
Measuring the Impact of Influence on Individuals:
Roadmap to Quantifying Attitude

Xiaoyun Fu
Department of Computer Science

Iowa State University
xfu@iastate.edu

Madhavan Padmanabhan
Department of Computer Science

Iowa State University
madhavrp@iastate.edu

Raj Gaurav Kumar
Department of Computer Science

Iowa State University
gaurav@iastate.edu

Samik Basu
Department of Computer Science

Iowa State University
sbasu@iastate.edu

Shawn Dorius
Department of Sociology
Iowa State University
sdorius@iastate.edu

A. Pavan
Department of Computer Science

Iowa State University
pavan@iastate.edu

Abstract—Influence diffusion has been central to the study
of the propagation of information in social networks, where
influence is typically modeled as a binary property of entities:
influenced or not influenced. We introduce the notion of attitude,
which, as described in social psychology, is the degree by which an
entity is influenced by the information. We present an information
diffusion model that quantifies the degree of influence, i.e.,
attitude of individuals, in a social network. With this model,
we formulate and study the attitude maximization problem. We
prove that the function for computing attitude is monotonic
and sub-modular, and the attitude maximization problem is NP-
Hard. We present a greedy algorithm for maximization with an
approximation guarantee of (1 − 1/e). Using the same model,
we also introduce the notion of “actionable” attitude with the
aim to study the scenarios where attaining individuals with
high attitude is objectively more important than maximizing the
attitude of the entire network. We show that the function for
computing actionable attitude, unlike that for computing attitude,
is non-submodular but is approximately submodular. We present
an approximation algorithm for maximizing actionable attitude
in a network. We experimentally evaluated our algorithms and
studied empirical properties of the attitude of nodes in the
network such as spatial and value distribution of high attitude
nodes.

I. INTRODUCTION

The proliferation of social networks and their influence in
modern society led to a large body of research in several
scientific domains that focus on utilizing and explaining the
significance of the impact of social networks. One of the key
problems investigated is to understand the diffusion of in-
formation/influence propagation in social networks. Diffusion
refers to the (probabilistic) behavior of the interaction between
the entities in the network describing when/how an entity is
influenced by the actions of its neighbors.

Seminal works of Domingos and Richardson, and Kempe
et al. proposed two popular models for information diffu-
sion/influence propagation—Independent Cascade and Linear
Threshold [8], [16]. In these models, a node of a network is

Fu and Padmanabhan are equal contributors. Research supported in part by
NSF grants 1849053, 1934884

said to be influenced if it receives the information originated
at the seed set. This concept of influence is binary: an entity is
either influenced or is not influenced. Real-world experience
shows that not all influenced individuals are the same. I.e,
some individuals are more strongly influenced by certain
information compared to others. Thus, the strength of influence
can vary from one individual to the other. This phenomenon
has been pointed out in social sciences literature.

Within social psychology, two related concepts, attitudes
and beliefs, are frequently studied to understand human behav-
ior. Beliefs, which represent people’s ideas about the way the
world is or should be, are commonly conceptualized as binary
in nature, present or absent [10]. Throughout their lives, people
acquire new beliefs, and sometimes, new beliefs replace old
beliefs. In this way, people tend to acquire a very large number
of beliefs over the life course. This notion of belief in social
psychology that is binary in nature can be considered similar
to the notion of “influence” in computational social network
analysis which is also binary in nature.

Attitudes, on the other hand, are “latent predispositions
to respond or behave in particular ways toward attitude ob-
jects” [9]. In contrast to beliefs, which are largely cognitive in
nature, attitudes, have a cognitive, affective, and a behavioral
component [27]. Being subjective in nature, attitudes can vary
in strength such that a person can hold a very strong attitude or
a weak attitude toward an object or concept, and thus attitude
quantifies the strength of belief [2], [10]. Individuals acquire
attitudes through experiences and exposure. In the case of
exposure, a body of research shows that repeated exposure
to an object/idea increases the likelihood that a person will
adopt a more favorable attitude toward it [31]. Thus attitude
being non-binary can be thought of as the strength of influence.
Motivated by these studies, we study the problem of arriving
at a mathematical model that captures the notion of attitude
resulting from information propagation in social networks.

Our first contribution is to define a mathematical model
for measuring attitude. Within social networks, people are
often subjected to repeated exposures to information such as



an anti-vaccine message, a pro-GMO message, or gun safety
messaging. It has been observed that when an individual is
exposed to a large number of, say, anti-vaccine messages,
this increases the probability that that person will adopt a
similar anti-vaccine attitude. Based on this, we postulate that
the strength of influence or attitude of an individual, toward
an object/concept, can be captured by the number of times
the individual receives the information from its neighbors.
In other words, if an already influenced individual is further
provided with the same/similar influencing information, then
the latter reinforces the learned belief of the individual, thus
shaping and increasing his/her attitude. We use the number of
reinforcements as a way to quantify the attitude.

Using this model, we define the attitude of an individual and
the total attitude of the network as functions from 2V to reals
(2V denotes the powerset of nodes V of the network). We de-
note the function that captures the total attitude of the network
with σAtt(.) We study the computational complexity of the
function σAtt and provide efficient algorithms to approximate
it. We prove that this function is #P-hard and that it is mono-
tone and submodular. We provide an (ε, δ)-approximation
algorithm for computing attitude with provable guarantees. We
then formulate the attitude maximization problem–find a seed
set S of size k that will result in maximum total attitude of the
network. We first prove that the attitude maximization problem
is NP-hard. Based on the monotonicity and submodularity
of attitude, we propose a greedy algorithm that achieves a
(1− 1/e) approximation guarantee.

We further introduce the concept of actionable attitude.
The introduction of this concept is motivated by the fact that
individuals with higher attitude (strongly influenced) are likely
to act according to the attitude. This is particularly important
in campaigns (such as political or gun-safety messaging),
where motivated and dedicated volunteers are necessary to
carry and spread the message (possibly beyond the social
network); and such volunteers are the ones who are strongly
influenced. Our second major contribution is the study of
the underlying computational problem related to actionable
attitude maximization. We prove that though the function
for computing actionable attitude is not submodular, it is
approximately submodular. Based on this we design efficient
approximation algorithms to maximize the actionable attitude
in a network.

II. RELATED WORK

Computational models of information diffusion in social
networks is introduced and formalized in the seminal works
of Domingos and Richardson [8] and Kempe, Kleinberg and
Tardos [16]. There are two widely-studied probabilistic dif-
fusion models: Independent Cascade (IC) model and Linear
Threshold (LT) model. Given a seed set S ⊆ V , Kempe et
al. [16] proved that the influence maximization problem is
NP-hard, and also proved that a greedy algorithm achieves a
(1− 1/e) approximation guarantee. The approximation guar-
antee of the greedy approach stems from the non-negativity,
monotonicity and submodularity of the influence function.

Since then several improvements have been proposed to make
the greedy algorithm more practical and scalable [4], [7], [12],
[15], [18], [25], [29], [30]. Several variants of the influence
maximization problem have been studied in the literature,
since the work of Kempe et al. such as topic-aware influence
maximization and targeted influence maximization [3], [5],
[13], [19], [20], [23], [26], [28].

Enhancements to the basic influence propagation model
have been proposed that take into account the opinions of
users [6], [12], [32]. Liu et al. [21], [22] introduced PageRank
based diffusion model, as a generalization of the basic IC
model. These models do not capture the notion of atti-
tude/strength of influence that we seek to formalize. Aggarwal
et al. [1] introduced a flow authority model to determine
assimilation of information in a network. This model differs
from the Independent Cascade and does not capture the notion
of attitude due to repeated activations. In [33], the authors
discussed the problem of maximizing cumulative influence in
a model where the same node can repeatedly activate his/her
neighbor within a given time interval. Such a model may lead
to divergence in the computation of objective function, and
hence, the computation is parameterized by a time interval
and thus differs from our model.

Remark. Due to space constraints we omit several proofs,
proof details and few experimental details. A complete version
of the paper along with the source code can be found at https:
//github.com/madhavanrp/QuantifyingAttitude and arXiv [11].

III. MODELING ATTITUDE

In this section, we provide a mathematical model and
definition to capture the notion of attitude.

DEFINITION 1. [Attitude-IC model (AIC)] The diffusion
proceeds in discrete rounds starting from some set of seed-
nodes S. Initially, every seed node starts with an attitude value
of 1, and all non-seed nodes have the attitude 0. At each step,
each newly influenced node u tries to send information to
each of its neighbor v as per the edge probability p(u, v). If u
succeeds, then v’s attitude is incremented by 1; and its status
is changed to influenced if it is not already influenced. When u
succeeds in sending information v, we say that the edge 〈u, v〉
is activated. The process terminates when no new nodes are
influenced in a step.
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Fig. 1. Attitude

Let {a} be the seed in Figure 1
and at step t = 0, its attitude is 1.
At t = 1, a activates b, c, and the
attitudes of a, b, c are 1. At t =
2, the newly activated nodes b, c
send information to their neigh-
bors. Node b succeeds and incre-
ments the attitude of nodes a, c.
Simultaneously, c succeeds and
increments the attitude of nodes

a, b. After t = 2, the attitudes of a, b, c are 3, 2, 2 respectively.
Since no new nodes are activated in this step, the diffusion
ends.

https://github.com/madhavanrp/QuantifyingAttitude
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In the standard independent cascade model each activated
node gets one chance to influence its un-influenced neighbors,
while in our model, each newly activated node tries to in-
fluence all its neighbors whether they are already influenced
or not. Thus, an activated node can receive information from
a newly activated in-neighbor. This captures the notion of
repeated exposure or reinforcement, which increases the re-
cipient’s attitude.

For any set S ⊆ V of nodes, we use the random variable
Attv(S) to denote the final attitude of node v when the seed
set is S. Let E[Attv(S)] denote the expectation of Attv(S).
We define AttIn(S) as

∑
v∈V Attv(S). The total expected

attitude of the network resulting from diffusion starting at
seed S is σAtt(S) = E[AttIn(S)]. By linearity of expectation,
σAtt(S) =

∑
v∈V E[Attv(S)].

By overloading notation, we often interpret G as a distri-
bution over unweighted directed graphs, each edge e = (u, v)
is realized independently with probability p(u, v). We write
g ∼ G to denote that an unweighted graph g is drawn from
this graph distribution G. Given a set of nodes S ⊆ V and a
graph g, we use

1) RSg to denote the set of nodes reachable from S in g.
2) ESg = {e = (u, v)|u, v ∈ RSg and e ∈ g} is the set of

activated edges in g due to diffusion from S. Let ESg,v
be the set of activated edges of the form 〈., v〉.

3) AttIng(S) to denote the attitude induced by S in graph
g and is equal to

∑
v∈V Attg,v(S), where Attg,v(S) is

the attitude of v in the graph g computed as the number
of activated incoming edges to v.

We found that σAtt(S) is determined by the expected
number of activated edges.

THEOREM 1. If g ∼ G then ∀S ⊆ V , σAtt(S) = |S| +∑
g∼G |ESg |×Pr(g ∼ G), and E[Attv(S)] =

∑
g∼G |ESg,v|×

Pr(g ∼ G).

THEOREM 2. Under the AIC model, σAtt(·) is a monotone,
non-decreasing, submodular function. Moreover both the func-
tions σAtt(·) and E[Attv(·)] are #P-hard.

From Theorem 2, it follows that computing σAtt(S) exactly
is computationally infeasible. We provide efficient approxi-
mation algorithms to estimate σAtt(S). Borgs et. al. [4] intro-
duced Reverse Influence Sampling (RIS), which has been used
to develop efficient Influence Maximization algorithms [14],
[25], [29], [30]. Base on this, we introduce a Reverse Attitude
Sampling (RAS) technique.

LEMMA 1. Let e = (x, y) be an arbitrary edge in G, R{x}
gT

be the set of nodes reachable from x in gT , where gT is
the transpose of un-weighted graph g drawn from random
distribution G. Then for any S ⊆ V , P [S activates e in g] =

P [S ∩R{x}
gT
6= ∅] · p(e)

The lemma follows because for the edge e to be activated x
must be influenced and x succeeds in propagating information
to y via the edge e. The latter happens with probability p(e),
and the probability of the former is Pr[S ∩R{x}

gT
6= ∅] [4].

Algorithm 1: Estimate σAtt(S)

Data: Graph G = (V,E), S ⊆ V
begin
R = Generate β RR Sets using Generate RR Set
X = |{RR ∈ R | S ∩ RR 6= ∅}|

return
|E| ·X
β

THEOREM 3. Given a graph G = (V,E), ∀S ⊆ V , and
∀v ∈ V , E(Attv(S)) = |InDegree(v)|×Pg∼G,e=(u,v)∈E [S∩
R
{u}
gT
| e ∈ g] and σAtt(S) = |S|+ |E| ×Pg∼G,e=(x,y)∈E [S ∩

R
{x}
gT
| e ∈ g]

Consider the transpose of G, GT = (V,ET ), where the
edge probabilities remain unchanged. We describe a procedure
to generate Random Reverse Reachable Sets (RR Sets):
Generate RR Set. Randomly pick an edge e = (v, u) ∈ ET .
With probability p(e), add the node u to RR. For any u
added to RR, for each edge (u,w) ∈ GT , add w to RR
with probability p(u,w). The process continues till no node
is added to RR.

LEMMA 2. σAtt(S) = |S|+ |E| × PRR∼R[S ∩RR 6= ∅]

Lemma 2 allows us to design Algorithm 1 to estimate
σAtt(S) within a relative error of ε with probability 1 − δ
when β ∈ θ( m

ε2σAtt(S)
· log( 1

δ )).

IV. ATTITUDE MAXIMIZATION PROBLEM

Having defined Attitude under the AIC-model, we describe
the problem to find a set of users, who can maximize the
attitude of the network.

PROBLEM 1. ATTITUDE MAXIMIZATION PROBLEM: Given
a graph G = (V,E), a number k, find S ⊆ V of size at most
k such that σAtt(S) is maximized.

THEOREM 4. Under the AIC model, the attitude maximization
problem, i.e., computing argmaxS⊆V,|S|≤k σAtt(S), is NP-hard.

We prove that influence maximization problem is different
from the attitude maximization problem.

THEOREM 5. An optimal solution to the influence maxi-
mization problem is not an optimal solution to the attitude
maximization problem.

Nemhauser et. al. [24] proved the greedy strategy to max-
imize a non-decreasing, monotone, and submodular function
outputs a (1 − 1/e)-approximate solution. Motivated by this,
we design a RAS-based (1−1/e)-approximation Algorithm 2
for the attitude maximization problem.

THEOREM 6. When β ∈ θ( |E|
ε2σAtt(S∗) (klogn · log(1/δ))),

Algorithm 2 outputs a seed set Sk such that σAtt(Sk) ≥
(1− 1

e
− ε)σAtt(S∗) with probability at least 1− δ.

V. ATTITUDE TO ACTIONABLE ATTITUDE

As nodes with high attitude are likely to act based on
their influence, in some scenarios it is desirable to spread
information that results in such highly influenced individuals.



Algorithm 2: (1− 1/e− ε)-approximate algorithm
Data: Graph G = (V,E), k
Result: Seed Set S
begin
R = Generate β RR Sets using Generate RR Set
Mark all the sets in R as uncovered
while |S| ≤ k do

Find v that covers maximum uncovered sets in R
Mark sets covered by v as covered
Add v to S

return S

Motivated by this, we introduce a notion actionable attitude
that attempts to increase the total attitude of nodes with “high
enough attitude”, as opposed to the total attitude of all nodes.

DEFINITION 2. [Actionable Attitude] Actionable Attitude
induced by a given seed set S is σAct(S) = σAtt(S)− σ(S).

PROBLEM 2. ACTIONABLE ATTITUDE MAXIMIZATION
PROBLEM: Given a graph G = (V,E) and k, find S ⊆ V
of size at most k such that σAct(S) is maximized.

THEOREM 7. Under the AIC model, σAct(.) is a monotone,
non-decreasing, non-submodular function function

Even though, σAct(·) is not submodular, very interestingly
we show this function is approximately submodular [17].

DEFINITION 3. A set function f is ∆-approximate submod-
ular if for every pair of sets S and T with S ⊆ T and every
x /∈ T , f(x|S) ≥ f(x|T )−∆.

THEOREM 8. Given a graph G = (V,E) let degG(v) denote
the outdegree of any v ∈ V . Then, ∀S ⊂ T ⊆ V and ∀v /∈ T ,
σAct(v|S) ≥ σAct(v|T )− Eg∼G[deg(v)].

This leads to following theorem.

THEOREM 9. The function σAct(·) is ∆-approximate submod-
ular, where ∆ is the expected max degree of the graph.

We design an efficient RR Sets-based algorithm. However,
since the function σAct(·) is the difference between attitude
and influence, Generate RR Set cannot be directly used for
actionable attitude maximization. We need a mechanism to
generate RR sets. Instead of randomly picking an edge in the
network, we generate a sufficient number of RR graphs for
each vertex v. Let FSg (v) be the number of edges from v that
reaches S ∈ gT , Rv be the set of RR graphs from v, and
TSg (v) be the number of edges to v that are reachable from
S ∈ g.

THEOREM 10. Given a graph G = (V,E), for any
S ⊆ V . σAct(S) =

∑
v∈V

∑
gT∈Rv P (g) × max{FSg (v) −

1, 0}, and σAct(u|S) is equal to
∑
v∈V

∑
gT∈Rv P (g) ·

[max{FS∪{u}g (v)− 1, 0} − max{FSg (v)− 1, 0}]

Using Theorem 10, we can design a scalable greedy algo-
rithm for the actionable attitude maximization problem that
outputs Sk as the seed. Let S∗ be the optimal solution to it.

THEOREM 11. There is an algorithm that will generate

O(|E|k/ε2 log n/δ) RR sets, and outputs a set Sk such that

Pr[σAct(Sk) ≥ (1− 1/e− ε)σAct(S∗)− (k − 1)∆] ≥ δ

VI. EXPERIMENTAL EVALUATION
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Fig. 2. Attitude results and time taken to maximize attitude.

We used datasets from the Stanford SNAP library. The size
of graphs range from 4000 to 1.1M nodes and 88000 to
3M edges. Algorithms are implemented in C++ and run on
Linux server with AMD Opteron 6320 CPU (8 cores and 2.8
GHz) and 128GB main memory.
Maximizing Attitude. The results are shown in Figure 2 (x-
axis represents the seed set size and the y-axis indicates the
attitude or time). The attitude results produced across a wide
range of graph sizes demonstrate the scalability of RAS-based
maximization. We computed the attitude maximization seed
set for budgets in the range [1, 2000]. As expected as seed set
size increases, the total attitude also increases. The time taken
to compute the seed set does not increase much as the seed set
size increases. For example, on DBLP (n = 317080,m =
1049866), the time taken is less than 20 seconds for budgets
ranging from 100 − 2000. This is due to the fact that as the
seed set size increases, the value of σ(S∗) would increase thus
resulting in smaller RR sets.
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Fig. 3. Varying probability with k = 100

Propagation Probability and Attitude. We consider differ-
ent edge probabilities such as 0.02, 0.05, 0.1 and 1/inDegree.
The overall attitude increases as the probability increases (See
Figure 3). Interestingly, the maximum attitude is observed
when the probability is 1/inDegree. This is explained by
considering the fact that for each node, it is expected that
one of its incoming edges is activated (if its neighbors are
activated). Therefore, the overall attitude is significantly higher
if 1/inDegree is greater than 0.1, on average. We also report
how time varies with probability. We observe that the time
taken is least when the edge probability is 1/inDegree and is
highest when the probability is 0.02. This is again explained
by observing that σAtt(S∗) inversely impacts the number of
RR sets required for estimating attitude.



Average Attitude. Next, we focus on the average attitude of
a node. There are two ways to look at this number. The first is
the ratio σAtt(S)/σ(S) which is the ratio of expected attitude
and expected number of influenced nodes. Another measure
for average attitude is to take the expectation of the following
ratio: Total Attitude/Number of nodes influenced. These two
quantities need not be equal, in general, as expectation of a
ratio is not the ratio of expectations. We computed the former
quantity by running the presented algorithms. We estimated
the latter quantity by running simulations (20000). The results
are shown in Table I. Interestingly both the quantities turn out

graph name σAtt(S)
σ(S)

E[ AttInf ] Average indegree

ego-Facebook 3.21 3.20 21.85
Epinions 3.30 3.32 6.71
NetHept 1.34 1.38 4.12
DBLP 1.23 1.23 3.31
Youtube 1.43 1.44 2.63

budget = 100 and edge probability = 0.1
TABLE I

AVERAGE ATTITUDE

be almost the same for all the graphs. Graphs with higher
average indegrees tend to achieve higher average attitudes.
For example, Epinions achieves a higher average attitude than
NetHept.
Maximizing Actionable Attitude. We fix the probability to
0.05. As expected, the Actionable Attitude does increase when
the seed set size is increased. We observe that the Actionable
Attitude grows in larger quantities for Facebook than for
the other graphs. This is due to the fact that Facebook is
denser, leading to a higher number of edges activated by
the seed set. We also study how the Attitude Maximizing
seed compares with the Actionable Attitude Maximizing seed.
Across various graphs, we note that the Actionable Attitude
Maximizing seed set activates fewer nodes when compared to
the Attitude Maximizing seed. For example, on DBLP with
k = 100, p = 0.05, Attitude maximization algorithm produces
Attitude of 2294 with influence 1930. In the same setting, the
actionable attitude maximization algorithm produces Attitude
of 870 with influence 376. We note two points. The objective
function σAct(.) is higher for the seed set produced by the
actionable attitude maximization compared to the seed set
produced by the attitude maximization problem. Very inter-
estingly, for the attitude maximization seed set the average
attitude is 2294/1930 which is 1.19 whereas the actionable
attitude maximization seed results in an average attitude of
870/376 which is 2.31. Recall that the notion of actionable
attitude attempts to maximize entities that are strongly influ-
enced and thus should result in higher average attitude and our
experiments on multiple networks (e.g., Facebook, NetHept,
Amazon, DBLP) concur with this intuition.
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