will use the following notation.

– “AO asks 〈q, i〉” is the event that “the ith circuit query made by A is CO(q).” For simplicity, we write
this event as “AO asks qi.”

– “AO gets 〈u, i〉” is the event that “CO(q) = u where q is the ith query”. Again, for simplicity, we write
this event as “AO gets ui.”

– For S = 〈u1, . . . uk〉, “AO gets S” is the event that “AO gets u1 and AO gets u2 and . . . AO gets uk (in
that order)”.

Lemma 5. For any probabilistic algorithm A and for any fixed S = 〈u1, . . . uk〉 where all ui are distinct,

Pr
i,r

[AYi gets S and accepts] = Pr
r

[AS accepts]
k−1∏
j=0

1

(2n − j)

Proof.

Pr
i,r

[AYi gets S and accepts] = Pr
i,r

[AYi gets S]× Pr
i,r

[AYi accepts |AYi gets S]

= Pr
i,r

[AYi gets S]× Pr
r

[AS accepts]

The last equality is because AS is independent of i as discussed before. We will show that Pri,r[A
Yi gets S] =∏k−1

j=0
1

(2n−j) which will prove the lemma.

Pr
i,r

[AYi gets S] =
k−1∏
j=0

Pr
i,r

[AYi gets uj+1|AYi gets 〈u1, u2, . . . , uj〉]

For any fixed j let Ej denote the event “AYi gets 〈u1, u2, . . . , uj〉”. Then,

Pr
i,r

[AYi gets uj+1|AYi gets 〈u1, u2, . . . , uj〉] = Pr
i,r

[AYi gets uj+1|Ej]

=
∑
qj+1

Pr
i,r

[AYi asks qj+1|Ej]× Pr
i,r

[CYi(qj+1) = uj+1|Ej]

=
∑
qj+1

Pr
i,r

[AYi asks qj+1|Ej]× Pr
i

[CYi(qj+1) = uj+1|Ej]

=
∑
qj+1

Pr
i,r

[AYi asks qj+1|Ej]×
1

(2n − j)

=
1

(2n − j)
×
∑
qj+1

Pr
i,r

[AYi asks qj+1|Ej]

=
1

(2n − j)

The third equality is because the output of C is independent of r and the fourth equality follows from
the fact that for a random permutation of {0, 1}n, once j elements are fixed, there are 2n − j equally likely
possibilities for uj+1. The lemma follows.

Lemma 6. For any algorithm A and any fixed S = 〈u1, . . . uk〉 where uis are distinct,

Pr
i,r,D

[ANDi gets S and accepts] = Pr
r

[AS accepts]×
k−1∏
j=0

(2m − j)2n−m

(2n − j)2

9

Proof. The argument is identical to the proof of Lemma 5 except for the probability calculations.

Pr
i,r,D

[ANDi gets S and accepts] = Pr
i,r,D

[ANDi gets S]× Pr
i,r,D

[ANDi accepts |ANDi gets S]

= Pr
i,r,D

[ANDi gets S]× Pr
r

[AS accepts]

The last equality is because AS is independent of i and D. We will show that Pri,r,D[ANDi gets S] =∏k−1
j=0

(2m−j)2n−m

(2n−j)2 which will prove the lemma.

Pr
i,r,D

[ANDi gets S] =
k−1∏
j=0

Pr
i,r

[ANDi gets uj+1|ANDi gets 〈u1, u2, . . . , uj〉]

We will reuse the notation Ej for convenience. For any fixed j, let Ej denote the event “ANDi gets 〈u1, u2, . . . , uj〉”
Then,

Pr
i,r,D

[ANDi gets uj+1|ANDi gets 〈u1, u2, . . . , uj〉] = Pr
i,r,D

[ANDi gets uj+1|Ej]

=
∑
qj+1

Pr
i,r,D

[ANDi asks qj+1|Ej]× Pr
i,r,D

[CNDi (qj+1) = uj+1|Ej]

=
∑
qj+1

Pr
i,r,D

[ANDi asks qj+1|Ej]× Pr
i,D

[CNDi (qj+1) = uj+1|Ej]

We will show that for any q, Pri,D[CYi(q) = uj+1|Ej] = (2m−j)2n−m

(2n−j)2 .

Pr
i,D

[CNDi (q) = uj+1|Ej] = Pr
i,D

[uj+1 ∈ D|Ej]× Pr
i,D

[CNDi (q) = uj+1|uj+1 ∈ D,Ej]

=

(
2n−j−1
2m−j−1

)(
2n−j
2m−j

) × 2n−m

2n − j

=
2m − j
2n − j

× 2n−m

2n − j

=
(2m − j)2n−m

(2n − j)2

The second equality is because of the following reasoning. There are
(
2n−j
2m−j

)
choices of D where u1 . . . uj

are included, and
(
2n−j−1
2m−j−1

)
that include uj+1 as well. Given that u1, . . . uj+1 ∈ D, the probability that

CNDi (qj+1) = uj+1 is 2n−m

2n−j (since there are 2n−m copies of uj+1 remaining, and 2n−j total things remaining).

We need the following claim.

Claim. For any polynomial k = k(n) and any constant c > 1, for large enough n,

k−1∏
j=0

2n − j
2n − 2n/2j

< c

10

Proof.

k−1∏
j=0

2n − j
2n − 2n/2j

≤
k−1∏
j=0

2n

2n − 2n/2j

=
k−1∏
j=0

2n/2

2n/2 − j

≤
(

2n/2

2n/2 − k

)k
=

(
1 +

k

2n/2 − k

)k
For any polynomial k = k(n), limn→∞(1 + k(n)

2n/2−k(n))
k(n) = 1. Hence the claim.

We can now prove Lemma 4.

Proof (Proof of Lemma 4).
From lemmas 5 and 6, we have

Pri,r[A
Yi accepts CYi]

Pri,r,D[ANDi accepts CNDi]
=

∑
S Pri,r[A

Yi gets S and accepts]∑
S Pri,r,D[ANDi gets S and accepts]

≤

∑
S distinct

Pri,r[A
Yi gets S and accepts]∑

S distinct

Pri,r,D[ANDi gets S and accepts]

=

∑
S distinct Prr[AS accepts]×

∏k−1
j=0

1
(2n−j)∑

S distinct Prr[AS accepts]×
∏k−1
j=0

(2m−j)2n−m

(2n−j)2
(by lemmas 5 and 6)

=

k−1∏
j=0

2n − j
2n − 2n/2j

(substituting m = n/2)

< c (by Claim 4.1)

The second equality follows because when the oracle is Yi, S is always disjoint (as we never ask the same
query twice) and when the oracle is NDi we assume that the algorithm rejects when S is not distinct.

(Completing the proof of Theorem 6): We will construct an oracle so that conditions of Lemma 3 are met.
By a probabilistic argument, there exists an i∗ and D∗ such that

Pr[AYi∗ accepts CYi∗]

Pr[A
ND∗

i∗ accepts C
ND∗

i∗
] < c

for every c > 1 (by Lemma 4). Now define An as Yi∗ and Bn as ND∗
i∗

. This looks very close to the conditions of
Lemma 3 except that we restricted the oracles to be An andBn, However, for Lemma 3, we require that oracles
are of the form (∪n−1i=1 Di ∪ An) and (∪n−1i=1 Di ∪ Bn). To establish this, we resort to the standard techniques
used in oracle constructions. Observe that the sets An and Bn can be constructed in double exponential
time. Let n1 = 2 and nj = 22

nj−1
. We will satisfy the conditions of Lemma 3 at lengths of the form nj . For

every i that is not of the form nj , we set both Ai and Bi to empty. Now M∪
nj−1
i=1 Di∪Anj (C

∪
nj−1
i=1 Di∪Anj

nj) can

be simulated using MAnj (CAnj). As for queries whose length does not equal c · nj , the machine can find
answers to oracle queries without actually making the query.

11

4.2 Oracle Separation of PZK from CoSBP

In this section we construct an oracle that separates PZK from CoSBP, thus proving Theorem 3. For this
we exhibit an oracle where the promise problem Disjoint-Or-Identical is not in SBP. This problem is
a generalization of graph non-isomorphism (GNI) problem, in the sense that GNI reduces to this problem.
Let G1 and G2 be two graphs, and let Ci be the distribution obtained by randomly picking a permutation
π and outputting π(Gi). Observe that if G1 and G2 are not isomorphic then the supports of C1 and C2

are disjoint, and if G1 is isomorphic to G2, then C1 = C2. Moreover the distributions C1 and C2 can be
sampled by polynomial-size circuits. The PZK protocol for graph isomorphism can be adapted to show that
Disjoint-Or-Identical is in CoPZK.

Theorem 7. Disjoint-Or-Identical is in CoPZK

Theorem 3 follows from the following theorem.

Theorem 8. There exists an oracle O relative to which Disjoint-or-Identical is not in SBPO

Input presentation: In the definition of Disjoint-Or-Identical, the input instances are tuples consisting
of two circuits. However, we will represent them as just one circuit C in the following manner. Given a circuit
C, let C0 denote the circuit obtained by fixing the first input bit of C to be 0, and the circuit C1 denote
the circuit obtained by fixing the first input bit of C to be 1. An input to Disjoint-Or-Identical will
be a circuit C and the goal is to distinguish between the cases “the support of distributions C0 and C1 are
disjoint” or “C0 and C1 are identical distributions”.

The proof structure of this result is similar to that of Theorem 6 and as in that case, the goal is to
construct a circuit family Cn and families of sets An and Bn that satisfy the conditions of Lemma 3.

Definition 6 (Oracle families). Let i ∈ {1 . . .
(

2n

2n−1

)
} index the partitions of {0, 1}n into two sets S0

i and
S1
i each of size 2n−1. Let j, k ∈ {1 . . . 2n−1!} index the possible permutations of S0

i and S1
i , respectively.

Oracles for Yes instances: Yijk is an oracle for the set {〈0, `,m〉 : the `th bit of the mth string in the jth

permutation of S0
i = 1} ∪ {〈1, `,m〉 : the `th bit of the mth string in the kth permutation of S1

i = 1}.
Oracles for No instances: We construct the No instances similarly, except both 0 and 1 cases query S0

i .
That is, Nijk is an oracle for the set {〈0, `,m〉 : the `th bit of the mth string in the jth permutation of
S0
i = 1} ∪ {〈1, `,m〉 : the `th bit of the mth string in the kth permutation of S0

i = 1}

An oracle of the above form will be denoted by O which is a disjoint union of sets denoted by O0 and
O1. Now we define the input circuits that sample the two distributions.

Definition 7 (Oracle circuits). Let CO be a fixed linear-size oracle circuit, with n+1 inputs and n outputs,
defined as follows: on input 〈0, j〉 where j ∈ {1 . . . 2n}, CO(j) outputs O0(〈`, j〉) for all ` between 1 and n,
and on input 〈1, j〉 where j ∈ {1 . . . 2n}, CO(j) outputs O1(〈`, j〉) for all ` between 1 and n. In other words,
CO(〈0, j〉) outputs the jth string of O0 and CO(〈1, j〉) outputs the jth string of O1.

We will establish the following lemma. Then the proof of Theorem 8 follows by arguments identical to
that of the previous oracle construction.

Lemma 7. If i, j, k are uniformly and independently chosen from {1 . . .
(

2n

2n−1

)
}, {1 . . . 2n−1!}, {1 . . . 2n−1!}

respectively, then for any probabilistic polynomial-time algorithm A, for any constant c > 1, for large enough
n,

Pri,j,k,r[A
Yijk accepts CYijk]

Pri,j,k,r[ANi,j,k accepts CNi,j,k]
≤ c

12

We use the same notation and make the most of same simplifications from the previous construction,
with the following differences. The first difference is: let h be the (polynomial) maximum number of queries
made by an algorithm A for any random choice of i, j, k, r. We will allow A to make 2h queries, two at a
time, with the restriction that one must begin with 0 and the other must begin with 1. Notationally, p1 . . . ph
are the queries that begin with 0 and ui is the result of query pi. q1 . . . qh are the queries that begin with
1 and vi is the result of query qi. S is the ordered multiset 〈u1, v1, . . . uh, vh〉. Notice that this is without
loss of generality as A can simulate the original algorithm by ignoring either qi or pi as appropriate. The
second difference is that, instead of assuming A rejects if any ui matches any uj , we assume A rejects if any
ui matches any vj .

Lemma 8. For any probabilistic algorithm A and for any fixed S = 〈u1, v1, . . . uh, vh〉 where all elements of
S are distinct,

Pr
i,j,k,r

[AYijk gets S and accepts] = Pr
r

[AS accepts]×
h−1∏
`=0

1

(2n − 2`)(2n − 2`− 1)

Proof. Note that

Pr
i,j,k,r

[AYijk gets S and accepts] = Pr
i,j,k,r

[AYijk gets S]× Pr
i,j,k,r

[AYijk accepts | AYijk gets S]

= Pr
i,j,k,r

[AYijk gets S]× Pr
r

[A
Yijk

S accepts]

Thus we need to prove that

Pr
i,j,k,r

[AYijk gets S] =
h−1∏
`=0

1

(2n − 2`)(2n − 2`− 1)

We use E` to denote the event AYijk gets 〈u1, v1, · · ·u`, v`〉. Note that

Pr
i,j,k,r

[AYijk gets S] =

h−1∏
`=0

Pr
i,j,k,r

[AYijk gets u`+1, v`+1 | E`]

and

Pr
i,j,k,r

[AYijk gets u`+1, v`+1 | E`] =
∑
p,q

Pr
i,j,k,r

[AYijk asks p`+1 and q`+1|E`]

× Pr
i,j,k,r

[CYijk(p) = u`+1 and CYijk(q) = v`+1 | AYijk asks p`+1 and q`+1, E`]

Pr[A gets u`+1, v`+1|A asks p`+1, q`+1|E`]
= Pr

i
[u`+1 ∈ S0

i , v`+1 ∈ S1
i |E`]

× Pr
j

[u`+1 is the pth`+1 element of S0
i |E`]

× Pr
k

[v`+1 is the qth`+1 element of Sh+1
i |E`]

=

(
2n − 2`− 2

2n−1 − `− 1

)/(
2n − 2`

2n−1 − `

)
1

2n−1 − `
1

2n−1 − `

=
1

(2n − 2`)(2n − 2`− 1)

13

Thus

Pr
i,j,k,r

[AYijk gets u`+1, v`+1 | E`] =
∑
p,q

Pr
i,j,k,r

[AYijk asks p`+1 and q`+1|E`]

× Pr
i,j,k,r

[CYijk(p) = u`+1 and CYijk(q) = v`+1 | AYijk asks p`+1 and q`+1, E`]

=
1

(2n − 2`)(2n − 2`− 1)

∑
p,q

Pr
i,j,k,r

[AYijk asks p`+1 and q`+1|E`]

=
1

(2n − 2`)(2n − 2`− 1)

Since Pri,j,k,r[A
Yijk gets S] =

∏h−1
`=0 Pri,j,k,r[A

Yijk gets u`+1, v`+1 | E`], using this with the above derived
equality we obtain that

Pr
i,j,k,r

[AYijk gets S] =
h−1∏
`=0

1

(2n − 2`)(2n − 2`− 1)

This completes the proof of the lemma.

Now we turn to the No instances.

Lemma 9. For any algorithm A, for any fixed S = {u1, v1, . . . uh, vh} that are all distinct,

Pr
i,j,k,r

[ANijk gets S and accepts] = Pr
r

[AS accepts]×
h−1∏
`=0

(2n − 2`)(2n − 2`− 1)

(2n−1 − 2`)(2n−1 − 2`− 1)

1

(2n−1 − `)2

Proof. As before,

Pr
i,j,k,r

[ANijk gets S and accepts] = Pr
i,j,k,r

[ANijk gets S]× Pr
i,j,k,r

[ANijk accepts | ANijk gets S]

= Pr
i,j,k,r

[ANijk gets S]× Pr
r

[A
Nijk

S accepts]

It suffices to show that

Pr
i,j,k,r

[ANijk gets S] =

h−1∏
`=0

(2n − 2`)(2n − 2`− 1)

(2n−1 − 2`)(2n−1 − 2`− 1)

1

(2n−1 − `)2

If E` denotes the event “ANijk gets 〈u1, v1, 〈, u`, v`〉”, then

Pr
i,j,k,r

[ANijk gets S] =
h−1∏
`=0

Pr
ijkr

[ANijk gets u`+1, v`+1 | E`]

Now,

Pr
ijkr

[ANijk gets u`+1, v`+1 | E`] =
∑
p,q

Pr
ijkr

[ANijk asks p`+1 and q`+1 | E`]

× Pr
ijkr

[CNijk(p) = u`+1 and CNijk(q) = v`+1 | E`, ANijk asks p`+1 and q`+1]

Consider the event “CNijk(p) = u`+1 and CNijk(q) = v`+1”, conditioned on E` and “ANijk asks p`+1 and
q`+1”. For this event to happen, it must be the case that both u`+1 and v`+1 are in S0

i , and u`+1 is the pth`+1

element of S0
i , and v`+1 is the qth`+1 element of S0

i . The probability that both u`+1 and v`+1 are in S0
i given

that E` and A asks p`+1 and q`+1 is(
2n − 2`− 2

2n−1 − 2`− 2

)/(
2n − 2`

2n−1 − 2`

)
=

(2n−1 − 2`)(2n−1 − 2`− 1)

(2n − 2`)(2n − 2`− 1)

14

The probability that u`+1 is the pst`+1 element given E` is 1/(2n−1 − `) and similarly, the probability that
v`+1 is the q`+1st element given E` is 1/(2n−1 − `). Thus

Pr
ijkr

[ANijk gets u`+1, v`+1 | E`] =
(2n−1 − 2`)(2n−1 − 2`− 1)

(2n − 2`)(2n − 2`− 1)

1

(2n−1 − `)2
∑
p,q

Pr
ijkr

[ANijk asks p`+1 and q`+1 | E`]

=
(2n−1 − 2`)(2n−1 − 2`− 1)

(2n − 2`)(2n−1 − 2`− 1)

1

(2n − `)2

Thus

Pr
i,j,k,r

[ANijk gets S] =
h−1∏
`=0

(2n−1 − 2`)(2n−1 − 2`− 1)

(2n − 2`)(2n − 2`− 1)

1

(2n−1 − `)2
,

and the lemma follows.

We need the following claim

Claim. For any polynomial h = h(n) and any constant c > 1, for large enough n,

h−1∏
`=0

(2n−1 − `)2

(2n−1 − 2`)(2n−1 − 2`− 1)
< c

Proof.

h−1∏
`=0

(2n−1 − `)2

(2n−1 − 2`)(2n−1 − 2`− 1)
≤
h−1∏
`=0

(2n−1 − `)2

(2n−1 − 2`− 1)2

≤
h−1∏
`=0

(
1 +

`+ 1

2n−1 − 2`− 1)

)2

For any polynomial h, the above expression tends to 1 for large enough n.

The rest of the proof of Lemma 7 and that of Theorem 8 is identical to the proofs of Lemma 4 and
Theorem 6.

5 Acknowledgements

We thank the reviewers for their comments and suggestions. In particular, we thank an anonymous reviewer
for pointing an alternate proof of Theorem 2 and making us aware of Aaronson’s work [1] and also for
pointing out Corollary 1.

References

1. Scott Aaronson. Impossibility of succinct quantum proofs for collision-freeness. Quantum Inf. Comput., 12(1-
2):21–28, 2012.

2. Scott Aaronson, Baris Aydinlioglu, Harry Buhrman, John M. Hitchcock, and Dieter van Melkebeek. A note on
exponential circuit lower bounds from derandomizing arthur-merlin games. Electronic Colloquium on Computa-
tional Complexity (ECCC), 17:174, 2010.

3. William Aiello and Johan Hastad. Statistical zero-knowledge languages can be recognized in two rounds. Journal
of Computer and System Sciences, 42(3):327 – 345, 1991.

15

4. Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge University Press,
2009.

5. Baris Aydinlioglu, Dan Gutfreund, John M. Hitchcock, and Akinori Kawachi. Derandomizing arthur-merlin
games and approximate counting implies exponential-size lower bounds. Computational Complexity, 20(2):329–
366, 2011.

6. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications (extended
abstract). In Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA, pages 103–112. ACM, 1988.

7. Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive zero-knowledge. SIAM
J. Comput., 20(6):1084–1118, 1991.

8. Elmar Böhler, Christian Glaßer, and Daniel Meister. Error-bounded probabilistic computations between MA and
AM. J. Comput. Syst. Sci., 72(6):1043–1076, 2006.

9. Ravi B. Boppana, Johan H̊astad, and Stathis Zachos. Does co-np have short interactive proofs? Inf. Process.
Lett., 25(2):127–132, 1987.

10. Adam Bouland, Lijie Chen, Dhiraj Holden, Justin Thaler, and Prashant Nalini Vasudevan. On the power of
statistical zero knowledge. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 708–719. IEEE Computer Society, 2017.

11. L. Fortnow. The complexity of perfect zero-knowledge. In Proceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing, STOC ’87, page 204–209, New York, NY, USA, 1987. Association for Computing
Machinery.

12. Rosario Gennaro, Daniele Micciancio, and Tal Rabin. An efficient non-interactive statistical zero-knowledge proof
system for quasi-safe prime products. In Li Gong and Michael K. Reiter, editors, CCS ’98, Proceedings of the 5th
ACM Conference on Computer and Communications Security, San Francisco, CA, USA, November 3-5, 1998,
pages 67–72. ACM, 1998.

13. Oded Goldreich and Shafi Goldwasser. On the limits of nonapproximability of lattice problems. J. Comput. Syst.
Sci., 60(3):540–563, 2000.

14. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity for all languages
in NP have zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.

15. Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. Electronic Colloquium on
Computational Complexity (ECCC), 7(20), 2000.

16. Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Can statistical zero knowledge be made non-interactive? or
on the relationship of SZK and NISZK. In Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture
Notes in Computer Science, pages 467–484. Springer, 1999.

17. S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive proof-systems. In Proceedings
of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC ’85, page 291–304, New York, NY,
USA, 1985. Association for Computing Machinery.

18. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1):186–208, 1989.

19. Greg Kuperberg. How hard is it to approximate the jones polynomial? Theory Comput., 11:183–219, 2015.
20. Shachar Lovett and Jiapeng Zhang. On the impossibility of entropy reversal, and its application to zero-knowledge

proofs. In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography - 15th International Conference,
TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I, volume 10677 of Lecture Notes in
Computer Science, pages 31–55. Springer, 2017.

21. Lior Malka. How to achieve perfect simulation and a complete problem for non-interactive perfect zero-knowledge.
J. Cryptology, 28(3):533–550, 2015.

22. Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. J. Comput. Syst. Sci., 60(1):47–
108, 2000.

23. Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-knowledge proofs for lattice problems.
In David A. Wagner, editor, Advances in Cryptology - CRYPTO 2008, 28th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, volume 5157 of Lecture Notes in Computer
Science, pages 536–553. Springer, 2008.

24. Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge. J. ACM, 50(2):196–249,
2003.

25. Thomas Watson. The complexity of estimating min-entropy. Computational Complexity, 25(1):153–175, 2016.

16

