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ABSTRACT

Halo models provide a simple and computationally inexpensive way to investigate the

connection between galaxies and their dark matter haloes. However, these models rely on

the assumption that the role of baryons can easily be parametrized in the modelling procedure.

We aim to examine the ability of halo occupation distribution (HOD) modelling to reproduce

the galaxy clustering found in two different hydrodynamic simulations, Illustris and EAGLE.

For each simulation, we measure several galaxy clustering statistics on two different luminosity

threshold samples. We then apply a simple five parameter HOD, which was fit to each

simulation separately, to the corresponding dark matter-only simulations, and measure the

same clustering statistics. We find that the halo mass function is shifted to lower masses in the

hydrodynamic simulations, resulting in a galaxy number density that is too high when an HOD

is applied to the dark matter-only simulation. However, the exact way in which baryons alter the

mass function is remarkably different in the two simulations. After applying a correction to the

halo mass function in each simulation, the HOD is able to accurately reproduce all clustering

statistics for the high luminosity sample of galaxies. For the low luminosity sample, we find

evidence that in addition to correcting the halo mass function, including spatial, velocity,

and assembly bias parameters in the HOD is necessary to accurately reproduce clustering

statistics.

Key words: galaxies: groups: general – galaxies: haloes – galaxies: statistics – dark matter –

large-scale structure of Universe.

1 IN T RO D U C T I O N

Studying the connection between galaxies and the dark matter

haloes in which they reside is one of the keys to understanding

galaxy formation and evolution, as well as constraining cosmo-

logical models. In recent years, using hydrodynamic simulations

has become a popular method for investigating this connection

(e.g. Vogelsberger et al. 2014b). However, these simulations are

computationally expensive, and are thus ill-suited for exploring a

large parameter space. Moreover, different hydrodynamic simula-

tions produce different results; we currently lack a consensus on the

correct gas physics prescriptions to use.

By contrast, dark matter-only (DMO) simulations are much less

computationally expensive, and although the only physics involved

is gravity, they still allow us to predict the large-scale distribution

of dark matter as well as the statistical properties of dark matter

haloes in the Universe. One can then adopt an empirical rather

than an ab-initio approach and employ a halo model in order to

connect galaxies to the dark matter distribution. Halo models are a

� E-mail: gbeltzmo@wellesley.edu

broad class of models based on the assumption that galaxies form

and live inside dark matter haloes. With a few free parameters that

can be fit to clustering observations, one can connect galaxies to

haloes, thus quantitatively modelling galaxy clustering on small

scales while bypassing the need for a complete understanding of

galaxy formation physics.

The earliest halo models to describe galaxy clustering were

the analytic models of Neyman & Scott (1952), Peebles (1974),

and McClelland & Silk (1977). Later, Kauffmann, Nusser &

Steinmetz (1997), Kauffmann et al. (1999), and Baugh et al.

(1999) showed that semi-analytic models could be used to predict

galaxy clustering by combining the results from N-body simula-

tions with theories for the formation and evolution of galaxies

within haloes. Soon thereafter, Jing, Mo & Börner (1998) and

Benson et al. (2000) found that galaxy clustering merely de-

pends on halo occupation statistics as a function of halo mass,

potentially sidestepping the need to model galaxy formation al-

together. Subsequently, several papers (e.g. Ma & Fry 2000;

Peacock & Smith 2000; Seljak 2000; Scoccimarro et al. 2001;

Sheth et al. 2001; White, Hernquist & Springel 2001; Cooray &

Sheth 2002) expanded on the work of Scherrer & Bertschinger

(1991) to combine both halo properties and occupation statistics
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to successfully predict the galaxy correlation function and power

spectrum.

A key ingredient of the halo model is the halo occupation

distribution (HOD), which defines the bias of a population of

galaxies by the conditional probability that a dark matter halo of

virial mass M contains N galaxies, together with prescriptions that

specify the relative spatial and velocity distributions of galaxies and

dark matter within haloes (Berlind & Weinberg 2002; Berlind et al.

2003). These relations can be parametrized with various degrees of

freedom. However, most studies have used simple formulations of

the HOD, with at most five free parameters that specify the mean

occupation number of galaxies, along with the assumptions that

galaxies trace dark matter inside haloes. This type of HOD model,

as proposed by Zheng et al. (2005), has become the ‘standard’ in

halo modelling studies.

Halo models have been used to model galaxy clustering in

many galaxy redshift surveys, including the Sloan Digital Sky

Survey (SDSS; York et al. 2000), the 2dF Galaxy Redshift Survey

(2dFGRS; Colless et al. 2001), the 6dF Galaxy Redshift Survey

(6dfGRS; Jones et al. 2004), and the SDSS III Baryon Oscillation

Spectroscopic Survey (BOSS; Dawson et al. 2013). Many studies

have used halo models to investigate the two-point correlation

function of both low redshift galaxies (e.g. Magliocchetti & Porciani

2003; Zehavi et al. 2004; Collister & Lahav 2005; Tinker et al.

2005; Zehavi et al. 2005, 2011; Watson et al. 2012; Beutler et al.

2013; Piscionere et al. 2015) as well as high redshift galaxies (e.g.

Bullock, Wechsler & Somerville 2002; Moustakas & Somerville

2002; Hamana et al. 2004; Zheng 2004; Lee et al. 2006; Tinker,

Wechsler & Zheng 2010; Jose et al. 2013; Kim et al. 2014) (as cited

in Sinha et al. 2018).

Some previous works (e.g. Zehavi et al. 2011) have found

statistical tension between predictions of the halo model and the

real Universe when fitting to galaxy clustering measurements in

the SDSS. However, these works rely on analytic halo models that

do not adequately control for systematic errors in the modelling

procedure, making it difficult to interpret the goodness-of-fit results.

Recently, Sinha et al. (2018) used a ‘fully numerical mock-based

methodology’ to test the standard �CDM+halo model against

the clustering of SDSS DR7 galaxies. Their procedure carefully

controlled for systematic errors, allowing them to interpret the

goodness of fit of their model. They measured the projected cor-

relation function, group multiplicity function, and galaxy number

density, and found that while the model could successfully fit each

statistic separately, it was unable to fit them simultaneously. Their

best-fitting model was able to reproduce the clustering of low

luminosity galaxies, but revealed a 2.3σ tension with the clustering

of high luminosity galaxies, indicating a possible problem with the

‘standard’ HOD model.

There are several assumptions built into the standard HOD model

that could be incorrect. First, the HOD framework relies on the

assumption that cosmology and gravity alone govern the dark matter

halo distribution. However, it has been shown that gas physics can

also affect the properties of haloes (e.g. Cui et al. 2012; Bocquet et al.

2016). Secondly, the HOD typically assumes that the occupation

of galaxies is solely based on halo mass, and does not depend

on secondary halo properties like halo concentration or age. This

ignores the possibility that galaxy clustering may be affected by

the phenomenon known as assembly bias (Gao, Springel & White

2005; Wechsler et al. 2006; Croton, Gao & White 2007; Padilla et al.

2019; Salcedo et al. 2018; Xu & Zheng 2018; Zehavi et al. 2018;

Contreras et al. 2019). Finally, most HOD modelling assumes that

galaxy positions and velocities within haloes trace the underlying

distribution of dark matter.

Zentner, Hearin & van den Bosch (2014) examined the extent

to which the presence of assembly bias could lead to systematic

errors in halo occupation statistics inferred from galaxy clustering.

The authors constructed two sets of realistic mock galaxy catalogues

with identical HODs: one with assembly bias and one with assembly

bias removed. They then fit standard HODs to the galaxy clustering

in each catalogue, and found that in the case where assembly

bias was removed, the inferred HODs agreed with the true HODs,

but when assembly bias was included, the inferred HODs showed

significant systematic errors.

Hearin et al. (2016) introduced a new class of HOD models,

known as ‘decorated HODs’, designed to incorporate parameters

for assembly bias in HOD models. The authors used these new

models to characterize the impact of assembly bias on clustering

statistics, and found that for SDSS-like samples, assembly bias can

affect galaxy clustering by up to a factor of 2 on 200 kpc scales. They

also found that on small scales (r < 1 Mpc) assembly bias generally

enhances clustering, but on large scales it can either increase or

decrease clustering. Vakili & Hahn (2019) and Zentner et al. (2019)

applied this decorated HOD model to galaxies in the SDSS DR7

and found evidence of galaxy assembly bias for some luminosity

samples.

Regarding the spatial distribution of galaxies within haloes, the

HOD often uses random dark matter particles to assign positions and

velocities to galaxies, or otherwise assumes a dark matter density

profile for galaxies (e.g. Navarro, Frenk & White 1997, NFW).

This does not account for the possibility that galaxies might not

move like dark matter due to phenomena such as mergers, tidal

stripping, and dynamical friction, leading to effects like spatial

and velocity bias. Both Watson et al. (2012) and Piscionere et al.

(2015) used halo models to predict the very small-scale clustering of

galaxies in the SDSS, and found that more luminous galaxies do not

trace underlying dark matter distributions of their haloes, indicating

the presence of spatial bias. Guo et al. (2015a) looked at galaxy

clustering in SDSS DR11 and found observational evidence for

central velocity bias (i.e. that central galaxies on average are not at

rest with respect to their host haloes) as well as satellite velocity bias

(i.e. in this case, that luminous satellite galaxies move more slowly

than the dark matter). In a subsequent paper, Guo et al. (2015b)

modelled the projected and redshift-space two-point correlation

functions of galaxies in SDSS DR7, and similarly found that

luminous central galaxies and faint satellite galaxies exhibit velocity

bias. Furthermore, they found that their measurements could be

successfully interpreted within an extended HOD framework that

includes central and satellite velocity bias parameters to describe

the motions of galaxies within haloes.

Pujol & Gaztañaga (2014) investigated how well an HOD model

could reproduce the two-point clustering of galaxies in several semi-

analytic models, and found that the HOD failed to reconstruct the

galaxy bias for low-mass haloes, indicating the presence of assem-

bly bias. They also found that clustering shows some dependence on

the substructure of the host halo. Subsequently, Pujol et al. (2017)

further compared the HOD model to semi-analytic models, and

found that using local density rather than halo mass in the HOD

model was a better predictor of galaxy bias.

In this paper we use hydrodynamic simulations of galaxy

formation to investigate the extent to which all these built-in

assumptions to the standard HOD model can affect galaxy clustering

statistics. Although previous works (e.g. Artale et al. 2018; Bose
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Testing HOD 5773

Table 1. Simulation parameters. The columns show (from left to right): simulation name, box size, number of dark matter particles,

dark matter particle mass (for the hydrodynamical run), redshift used, and cosmological parameters. The dark matter particle mass for

Illustris-2-Dark is 4.2 × 107 (h−1 M�), and for EAGLE Dark it is 7.5 × 106 (h−1 M�).

Simulation Lbox (h−1Mpc) NDM mDM (h−1 M�) z h �m �� �b σ 8 ns

Illustris-2 75 9103 3.5 × 107 0.13 0.704 0.2726 0.7274 0.0456 0.809 0.963

EAGLE 67.77 15043 6.6 × 106 0.101 0.6777 0.307 0.693 0.04825 0.8288 0.9611

et al. 2019) have used hydrodynamic simulations to investigate

variations in halo occupancy with environment, concentration, and

formation time, none have looked at the impact of the assumptions

of the HOD on galaxy clustering statistics compared to clustering

in hydrodynamic simulations. Additionally, previous works have

not looked at a wide variety of clustering statistics, nor have

they compared bias effects across multiple different hydrodynamic

simulations.

In this work, we focus on two different hydrodynamic simu-

lations, as well as two different luminosity threshold samples of

galaxies. We measure several different galaxy clustering statistics

on each of our samples. We then fit a five parameter HOD

model to each simulation and sample, and apply these models to

the corresponding DMO simulations. We then measure the same

galaxy clustering statistics on our HOD galaxies as we did on our

hydrodynamic galaxies. We examine the accuracy with which we

can predict galaxy clustering using our HOD modelling framework,

as compared to the full hydrodynamic simulations. Finally, we

investigate how we might expand the HOD model to include effects

like assembly, spatial, and velocity bias in order to increase the

accuracy of the model. We note that our analysis strictly compares

HOD modelling to hydrodynamic simulations and not to real galaxy

surveys. Therefore, conclusions should not be drawn about the

accuracy of the clustering produced either by the simulations or

the HOD models as compared to real observations. However, the

conclusions that we draw about the need to add freedom to HOD

models are still valid.

We discuss our simulations in Section 2, and our halo model in

Section 3. In Section 4 we discuss our clustering statistics, and in

Section 5 we discuss the accuracy of our model. In Section 6 we

discuss our halo populations, and in Section 7 we discuss possible

extensions to our HOD model. Finally, in Section 8 we summarize

our results and conclusions.

2 SI M U L AT I O N S

We use two cosmological N-body simulations for our analysis:

Illustris n et al. (Genel et al. 2014; Vogelsberger et al. 2014a,b;

Nelson et al. 2015) and EAGLE (Springel 2005; Crain et al. 2015;

Schaye et al. 2015; McAlpine et al. 2016; The EAGLE team 2017).

The Illustris-2 simulation has a volume of 753(h−3Mpc3) and a dark

matter particle mass of 3.5 × 107 (h−1 M�). The EAGLE simulation

(RefL100N1504) has a volume of 67.773 (h−3Mpc3) and a dark

matter particle mass of 6.6 × 106 (h−1 M�). A summary of the

simulation parameters can be found in Table 1.

Each of these hydrodynamic simulations has a corresponding

DMO counterpart, derived from the same cosmology and initial

conditions. These two simulations are ideal for our analysis because

they have high enough resolutions for the galaxies we are interested

in, as well as large enough volumes to accurately measure clustering

statistics out to 10 h−1Mpc scales. We specifically choose to use

Illustris-2 because the resolution of Illustris-3 is not quite high

enough for our purposes, but the resolution of Illustris-1 is not

necessary for the halo mass range that we are interested in. This

is because in this work, the smallest haloes that we will ever

populate with galaxies using our HOD model are on the order of

1011 (h−1 M�). In Illustris-2-Dark, a halo of this size has about 2400

particles, so it is well-resolved. Additionally, such a small halo will

only ever be assigned a central galaxy (if it is assigned a galaxy at

all), and thus the only halo properties that we need to know are the

position and velocity of the halo, which should be well-established

with 2400 particles.

The Illustris simulation was performed with the moving-mesh

code AREPO, while the EAGLE simulation was performed with the

GADGET-3 tree-SPH code, a modified version of the public GADGET-

2 simulation code. Both simulations employ models for star

formation, stellar evolution, gas cooling and heating, supernovae

feedback, black hole formation, and AGN feedback. According to

Scannapieco et al. (2012), while GADGET-3 and AREPO share the

same subgrid physics, their different numerical hydrodynamical

techniques can lead to large discrepancies in their galaxies. In their

tests, GADGET-3 formed only about half as many stars as AREPO, and

AREPO has a much higher gas and stellar mass fraction than GADGET-

3. The benefit of using two simulations with different physics for our

analysis is that we can compare our results from the two different

simulations, providing us with some theoretical uncertainty on our

results.

We are interested in two different samples of galaxies: a ‘high’

luminosity sample, similar to that of the volume-limited SDSS DR7

(Abazajian et al. 2009) Mr < −21 sample, and a ‘low’ luminosity

sample, similar to that of the SDSS DR7 Mr < −19 sample. (We

will refer to these samples as M−21
r and M−19

r henceforth.) We

choose to use the z = 0.13 snapshot of the Illustris simulation

because it is the closest available redshift to the median redshift of

the SDSS M−21
r sample (zmed = 0.132). We choose the z = 0.101

snapshot of the EAGLE simulation because it is also the closest

available redshift to that of the SDSS DR7 M−21
r sample. The M−19

r

luminosity threshold sample has a median redshift of 0.054. For

the EAGLE simulation, the closest available redshift is still the z =
0.101 snapshot. Therefore, because the snapshot does not change

for our analysis on the EAGLE simulation, we likewise chose not

to change the snapshot for the Illustris simulation. However, there

is little evolution between z = 0.13 and z = 0.054, and we do not

compare our clustering statistics to those measured on SDSS data,

so our choice of snapshot should not impact our results.

To create our galaxy samples, for each simulation we find

the luminosity threshold that results in a galaxy number density

equivalent to that of the SDSS data sets of interest (either M−21
r or

M−19
r ). The luminosity threshold for each simulation and sample

is given in Table 2. We note that the luminosity thresholds are not

exactly −21 or −19, which indicates that the luminosity functions

in Illustris and EAGLE are not the same as that in the SDSS,

nor are they the same as each other. (This discrepancy emphasizes

the lack of consensus among hydrodynamic simulations, and thus

the advantage of using HOD modelling with plenty of freedom to

model galaxy clustering in the real Universe.) Thus, if we create our

MNRAS 491, 5771–5788 (2020)
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Table 2. HOD parameters for each sample. The columns show (from left to right): the simulation name, the absolute magnitude

limit for the SDSS sample whose number density we are matching, the absolute magnitude limit used in the case of the given

simulation, the galaxy number density, the five best-fitting HOD parameters for that sample, and the corresponding reduced

chi-square value.

Simulation Mr(SDSS) M lim
r ng (h3Mpc−3) logMmin σ logM logM0 logM1 α χ2/dof

Illustris −21 −22.840 0.0012 12.681 0.532 12.296 13.635 0.994 0.908

Illustris −19 −20.354 0.0149 11.500 0.180 11.659 12.590 0.979 8.560

EAGLE −21 −21.852 0.0012 12.767 0.504 12.467 13.799 1.000 1.498

EAGLE −19 −19.695 0.0149 11.555 0.237 11.717 12.566 0.938 3.635

samples based on luminosity, our number density will be different

than that of the SDSS samples. Therefore, we choose to use a

different luminosity threshold to do an accurate number density

comparison. We will still refer to the samples as the M−21
r and

M−19
r samples.

After setting the luminosity threshold, we then determine the

number of remaining galaxies in each halo, and average in bins

of halo mass. For the M−21
r samples we use 14 evenly spaced

logarithmic bins between 11.9 and 14.52. For the M−19
r samples

we use 20 evenly spaced logarithmic bins between 11.0 and 14.52.

Our HODs for each galaxy sample are shown in Fig. 1. The Illustris

samples are plotted in red, and the EAGLE samples are plotted

in blue.

3 H A L O O C C U PAT I O N M O D E L L I N G

3.1 The halo occupation distribution

The HOD framework governs the number, positions, and velocities

of galaxies within a dark matter halo based on a few free parameters,

which depend only on the mass of the halo. The version of the

HOD that we utilize in this work is the five parameter ‘vanilla’

HOD model of Zheng, Coil & Zehavi (2007) (as cited in Sinha

et al. 2018). Within their haloes, galaxies are split into centrals and

satellites (Kravtsov et al. 2004; Zheng et al. 2005).

The mean number of central galaxies in a halo of mass M is

described by1

〈Ncen〉 =
1

2

[

1 + erf

(

logM − logMmin

σlogM

)]

, (1)

where Mmin is the mass at which half of haloes host a central galaxy,

σ logM is the scatter around this halo mass, and erf(x) is the error

function, erf(x) = 2√
π

∫ x

0
exp(−y2)dy. The central galaxy is always

placed at the centre of the halo, and given the mean velocity of the

halo (i.e. we assume that the central galaxy is at rest with respect to

the halo).

We determine the number of satellite galaxies to place in each

halo by drawing from a Poisson distribution with a mean given by

〈Nsat〉 = 〈Ncen〉 ×
(

M − M0

M1

)α

, (2)

where M0 is the halo mass below which there are no satellite

galaxies, M1 is the mass where haloes contain on average one

satellite galaxy, and α is the slope of the power-law occupation

function at high masses. Each satellite galaxy is assigned the

position and velocity of a randomly chosen dark matter particle

1Throughout this paper, log refers to log10.

within the halo, i.e. we assume that satellite galaxies trace the spatial

and velocity distribution of dark matter within the halo.

In summary, our HOD model contains five free parameters that

control the number of galaxies in each halo as a function of halo

mass. Our model assumes that all galaxies live inside dark matter

haloes, and that the number of galaxies in a halo depends only on

the mass of the halo and not on any other halo properties, such

as age or concentration (i.e. there is no galaxy assembly bias).

However, recent work (e.g. Zentner et al. 2014; Vakili & Hahn 2019;

Zentner et al. 2019) indicates that galaxy assembly bias is probably

present in luminosity threshold samples, so this assumption is likely

incorrect.

Additionally, our model assumes that the number of satellite

galaxies in each halo is governed by a Poisson distribution. How-

ever, results from simulations indicates that the scatter in the number

of satellite galaxies at fixed halo mass is probably non-Poissonian

(Boylan-Kolchin et al. 2010; Mao, Williamson & Wechsler 2015).

In fact, Jiménez et al. (2019) found that the HOD was best able to

reproduce the spatial distribution of galaxies in a semi-analytical

model when they used a negative binomial distribution to govern

the number of satellite galaxies in a halo.

Finally, our model assumes that the central galaxy in each halo

lives at the centre of the halo and moves with the mean velocity of

the halo (i.e. there is no central spatial or velocity bias), and that

the satellite galaxies in each halo follow the spatial and velocity

distribution of dark matter within the halo (i.e. there is no satellite

spatial or velocity bias). However, observations suggest that both

central and satellite galaxies probably do exhibit spatial bias (e.g.

Watson et al. 2012; Piscionere et al. 2015) as well as velocity bias

(e.g. Van den Bosch et al. 2005; Guo et al. 2015a,b).

While we do use this standard ‘vanilla’ HOD in our initial

analysis, we will discuss variations and extensions of this model

in Section 7.

3.2 Fitting the HOD

Next, we need to determine the five parameters that best describe

the HOD in each simulation and sample. We do this in the following

way. We start with an initial guess for each parameter. Using this

fiducial HOD model, we assign a number of central and satellite

galaxies to the haloes in the hydrodynamic run of the simulation.

(The halo mass that we use for this is the total FoF group mass,

i.e. including dark matter as well as baryonic particles.) Because

there is some random variation in the HOD modelling framework,

we repeat this process 300 times in order to generate 300 different

realizations of our fiducial HOD. We then determine the number of

galaxies in each halo (averaged in bins of halo mass), in the same

way that we did for the original galaxies in the simulation. We can

then calculate a χ2 to assess how well our fiducial HOD model fits

MNRAS 491, 5771–5788 (2020)
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Testing HOD 5775

Figure 1. Best-fitting HOD for Illustris-2 (left-hand panel) and EAGLE (right-hand panel) galaxies. The Illustris-2 high luminosity (M−21
r ) galaxy sample is

plotted with a solid red line, and the low luminosity (M−19
r ) sample is plotted with a dashed red line, while the EAGLE high luminosity sample is plotted with

a solid blue line, and the low luminosity sample is plotted with a dashed blue line. The grey lines in each case show 300 realizations of the best-fitting HOD

model for that sample. The black line and error bars represent the mean and standard deviation among these 300 realizations.

the simulation:

χ2 =
∑

i

(Di − Mi)
2

σ 2
i

, (3)

where Di is the number of galaxies in one halo mass bin from the

simulation, Mi is the number of galaxies in the same halo mass bin

averaged over 300 realizations of our fiducial HOD model, and σ i

is the standard deviation among the 300 different realizations of

our fiducial HOD. We do this separately for centrals and satellites,

and then sum over all of our halo mass bins. Based on this χ2,

we adjust our fiducial HOD parameters and repeat this process. We

use a Nelder–Mead optimization algorithm (Nelder & Mead 1965;

Jones et al. 2001; Gao & Han 2012) to minimize χ2.

In Table 2, we list the luminosity thresholds for each sample, as

well as the best-fitting HOD parameters for each simulation. Shown

in Fig. 1 are the best-fitting HODs for each of our simulations and

density samples. While the M−21
r samples in both simulations each

achieved a χ2/DOF of close to 1, the M−19
r samples are not fit as well

by the HOD, particularly in Illustris. This could be an indication that

the form of the HOD is not optimal for describing a low-luminosity

galaxy sample, but it can easily describe a high-luminosity sample.

One of the assumptions made in our modelling procedure is

that the probability distribution governing the number of satellite

galaxies in a halo is Poissonian. To investigate this assumption we

examine the average number of satellite–satellite pairs per halo in

bins of halo mass, 〈N(N − 1)〉M, or 〈N2〉M − 〈N〉M. A Poisson

distribution of mean 〈N〉 has variance 〈N2〉 = 〈N〉2 + 〈N〉. Thus, if

the number of satellite galaxies comes from a Poisson distribution,

then 〈N(N − 1)〉M/〈N〉2 should be equal to 1 (Berlind et al. 2003).

In Fig. 2 we have plotted this quantity for the Illustris (left, red)

and EAGLE (right, blue) M−19
r samples as a function of halo mass.

We have also plotted percentiles for our 300 HOD realizations for

each sample (shown in grey), as well as the median of the 300

realizations. In our HOD model, the number of satellite galaxies is

drawn from a Poisson distribution by design, so the median of these

realizations should be 1 for all halo mass bins above Mmin (indicated

by the vertical green dashed line; below Mmin it is extremely unlikely

that there will be any satellites, so this quantity should be 0.) Both

the Illustris and EAGLE samples are Poissonian at higher halo

masses, but appear slightly sub-Poissonian at lower halo masses.

However, neither sample is incompatible with its corresponding

distribution of HOD realizations, so it is reasonable to conclude

that the satellite numbers in Illustris and EAGLE are consistent

with our HOD model. (The M−21
r samples have very few satellites,

and thus are very noisy, which is why they are not shown here. They

do not exhibit any non-Poissonian trends.)

3.3 Building mock galaxy catalogues

Once we have determined the best-fitting HOD parameters for our

sample, we then need to actually place galaxies in haloes. We do

this on the DMO versions of the simulations. As stated earlier, the

halo mass of interest is the total mass of the Friends-of-Friends

(FoF) group (i.e. parent halo). We assign the central galaxy the

position of the group, which is defined as the spatial position within

the periodic box of the particle with the minimum gravitational

potential energy (in comoving coordinates). Additionally, we assign

the central galaxy the velocity of the group, which is the sum of
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5776 G. D. Beltz-Mohrmann, A. A. Berlind and A. O. Szewciw

Figure 2. The second moment of the HOD for Illustris-2 M−19
r galaxies (red points, left-hand panel) and EAGLE M−19

r galaxies (blue points, right-hand

panel). The dark and light grey shaded regions show the inner 68 and 95 per cent of the realizations of the best-fitting HOD model for that sample, and the

black points are the median of the 300 realizations.

the mass-weighted velocities of all particles/cells in the group. The

peculiar velocity is obtained by multiplying this value by 1/a, where

a is the scale factor. (In the EAGLE simulation, the velocity of the

parent halo is not provided, so we instead assign the central galaxy

the velocity of the central subhalo.) To place satellite galaxies,

we randomly select dark matter particles from the parent halo

and assign galaxies the positions and velocities of these randomly

chosen particles. The only stipulation we make is that we never

choose the same random dark matter particle twice; i.e. we will

never place two galaxies on the same particle, but we can place

them on very nearby particles. We repeat this process 1000 times,

so that we ultimately have 1000 different realizations of our best-

fitting HOD model applied to our DMO simulation. We will refer

to these 1000 realizations as mock galaxy catalogues.

4 G A LAXY C LUSTERING MEASUREMENTS

Once we have populated the dark matter haloes in each simulation

with galaxies, the next step is to measure a series of clustering

statistics on both the galaxies from the original simulation and the

galaxies from our mock catalogues. We measure these statistics

in the same way on the simulation galaxies as we do on our

mocks, in order to assess how well our HOD model can reproduce

galaxy clustering properties as compared to a full hydrodynamic

simulation.

The first property that we measure is the number density of

galaxies. By comparing the number densities of galaxies in our

simulations and in our mocks, we can test how well the HOD fits

the simulation, as well as how similar the halo mass functions are in

the hydrodynamic and DMO simulations. Figs 3–6 show results for

the Illustris M−21
r , EAGLE M−21

r , Illustris M−19
r , and EAGLE M−19

r

samples, respectively. The top left-hand panel of each figure shows

the distribution of number densities among the 1000 mocks for that

sample (together with the mean and standard deviation), as well as

the number density for the corresponding hydrodynamic sample.

The shaded region in each figure shows cosmic variance errors (one

standard deviation) calculated from 400 mock galaxy catalogues

of the corresponding SDSS sample (Sinha et al. 2018). The spread

among our 1000 HOD mocks indicates how well we can measure

galaxy number density in a box given the scatter in our HOD model.

The spread among 400 SDSS mocks indicates how accurately a

difference in number density could be detected by the SDSS.

In every case, applying the HOD to the DMO simulation results

in a significantly overestimated galaxy number density (by up to

20 per cent for the Illustris M−21
r sample). For both M−21

r samples

(Figs 3 and 4), this difference in number density is larger than

the cosmic variance error from the SDSS M−21
r sample (shown in

green); in other words, an SDSS-like survey would easily notice

this discrepancy. For the M−19
r samples (Figs 5 and 6), although

the difference between the simulation and the HOD number density

is quite significant, the cosmic variance error (shown in yellow) is

larger, indicating that an SDSS-like survey would not pick up on

this difference. None the less, it is shocking that in every case the

HOD (which was fit to the simulation) systematically significantly

overestimates the galaxy number density. This points to a major

issue with applying HOD to a DMO simulation: the halo mass

function is different in hydrodynamic and DMO simulations. This

will be discussed further in Section 6.

Next, we measure five additional clustering statistics. Before we

can do this, we must introduce redshift-space distortions into both

MNRAS 491, 5771–5788 (2020)
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Testing HOD 5777

Figure 3. All clustering measurements for the M−21
r sample of Illustris-2 galaxies. The red lines are measured on galaxies from the original hydrodynamic

simulation, while the dark red lines show the average of 1000 realizations of the best-fitting HOD model applied to the dark matter-only simulation. The

error bars represent the standard deviation among the 1000 realizations. The shaded regions around the red lines show cosmic variance errors (one standard

deviation) calculated from 400 mock galaxy catalogues of the SDSS M−21
r sample, and thus illustrate the size of deviations that could be detected by

the SDSS.

our simulation galaxies as well as our mock galaxies. We do this

by placing an observer infinitely far away from our box and taking

the z-axis as the line-of-sight coordinate (using periodic boundary

conditions). Including these distortions allows us to probe how well

our model reproduces the velocities of the galaxies.

Berlind & Weinberg (2002) investigated galaxy bias in an HOD

framework by measuring several clustering statistics. They found

that the galaxy correlation function is affected by different parts

of the HOD on different scales, and that other clustering statistics

(such as the void probability function and the group multiplicity

function) are also sensitive to different combinations of HOD

parameters. Sinha et al. (2018) similarly found that analyses

involving several different galaxy clustering statistics have the most

power to constrain galaxy bias. Because of this, the five additional

clustering statistics that we measure in this work are the redshift-

space correlation function, the projected correlation function, the

group multiplicity function, the void probability function, and what

we call the ‘singular probability function’ (i.e. the probability

of having exactly one galaxy in a region). These five different

clustering statistics are described in detail below.

4.1 The projected correlation function

The most commonly used galaxy clustering statistic, the projected

correlation function, removes the effect of redshift-space distortions

by first counting pairs of galaxies in bins of their line-of-sight and

projected components, π and rp, and then integrating over π :

wp(rp) = 2

∫ πmax

0

ξ (rp, π )dπ. (4)

We count pairs of galaxies in 10 evenly spaced logarithmic

bins of projected separation rp between 0.2 and 5.37 h−1Mpc. We

then integrate out to πmax of 20 h−1Mpc for each sample. (For

computational reasons, πmax must be < 1
3
Lbox.) We use the blazing

fast code CORRFUNC (Sinha & Garrison 2017, 2019) to compute our

projected correlation function.

The projected correlation function has been used as the workhorse

of HOD modelling (e.g. Zehavi et al. 2011; Sinha et al. 2018).

Recently, Zentner et al. (2019) used measurements of the projected

correlation function to constrain assembly bias of SDSS DR7

galaxies within the decorated HOD model of Hearin et al. (2016).

The authors found highly significant central galaxy assembly bias in

the M−20
r and M−20.5

r samples, as well as significant satellite galaxy

assembly bias for the M−19
r sample. They did not find any assembly

bias in the M−21
r sample. Meanwhile, Vakili & Hahn (2019) also

looked at clustering measurements of SDSS DR7 galaxies and found

that at fixed halo mass, satellite galaxies show no correlation with

halo concentration, and central galaxies shows little correlation with

halo concentration for the M−21
r and M−21.5

r samples, and slight

correlation with halo concentration in the M−20.5
r , M−20

r , and M−19
r

samples.
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5778 G. D. Beltz-Mohrmann, A. A. Berlind and A. O. Szewciw

Figure 4. Same as Fig. 3 for the M−21
r sample of EAGLE galaxies.

In the top middle panels of Figs 3–6 we have plotted the projected

correlation function from the hydrodynamic simulations, as well

as the average projected correlation function of our 1000 DMO

mocks, for each of our samples. For the M−21
r samples (Figs 3

and 4) the HOD does reasonably well at recovering the projected

correlation function from the simulations. Though there are visible

discrepancies, these are not highly significant given the plotted

uncertainties. However, for the Illustris M−19
r sample (Fig. 5), the

HOD significantly overestimates the projected correlation function

at small scales. In contrast, for the EAGLE M−19
r sample (Fig. 6), the

HOD significantly underestimates the projected correlation function

at all but the smallest scales. This indicates that although the

clustering is correct for high luminosity galaxies, there is a possible

problem with the spatial assumptions made in the HOD, which

specifically impacts the clustering of low luminosity galaxies. The

Illustris M−19
r sample is most likely affected by spatial bias, which

impacts small scales, while the EAGLE M−19
r is likely more affected

by assembly bias, which impacts large scales. We note that the pro-

jected correlation function is not sensitive to velocity information, so

any discrepancies must be due to spatial and/or assembly bias, and

not velocity bias. These biases will be discussed further in Section 7.

4.2 The redshift-space correlation function

The 3D redshift-space two-point correlation function ξ (s) is the

excess number of galaxy pairs above that which is expected for a

random distribution of points, as a function of redshift-space pair

separation s (in contrast to the projected separation rp described

above). In this work, we count pairs in 10 bins of separation s

between 0.2 and 5.37 h−1Mpc (the same bins as those used for

the projected correlation function). We also use CORRFUNC to

compute our redshift-space correlation function. Measuring the

redshift-space correlation function allows us to access not only

spatial information about our galaxies, but also velocity information,

because the redshift-space distortions of our galaxies depend on

their velocities. Thus, with this measurement, we can examine the

validity of the assumption in the HOD that galaxies trace the velocity

distribution of dark matter within the halo (in addition to examining

our assumptions about the spatial distribution of galaxies).

In the top right-hand panels of Figs 3–6 we have plotted the

redshift-space correlation function from our simulations, as well as

the average redshift-space correlation function of our 1000 mocks,

for each of our samples. Results are qualitatively similar to those

using the projected correlation function. For the M−21
r samples

(Figs 3 and 4) the HOD successfully recovers the redshift-space

correlation function from the simulations. However, for the Illustris

M−19
r sample (Fig. 5), the HOD once again significantly overesti-

mates the correlation function at small scales, while for the EAGLE

M−19
r sample (Fig. 6), the HOD significantly underestimates the

correlation function at all but the smallest scales. This again suggests

a problem with the spatial assumptions made in the HOD, as well as

the velocity assumptions, which specifically impact the clustering of

low luminosity galaxies. This will be discussed further in Section 7.

4.3 The group multiplicity function

The group multiplicity function is the abundance of galaxy groups

as a function of the number of galaxies in the group, n(N) (e.g.
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Testing HOD 5779

Figure 5. Same as Fig. 3 for the M−19
r sample of Illustris-2 galaxies.

Berlind & Weinberg 2002). We use the Berlind et al. (2006) FoF

algorithm for identifying groups. Galaxies are linked together if

their projected and line-of-sight separations are both less than a

corresponding linking length. We adopt the Berlind et al. (2006)

linking lengths of b⊥ = 0.14 and b� = 0.75, which are given in units

of the mean inter-galaxy separation n−1/3
g , where ng is the sample

number density. For our low luminosity samples, we measure groups

with the following numbers of galaxies: 3, 4, 5, 6–7, 8–11, >12.

For our high luminosity samples, we measure groups of 3, 4, 5, and

6 or more galaxies.

In the lower left-hand panels of Figs 3–6 we have plotted the

group multiplicity function from our simulations, as well as the av-

erage group multiplicity function of our 1000 mocks, for each of our

samples. For the M−21
r samples (Figs 3 and 4) the HOD successfully

recovers the group multiplicity function from the simulations. The

HOD also successfully reproduces the group multiplicity function

for the EAGLE M−19
r sample (Fig. 6). However, for the Illustris

M−19
r sample (Fig. 5), the HOD significantly overestimates the

group multiplicity function for the largest groups. This further

points to a problem with the spatial and velocity assumptions

made in the HOD, particularly as they affect the clustering of

low luminosity galaxies in Illustris. This will be discussed further

in Section 7.

4.4 Counts-in-cells statistics

Counts-in-cells statistics measure the probability of finding a given

number of galaxies within a randomly placed finite region (e.g. a

sphere) as a function of region size (e.g. radius). One special case

of this is the void probability function (VPF), which measures the

probability of finding no galaxies in a random region of space.

Tinker, Weinberg & Warren (2006) attempted to constrain galaxy

bias using void statistics within an HOD framework, and found that

the VPF, in contrast to the projected correlation function, is quite

sensitive to environmental variations of the HOD. Later, McCullagh

et al. (2017) showed that catalogues created using SHAM and the

semi-analytic model GALFORM, which were designed to have the

same large-scale 2-point clustering, have different VPFs due to

their different HOD shapes, suggesting that the VPF could be used

to rule out certain HOD models. Recently, Walsh & Tinker (2019)

fit the standard HOD model to the two-point correlation function

of BOSS galaxies and found that it was able to accurately predict

the void probability function, indicating that galaxy assembly bias

does not affect the clustering of massive galaxies.

Wang et al. (2019) studied the power of the VPF, counts-

in-cylinders, and counts-in-annuli, as well as the projected two-

point correlation function and the galaxy–galaxy lensing signal to

constrain galaxy assembly bias from redshift survey data using the

decorated HOD, and found that the counts-in-cells statistics are

more efficient at constraining galaxy assembly bias when com-

bined with the projected correlation function than galaxy–galaxy

lensing is.

Another variation of counts in cells that we use is what we

will refer to as the ‘singular probability function,’ (SPF) or the

probability of finding exactly one galaxy in a randomly placed

region. We measure both the VPF and the SPF in spheres of evenly
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5780 G. D. Beltz-Mohrmann, A. A. Berlind and A. O. Szewciw

Figure 6. Same as Fig. 3 for the M−19
r sample of EAGLE galaxies.

spaced bins of radius r, beginning with 1 h−1Mpc and ending with

10 h−1Mpc.

In the lower middle (right-hand) panels of Figs 3–6 we have

plotted the VPF (SPF) of our simulations, as well as the average

of our 1000 mocks, for each of our samples. For the Illustris

M−21
r sample (Fig. 3) the HOD struggles to recover the VPF at

intermediate and large scales, and likewise struggles to recover the

SPF at intermediate scales. For the EAGLE M−21
r sample (Fig. 4)

the HOD shows similar tension in the VPF and the SPF. For the

Illustris M−19
r sample the agreement looks better, but the error bars

are very small so it is difficult to surmise based on looking at Fig. 5

alone. For the EAGLE M−19
r sample (Fig. 6) the HOD struggles to

reproduce both the VPF and the SPF at most scales. These problems

could indicate issues with the assumptions made in the HOD. They

could also be compounded by the inability of the HOD to reproduce

the correct number density, since counts-in-cells statistics, and the

VPF in particular, are very sensitive to number density. This will be

discussed further in Section 7.

5 A S S E S S I N G T H E AC C U R AC Y O F T H E H O D

M O D E L

In Figs 3–6 we saw that for some statistics (like number density)

the HOD applied to DMO simulations does not provide a good fit

to the hydrodynamic simulations for any of our samples, while for

other statistics (like the correlation functions) the HOD appeared to

provide a good fit to the simulations for the high luminosity samples

and not the low luminosity samples. In general, however, the success

of the HOD model is difficult to ascertain visually because error bars

are often small and are likely correlated. In order to quantify the

accuracy with which our HOD model can reproduce the clustering

statistics measured on a hydrodynamic simulation, we calculate χ2

for each clustering statistic

χ2 =
∑

ij

χiR
−1
ij χj , (5)

where

χi =
Di − Mi

σi

, (6)

Di is the value of one bin of a clustering measurement on the

hydrodynamic simulation galaxies (either Illustris or EAGLE, and

either M−19
r or M−21

r ), Mi is that same measurement averaged over

our 1000 mock galaxy catalogues for that sample, and σ i is the

standard deviation of that measurement among the 1000 mock

galaxy catalogues. Rij is the correlation matrix for each clustering

statistic

Rij =
Cij

√

CiiCjj

, (7)

which is the covariance matrix normalized by its diagonal elements.

The covariance matrix is calculated as

Cij =
1

N − 1

N
∑

1

(yi − yi)(yj − yj ), (8)

where the sum is over the N = 1000 mock galaxy catalogues, and

yi and yj are two bins of a clustering statistic, and yi and yj are the

mean measurements over the 1000 mocks. We note that since the

hydrodynamic simulation and the HOD mocks come from initial
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Testing HOD 5781

Table 3. p-values from comparing the clustering statistics of hydrodynamic galaxies to those of DMO+HOD mock galaxies, for different

simulations and samples, with no correction (first), after correcting the halo mass function (second), additionally removing satellite spatial bias

(third), additionally removing all spatial and velocity bias (fourth), and additionally removing assembly bias (fifth). The columns show (from left to

right): simulation name, magnitude limit for the SDSS sample with the same galaxy number density, which model was used, and the p-values for

each of our six measurements.

Sim. Sample Correction n wp(rp) ξ (s) n(N) P0(r) P1(r)

Illustris −21 No correction 2.84 × 10−4 4.61 × 10−2 6.62 × 10−1 5.36 × 10−1 1.86 × 10−2 4.04 × 10−1

Illustris −21 Halo mass function 4.54 × 10−1 1.43 × 10−1 9.14 × 10−1 9.77 × 10−1 4.79 × 10−1 6.28 × 10−1

Illustris −21 +Satellite spatial bias 4.54 × 10−1 6.46 × 10−1 7.51 × 10−1 6.95 × 10−1 4.84 × 10−1 6.35 × 10−1

Illustris −21 +Velocity bias 4.54 × 10−1 6.66 × 10−1 5.98 × 10−1 7.09 × 10−1 3.97 × 10−1 6.13 × 10−1

Illustris −21 +Assembly bias 4.54 × 10−1 6.15 × 10−1 5.25 × 10−1 6.11 × 10−1 5.23 × 10−1 6.87 × 10−1

Illustris −19 No correction 8.35 × 10−6 1.13 × 10−7 1.61 × 10−4 5.36 × 10−4 4.44 × 10−6 5.99 × 10−2

Illustris −19 Halo mass function 6.66 × 10−2 5.23 × 10−6 2.43 × 10−3 3.48 × 10−4 1.05 × 10−3 5.25 × 10−2

Illustris −19 +Satellite spatial bias 6.66 × 10−2 2.58 × 10−2 1.14 × 10−1 1.87 × 10−2 2.11 × 10−3 5.69 × 10−2

Illustris −19 +Velocity bias 6.66 × 10−2 2.89 × 10−2 1.94 × 10−1 8.76 × 10−2 9.68 × 10−2 4.42 × 10−1

Illustris −19 +Assembly bias 6.66 × 10−2 7.64 × 10−2 4.81 × 10−1 1.65 × 10−1 3.93 × 10−1 7.82 × 10−1

EAGLE −21 No correction 9.84 × 10−3 5.89 × 10−3 3.69 × 10−3 8.18 × 10−1 5.32 × 10−2 1.91 × 10−2

EAGLE −21 Halo mass function 8.56 × 10−1 3.64 × 10−2 4.07 × 10−2 7.02 × 10−1 5.55 × 10−1 2.01 × 10−1

EAGLE −21 +Satellite spatial bias 8.56 × 10−1 4.05 × 10−1 1.53 × 10−1 9.18 × 10−2 6.99 × 10−1 2.92 × 10−1

EAGLE −21 +Velocity bias 8.56 × 10−1 4.06 × 10−1 2.53 × 10−1 1.98 × 10−1 6.61 × 10−1 2.69 × 10−1

EAGLE −21 +Assembly bias 8.56 × 10−1 3.08 × 10−1 5.55 × 10−1 4.84 × 10−1 3.55 × 10−1 4.06 × 10−1

EAGLE −19 No correction 6.37 × 10−29 1.11 × 10−13 1.63 × 10−24 4.50 × 10−1 7.11 × 10−54 3.37 × 10−22

EAGLE −19 Halo mass function 8.25 × 10−1 1.06 × 10−8 3.42 × 10−10 6.31 × 10−1 4.79 × 10−13 1.42 × 10−7

EAGLE −19 +Satellite spatial bias 8.25 × 10−1 3.90 × 10−5 2.22 × 10−8 1.13 × 10−1 8.58 × 10−13 1.87 × 10−7

EAGLE −19 +Velocity bias 8.25 × 10−1 6.80 × 10−5 2.40 × 10−5 2.24 × 10−1 7.90 × 10−10 6.50 × 10−5

EAGLE −19 +Assembly bias 8.25 × 10−1 1.49 × 10−1 3.10 × 10−1 4.92 × 10−1 4.97 × 10−1 6.07 × 10−1

conditions with the same phases, cosmic variance errors do not

apply to this comparison.

From this χ2, we can calculate the corresponding p-value, which

represents the probability that a sample randomly drawn from the

best-fitting HOD model could have a χ2 value greater than the one

exhibited by the simulation. In other words, the p-value represents

the probability that the hydrodynamic simulation is consistent

with the DMO+HOD model. The p-value for each clustering

measurement uses all the spatial bins of the measurement, as well

as the full covariance matrix for that statistic. These p-values are

listed in Table 3 (in the rows labelled as ‘No Correction’).

Looking at Figs 3–6 or the p-values in Table 3, it is immediately

clear that the vanilla HOD model, when applied to haloes from a

DMO simulation, does not provide a good fit to the corresponding

hydrodynamic simulation for all of the clustering statistics in ques-

tion. However, the success of the HOD model is highly dependent

on the simulation and luminosity sample in question. For example,

the model generally performs better for high luminosity galaxies

than for low luminosity galaxies. Specifically, for the Illustris M−21
r

sample, all of the clustering statistics are well fit by the HOD

model, at least within a 3σ tolerance, except for number density.

For the EAGLE M−21
r sample, even the number density works

well. However, for the low luminosity samples, almost none of the

clustering statistics are well fit by the DMO+HOD model, and in

most cases exhibit discrepancies far greater than >3σ .

The green shaded regions in Figs 3 and 4 represent one standard

deviation of cosmic variance errors calculated from 400 mock

galaxy catalogues of the SDSS M−21
r sample. These mocks were

created as part of the Large Suite of Dark Matter Simulations project

(LasDamas; McBride et al. 2009) and used in Sinha et al. (2018). In

our M−21
r Illustris and EAGLE samples, the errors among our 1000

mock galaxy catalogues (which are different HOD realizations) are

much larger than the cosmic variance errors from the 400 SDSS-like

mocks. Consequently, though the HOD model appears to be a good

fit to the simulations for high luminosity galaxies, an SDSS size

M−21
r survey (which has small errors due to its large volume) could

be sensitive to clustering differences that we are unable to detect in

our analysis due to our smaller volume.

Similarly, the yellow shaded regions in Figs 5 and 6 represent one

standard deviation of cosmic variance errors calculated from 400

mock galaxy catalogues of the SDSS M−19
r sample, constructed in

a similar way as those in Sinha et al. (2018). In our M−19
r Illustris

and EAGLE samples, the errors among our 1000 mock galaxy

catalogues are smaller than the cosmic variance errors from the 400

SDSS-like mocks. For some statistics (such as the number density),

a survey with the precision of SDSS would not necessarily be able

to detect the differences we have found between the HOD model

and the hydrodynamic simulation. For other clustering statistics

(particularly the correlation functions) it is clear that, although the

cosmic variance errors are somewhat broad, there is still an obvious

difference between the HOD model and the simulation, to which

even an SDSS-like survey would be sensitive.

6 TH E E F F E C T O F BA RYO N S O N T H E H A L O

MASS FUNCTI ON

Figs 3–6 revealed that the galaxy number density is not well

predicted in any sample. Recall that, in our vanilla HOD, the number

of galaxies in a halo is solely dependent on the mass of the halo.

Thus, the fact that our HOD systematically overpredicts the galaxy

abundance indicates either that the functional form of our HOD is

incorrect, or that the halo mass functions (HMFs) are different in the

hydrodynamic simulations compared to their DMO counterparts.

Fig. 7 compares the abundance of haloes in the hydrodynamic

and DMO versions of the same simulation. The comparison reveals

sizeable discrepancies between the halo mass functions. In Illustris

(red), the hydrodynamic HMF is consistently lower than the DMO

MNRAS 491, 5771–5788 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
9
1
/4

/5
7
7
1
/5

6
6
3
6
3
5
 b

y
 V

a
n
d
e
rb

ilt U
n
iv

e
rs

ity
 E

s
k
in

d
 B

io
m

e
d
ic

a
l L

ib
ra

ry
 u

s
e
r o

n
 1

4
 A

p
ril 2

0
2
1



5782 G. D. Beltz-Mohrmann, A. A. Berlind and A. O. Szewciw

Figure 7. Halo mass functions of hydrodynamic compared to dark matter-

only simulations in the case of Illustris-2 (red) and EAGLE (blue). The

hydrodynamic versions are plotted with solid lines, while the dark matter-

only versions are plotted with dotted lines. The bottom panel shows the

ratio of the hydrodynamic to dark matter-only mass functions for the two

simulations.

HMF above 1012 h−1 M�, and higher than the DMO HMF at

smaller masses. In EAGLE (blue), the hydrodynamic HMF is below

the DMO HMF at all halo masses below 1014 h−1 M�. In other

words, the hydrodynamic HMFs are shifted to lower masses in both

simulations, but the detailed effects of baryons on the HMF are

different in the two simulations.

This result is consistent with both Desmond et al. (2017) and

Schaller et al. (2015), who examined the differences between the

halo masses in the EAGLE DMO and hydrodynamic runs, and

found the haloes to be less massive on average in the hydrodynamic

run. Desmond et al. (2017) found that, at low halo masses, stellar

feedback in EAGLE removes baryons from the halo, which in

turn reduces the growth rate of the halo. At slightly higher halo

masses, stellar feedback becomes less effective, but AGN feedback

is still capable of expelling baryons. For the most massive haloes,

AGN feedback too becomes less effective, and thus there is

little discrepancy between the hydrodynamic and DMO halo mass

functions.

Our results for the Illustris haloes are consistent with the

findings of Vogelsberger et al. (2014a), who found that the halo

mass function in Illustris is most affected at low (< 1010 h−1 M�)

and high (> 1012 h−1 M�) halo masses, where baryonic feedback

processes (e.g. reionization, SN feedback, and AGN feedback)

are strongest, leading to a reduction in halo mass compared to

their DMO counterparts. They found that removing AGN feedback

boosts the massive end of the halo mass function (e.g. Cui et al.

2012). They also found that haloes around 1011 h−1 M�, where star

formation is most efficient, tend to be more massive than their DMO

counterparts.

In Fig. 8 we show the ratio of halo masses in the hydrodynamic

simulation over the masses in the DMO simulation as a function

of halo mass in the DMO simulation, for both the Illustris-2 (red)

and the EAGLE (blue) simulations. The hydrodynamic and DMO

haloes are matched based on their ranked masses, rather than

spatial positions, so that the point furthest to the right in the figure

corresponds to the highest mass DMO halo, paired with the highest

mass hydrodynamic halo. In other words, we essentially abundance

match the haloes in the hydrodynamic and DMO simulations.

As a result, the figure shows the mass correction one would

need to apply to the DMO masses in order to recover the global

Figure 8. The ratio of halo masses from the hydrodynamic simulations

to halo masses from the dark matter-only simulations, as a function

of dark matter-only halo mass. Illustris-2 haloes are plotted in red and

EAGLE haloes are plotted in blue. The halo mass is the total FoF mass

from all particles, which in the hydrodynamic versions includes baryons.

Hydrodynamic and dark matter-only haloes are matched by their mass rank,

rather than by position. The displayed ratio thus represents the correction

factor needed to apply to the dark matter-only haloes in order to recover the

hydrodynamic mass function. The dashed black lines show simple fits to

these relationships, down to 1011 h−1 M�, which we discuss in Section 8.

hydrodynamic HMF. However, applying this correction would

not necessarily result in the correct dependence of the HMF on

environment.

Our result is consistent with the results of Vogelsberger et al.

(2014a) and Schaller et al. (2015), who looked at matched haloes

in Illustris and EAGLE, respectively. Additionally, Springel et al.

(2018) looked at this same quantity for the IllustrisTNG simulations

and found a trend that is different from both Illustris and EAGLE.

Baryons in the IllustrisTNG seem to have a larger impact on low-

mass haloes and a smaller impact on high-mass haloes compared

to Illustris. This is to be expected, since IllustrisTNG has weaker

AGN feedback than the original Illustris simulation, which affects

more massive haloes. The effect of feedback on lower mass haloes

in TNG is stronger than that in Illustris due to the wind model used

in TNG.

Fig. 8 emphasizes the fact that the effect of baryons on the halo

mass function is to decrease the HMF to lower masses. However,

it is clear that this effect is very different in these two different

simulations. The effect of baryons on the HMF in the EAGLE

simulation is more prominent at lower masses, and the ratio of

hydrodynamic halo mass to DMO halo mass increases almost

linearly with log halo mass. In Illustris, the effect of baryons on

the HMF is more prominent at higher masses, and the relationship

is more complex than it is in EAGLE. In other words, the halo mass

function is significantly affected by baryonic feedback processes,

but there is no consensus among hydrodynamic simulations on what

the correct feedback model is.

This halo mass function discrepancy presents a challenge when

using an HOD framework to populate haloes from a DMO simula-

tion with galaxies. The HOD parameters only describe how many

galaxies to put in a halo of a given mass, but do not take into account

how many haloes there are in a given mass bin. Therefore, because

the DMO versions of Illustris and EAGLE have mass functions

that are shifted to higher masses, there are more high-mass haloes,

so more galaxies are placed overall. Thus, even when applying

the correct HOD parameters as extracted from the hydrodynamic
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Testing HOD 5783

simulation, the overall galaxy number density will be too high when

this HOD is applied to the DMO simulation.

One possible solution to this is to adjust the HMF in the DMO

simulation so that it is consistent with the HMF in the hydrodynamic

version. We do this by identifying the most massive halo in the

DMO simulation and assigning it the mass of the most massive

halo in the hydrodynamic version, and then we do the same for the

next most massive halo, and so on. In other words, we multiply

the DMO halo masses in each simulation by their y-axis value in

Fig. 8. This process serves to isolate the effect of baryons on the

halo mass function, allowing us to correct the DMO HMFs so that

they agree with the HMFs from the hydrodynamic simulations. We

note that this technique does not involve matching haloes based on

position or particle-IDs. Because of this, we are not explicitly taking

environment into account, so we are not correcting the conditional

HMF. We have examined the conditional HMF in Illustris, however,

and have found that the effect of baryons on the HMF only

depends on environment at very high halo masses. Additionally,

we have examined the effect on our clustering statistics if we use an

environment-dependent HMF correction and find that the difference

is negligible. We have also examined the halo correlation functions

in Illustris and EAGLE in two different halo mass bins for the

hydrodynamic simulations, the DMO simulations, and the corrected

DMO simulations, and have found that the corrected DMO halo

correlation functions are in better agreement with the hydrodynamic

halo correlation functions.

We now explore to what extent applying mass corrections to

DMO halo masses improves the agreement between the clustering

statistics of hydrodynamic and DMO+HOD galaxies. We first

multiply each DMO halo mass by the correction shown in Fig. 8

(i.e. we use our abundance matching technique for each halo as

described above, and not the dashed-black fits shown in the figure).

We then make new mock galaxy catalogues by applying the same

best-fitting HOD (from Table 2) to our new mass-adjusted dark

matter haloes. We thus have 1000 new mock catalogues for each

sample. We then repeat the same procedure outlined in Sections 4

and 5 to get new clustering statistics and new p-values, which we

list in Table 3 (in the rows labelled ‘Halo Mass Function’).

Fig. 9 presents our p-values for the four samples (two simulations

and two luminosity samples) for all six statistics we consider. The

left-most point in each panel shows the original p-value we obtained

and discussed in Section 5. The second point in each panel shows

the new p-value we get after first applying a correction factor to the

DMO halo masses. Horizontal dashed lines show the 1σ , 2σ , 3σ ,

4σ , and 5σ tolerance levels. As we can see in Fig. 9, after correcting

the masses of haloes, our ability to accurately predict galaxy number

density (top left-hand panel) with our vanilla HOD model shows

a drastic improvement for all samples. Thus, the vanilla form of

HOD that we have adopted is sufficient for accurately (better than

2σ tolerance) predicting galaxy number density if it is applied to

the correct population of haloes.

In addition to the improvement in our galaxy number density

predictions for all samples, correcting the halo mass function yields

a slight improvement to the other clustering statistics across all

samples. For the M−21
r samples, after correcting the halo mass

function, all clustering statistics are at or better than the 2σ level.

Thus, when applied to the correct halo population, the five parameter

HOD model is able to accurately predict all clustering statistics for

our high luminosity samples of galaxies. For the low luminosity

samples, although the other clustering statistics do improve, most

are still below the 3σ level, with the exception of the group

multiplicity function in the EAGLE M−19
r sample and the singular

probability function in the Illustris M−19
r sample. It is worth noting

that the VPF does improve in all samples after correcting the halo

mass function, indicating that part of the original VPF discrepancy

was due to the incorrect number density. However, for the Illustris

M−19
r sample the VPF is still below the 3σ level, and for the EAGLE

M−19
r sample it is still well below 5σ , so we can conclude that not

all of the issues with reproducing the VPF can be attributed to the

number density.

These results indicate that although the HOD model for the

brightest galaxies is successful when applied to the correct halo

population, the HOD model for fainter galaxies is less successful,

even when applied to the correct halo population. Thus, there must

be some other assumptions in our HOD that are incorrect when

applied to a low luminosity sample of galaxies. In the next section,

we investigate possible extensions to our vanilla HOD.

7 EX T E N S I O N S O F TH E H O D

7.1 Spatial bias

In our vanilla HOD model, we assume that each central galaxy

lives at the centre of its halo, and that satellite galaxies trace the

spatial distribution of dark matter within the halo. However, it

is possible that these assumptions are incorrect, i.e. that galaxies

exhibit spatial bias. More specifically, central spatial bias occurs

when the central galaxy is not located at the centre of its halo,

and satellite spatial bias occurs when the satellite galaxies do not

trace the distribution of dark matter particles within their halo. To

test for the presence of spatial bias, one option is to add spatial

bias parameters to our HOD model and find a new best-fitting

model that includes spatial bias. However, a simpler alternative is

to remove the potential effects of spatial bias from the hydrodynamic

simulation. If doing this yields better agreement between clustering

statistics from our DMO+HOD mocks and the simulation galaxies,

this would indicate that there is spatial bias in the hydrodynamic

simulation, and therefore spatial bias parameters will need to be

included in any future HOD modelling work to account for the

possibility that there is spatial bias present in survey data.

We first test for the presence of central spatial bias. We do this

by taking the Illustris and EAGLE galaxies identified as centrals

and give them the position of their host halo, which is the position

of the particle with the minimum gravitational potential energy. We

do this without changing any central velocity information or any

satellite galaxy information, in order to isolate the effect of central

spatial bias. Thus, if there is any central spatial bias present in the

original simulation, this procedure would remove it, yielding better

agreement with our HOD model. The results of this show no change

for either simulation or sample, indicating that any central spatial

bias has a negligible impact on clustering statistics.

We next test for the presence of satellite spatial bias. We do this

by taking the galaxies identified as satellites in the hydrodynamic

simulations and assigning them the positions of random dark matter

particles in their host halo (also in the hydrodynamic simulations).

We do this without changing any satellite velocity information or

any central galaxy information, in order to isolate the effect of

satellite spatial bias. We repeat this process 1000 times, in order to

generate 1000 different realizations of our simulation with satellite

spatial bias removed. We can therefore generate 1000 different p-

values for each clustering statistic. Table 3 (rows labelled ‘Satellite

Spatial Bias’) lists the median p-values from these 1000 realizations

of our simulation with satellite spatial bias removed. We note that it
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5784 G. D. Beltz-Mohrmann, A. A. Berlind and A. O. Szewciw

Figure 9. p-values from comparing the clustering of galaxies in hydrodynamic simulations to the clustering of mock galaxies in their dark matter-only (DMO)

counterparts. Each panel shows results for a different clustering statistic, as listed at the top of each panel. The dark red diamonds and dark blue squares

represent the high luminosity samples of Illustris-2 and EAGLE, respectively, while the light red inverted triangles and the light blue triangles represent the

low luminosity samples of Illustris-2 and EAGLE, respectively. The horizontal dashed grey lines denote the 1σ , 2σ , 3σ , 4σ , and 5σ confidence levels. The

x-axis in each panel corresponds to different modifications to the haloes or to the galaxies in the simulations. From left to right, p-values are shown for (i) the

original DMO+HOD model; (ii) the same DMO+HOD model after adjusting the DMO halo mass function to match the mass function in the hydrodynamic

simulation; (iii) additionally removing satellite spatial bias from the hydrodynamic simulation galaxies; (iv) additionally removing central and satellite velocity

bias from the hydrodynamic simulation galaxies; (v) additionally removing assembly bias from the hydrodynamic simulation galaxies. The last three p-values

in each panel (with the exception of number density) are the median of many realizations (1000, 1000, and 4000), with error bars showing the 16th and 84th

percentiles. For the low luminosity sample of EAGLE (light blue), several points are not shown because they fall below 10−7. The values of these points are

given in Table 3.

is possible that placing satellite galaxies on dark matter subhaloes

rather than particles would alleviate some of the tension that we see

between our HOD and the hydrodynamic simulations. However,

traditional HOD models do not use subhaloes, in part because the

DMO simulations to which they are applied often do not have

high enough resolution to resolve small subhaloes. Therefore, we

do not explore the option of placing satellite galaxies on dark

matter subhaloes in this analysis, but note that it would be worth

investigating in future work.

The third point in each panel of Fig. 9 shows these median p-

values that result from both correcting the DMO halo masses and

removing satellite spatial bias from the hydrodynamic simulations.

Error bars show the range of p-values that correspond to the

middle 68 per cent of our 1000 realizations with satellite spatial

bias removed. We can see that the M−21
r samples show either

slight improvement or no change after removing satellite spatial

bias, while the M−19
r samples show significant improvement. In

particular, the projected and redshift-space correlation functions are
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Testing HOD 5785

much improved in the M−19
r samples of both EAGLE and Illustris.

From these results, we can conclude that the galaxies in EAGLE

and Illustris do exhibit satellite spatial bias, the effects of which are

more prominent when considering low luminosity galaxies. We can

also conclude that the effects shown are definitively the results of

spatial bias and not a difference in halo profile due to the presence

of baryons; if the clustering differences were due to a difference in

halo density profile when baryons are included versus when they

are not, then giving the satellite galaxies the positions of random

dark matter particles in the halo (in the hydrodynamic simulation)

would not have a significant effect on clustering.

The extent and nature of the satellite spatial bias is similar in

the two different simulations. In Fig. 5, it is clear from looking

at both the projected and redshift-space correlation functions that

Illustris M−19
r galaxies are less clustered on small scales than the

DMO+HOD mock galaxies, or in other words, Illustris galaxies are

less concentrated than the dark matter. When satellite spatial bias is

removed, the satellite galaxies become more concentrated, and are

thus a better fit to the HOD on small scales. The picture looks a bit

different in Fig. 6, where EAGLE M−19
r galaxies are less clustered

than DMO+HOD mock galaxies on small scales. However, this

amplitude difference in the correlation functions extends to large

scales and is thus not caused by satellite spatial bias (it is caused by

assembly bias, as we will see later). If we examine the slopes of the

correlation functions at small scales in Fig. 6, we see that EAGLE

M−19
r galaxies have a shallower slope than DMO+HOD, which

means that they are less concentrated within their haloes (Berlind &

Weinberg 2002), similar to Illustris M−19
r galaxies.

Despite the improvement that we see in Fig. 9 when removing

spatial bias, many clustering statistics for the M−19
r samples are

still not well predicted by our HOD model, even after correcting

the halo mass function and removing satellite spatial bias from

the simulations. This is especially true for EAGLE M−19
r galaxies,

where all statistics except number density and group multiplicity

function still show a significant discrepancy between hydrodynamic

and DMO+HOD galaxies.

7.2 Velocity bias

The vanilla HOD model also assumes that each central galaxy moves

with the mean velocity of its halo (i.e. there is no central velocity

bias), and that satellite galaxies trace the velocity distribution of

dark matter within their halo (i.e. there is no satellite velocity bias).

Once again, it is possible that these assumptions are incorrect, due

to the effects of phenomena such as mergers, dynamical friction,

and tidal stripping.

To test for the presence of central velocity bias, we take the

Illustris and EAGLE galaxies identified as centrals and assign them

the velocity of their host halo. By doing this, we are removing the

possibility that the central galaxy might not be at rest with respect

to its host halo. In Illustris, this is the sum of the mass-weighted

velocities of all particles/cells in the group, multiplied by 1/a. (In

EAGLE, the velocity of the parent halo is not provided, so this

test is not possible. Central galaxies already have the velocity of

the central subhalo.) As in the case of central spatial bias, removing

central velocity bias has a negligible effect on the clustering statistics

we consider.

To remove satellite velocity bias, we take the hydrodynamic

simulation galaxies identified as satellites and assign them the

velocities of random dark matter particles in the halo. We do this

in combination with other effects (e.g. central velocity bias, central

spatial bias, satellite spatial bias). In other words, we take the central

galaxy and give it the position and velocity of its host halo, and we

take satellite galaxies and give them the positions and velocities of

randomly chosen dark matter particles in the halo, so that all spatial

and velocity bias has been removed from the simulation galaxies.

We repeat the random selection of dark matter particles 1000 times,

so that we ultimately generate 1000 different realizations of the

simulation galaxies after removing all spatial and velocity bias. The

results of this are shown in Table 3, where the p-values given are

the median of 1000.

The fourth point in each panel of Fig. 9 shows these median p-

values that result from correcting DMO halo masses and removing

spatial and velocity bias from the hydrodynamic simulations. Once

again, error bars show the range of p-values that correspond to

the middle 68 per cent of our 1000 realizations with satellite spatial

and velocity bias removed. The figure shows that removing velocity

bias provides an additional improvement for our clustering statistics

for the M−19
r samples. In particular, the Illustris M−19

r sample

shows significant improvement in the void probability function and

slight improvement in all other clustering statistics. All statistics

now show no significant discrepancy between the hydrodynamic

galaxies and our DMO+HOD model. The EAGLE M−19
r sample

shows improvement in the redshift-space correlation function, as

well as both counts-in-cells statistics. It is to be expected that number

density does not change when spatial and velocity bias are removed,

because the number of galaxies is not affected. Additionally the

projected correlation function is by design not affected by velocity,

so it is not surprising that there is no change after removing velocity

bias. Despite these improvements, the differences between the

statistics of EAGLE M−19
r galaxies and the DMO+HOD model

are still highly significant.

At this point, after removing all spatial and velocity bias from our

simulations, all statistics are well predicted (<2σ tension) by our

HOD model for the Illustris M−19
r sample, while the number density

and group multiplicity function are well predicted (<2σ tension)

for the EAGLE M−19
r sample. However, the correlation functions

and counts-in-cells statistics are still not well predicted for EAGLE

M−19
r . This indicates the possibility that the number of galaxies in

a halo may depend on a halo property other than mass, such as age

or concentration. This will be discussed in the next section.

7.3 Assembly/secondary bias

Halo assembly/secondary bias is the phenomenon whereby halo

clustering depends on a secondary parameter, such as age or

concentration, at fixed halo mass (e.g. Gao et al. 2005; Wechsler

et al. 2006; Salcedo et al. 2018). If the number of galaxies in a halo

depends on this secondary parameter, the clustering of galaxies

will inherit this additional halo clustering, a phenomenon known as

galaxy assembly bias (e.g. Croton et al. 2007; Zentner et al. 2014).

Galaxy assembly bias could be present in Illustris or EAGLE, but it

is explicitly not present in our DMO+HOD model. We now remove

any effects of assembly bias from our hydrodynamic simulation

galaxies, with the understanding that if this procedure improves our

ability to predict clustering statistics with our DMO+HOD model,

this is an indication that future HOD modelling should incorporate

parameters that deal with assembly bias.

To remove the presence of assembly bias from our simulation

galaxies, we identify pairs of haloes with similar masses, and swap

the positions and velocities of their galaxies. This is done after

already removing all spatial and velocity bias. In other words,

we first generate 1000 realizations of the simulation galaxies after

removing spatial and velocity bias (as described above), and then
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exchange galaxies in haloes of similar mass. When we exchange

galaxies in pairs of haloes, we shift the galaxy positions by the

difference in halo centre positions, so that a galaxy is in the same

position relative to the halo centre, but the halo centre has been

switched. For the velocities, we take the peculiar velocity of a

galaxy and subtract the mean halo velocity, thus putting the galaxy

in the frame of the halo. We then add this velocity to the velocity of

the new halo to get the new velocity of the galaxy. In other words,

we keep the velocity of the galaxy in the frame of its halo the

same, and simply give it a new halo velocity. We use four different

combinations of halo pairs, ultimately resulting in 4000 realizations

of our simulation galaxies after removing all spatial, velocity, and

assembly bias.

This procedure of exchanging galaxies in haloes of similar mass

effectively removes assembly bias from our data because it nullifies

any environmental effects on the number of galaxies in each halo.

If the number of galaxies in each halo was already only dependent

on halo mass, then this procedure should not produce any change

in clustering statistics. However, if the number of galaxies in a halo

had a dependence on a property other than halo mass, then swapping

galaxies in haloes with similar masses would remove the effect of

this phenomenon on our clustering statistics. The results of this are

detailed in Table 3. Once again, the p-values given are the median

of many realizations (in this case 4000).

The last point in each panel of Fig. 9 shows these median p-values

that result from removing assembly bias (in addition to correcting

the HMF and removing all spatial and velocity bias). Once again,

error bars show the range of p-values that correspond to the middle

68 per cent of our 4000 realizations. Removing assembly bias results

in all clustering statistics being well predicted by our HOD for

both simulations and luminosity samples. In the M−21
r samples, all

clustering statistics were already well predicted, so there is very little

change. More importantly, in the M−19
r samples, there are slight

improvements in all clustering statistics for the Illustris galaxies,

and there are major improvements for the correlation functions

and counts-in-cells statistics for the EAGLE galaxies. Of particular

note is the void probability function for the EAGLE M−19
r sample,

which remained below 5σ until assembly bias was removed, at

which point it reached 1σ confidence that the HOD model is a

good fit to the simulation. This agrees with the results of Chaves-

Montero et al. (2016), who detected galaxy assembly bias in the

EAGLE simulation, and found that the signature of assembly bias

was stronger for low-mass galaxies. This is also consistent with the

results of Tinker et al. (2006), which suggested that VPF is sensitive

to the presence of assembly bias. More recently, Wang et al. (2019)

also showed that counts-in-cells statistics can be powerful probes

of assembly bias.

8 SU M M A RY AND DISCUSSION

In this work, we have examined the validity of using HOD modelling

to reproduce galaxy clustering statistics. Halo models provide a

simple and computationally inexpensive way to investigate the

connection between galaxies and their dark matter haloes, but

they rely on the assumption that the role of baryons can be

easily parametrized in the modelling procedure. Using two dif-

ferent hydrodynamic simulations, Illustris-2 and EAGLE, we have

investigated the accuracy of using a simple five-parameter HOD to

reproduce clustering when applied to a high luminosity sample of

galaxies as well as a low luminosity sample. The HOD was fit to

each simulation and luminosity sample separately, and applied to

haloes from the DMO counterparts of Illustris and Eagle to create

mock galaxy catalogues. Our clustering statistics were measured in

the same way on our simulation galaxies as they were on our mock

catalogues. Our main results are the following:

(i) Overall, the vanilla HOD model is more successful when

applied to a high luminosity sample of galaxies than it is when

applied to a low luminosity sample of galaxies.

(ii) The simple five-parameter HOD model is able to accurately

(within 3σ tolerance) reproduce correlation functions, the group

multiplicity function, the void probability function, and the singular

probability function, for the high luminosity sample of galaxies in

both Illustris and EAGLE, as well as the number density in EAGLE.

(iii) In our M−21
r Illustris and EAGLE samples, the errors among

our 1000 mocks are much larger than the cosmic variance errors

from the 400 SDSS-like mocks. In other words, an SDSS size M−21
r

survey would perhaps be sensitive to clustering differences that

we are unable to detect in our analysis. In our M−19
r Illustris and

EAGLE samples, the errors among our 1000 mocks are smaller

than the cosmic variance errors from the 400 SDSS-like mocks.

This means that a survey with the precision of SDSS might not be

able to detect the differences that we find between hydrodynamic

galaxies and the HOD model. A future survey like the Dark En-

ergy Spectroscopic Instrument (DESI; DESI Collaboration 2016),

however, will have better precision than the SDSS due to its larger

volume, allowing it to potentially detect these small differences in

clustering measurements.

(iv) In general, the halo mass function is shifted to higher masses

when baryons are not included, resulting in an over prediction

of galaxy number density when an HOD is applied to the haloes

from the DMO simulations. After correcting the DMO halo mass

function, the vanilla HOD model is able to accurately reproduce

all clustering statistics in the high luminosity sample of galaxies in

both Illustris and EAGLE. It is also able to accurately reproduce

galaxy number density in both low luminosity samples.

(v) Even after correcting the halo mass function, the vanilla HOD

model is still unable to accurately (within 3σ tolerance) reproduce

most of the other five clustering statistics for the low luminosity

samples of galaxies in Illustris-2 and EAGLE. However, after

removing the potential effects of spatial, velocity, and assembly

bias from the galaxies in the original simulations, the HOD model

(with mass function correction) is able to accurately reproduce all

clustering statistics in both samples and both simulations.

These results demonstrate the prominent differences between the

EAGLE and Illustris simulations, in terms of the ways that baryons

affect halo masses and galaxy clustering. For example, the EAGLE

and Illustris simulations are very different in terms of the amount

of spatial, velocity, and assembly bias they exhibit. Additionally,

neither EAGLE nor Illustris reproduces the galaxy luminosity

function from the SDSS. Therefore, we cannot use the results from

our analysis of the clustering in these two hydrodynamic simulations

to draw conclusions about galaxy clustering in the real Universe.

Because of this, we do not attempt to infer the true amounts of

spatial, velocity, and assembly bias in the real Universe based on

this work, but rather recommend that any future work involving

HOD modelling should include free parameters for these biases.

Moreover, our work suggests that future work aiming to use HOD

modelling to study cosmology would benefit from focusing on high

luminosity galaxy samples, which seem to be less affected by the

aforementioned biases.

Additionally, different clustering statistics are sensitive to dif-

ferent biases. For example, the void probability function seems to

be particularly sensitive to the presence of assembly bias, while
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Table 4. Our fits to the halo mass ratios in Illustris-2 and EAGLE, as well as TNG100-2. In

the third column, x is equal to logMhalo.

Simulation Mass range Mhalo, Hydro/Mhalo, DMO

Illustris-2 1.00 × 1011 < M < 9.57 × 1012 −0.10771x + 2.21907

Illustris-2 M > 9.57 × 1012 0.07174x − 0.10774

EAGLE M > 1.00 × 1011 0.05956x + 0.16413

TNG100-2 1.00 × 1010 < M < 2.74 × 1012 −0.10171x2 + 2.37863x − 12.97684

TNG100-2 2.74 × 1012 < M < 1.06 × 1013 0.00189x + 0.84450

TNG100-2 M > 1.06 × 1013 0.09429x − 0.35479

the redshift space correlation function is sensitive to satellite

velocity bias, as can be seen in the low luminosity sample of

EAGLE galaxies. Therefore, properly constraining HOD param-

eters (especially when including spatial, velocity, and assembly

bias parameters), necessitates measuring several different clustering

statistics.

Of particular note is the difference in how baryons alter the halo

mass function between the two different simulations. Any future

work hoping to use HOD modelling will have to first correct the

DMO haloes by shifting the mass function to lower masses, so

that it more closely resembles what the mass function would look

like with baryons included in the simulation. However, the exact

nature of this correction to the halo mass function clearly depends

upon which hydrodynamic prescriptions are regarded as the truth.

The large difference that we see between the two simulations in

Fig. 8 demonstrates the extent to which mass corrections depend on

the details of supernova and AGN feedback physics. This result is

somewhat alarming because, unlike the other biases we examine in

this study, the effect of baryons on the halo mass function cannot be

easily parametrized, making it unclear how one must proceed with

halo modelling of observed clustering measurements.

At a minimum, we recommend that future halo modelling efforts

repeat their analyses a couple times, applying different corrections

to the DMO halo masses. This will provide a rough estimate of

the systematic uncertainty due to baryonic effects on the halo mass

function. For example, if a study finds strong evidence of assembly

bias when applying no correction to the halo masses, but then the

evidence disappears when the analysis is repeated using a mass

correction, one should not claim any detection of assembly bias.

To facilitate such a procedure, we fit simple functions to the mass

corrections shown in Fig. 8. In the case of EAGLE we fit a single

line, while for Illustris we fit a broken line. These fits are shown as

dashed lines in Fig. 8. In Table 4 we list the parameters for these

fits to the mass corrections in Illustris and EAGLE.

We have tested these fits and confirmed that they produce the

same results as doing the full abundance matching correction that we

performed in our analysis. Additionally, we present fits to the same

mass correction in IllustrisTNG (Marinacci et al. 2018; Naiman

et al. 2018; Nelson et al. 2018; Pillepich et al. 2018; Springel et al.

2018). TNG is more recent than both Illustris and EAGLE, and

makes use of updated feedback mechanisms, which results in a

halo mass correction that is different than what we see in either

Illustris or EAGLE. We make no assumptions about which of these

simulations produces the correct relationship between the masses

of their hydrodynamic and DMO haloes, but we recommend that

future halo modelling work makes use of one or more of these

corrections.

Rather than viewing these results as evidence that DMO sim-

ulations are insufficient for halo modelling and should thus not

be used to study galaxy clustering, we interpret these results

as confirmation that there is no consensus among hydrodynamic

simulations. Therefore, DMO simulations and halo models are still

very relevant tools for investigating the galaxy–halo connection, as

long as the halo model is given sufficient freedom, and the effect of

baryons on the halo mass function is accounted for.
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Jiménez E., Contreras S., Padilla N., Zehavi I., Baugh C. M., Gonzalez-Perez

V., 2019, MNRAS, 490, 3532

Jing Y. P., Mo H. J., Börner G., 1998, ApJ, 494, 1

Jones E. et al., 2001, SciPy: Open source scientific tools for Python.

Available at: http://www.scipy.org/

Jones D. H. et al., 2004, MNRAS, 355, 747

Jose C., Subramanian K., Srianand R., Samui S., 2013, MNRAS, 429, 2333

Kauffmann G., Nusser A., Steinmetz M., 1997, MNRAS, 286, 795

Kauffmann G., Colberg J. M., Diaferio A., White S. D. M., 1999, MNRAS,

303, 188

Kim J.-W. et al., 2014, MNRAS, 438, 825

Kravtsov A. V., Berlind A. A., Wechsler R. H., Klypin A. A., Gottlöber S.,
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Pujol A., Gaztañaga E., 2014, MNRAS, 442, 1930
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