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Abstract. Socially assistive robots (SARs) are being utilized for delivering a va-

riety of healthcare services to patients. The design of these human-robot interac-

tions (HRIs) for healthcare applications have primarily focused on the interaction 

flow and verbal behaviors of a SAR. To date, there has been minimal focus on 

investigating how SAR nonverbal behaviors should be designed according to the 

context of the SAR’s communication goals during a HRI. In this paper, we pre-

sent a methodology to investigate nonverbal behavior during specific human-hu-

man healthcare interactions so that they can be applied to a SAR. We apply this 

methodology to study the context-dependent vocal nonverbal behaviors of ther-

apists during discrete trial training (DTT) therapies delivered to children with 

autism. We chose DTT because it is a therapy commonly being delivered by 

SARs and modeled after human-human interactions. Results from our study led 

to the following recommendations for the design of the vocal nonverbal behavior 

of SARs during a DTT therapy: 1) the consequential error correction should have 

a lower pitch and intensity than the discriminative stimulus but maintain a similar 

speaking rate; and 2) the consequential reinforcement should have a higher pitch 

and intensity than the discriminative stimulus but a slower speaking rate. 
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1 Introduction 

Socially assistive robots (SARs) have the potential to transform healthcare services pro-

vided to individuals and improve outcomes within a variety of healthcare settings. 

SARs have already been utilized in assisted living facilities [1], mental healthcare [2], 

and exercise programming [3]. In these settings, SARs successfully interacted with pa-

tients and improved their physical, mental, and emotional health. In general, current 

interventions utilizing SARs have focused on what content is delivered during an inter-

vention but not how an intervention should be delivered to a patient to be effective. 

During healthcare interactions both verbal and nonverbal behavior are necessary for 

effective as well as efficient communication and understanding to occur. For healthcare 

professional-patient interactions, verbal behaviors consist of the actual words spoken 

to patients and nonverbal behaviors include everything but the words that are spoken 

[4]. Examples of these nonverbal behaviors can include: gestures, facial expressions, 
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body pose, interpersonal distance, appearance, vocal cues (i.e., prosody), and time-

based cues (i.e., chronemics). Nonverbal communication strategies are important be-

cause they contribute positively to patient satisfaction, adherence, affect, and health 

outcomes during an intervention [5, 6]. 

The understanding of interactions with patients through nonverbal behavior is espe-

cially relevant in therapeutic fields such as Applied Behavior Analysis (ABA) [7]. This 

form of therapy is a widely used, evidence-based practice implemented for individuals 

with autism spectrum disorder (ASD). SARs are increasingly being combined with the 

principles of ABA to teach individuals with ASD social skills [8], imitation skills [9], 

and emotion recognition [10]. The verbal behaviors of these robot-mediated interven-

tions are modeled after human therapist facilitated interventions where individuals with 

ASD have been successful in the acquisition of the skills targeted by the interventions. 

However, it remains unclear how robot nonverbal behaviors should be characterized 

throughout an intervention. 

Our team’s long-term research goal is to integrate SARs in healthcare settings to 

support the delivery of healthcare services to patients. Our current research efforts have 

focused on developing SARs to deliver ABA therapy to children with ASD to address 

the growing prevalence of ASD as well as labor challenges in delivering ABA services 

[11, 12]. Namely, we have developed a robot-mediated intervention that closely repli-

cates existing ABA therapies and discrete trial training (DTT) teaching procedures im-

plemented by human therapists at ABA clinics for teaching children with ASD to inde-

pendently answer WH-questions [13]. The primary focus of our prior work was repli-

cating the interaction flow and verbal behaviors of the human therapists during these 

interventions.  

Our objective in this work is to study the context-dependent vocal nonverbal behav-

iors that ABA therapists exhibit when facilitating DTT therapy sessions with children 

with ASD. Specifically, we chose to investigate pitch, intensity and speaking rate of 

therapists because these are the vocal nonverbal behaviors that can be modeled with 

current state-of-the-art voice synthesizers [14]. We investigated the differences in ther-

apist vocal nonverbal behaviors during different contexts within a DTT intervention 

session. Our primary hypotheses were that therapists: 1) display similar pitch, intensity, 

and speaking rate during the delivery of a consequential error correction and discrimi-

native stimulus; and 2) display a higher pitch, higher intensity, and higher speaking rate 

during consequential reinforcement as compared to the delivery of a discriminative 

stimulus. This study will be important for informing the design of vocal nonverbal be-

haviors of SARs delivering ABA based interventions to individuals with ASD. Further-

more, this work serves as a model for studying context-dependent nonverbal behaviors 

during human-human interactions and utilizing these insights to design human-robot 

interactions (HRIs). 

2 Related Work 

Nonverbal behaviors have most commonly been studied within human-human interac-

tions. The fields that have analyzed nonverbal behaviors among humans have included 
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education [15], medicine [16], and therapeutic fields [17, 18]. The common trend 

amongst these studies has been the analysis of the overall nonverbal behavior of human 

participants during an entire human-human interaction. For example, in [16] the effect 

of a physician’s overall eye contact on elderly patient understanding and adherence 

after a routine doctor visit was investigated. Overall, it was shown that when doctors 

use eye contact in conjunction with verbal communication patients had higher under-

standing and adherence to medical interventions. 

In [17], the effect of music therapists’ overall affect, interpersonal distance, and eye 

contact on older adult Alzheimer patients’ affect and participation was investigated dur-

ing group therapies. Namely, a study was conducted to measure Alzheimer patient af-

fect and participation during group therapies under four therapist nonverbal behavior 

conditions: affect and interpersonal distance, affect alone, interpersonal distance alone, 

and no affect or interpersonal distance. Results indicated that the nonverbal behavior of 

therapists directly impacted the affect and participation of the older adult with Alz-

heimer’s.  

In [18], change in therapist nonverbal behavior was investigated during therapies 

with individuals with depression. Namely, therapist nonverbal behavior was coded at 

the beginning and end of therapy sessions with patients. After observing cognitive-

therapy sessions, reliable changes in nonverbal behavior by the patient and therapist 

were observed from the start of the session to the end of the session. However, the study 

did not investigate whether these nonverbal behavior changes were associated with 

changes in the context of a therapist’s communication goals during a therapy. 

Additionally, nonverbal behavior literature in social robotics has also focused on 

studying human-human interactions and using these studies to serve as a model for 

HRIs. These studies have investigated and modeled human gaze [19], speech-based 

gestures [20], and dyadic interaction based facial expressions [21] during social inter-

actions. Although recent research has been successful in modeling general nonverbal 

social behaviors during human-human interactions and applying these models to HRIs, 

there has been a lack of emphasis on investigating how the nonverbal behaviors of hu-

mans change as result of changes in their communication goals or contexts. Addition-

ally, research regarding nonverbal behaviors in HRI have primarily focused on investi-

gating motion-based cues.  

Current research investigating nonverbal behaviors in human-human interactions for 

robotics or other fields have all focused on general nonverbal behaviors or general de-

meanor of the doctor/therapist during human-human interactions. There has been a lack 

of research towards investigating how human nonverbal behaviors change within an 

interaction due to changing communication goals. The communication goal context is 

important to the correct application of nonverbal behaviors. When nonverbal behaviors 

are used in inappropriate situations or contexts it can lead to negative attitudes towards 

message delivery, poor message comprehension, and lack of trust [22, 23]. Hence, non-

verbal communication must be considered within the context in which it occurs because 

it guides a human’s nonverbal behavior encoding and a listener’s nonverbal behavior 

decoding [22]. A robot interacting with human users should be capable of applying the 

appropriate nonverbal behaviors in the correct communication goal contexts while con-

sidering the interaction partner’s behaviors to improve HRIs. 
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In this work, we aim to close this gap by investigating context-dependent vocal non-

verbal behaviors during human-human interactions. Specifically, we focus on how ther-

apists adapt their vocal nonverbal behaviors during the delivery of ABA therapies to 

children with ASD. This study is a necessary step to inform the design of vocal non-

verbal behaviors of SARs during robot-mediated ABA therapies for ASD. 

3 ABA DTT Therapy 

ABA therapy utilizes the principles of Behavior Analysis for individuals with ASD 

[24]. One such therapy is discrete trial training. Namely, discrete trial training structures 

a unit of instruction into three components: 1) discriminative stimulus, 2) behavior, and 

3) consequence. A discriminative stimulus is a social and/or environmental cue which 

signals a behavior to occur. Behavior is the response to the discriminative stimulus. 

Consequences are the events that occur after a behavior. Whether naturally occurring 

interactions or therapeutic interactions, the consequences determine whether an indi-

vidual will repeat the behavior or decrease the behavior from occurring again in the 

future. This analysis of behavior was transformed into a therapy which addresses be-

havior deficits and excess in children diagnosed with ASD [25]. Discrete trial therapy 

consists of therapists facilitating numerous discrete trials which address deficits such 

as imitation, visual performance, expressive and receptive language, and social inter-

actions. For example, if a patient is unable to identify common objects in their environ-

ment, a DTT program would include the selection of the most relevant common objects 

for that patient and teach each object to mastery. The ABA therapist would ask the child 

a question (Discriminative Stimulus) such as “What is this?”, the patient’s behavior 

would follow, and depending on whether the response was correct or incorrect a rein-

forcer or error correction would end the trial. This process of teaching is an evidenced-

based practice commonly used for individuals with ASD of all ages [26]. 

4 Model for Dyadic Social Interactions 

In this work, we developed a general model to investigate dyadic social interactions 

between two agents (e.g., human-human or human-robot), Figure 1. We define a dyadic 

social interaction by the setting, roles of the participants, and overall goal of an inter-

action. Within a dyadic social interaction, a participant can then have multiple commu-

nication subgoals. We utilize Shannon & Weaver’s model of communication [27] to 

define each of the communication subgoals during an interaction. Namely, communi-

cation is defined as a process where a speaker delivers a message to a listener. A speaker 

encodes a message according to his/her distinct communicative subgoal; these mes-

sages can be encoded as verbal and/or nonverbal behaviors. This model can then be 

used to identify and classify basic units of nonverbal behaviors to be analyzed during 

real-world dyadic social interactions. 

We applied this model to one-on-one DTT-based therapies delivered at an ABA au-

tism clinic to children diagnosed with ASD. In this dyadic social interaction, the setting 

is a therapy room at a clinic, the roles of the participants are a therapist and child with 
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ASD receiving treatment, and the overall goal of an interaction is to teach a skill (e.g., 

greeting, WH-questions). The set of unique communicative subgoals of a therapist dur-

ing ABA therapy are then the discriminative stimulus, consequential error correction, 

and consequential reinforcement. To achieve their communicative subgoals during an 

interaction, a therapist generates messages through verbal and nonverbal behaviors. 

Hence, the objective in this paper is to use this model to investigate how ABA therapist 

vocal nonverbal behaviors differ according to the different communicative subgoals 

(i.e., contexts) of a DTT therapy. 

 

 

Fig. 1. Model for dyadic social interactions using discrete trial training therapy as an example. 

5 Study Design 

Our study focused on investigating the differences in vocal nonverbal behaviors of hu-

man ABA therapists during DTT therapies. Our primary hypotheses are that therapists: 

1. Pitch, intensity, and speaking rate during the delivery of a consequential error 

correction will not be significantly different from the delivery of a discriminative 

stimulus  

2. Display a higher pitch, higher intensity, and higher speaking rate during con-

sequential reinforcement compared to the delivery of a discriminative stimulus  

Our hypotheses were formulated according to expert therapists’ expectations on their 

vocal nonverbal behavior during the therapies. Furthermore, we utilize the discrimina-

tive stimulus as the baseline for comparison because the discriminative stimulus sub-

goal is always used by a therapist to initiate a discrete trial with a patient. In order to 

evaluate these hypotheses, we conducted an analysis of vocal nonverbal behaviors uti-

lized by therapists during one-on-one therapies with children with ASD. 
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5.1 Participants 

A total of five ABA therapists from a university-based ABA clinic participated in this 

study delivering DTT therapies to children 2-9 years old with ASD. There was one 

female and four male children with ASD. The therapists ranged in age from 22-47 

(μ=29.6) and had a range of 1-5 (μ=2.2) years of experience delivering ABA-based 

treatment. All therapists were female and have previously interacted with the children 

for four months to a year prior to the study.  

5.2 Setting 

The one-on-one therapy sessions were held at a university-based ABA clinic where the 

children were already receiving ABA services and the therapists implemented DTT 

programs already included in the children’s on-going treatment program. The therapies 

targeted skills including: following one-step instructions, language acquisition, articu-

lation, visual performance (i.e., matching), and gross motor imitation. The one-on-one 

sessions were each held in a private carpeted room 8ft x 10ft in size. The rooms each 

had three child sized chairs, a table, and storage containers with various items (e.g., 

toys, food, electronics, books). Each room also had pre-existing video recording equip-

ment mounted 8ft high in the corner of the room. This video recording equipment was 

utilized to record the therapy sessions for our study. 

5.3 Procedure 

Informed consent from the therapists and children’s parental guardians was obtained 

prior to the start of the study. Video recordings of one-on-one DTT sessions between a 

therapist and a child with ASD were then obtained. For each therapist, we collected 

video recordings until we obtained five trials of a discriminative stimulus-consequential 

error correction pair and five trials of a discriminative stimulus-consequential reinforce-

ment pair. Since the video recordings were of real-world therapy sessions, the thera-

pists’ behaviors were dependent on the progress of the children receiving the therapies. 

Hence, more than five trials of discriminative stimulus-consequential error correction 

pairs were observed before obtaining five trials of discriminative stimulus-consequen-

tial reinforcement pairs. The converse also occurred. In either case only the first five 

trials of each pair were retained. 

5.4 Data Collection 

The video recorded sessions were segmented into the distinct communicative subgoals 

of the therapists during DTT sessions and prosodic data were collected for each of the 

distinct communicative subgoal segments. As discussed in Section 4, therapist distinct 

communicative subgoals during DTT sessions fall under three categories: discrimina-

tive stimulus, consequential error correction, and consequential reinforcement. These 

three categories were used to segment the video recordings of the sessions. Namely, the 

researchers reviewed the video recordings and categorized the therapist’s speech into 
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one of the three categories. Note that a communicative subgoal can be categorized 

based on a single word, a sentence, or multiple sentences spoken by a therapist. Data 

on the child’s behavior was not collected. Figure 2 illustrates a therapy session seg-

mented into distinct communicative subgoals.  

Once the videos were segmented into distinct communicative subgoals we collected 

three prosodic parameters from each of the segments: mean pitch, mean intensity, and 

speaking rate. We utilized Praat [28], an application designed for phonetics research, 

to measure the therapists mean pitch (Hz) and mean intensity (dB) during each of the 

segmented distinct communication subgoals during the therapy. Speaking rate was de-

fined as the number of syllables per a minute (SPM) spoken by the therapist. Namely, 

speaking rate was calculated by: 

 Speaking Rate = (S/T) (1) 

where S is the number of syllables in the therapist's speech during the distinct commu-

nication subgoal and T is the total amount of time the therapist took to communicate 

his/her speech.    

 

 

Fig. 2. An example of how a therapy session is segmented into distinct communicative subgoals. 

5.5 Data Analysis 

To test our hypotheses, we utilized multilevel models. Multilevel models are commonly 

utilized in speech research where repeated-measurement designs are used and multiple 

observations are nested within a participant [29]. Multilevel models account for the 

potential correlations between observations made within the same participant. In our 

study, a two-level multilevel model was used for each set of observations of the subgoal 

pairs (i.e., discriminative stimulus-consequential error correction and discriminative 

stimulus-consequential reinforcement) from the five participants. Namely, observations 

sampled from a participant are defined as the first level of the model and participants 

were defined as the second level. The treatment conditions were the two subgoals for 

each pair. The dependent variables were mean pitch, mean intensity, or speaking rate. 

We utilized IBM SPSS to run our statistical analyses. 
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6 Results 

In total, we collected twenty-five discriminative stimulus-consequential error correc-

tion pairs and twenty-five discriminative stimulus-consequential reinforcement pairs 

from the therapy sessions. For each of these pairs we collected the mean pitch, mean 

intensity, and speaking rate for each of the subgoals in the pair. A multilevel model was 

constructed for each prosodic parameter (i.e., pitch, intensity, speaking rate) for each 

subgoal pair. A total of six multilevel models were constructed. 

6.1 Discriminative Stimulus-Consequential Error Correction 

Pitch - The relationship between the communication subgoals during an error correc-

tion trial and therapist pitch demonstrated significant variance in intercepts across par-

ticipants, x2(1) = 12.72, p < 0.05. The slopes did not significantly vary across partici-

pants, x2(1) = 1.56, p > 0.05, and the slopes and intercepts did not significantly covary, 

x2(2) = 0.28, p > 0.05. Only including the variance in intercepts across participants 

improved the fit of the model and, therefore, the final model used to interpret therapist 

pitch only included variance in intercepts. 

From the final model, therapist pitch for the delivery of a consequential error cor-

rection was significantly different from the delivery of the discriminative stimulus, 

F(1,45) = 4.40, p < 0.05. This model suggests that therapist pitch is significantly lower 

during the delivery of a consequential error correction then discriminative stimulus, b 

= -23.88, t(45) = -2.10, p = 0.04. 

 

Intensity - The relationship between the communication subgoals and therapist inten-

sity demonstrated significant variance in both intercepts across participants, x2(1) = 

33.833, p < 0.05, and slopes across participants, x2(1) = 4.071, p < 0.05. However, the 

slopes and intercepts across participants did not significantly covary, x2(2) = 4.2476, p 

> 0.05. The final model only included the variance in intercepts and slopes across par-

ticipants. 

Therapist intensity for the delivery of a consequential error correction was not sig-

nificantly different from the delivery of the discriminative stimulus, F(1,4.97) = 5.35, 

p > 0.05. However, this model suggests that therapist intensity was lower during the 

delivery of a consequential error correction and this relationship was not significant, b 

= -4.70, t(4.97) = -2.31, p = 0.069. 

 

Speaking Rate - Similar to intensity, the relationship between the communication sub-

goal and therapist speaking rate demonstrated significant variance in intercepts across 

participants, x2(1) = 18.28, p < 0.05, and the slopes across participants,  x2(1) = 7.00, p 

< 0.05. The slopes and intercepts across participants did not significantly covary, x2(2) 

= 0.27, p > 0.05. The final model only included the variance in intercepts and slopes 

across participants. 

Therapist speaking rate for the delivery of a consequential error correction was not 

significantly different from the delivery of the discriminative stimulus, F(1,5.19) = 

1.29, p > 0.05. Although the model suggests that therapist speaking rate is higher during 
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the delivery of a consequential error correction than discriminative stimulus, it was not 

significant, b = 0.50, t(5.19) = 1.14, p = 0.305. 

6.2 Discriminative Stimulus-Consequential Reinforcement 

Pitch - The relationship between the communication subgoal and therapist pitch during 

a reinforcement trial demonstrated significant variance in intercepts across participants, 

x2(1) = 16.18, p < 0.05. However, the model including slopes across participants did 

not converge. The final model only included the variance in intercepts across partici-

pants. Such model simplification techniques are commonly used when multilevel mod-

els do not converge [30].  

Therapist pitch for the delivery of a consequential reinforcement was significantly 

different from the delivery of the discriminative stimulus, F(1,45) = 7.65, p < 0.05. This 

model suggests that therapist pitch is significantly higher during the delivery of a con-

sequential reinforcement than a discriminative stimulus, b = 36.09, t(45) = 2.77, p = 

0.008. 

 

Intensity - The relationship between the communication subgoal and therapist intensity 

demonstrated significant variance in intercepts across participants, x2(1) = 19.65, p < 

0.05. The slopes did not significantly vary across participants, x2(1) = 1.42, p > 0.05, 

and the slopes and intercepts across participants also did not significantly covary, x2(2) 

= 0.65, p > 0.05. The final model only included variance in intercepts across partici-

pants. 

Therapist intensity for the delivery of a consequential reinforcement was signifi-

cantly different from the delivery of the discriminative stimulus, F(1,45) = 8.69, p < 

0.05. This model suggests that therapist intensity was significantly higher during the 

delivery of a consequential reinforcement, b = 3.98, t(45) = 2.95, p = 0.005. 

 

Speaking Rate - Similar to pitch, the relationship between the communication subgoal 

and therapist speaking rate demonstrated significant variance in intercepts across par-

ticipants, x2(1) = 10.03, p < 0.05, but the model including slopes did not converge. The 

final model only contained variance in intercepts across participants. 

The therapist speaking rate for the delivery of a consequential reinforcement was 

significantly different from the delivery of the discriminative stimulus, F(1,45) = 24.65, 

p < 0.05. This model suggests that therapist speaking rate is slower during the delivery 

of a consequential reinforcement than a discriminative stimulus, b = -1.17, t(45) = -

4.97, p < 0.001. 

7 Discussion 

The results of our study only partially supported our hypotheses on the vocal nonverbal 

behaviors of therapists during the different communicative subgoals of a DTT-based 

therapy. As previously mentioned, our hypotheses were formulated according to the 
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experience of expert practitioners and these discrepancies are likely because interper-

sonal communication is an automatic process that humans find difficult to describe ex-

plicitly [31]. This highlights the importance of studying context-dependent nonverbal 

behaviors during real-world human-human interactions so that they can be appropri-

ately applied to the design of HRIs. 

Our first hypothesis was only partially supported by the results. As expected, thera-

pist speaking rate for the delivery of a consequential error correction was not signifi-

cantly different from the delivery of the discriminative stimulus. In contrast to our ex-

pectations, therapist pitch and intensity was lower for consequential error correction 

than discriminative stimulus, but intensity was not statistically significant. Pitch and 

intensity were likely lower because therapists attempt to provide constructive feedback 

in a non-judgmental tone to the child. It is recommended that reprimands during DTT 

are provided in a quiet tone of voice [7]. Adhering to guidance on the use of reprimand 

helps to reduce escape behaviors, student alienations, and damaging the child-therapist 

relationship. Furthermore, a lower intensity reduces the emphasis on the failure to re-

spond correctly. Focusing more noticeably on the positive behaviors and less on the 

incorrect behaviors helps to increase the positive behaviors and reduce the less desirable 

behaviors (i.e., differential reinforcement) [7].  

Similarly, our second hypothesis was also only partially supported by the results of 

the study. As we expected, therapist pitch and intensity were higher for the consequen-

tial reinforcement than discriminative stimulus. The primary purpose for higher pitch 

and intensity was to display excitement, positivity, and to draw more attention to the 

positive reinforcement. Studies have shown that higher pitch and higher intensity are 

perceived as excitement and positivity by children [45]. This is important because the 

effectiveness of praise increases when presented in a manner acceptable to the individ-

ual (e.g., enthusiastically) [7]. Furthermore, when implemented correctly reinforcement 

can promote a positive relationship between the therapist and child [44]. However, the 

results demonstrated that therapist speaking rate was slower for the consequential rein-

forcement than the discriminative stimulus, which contrasted with our first hypothesis. 

Upon further analysis, it was observed that a slower speaking rate was often exhibited 

to emphasize and exaggerate the reinforcement. Studies have shown that slower speak-

ing rates are used to emphasize communication points by a speaker [34]. Reinforcement 

is intended to draw attention to a correct behavior [7]. As such, when providing rein-

forcement therapists are likely to slow down their speaking rate to extend the verbal 

reinforcement to clearly show a positive reaction to the child.  

 

8 Conclusions 

The objective of this work was to study the vocal nonverbal behaviors of human thera-

pists during the delivery of discrete trial therapies so that we can apply them to robot-

mediated therapies. According to these findings, we make the following general rec-

ommendations for the design of the vocal nonverbal behaviors for a robot during robot-

mediated discrete trial training therapies: 
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1. The discriminative stimulus should be utilized as the baseline for the vocal 

nonverbal behavior of the robot.  

2. The consequential error correction should have a lower pitch and intensity 

than the discriminative stimulus but maintain a similar speaking rate.  

3. The consequential reinforcement should have a higher pitch and intensity than 

the discriminative stimulus but a slower speaking rate.  

As a next step, we plan to utilize these design recommendations to investigate whether 

robots modeling similar vocal nonverbal behaviors of human therapists will improve 

the efficiency and efficacy of discrete trial training therapies. 
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