Monthly Notices

MNRAS 491, 5771-5788 (2020)
Advance Access publication 2019 December 6

doi:10.1093/mnras/stz3442

Testing the accuracy of halo occupation distribution modelling using
hydrodynamic simulations

Gillian D. Beltz-Mohrmann “,* Andreas A. Berlind ¥ and Adam O. Szewciw

Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA

Accepted 2019 December 2. Received 2019 November 22; in original form 2019 September 5

ABSTRACT

Halo models provide a simple and computationally inexpensive way to investigate the
connection between galaxies and their dark matter haloes. However, these models rely on
the assumption that the role of baryons can easily be parametrized in the modelling procedure.
We aim to examine the ability of halo occupation distribution (HOD) modelling to reproduce
the galaxy clustering found in two different hydrodynamic simulations, Illustris and EAGLE.
For each simulation, we measure several galaxy clustering statistics on two different luminosity
threshold samples. We then apply a simple five parameter HOD, which was fit to each
simulation separately, to the corresponding dark matter-only simulations, and measure the
same clustering statistics. We find that the halo mass function is shifted to lower masses in the
hydrodynamic simulations, resulting in a galaxy number density that is too high when an HOD
is applied to the dark matter-only simulation. However, the exact way in which baryons alter the
mass function is remarkably different in the two simulations. After applying a correction to the
halo mass function in each simulation, the HOD is able to accurately reproduce all clustering
statistics for the high luminosity sample of galaxies. For the low luminosity sample, we find
evidence that in addition to correcting the halo mass function, including spatial, velocity,
and assembly bias parameters in the HOD is necessary to accurately reproduce clustering
statistics.

Key words: galaxies: groups: general —galaxies: haloes — galaxies: statistics —dark matter —
large-scale structure of Universe.

1 INTRODUCTION

Studying the connection between galaxies and the dark matter
haloes in which they reside is one of the keys to understanding
galaxy formation and evolution, as well as constraining cosmo-
logical models. In recent years, using hydrodynamic simulations
has become a popular method for investigating this connection
(e.g. Vogelsberger et al. 2014b). However, these simulations are
computationally expensive, and are thus ill-suited for exploring a
large parameter space. Moreover, different hydrodynamic simula-
tions produce different results; we currently lack a consensus on the
correct gas physics prescriptions to use.

By contrast, dark matter-only (DMO) simulations are much less
computationally expensive, and although the only physics involved
is gravity, they still allow us to predict the large-scale distribution
of dark matter as well as the statistical properties of dark matter
haloes in the Universe. One can then adopt an empirical rather
than an ab-initio approach and employ a halo model in order to
connect galaxies to the dark matter distribution. Halo models are a
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broad class of models based on the assumption that galaxies form
and live inside dark matter haloes. With a few free parameters that
can be fit to clustering observations, one can connect galaxies to
haloes, thus quantitatively modelling galaxy clustering on small
scales while bypassing the need for a complete understanding of
galaxy formation physics.

The earliest halo models to describe galaxy clustering were
the analytic models of Neyman & Scott (1952), Peebles (1974),
and McClelland & Silk (1977). Later, Kauffmann, Nusser &
Steinmetz (1997), Kauffmann et al. (1999), and Baugh et al.
(1999) showed that semi-analytic models could be used to predict
galaxy clustering by combining the results from N-body simula-
tions with theories for the formation and evolution of galaxies
within haloes. Soon thereafter, Jing, Mo & Bdrner (1998) and
Benson et al. (2000) found that galaxy clustering merely de-
pends on halo occupation statistics as a function of halo mass,
potentially sidestepping the need to model galaxy formation al-
together. Subsequently, several papers (e.g. Ma & Fry 2000;
Peacock & Smith 2000; Seljak 2000; Scoccimarro et al. 2001;
Sheth et al. 2001; White, Hernquist & Springel 2001; Cooray &
Sheth 2002) expanded on the work of Scherrer & Bertschinger
(1991) to combine both halo properties and occupation statistics
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to successfully predict the galaxy correlation function and power
spectrum.

A key ingredient of the halo model is the halo occupation
distribution (HOD), which defines the bias of a population of
galaxies by the conditional probability that a dark matter halo of
virial mass M contains N galaxies, together with prescriptions that
specify the relative spatial and velocity distributions of galaxies and
dark matter within haloes (Berlind & Weinberg 2002; Berlind et al.
2003). These relations can be parametrized with various degrees of
freedom. However, most studies have used simple formulations of
the HOD, with at most five free parameters that specify the mean
occupation number of galaxies, along with the assumptions that
galaxies trace dark matter inside haloes. This type of HOD model,
as proposed by Zheng et al. (2005), has become the ‘standard’ in
halo modelling studies.

Halo models have been used to model galaxy clustering in
many galaxy redshift surveys, including the Sloan Digital Sky
Survey (SDSS; York et al. 2000), the 2dF Galaxy Redshift Survey
(2dFGRS; Colless et al. 2001), the 6dF Galaxy Redshift Survey
(6dfGRS; Jones et al. 2004), and the SDSS III Baryon Oscillation
Spectroscopic Survey (BOSS; Dawson et al. 2013). Many studies
have used halo models to investigate the two-point correlation
function of both low redshift galaxies (e.g. Magliocchetti & Porciani
2003; Zehavi et al. 2004; Collister & Lahav 2005; Tinker et al.
2005; Zehavi et al. 2005, 2011; Watson et al. 2012; Beutler et al.
2013; Piscionere et al. 2015) as well as high redshift galaxies (e.g.
Bullock, Wechsler & Somerville 2002; Moustakas & Somerville
2002; Hamana et al. 2004; Zheng 2004; Lee et al. 2006; Tinker,
Wechsler & Zheng 2010; Jose et al. 2013; Kim et al. 2014) (as cited
in Sinha et al. 2018).

Some previous works (e.g. Zehavi et al. 2011) have found
statistical tension between predictions of the halo model and the
real Universe when fitting to galaxy clustering measurements in
the SDSS. However, these works rely on analytic halo models that
do not adequately control for systematic errors in the modelling
procedure, making it difficult to interpret the goodness-of-fit results.
Recently, Sinha et al. (2018) used a ‘fully numerical mock-based
methodology’ to test the standard ACDM-+halo model against
the clustering of SDSS DR7 galaxies. Their procedure carefully
controlled for systematic errors, allowing them to interpret the
goodness of fit of their model. They measured the projected cor-
relation function, group multiplicity function, and galaxy number
density, and found that while the model could successfully fit each
statistic separately, it was unable to fit them simultaneously. Their
best-fitting model was able to reproduce the clustering of low
luminosity galaxies, but revealed a 2.30 tension with the clustering
of high luminosity galaxies, indicating a possible problem with the
‘standard” HOD model.

There are several assumptions built into the standard HOD model
that could be incorrect. First, the HOD framework relies on the
assumption that cosmology and gravity alone govern the dark matter
halo distribution. However, it has been shown that gas physics can
also affect the properties of haloes (e.g. Cuietal. 2012; Bocquet et al.
2016). Secondly, the HOD typically assumes that the occupation
of galaxies is solely based on halo mass, and does not depend
on secondary halo properties like halo concentration or age. This
ignores the possibility that galaxy clustering may be affected by
the phenomenon known as assembly bias (Gao, Springel & White
2005; Wechsler et al. 2006; Croton, Gao & White 2007; Padilla et al.
2019; Salcedo et al. 2018; Xu & Zheng 2018; Zehavi et al. 2018;
Contreras et al. 2019). Finally, most HOD modelling assumes that
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galaxy positions and velocities within haloes trace the underlying
distribution of dark matter.

Zentner, Hearin & van den Bosch (2014) examined the extent
to which the presence of assembly bias could lead to systematic
errors in halo occupation statistics inferred from galaxy clustering.
The authors constructed two sets of realistic mock galaxy catalogues
with identical HODs: one with assembly bias and one with assembly
bias removed. They then fit standard HODs to the galaxy clustering
in each catalogue, and found that in the case where assembly
bias was removed, the inferred HODs agreed with the true HODs,
but when assembly bias was included, the inferred HODs showed
significant systematic errors.

Hearin et al. (2016) introduced a new class of HOD models,
known as ‘decorated HODs’, designed to incorporate parameters
for assembly bias in HOD models. The authors used these new
models to characterize the impact of assembly bias on clustering
statistics, and found that for SDSS-like samples, assembly bias can
affect galaxy clustering by up to a factor of 2 on 200 kpc scales. They
also found that on small scales (» < 1 Mpc) assembly bias generally
enhances clustering, but on large scales it can either increase or
decrease clustering. Vakili & Hahn (2019) and Zentner et al. (2019)
applied this decorated HOD model to galaxies in the SDSS DR7
and found evidence of galaxy assembly bias for some luminosity
samples.

Regarding the spatial distribution of galaxies within haloes, the
HOD often uses random dark matter particles to assign positions and
velocities to galaxies, or otherwise assumes a dark matter density
profile for galaxies (e.g. Navarro, Frenk & White 1997, NFW).
This does not account for the possibility that galaxies might not
move like dark matter due to phenomena such as mergers, tidal
stripping, and dynamical friction, leading to effects like spatial
and velocity bias. Both Watson et al. (2012) and Piscionere et al.
(2015) used halo models to predict the very small-scale clustering of
galaxies in the SDSS, and found that more luminous galaxies do not
trace underlying dark matter distributions of their haloes, indicating
the presence of spatial bias. Guo et al. (2015a) looked at galaxy
clustering in SDSS DR11 and found observational evidence for
central velocity bias (i.e. that central galaxies on average are not at
rest with respect to their host haloes) as well as satellite velocity bias
(i.e. in this case, that luminous satellite galaxies move more slowly
than the dark matter). In a subsequent paper, Guo et al. (2015b)
modelled the projected and redshift-space two-point correlation
functions of galaxies in SDSS DR7, and similarly found that
luminous central galaxies and faint satellite galaxies exhibit velocity
bias. Furthermore, they found that their measurements could be
successfully interpreted within an extended HOD framework that
includes central and satellite velocity bias parameters to describe
the motions of galaxies within haloes.

Pujol & Gaztafiaga (2014) investigated how well an HOD model
could reproduce the two-point clustering of galaxies in several semi-
analytic models, and found that the HOD failed to reconstruct the
galaxy bias for low-mass haloes, indicating the presence of assem-
bly bias. They also found that clustering shows some dependence on
the substructure of the host halo. Subsequently, Pujol et al. (2017)
further compared the HOD model to semi-analytic models, and
found that using local density rather than halo mass in the HOD
model was a better predictor of galaxy bias.

In this paper we use hydrodynamic simulations of galaxy
formation to investigate the extent to which all these built-in
assumptions to the standard HOD model can affect galaxy clustering
statistics. Although previous works (e.g. Artale et al. 2018; Bose
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Table 1. Simulation parameters. The columns show (from left to right): simulation name, box size, number of dark matter particles,
dark matter particle mass (for the hydrodynamical run), redshift used, and cosmological parameters. The dark matter particle mass for
Ilustris-2-Dark is 4.2 x 107 (¢~! M), and for EAGLE Dark it is 7.5 x 10° (2~ M).

Simulation  Lpox (#"'Mpc)  Npm  mpwm (™' Mg) z h Qm Qa Qp o3 ng
Tllustris-2 75 910° 3.5 x 107 0.13 0.704 02726  0.7274  0.0456 0.809  0.963
EAGLE 67.77 15043 6.6 x 10° 0.101  0.6777  0.307 0.693 0.04825  0.8288  0.9611

et al. 2019) have used hydrodynamic simulations to investigate
variations in halo occupancy with environment, concentration, and
formation time, none have looked at the impact of the assumptions
of the HOD on galaxy clustering statistics compared to clustering
in hydrodynamic simulations. Additionally, previous works have
not looked at a wide variety of clustering statistics, nor have
they compared bias effects across multiple different hydrodynamic
simulations.

In this work, we focus on two different hydrodynamic simu-
lations, as well as two different luminosity threshold samples of
galaxies. We measure several different galaxy clustering statistics
on each of our samples. We then fit a five parameter HOD
model to each simulation and sample, and apply these models to
the corresponding DMO simulations. We then measure the same
galaxy clustering statistics on our HOD galaxies as we did on our
hydrodynamic galaxies. We examine the accuracy with which we
can predict galaxy clustering using our HOD modelling framework,
as compared to the full hydrodynamic simulations. Finally, we
investigate how we might expand the HOD model to include effects
like assembly, spatial, and velocity bias in order to increase the
accuracy of the model. We note that our analysis strictly compares
HOD modelling to hydrodynamic simulations and not to real galaxy
surveys. Therefore, conclusions should not be drawn about the
accuracy of the clustering produced either by the simulations or
the HOD models as compared to real observations. However, the
conclusions that we draw about the need to add freedom to HOD
models are still valid.

We discuss our simulations in Section 2, and our halo model in
Section 3. In Section 4 we discuss our clustering statistics, and in
Section 5 we discuss the accuracy of our model. In Section 6 we
discuss our halo populations, and in Section 7 we discuss possible
extensions to our HOD model. Finally, in Section 8 we summarize
our results and conclusions.

2 SIMULATIONS

We use two cosmological N-body simulations for our analysis:
Illustris n et al. (Genel et al. 2014; Vogelsberger et al. 2014a,b;
Nelson et al. 2015) and EAGLE (Springel 2005; Crain et al. 2015;
Schaye et al. 2015; McAlpine et al. 2016; The EAGLE team 2017).
The Illustris-2 simulation has a volume of 753(h_3Mpc3) and a dark
matter particle mass of 3.5 x 107 (4~! Mg). The EAGLE simulation
(RefL100N1504) has a volume of 67.77° (h—>Mpc?) and a dark
matter particle mass of 6.6 x 10°(h~'Mg). A summary of the
simulation parameters can be found in Table 1.

Each of these hydrodynamic simulations has a corresponding
DMO counterpart, derived from the same cosmology and initial
conditions. These two simulations are ideal for our analysis because
they have high enough resolutions for the galaxies we are interested
in, as well as large enough volumes to accurately measure clustering
statistics out to 10/2~'Mpc scales. We specifically choose to use
Illustris-2 because the resolution of Illustris-3 is not quite high
enough for our purposes, but the resolution of Illustris-1 is not

necessary for the halo mass range that we are interested in. This
is because in this work, the smallest haloes that we will ever
populate with galaxies using our HOD model are on the order of
10" (n~! Mp). In Ilustris-2-Dark, a halo of this size has about 2400
particles, so it is well-resolved. Additionally, such a small halo will
only ever be assigned a central galaxy (if it is assigned a galaxy at
all), and thus the only halo properties that we need to know are the
position and velocity of the halo, which should be well-established
with 2400 particles.

The Mlustris simulation was performed with the moving-mesh
code AREPO, while the EAGLE simulation was performed with the
GADGET-3 tree-SPH code, a modified version of the public GADGET-
2 simulation code. Both simulations employ models for star
formation, stellar evolution, gas cooling and heating, supernovae
feedback, black hole formation, and AGN feedback. According to
Scannapieco et al. (2012), while GADGET-3 and AREPO share the
same subgrid physics, their different numerical hydrodynamical
techniques can lead to large discrepancies in their galaxies. In their
tests, GADGET-3 formed only about half as many stars as AREPO, and
AREPO has a much higher gas and stellar mass fraction than GADGET-
3. The benefit of using two simulations with different physics for our
analysis is that we can compare our results from the two different
simulations, providing us with some theoretical uncertainty on our
results.

We are interested in two different samples of galaxies: a ‘high’
luminosity sample, similar to that of the volume-limited SDSS DR7
(Abazajian et al. 2009) M, < —21 sample, and a ‘low’ luminosity
sample, similar to that of the SDSS DR7 M, < —19 sample. (We
will refer to these samples as M 2! and M, ' henceforth.) We
choose to use the z = 0.13 snapshot of the Illustris simulation
because it is the closest available redshift to the median redshift of
the SDSS M, 2! sample (zmea = 0.132). We choose the z = 0.101
snapshot of the EAGLE simulation because it is also the closest
available redshift to that of the SDSS DR7 M,~2! sample. The M
luminosity threshold sample has a median redshift of 0.054. For
the EAGLE simulation, the closest available redshift is still the z =
0.101 snapshot. Therefore, because the snapshot does not change
for our analysis on the EAGLE simulation, we likewise chose not
to change the snapshot for the Illustris simulation. However, there
is little evolution between z = 0.13 and z = 0.054, and we do not
compare our clustering statistics to those measured on SDSS data,
so our choice of snapshot should not impact our results.

To create our galaxy samples, for each simulation we find
the luminosity threshold that results in a galaxy number density
equivalent to that of the SDSS data sets of interest (either M2 or
M "%). The luminosity threshold for each simulation and sample
is given in Table 2. We note that the luminosity thresholds are not
exactly —21 or —19, which indicates that the luminosity functions
in Illustris and EAGLE are not the same as that in the SDSS,
nor are they the same as each other. (This discrepancy emphasizes
the lack of consensus among hydrodynamic simulations, and thus
the advantage of using HOD modelling with plenty of freedom to
model galaxy clustering in the real Universe.) Thus, if we create our
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Table 2. HOD parameters for each sample. The columns show (from left to right): the simulation name, the absolute magnitude
limit for the SDSS sample whose number density we are matching, the absolute magnitude limit used in the case of the given
simulation, the galaxy number density, the five best-fitting HOD parameters for that sample, and the corresponding reduced

chi-square value.

Simulation M, (SDSS) Mlim ng (PMpc™3)  10gMmin ~ Ologm logM logM,; a x2/dof
Tllustris —21 —22.840 0.0012 12.681 0.532 12296 13.635 0.994  0.908
Illustris —-19 —20.354 0.0149 11.500  0.180 11.659  12.590 0979  8.560
EAGLE —21 —21.852 0.0012 12.767 0.504 12.467  13.799 1.000 1.498
EAGLE —-19 —19.695 0.0149 11.555 0.237 11717 12566 0.938  3.635

samples based on luminosity, our number density will be different
than that of the SDSS samples. Therefore, we choose to use a
different luminosity threshold to do an accurate number density
comparison. We will still refer to the samples as the M, 2! and
M1 samples.

After setting the luminosity threshold, we then determine the
number of remaining galaxies in each halo, and average in bins
of halo mass. For the M %' samples we use 14 evenly spaced
logarithmic bins between 11.9 and 14.52. For the M, ' samples
we use 20 evenly spaced logarithmic bins between 11.0 and 14.52.
Our HODs for each galaxy sample are shown in Fig. 1. The Illustris
samples are plotted in red, and the EAGLE samples are plotted
in blue.

3 HALO OCCUPATION MODELLING

3.1 The halo occupation distribution

The HOD framework governs the number, positions, and velocities
of galaxies within a dark matter halo based on a few free parameters,
which depend only on the mass of the halo. The version of the
HOD that we utilize in this work is the five parameter ‘vanilla’
HOD model of Zheng, Coil & Zehavi (2007) (as cited in Sinha
et al. 2018). Within their haloes, galaxies are split into centrals and
satellites (Kravtsov et al. 2004; Zheng et al. 2005).

The mean number of central galaxies in a halo of mass M is
described by!

1 logM — logM in
(Neen) = = {1 +erf (u)} ,
OlogM

5 ey

where M,y;, is the mass at which half of haloes host a central galaxy,
O10gn 18 the scatter around this halo mass, and erf(x) is the error
function, erf(x) = % Jo exp(—y?)dy. The central galaxy is always
placed at the centre of the halo, and given the mean velocity of the
halo (i.e. we assume that the central galaxy is at rest with respect to
the halo).

We determine the number of satellite galaxies to place in each
halo by drawing from a Poisson distribution with a mean given by

M—M0>“

M (€5

(Nsat) = (Ncen) X (
where M, is the halo mass below which there are no satellite
galaxies, M, is the mass where haloes contain on average one
satellite galaxy, and « is the slope of the power-law occupation
function at high masses. Each satellite galaxy is assigned the
position and velocity of a randomly chosen dark matter particle

IThroughout this paper, log refers to logjg.
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within the halo, i.e. we assume that satellite galaxies trace the spatial
and velocity distribution of dark matter within the halo.

In summary, our HOD model contains five free parameters that
control the number of galaxies in each halo as a function of halo
mass. Our model assumes that all galaxies live inside dark matter
haloes, and that the number of galaxies in a halo depends only on
the mass of the halo and not on any other halo properties, such
as age or concentration (i.e. there is no galaxy assembly bias).
However, recent work (e.g. Zentner et al. 2014; Vakili & Hahn 2019;
Zentner et al. 2019) indicates that galaxy assembly bias is probably
present in luminosity threshold samples, so this assumption is likely
incorrect.

Additionally, our model assumes that the number of satellite
galaxies in each halo is governed by a Poisson distribution. How-
ever, results from simulations indicates that the scatter in the number
of satellite galaxies at fixed halo mass is probably non-Poissonian
(Boylan-Kolchin et al. 2010; Mao, Williamson & Wechsler 2015).
In fact, Jiménez et al. (2019) found that the HOD was best able to
reproduce the spatial distribution of galaxies in a semi-analytical
model when they used a negative binomial distribution to govern
the number of satellite galaxies in a halo.

Finally, our model assumes that the central galaxy in each halo
lives at the centre of the halo and moves with the mean velocity of
the halo (i.e. there is no central spatial or velocity bias), and that
the satellite galaxies in each halo follow the spatial and velocity
distribution of dark matter within the halo (i.e. there is no satellite
spatial or velocity bias). However, observations suggest that both
central and satellite galaxies probably do exhibit spatial bias (e.g.
Watson et al. 2012; Piscionere et al. 2015) as well as velocity bias
(e.g. Van den Bosch et al. 2005; Guo et al. 2015a,b).

While we do use this standard ‘vanilla’ HOD in our initial
analysis, we will discuss variations and extensions of this model
in Section 7.

3.2 Fitting the HOD

Next, we need to determine the five parameters that best describe
the HOD in each simulation and sample. We do this in the following
way. We start with an initial guess for each parameter. Using this
fiducial HOD model, we assign a number of central and satellite
galaxies to the haloes in the hydrodynamic run of the simulation.
(The halo mass that we use for this is the total FoF group mass,
i.e. including dark matter as well as baryonic particles.) Because
there is some random variation in the HOD modelling framework,
we repeat this process 300 times in order to generate 300 different
realizations of our fiducial HOD. We then determine the number of
galaxies in each halo (averaged in bins of halo mass), in the same
way that we did for the original galaxies in the simulation. We can
then calculate a x? to assess how well our fiducial HOD model fits
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Figure 1. Best-fitting HOD for Illustris-2 (left-hand panel) and EAGLE (right-hand panel) galaxies. The Illustris-2 high luminosity (M,~ 21y galaxy sample is
plotted with a solid red line, and the low luminosity (M~ 19y sample is plotted with a dashed red line, while the EAGLE high luminosity sample is plotted with
a solid blue line, and the low luminosity sample is plotted with a dashed blue line. The grey lines in each case show 300 realizations of the best-fitting HOD
model for that sample. The black line and error bars represent the mean and standard deviation among these 300 realizations.

the simulation:

2
X2 = Z M, 3)
i oi

where D; is the number of galaxies in one halo mass bin from the
simulation, M; is the number of galaxies in the same halo mass bin
averaged over 300 realizations of our fiducial HOD model, and o;
is the standard deviation among the 300 different realizations of
our fiducial HOD. We do this separately for centrals and satellites,
and then sum over all of our halo mass bins. Based on this x2,
we adjust our fiducial HOD parameters and repeat this process. We
use a Nelder—-Mead optimization algorithm (Nelder & Mead 1965;
Jones et al. 2001; Gao & Han 2012) to minimize x>.

In Table 2, we list the luminosity thresholds for each sample, as
well as the best-fitting HOD parameters for each simulation. Shown
in Fig. 1 are the best-fitting HODs for each of our simulations and
density samples. While the M, 72! samples in both simulations each
achieved a x2/DOF of close to 1, the M~'? samples are not fit as well
by the HOD, particularly in Illustris. This could be an indication that
the form of the HOD is not optimal for describing a low-luminosity
galaxy sample, but it can easily describe a high-luminosity sample.

One of the assumptions made in our modelling procedure is
that the probability distribution governing the number of satellite
galaxies in a halo is Poissonian. To investigate this assumption we
examine the average number of satellite—satellite pairs per halo in
bins of halo mass, (N(N — 1)), or (N?)yy — (N)y. A Poisson
distribution of mean (N) has variance (N?) = (N)> + (N). Thus, if
the number of satellite galaxies comes from a Poisson distribution,
then (N(N — 1)),/(N)? should be equal to 1 (Berlind et al. 2003).

In Fig. 2 we have plotted this quantity for the Illustris (left, red)
and EAGLE (right, blue) M~'? samples as a function of halo mass.
We have also plotted percentiles for our 300 HOD realizations for
each sample (shown in grey), as well as the median of the 300
realizations. In our HOD model, the number of satellite galaxies is
drawn from a Poisson distribution by design, so the median of these
realizations should be 1 for all halo mass bins above M,,;, (indicated
by the vertical green dashed line; below M.y, it is extremely unlikely
that there will be any satellites, so this quantity should be 0.) Both
the Illustris and EAGLE samples are Poissonian at higher halo
masses, but appear slightly sub-Poissonian at lower halo masses.
However, neither sample is incompatible with its corresponding
distribution of HOD realizations, so it is reasonable to conclude
that the satellite numbers in Illustris and EAGLE are consistent
with our HOD model. (The M 2! samples have very few satellites,
and thus are very noisy, which is why they are not shown here. They
do not exhibit any non-Poissonian trends.)

3.3 Building mock galaxy catalogues

Once we have determined the best-fitting HOD parameters for our
sample, we then need to actually place galaxies in haloes. We do
this on the DMO versions of the simulations. As stated earlier, the
halo mass of interest is the total mass of the Friends-of-Friends
(FoF) group (i.e. parent halo). We assign the central galaxy the
position of the group, which is defined as the spatial position within
the periodic box of the particle with the minimum gravitational
potential energy (in comoving coordinates). Additionally, we assign
the central galaxy the velocity of the group, which is the sum of
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Figure 2. The second moment of the HOD for Illustris-2 M~ 19 galaxies (red points, left-hand panel) and EAGLE M- 19 galaxies (blue points, right-hand
panel). The dark and light grey shaded regions show the inner 68 and 95 per cent of the realizations of the best-fitting HOD model for that sample, and the

black points are the median of the 300 realizations.

the mass-weighted velocities of all particles/cells in the group. The
peculiar velocity is obtained by multiplying this value by 1/a, where
a is the scale factor. (In the EAGLE simulation, the velocity of the
parent halo is not provided, so we instead assign the central galaxy
the velocity of the central subhalo.) To place satellite galaxies,
we randomly select dark matter particles from the parent halo
and assign galaxies the positions and velocities of these randomly
chosen particles. The only stipulation we make is that we never
choose the same random dark matter particle twice; i.e. we will
never place two galaxies on the same particle, but we can place
them on very nearby particles. We repeat this process 1000 times,
so that we ultimately have 1000 different realizations of our best-
fitting HOD model applied to our DMO simulation. We will refer
to these 1000 realizations as mock galaxy catalogues.

4 GALAXY CLUSTERING MEASUREMENTS

Once we have populated the dark matter haloes in each simulation
with galaxies, the next step is to measure a series of clustering
statistics on both the galaxies from the original simulation and the
galaxies from our mock catalogues. We measure these statistics
in the same way on the simulation galaxies as we do on our
mocks, in order to assess how well our HOD model can reproduce
galaxy clustering properties as compared to a full hydrodynamic
simulation.

The first property that we measure is the number density of
galaxies. By comparing the number densities of galaxies in our
simulations and in our mocks, we can test how well the HOD fits
the simulation, as well as how similar the halo mass functions are in
the hydrodynamic and DMO simulations. Figs 3—6 show results for
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the Nlustris M2, EAGLE M, Illustris M,"'°, and EAGLE M, "°
samples, respectively. The top left-hand panel of each figure shows
the distribution of number densities among the 1000 mocks for that
sample (together with the mean and standard deviation), as well as
the number density for the corresponding hydrodynamic sample.
The shaded region in each figure shows cosmic variance errors (one
standard deviation) calculated from 400 mock galaxy catalogues
of the corresponding SDSS sample (Sinha et al. 2018). The spread
among our 1000 HOD mocks indicates how well we can measure
galaxy number density in a box given the scatter in our HOD model.
The spread among 400 SDSS mocks indicates how accurately a
difference in number density could be detected by the SDSS.

In every case, applying the HOD to the DMO simulation results
in a significantly overestimated galaxy number density (by up to
20 per cent for the Illustris M~2! sample). For both M 2! samples
(Figs 3 and 4), this difference in number density is larger than
the cosmic variance error from the SDSS M;~%! sample (shown in
green); in other words, an SDSS-like survey would easily notice
this discrepancy. For the M,"'° samples (Figs 5 and 6), although
the difference between the simulation and the HOD number density
is quite significant, the cosmic variance error (shown in yellow) is
larger, indicating that an SDSS-like survey would not pick up on
this difference. None the less, it is shocking that in every case the
HOD (which was fit to the simulation) systematically significantly
overestimates the galaxy number density. This points to a major
issue with applying HOD to a DMO simulation: the halo mass
function is different in hydrodynamic and DMO simulations. This
will be discussed further in Section 6.

Next, we measure five additional clustering statistics. Before we
can do this, we must introduce redshift-space distortions into both
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Figure 3. All clustering measurements for the M~ 21 sample of Tllustris-2 galaxies. The red lines are measured on galaxies from the original hydrodynamic
simulation, while the dark red lines show the average of 1000 realizations of the best-fitting HOD model applied to the dark matter-only simulation. The
error bars represent the standard deviation among the 1000 realizations. The shaded regions around the red lines show cosmic variance errors (one standard
deviation) calculated from 400 mock galaxy catalogues of the SDSS M.~ 21 sample, and thus illustrate the size of deviations that could be detected by

the SDSS.

our simulation galaxies as well as our mock galaxies. We do this
by placing an observer infinitely far away from our box and taking
the z-axis as the line-of-sight coordinate (using periodic boundary
conditions). Including these distortions allows us to probe how well
our model reproduces the velocities of the galaxies.

Berlind & Weinberg (2002) investigated galaxy bias in an HOD
framework by measuring several clustering statistics. They found
that the galaxy correlation function is affected by different parts
of the HOD on different scales, and that other clustering statistics
(such as the void probability function and the group multiplicity
function) are also sensitive to different combinations of HOD
parameters. Sinha et al. (2018) similarly found that analyses
involving several different galaxy clustering statistics have the most
power to constrain galaxy bias. Because of this, the five additional
clustering statistics that we measure in this work are the redshift-
space correlation function, the projected correlation function, the
group multiplicity function, the void probability function, and what
we call the ‘singular probability function’ (i.e. the probability
of having exactly one galaxy in a region). These five different
clustering statistics are described in detail below.

4.1 The projected correlation function

The most commonly used galaxy clustering statistic, the projected
correlation function, removes the effect of redshift-space distortions
by first counting pairs of galaxies in bins of their line-of-sight and

projected components, 7 and r,,, and then integrating over 7:

wp(rp) = 2/0 " &(rp, m)dm. 4)

We count pairs of galaxies in 10 evenly spaced logarithmic
bins of projected separation r, between 0.2 and 5.37 h~'Mpc. We
then integrate out to 7, of 20 h*'Mpc for each sample. (For
computational reasons, 7y, must be < %Lbox.) We use the blazing
fast code CORRFUNC (Sinha & Garrison 2017, 2019) to compute our
projected correlation function.

The projected correlation function has been used as the workhorse
of HOD modelling (e.g. Zehavi et al. 2011; Sinha et al. 2018).
Recently, Zentner et al. (2019) used measurements of the projected
correlation function to constrain assembly bias of SDSS DR7
galaxies within the decorated HOD model of Hearin et al. (2016).
The authors found highly significant central galaxy assembly bias in
the M2 and M2 samples, as well as significant satellite galaxy
assembly bias for the M~'° sample. They did not find any assembly
bias in the M, ' sample. Meanwhile, Vakili & Hahn (2019) also
looked at clustering measurements of SDSS DR7 galaxies and found
that at fixed halo mass, satellite galaxies show no correlation with
halo concentration, and central galaxies shows little correlation with
halo concentration for the M 2! and M;>'> samples, and slight
correlation with halo concentration in the M;72%3, M 2%, and M"°
samples.
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Figure 4. Same as Fig. 3 for the M~ 2l sample of EAGLE galaxies.

In the top middle panels of Figs 3—6 we have plotted the projected
correlation function from the hydrodynamic simulations, as well
as the average projected correlation function of our 1000 DMO
mocks, for each of our samples. For the M %' samples (Figs 3
and 4) the HOD does reasonably well at recovering the projected
correlation function from the simulations. Though there are visible
discrepancies, these are not highly significant given the plotted
uncertainties. However, for the Illustris M!? sample (Fig. 5), the
HOD significantly overestimates the projected correlation function
at small scales. In contrast, for the EAGLE M~!? sample (Fig. 6), the
HOD significantly underestimates the projected correlation function
at all but the smallest scales. This indicates that although the
clustering is correct for high luminosity galaxies, there is a possible
problem with the spatial assumptions made in the HOD, which
specifically impacts the clustering of low luminosity galaxies. The
Mlustris M~ sample is most likely affected by spatial bias, which
impacts small scales, while the EAGLE M~ is likely more affected
by assembly bias, which impacts large scales. We note that the pro-
jected correlation function is not sensitive to velocity information, so
any discrepancies must be due to spatial and/or assembly bias, and
not velocity bias. These biases will be discussed further in Section 7.

4.2 The redshift-space correlation function

The 3D redshift-space two-point correlation function £(s) is the
excess number of galaxy pairs above that which is expected for a
random distribution of points, as a function of redshift-space pair
separation s (in contrast to the projected separation r, described
above). In this work, we count pairs in 10 bins of separation s
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between 0.2 and 5.37 h~'Mpc (the same bins as those used for
the projected correlation function). We also use CORRFUNC to
compute our redshift-space correlation function. Measuring the
redshift-space correlation function allows us to access not only
spatial information about our galaxies, but also velocity information,
because the redshift-space distortions of our galaxies depend on
their velocities. Thus, with this measurement, we can examine the
validity of the assumption in the HOD that galaxies trace the velocity
distribution of dark matter within the halo (in addition to examining
our assumptions about the spatial distribution of galaxies).

In the top right-hand panels of Figs 3—-6 we have plotted the
redshift-space correlation function from our simulations, as well as
the average redshift-space correlation function of our 1000 mocks,
for each of our samples. Results are qualitatively similar to those
using the projected correlation function. For the M2' samples
(Figs 3 and 4) the HOD successfully recovers the redshift-space
correlation function from the simulations. However, for the Illustris
M sample (Fig. 5), the HOD once again significantly overesti-
mates the correlation function at small scales, while for the EAGLE
M sample (Fig. 6), the HOD significantly underestimates the
correlation function at all but the smallest scales. This again suggests
a problem with the spatial assumptions made in the HOD, as well as
the velocity assumptions, which specifically impact the clustering of
low luminosity galaxies. This will be discussed further in Section 7.

4.3 The group multiplicity function

The group multiplicity function is the abundance of galaxy groups
as a function of the number of galaxies in the group, n(N) (e.g.
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Figure 5. Same as Fig. 3 for the M,‘19 sample of Illustris-2 galaxies.

Berlind & Weinberg 2002). We use the Berlind et al. (2006) FoF
algorithm for identifying groups. Galaxies are linked together if
their projected and line-of-sight separations are both less than a
corresponding linking length. We adopt the Berlind et al. (2006)
linking lengths of b, = 0.14 and b, = 0.75, which are given in units
of the mean inter-galaxy separation ng_'/ 3, where ng is the sample
number density. For our low luminosity samples, we measure groups
with the following numbers of galaxies: 3, 4, 5, 67, 8-11, >12.
For our high luminosity samples, we measure groups of 3, 4, 5, and
6 or more galaxies.

In the lower left-hand panels of Figs 3—6 we have plotted the
group multiplicity function from our simulations, as well as the av-
erage group multiplicity function of our 1000 mocks, for each of our
samples. For the M 2! samples (Figs 3 and 4) the HOD successfully
recovers the group multiplicity function from the simulations. The
HOD also successfully reproduces the group multiplicity function
for the EAGLE M,"" sample (Fig. 6). However, for the Illustris
M:" sample (Fig. 5), the HOD significantly overestimates the
group multiplicity function for the largest groups. This further
points to a problem with the spatial and velocity assumptions
made in the HOD, particularly as they affect the clustering of
low luminosity galaxies in Illustris. This will be discussed further
in Section 7.

4.4 Counts-in-cells statistics

Counts-in-cells statistics measure the probability of finding a given
number of galaxies within a randomly placed finite region (e.g. a

sphere) as a function of region size (e.g. radius). One special case
of this is the void probability function (VPF), which measures the
probability of finding no galaxies in a random region of space.
Tinker, Weinberg & Warren (2006) attempted to constrain galaxy
bias using void statistics within an HOD framework, and found that
the VPF, in contrast to the projected correlation function, is quite
sensitive to environmental variations of the HOD. Later, McCullagh
et al. (2017) showed that catalogues created using SHAM and the
semi-analytic model GALFORM, which were designed to have the
same large-scale 2-point clustering, have different VPFs due to
their different HOD shapes, suggesting that the VPF could be used
to rule out certain HOD models. Recently, Walsh & Tinker (2019)
fit the standard HOD model to the two-point correlation function
of BOSS galaxies and found that it was able to accurately predict
the void probability function, indicating that galaxy assembly bias
does not affect the clustering of massive galaxies.

Wang et al. (2019) studied the power of the VPE, counts-
in-cylinders, and counts-in-annuli, as well as the projected two-
point correlation function and the galaxy—galaxy lensing signal to
constrain galaxy assembly bias from redshift survey data using the
decorated HOD, and found that the counts-in-cells statistics are
more efficient at constraining galaxy assembly bias when com-
bined with the projected correlation function than galaxy—galaxy
lensing is.

Another variation of counts in cells that we use is what we
will refer to as the ‘singular probability function,” (SPF) or the
probability of finding exactly one galaxy in a randomly placed
region. We measure both the VPF and the SPF in spheres of evenly
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Figure 6. Same as Fig. 3 for the M~ 19 sample of EAGLE galaxies.

spaced bins of radius r, beginning with 1/4~!'Mpc and ending with
10 A~ "Mpc.

In the lower middle (right-hand) panels of Figs 3—-6 we have
plotted the VPF (SPF) of our simulations, as well as the average
of our 1000 mocks, for each of our samples. For the Illustris
M2 sample (Fig. 3) the HOD struggles to recover the VPF at
intermediate and large scales, and likewise struggles to recover the
SPF at intermediate scales. For the EAGLE M >! sample (Fig. 4)
the HOD shows similar tension in the VPF and the SPF. For the
Ilustris M~ sample the agreement looks better, but the error bars
are very small so it is difficult to surmise based on looking at Fig. 5
alone. For the EAGLE M sample (Fig. 6) the HOD struggles to
reproduce both the VPF and the SPF at most scales. These problems
could indicate issues with the assumptions made in the HOD. They
could also be compounded by the inability of the HOD to reproduce
the correct number density, since counts-in-cells statistics, and the
VPF in particular, are very sensitive to number density. This will be
discussed further in Section 7.

5 ASSESSING THE ACCURACY OF THE HOD
MODEL

In Figs 3-6 we saw that for some statistics (like number density)
the HOD applied to DMO simulations does not provide a good fit
to the hydrodynamic simulations for any of our samples, while for
other statistics (like the correlation functions) the HOD appeared to
provide a good fit to the simulations for the high luminosity samples
and not the low luminosity samples. In general, however, the success
of the HOD model is difficult to ascertain visually because error bars

MNRAS 491, 5771-5788 (2020)

are often small and are likely correlated. In order to quantify the
accuracy with which our HOD model can reproduce the clustering
statistics measured on a hydrodynamic simulation, we calculate x>
for each clustering statistic

X=Xk ©)
ij
where
D, — M;
Xi=—""1, (6)
O

D; is the value of one bin of a clustering measurement on the
hydrodynamic simulation galaxies (either Illustris or EAGLE, and
either M1 or M%), M, is that same measurement averaged over
our 1000 mock galaxy catalogues for that sample, and o; is the
standard deviation of that measurement among the 1000 mock
galaxy catalogues. R;; is the correlation matrix for each clustering
statistic
S/
RV
which is the covariance matrix normalized by its diagonal elements.
The covariance matrix is calculated as

R )

1 N
Cij = 5 2 =30 = ), ®)
1

where the sum is over the N = 1000 mock galaxy catalogues, and
y; and y; are two bins of a clustering statistic, and y; and y; are the
mean measurements over the 1000 mocks. We note that since the
hydrodynamic simulation and the HOD mocks come from initial
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Table 3. p-values from comparing the clustering statistics of hydrodynamic galaxies to those of DMO+HOD mock galaxies, for different
simulations and samples, with no correction (first), after correcting the halo mass function (second), additionally removing satellite spatial bias
(third), additionally removing all spatial and velocity bias (fourth), and additionally removing assembly bias (fifth). The columns show (from left to
right): simulation name, magnitude limit for the SDSS sample with the same galaxy number density, which model was used, and the p-values for

each of our six measurements.

Sim. Sample Correction n wpy(rp) E(s) n(N) Py(r) Pi(r)

Tllustris —21 No correction 284 x107* 461 x1072  6.62x 107" 536 x 107! 1.86 x 1072 4.04 x 107!
Tllustris —21 Halo mass function ~ 4.54 x 107! 143 x 107" 914 x 107" 9.77 x 107! 479 x 1071 6.28 x 107!
Tlustris —21  +Satellite spatial bias  4.54 x 107! 6.46 x 107" 751 x 107! 6.95 x 107! 484 x 107" 635 x 107!
Tlustris —21 +Velocity bias 454 x 107" 6.66 x 107" 598 x 107" 7.09 x 107! 397 x 1071 6.13 x 107!
Tlustris —21 +Assembly bias 4.54 x 107! 6.15 x 107! 5.25 x 107! 6.11 x 107! 523 x 1071 6.87 x 107!
Tlustris —-19 No correction 835x 107 113 x 1077  1.61 x107* 536 x 1074 444 x107% 599 x 1072
Tllustris —-19 Halo mass function ~ 6.66 x 1072 523 x 107° 243 x 1073  3.48 x 10~* 1.05 x 1073 525 x 1072
Tlustris —19  +Satellite spatial bias  6.66 x 107> 258 x 1072 1.14 x 107! 1.87 x 102 211 x 1073 5.69 x 1072
Tlustris —-19 +Velocity bias 6.66 x 1072 289 x 1072 194 x 107! 876 x 1072 9.68 x 1072 4.42 x 107!
Tlustris -19 +Assembly bias 6.66 x 1072 7.64x 1072 481 x 107"  1.65x 107! 3.93 x 1071 7.82 x 107!
EAGLE 21 No correction 984 x 1073 589 x 1073  3.69x 1073 818 x 107! 532x 1072 1.91 x 1072
EAGLE -2l Halo mass function ~ 8.56 x 107! 3.64 x 1072 4.07 x 1072 7.02 x 107! 555 x 107" 2.01 x 107!
EAGLE  —21  +Satellite spatial bias  8.56 x 107! 4.05 x 107! 1.53 x 10~ 9.18 x 102 6.99 x 1071 2.92 x 107!
EAGLE  —21 +Velocity bias 856 x 1071 406 x 107" 253 x 107" 1.98 x 107! 6.61 x 1071 2.69 x 107!
EAGLE  -21 +Assembly bias 856 x 1071 3.08 x 107! 555x 107! 4.84 x 107! 3.55x 1071 4.06 x 107!
EAGLE  —19 No correction 637 x 1072 111 x 1073 163 x 107 450 x 107! 7.11 x 1073 337 x 10722
EAGLE  —19 Halo mass function ~ 8.25 x 107! 1.06 x 1078 342 x 10710 631 x 107! 479 x 10713 1.42 x 1077
EAGLE  —19  4Satellite spatial bias 825 x 10! 390 x 107> 222 x 107%  1.13 x 107! 858 x 10713 1.87 x 1077
EAGLE  —19 +Velocity bias 825 x 107" 680 x 107 240 x 107> 224 x 107! 7.90 x 10710 6.50 x 1073
EAGLE  —19 +Assembly bias 8.25 x 107! 149 x 1071 310 x 1071 4.92 x 107! 497 x 1071 6.07 x 107!

conditions with the same phases, cosmic variance errors do not
apply to this comparison.

From this x2, we can calculate the corresponding p-value, which
represents the probability that a sample randomly drawn from the
best-fitting HOD model could have a x? value greater than the one
exhibited by the simulation. In other words, the p-value represents
the probability that the hydrodynamic simulation is consistent
with the DMO+HOD model. The p-value for each clustering
measurement uses all the spatial bins of the measurement, as well
as the full covariance matrix for that statistic. These p-values are
listed in Table 3 (in the rows labelled as ‘No Correction’).

Looking at Figs 3—6 or the p-values in Table 3, it is immediately
clear that the vanilla HOD model, when applied to haloes from a
DMO simulation, does not provide a good fit to the corresponding
hydrodynamic simulation for all of the clustering statistics in ques-
tion. However, the success of the HOD model is highly dependent
on the simulation and luminosity sample in question. For example,
the model generally performs better for high luminosity galaxies
than for low luminosity galaxies. Specifically, for the Illustris A ~2!
sample, all of the clustering statistics are well fit by the HOD
model, at least within a 3¢ tolerance, except for number density.
For the EAGLE M %' sample, even the number density works
well. However, for the low luminosity samples, almost none of the
clustering statistics are well fit by the DMO+HOD model, and in
most cases exhibit discrepancies far greater than >30.

The green shaded regions in Figs 3 and 4 represent one standard
deviation of cosmic variance errors calculated from 400 mock
galaxy catalogues of the SDSS M~2! sample. These mocks were
created as part of the Large Suite of Dark Matter Simulations project
(LasDamas; McBride et al. 2009) and used in Sinha et al. (2018). In
our M2 Illustris and EAGLE samples, the errors among our 1000
mock galaxy catalogues (which are different HOD realizations) are
much larger than the cosmic variance errors from the 400 SDSS-like
mocks. Consequently, though the HOD model appears to be a good

fit to the simulations for high luminosity galaxies, an SDSS size
M2" survey (which has small errors due to its large volume) could
be sensitive to clustering differences that we are unable to detect in
our analysis due to our smaller volume.

Similarly, the yellow shaded regions in Figs 5 and 6 represent one
standard deviation of cosmic variance errors calculated from 400
mock galaxy catalogues of the SDSS M~ sample, constructed in
a similar way as those in Sinha et al. (2018). In our M,.‘I9 Tllustris
and EAGLE samples, the errors among our 1000 mock galaxy
catalogues are smaller than the cosmic variance errors from the 400
SDSS-like mocks. For some statistics (such as the number density),
a survey with the precision of SDSS would not necessarily be able
to detect the differences we have found between the HOD model
and the hydrodynamic simulation. For other clustering statistics
(particularly the correlation functions) it is clear that, although the
cosmic variance errors are somewhat broad, there is still an obvious
difference between the HOD model and the simulation, to which
even an SDSS-like survey would be sensitive.

6 THE EFFECT OF BARYONS ON THE HALO
MASS FUNCTION

Figs 3-6 revealed that the galaxy number density is not well
predicted in any sample. Recall that, in our vanilla HOD, the number
of galaxies in a halo is solely dependent on the mass of the halo.
Thus, the fact that our HOD systematically overpredicts the galaxy
abundance indicates either that the functional form of our HOD is
incorrect, or that the halo mass functions (HMFs) are different in the
hydrodynamic simulations compared to their DMO counterparts.
Fig. 7 compares the abundance of haloes in the hydrodynamic
and DMO versions of the same simulation. The comparison reveals
sizeable discrepancies between the halo mass functions. In Illustris
(red), the hydrodynamic HMF is consistently lower than the DMO
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Figure 7. Halo mass functions of hydrodynamic compared to dark matter-
only simulations in the case of Illustris-2 (red) and EAGLE (blue). The
hydrodynamic versions are plotted with solid lines, while the dark matter-
only versions are plotted with dotted lines. The bottom panel shows the
ratio of the hydrodynamic to dark matter-only mass functions for the two
simulations.

HMF above 10'24~!'Mg, and higher than the DMO HMF at
smaller masses. In EAGLE (blue), the hydrodynamic HMF is below
the DMO HMF at all halo masses below 10'*2~! Mg. In other
words, the hydrodynamic HMFs are shifted to lower masses in both
simulations, but the detailed effects of baryons on the HMF are
different in the two simulations.

This result is consistent with both Desmond et al. (2017) and
Schaller et al. (2015), who examined the differences between the
halo masses in the EAGLE DMO and hydrodynamic runs, and
found the haloes to be less massive on average in the hydrodynamic
run. Desmond et al. (2017) found that, at low halo masses, stellar
feedback in EAGLE removes baryons from the halo, which in
turn reduces the growth rate of the halo. At slightly higher halo
masses, stellar feedback becomes less effective, but AGN feedback
is still capable of expelling baryons. For the most massive haloes,
AGN feedback too becomes less effective, and thus there is
little discrepancy between the hydrodynamic and DMO halo mass
functions.

Our results for the Illustris haloes are consistent with the
findings of Vogelsberger et al. (2014a), who found that the halo
mass function in Illustris is most affected at low (< 10'° 2~ M)
and high (> 102 1~! M) halo masses, where baryonic feedback
processes (e.g. reionization, SN feedback, and AGN feedback)
are strongest, leading to a reduction in halo mass compared to
their DMO counterparts. They found that removing AGN feedback
boosts the massive end of the halo mass function (e.g. Cui et al.
2012). They also found that haloes around 10'! 4~! M, where star
formation is most efficient, tend to be more massive than their DMO
counterparts.

In Fig. 8 we show the ratio of halo masses in the hydrodynamic
simulation over the masses in the DMO simulation as a function
of halo mass in the DMO simulation, for both the Illustris-2 (red)
and the EAGLE (blue) simulations. The hydrodynamic and DMO
haloes are matched based on their ranked masses, rather than
spatial positions, so that the point furthest to the right in the figure
corresponds to the highest mass DMO halo, paired with the highest
mass hydrodynamic halo. In other words, we essentially abundance
match the haloes in the hydrodynamic and DMO simulations.
As a result, the figure shows the mass correction one would
need to apply to the DMO masses in order to recover the global
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Figure 8. The ratio of halo masses from the hydrodynamic simulations
to halo masses from the dark matter-only simulations, as a function
of dark matter-only halo mass. Illustris-2 haloes are plotted in red and
EAGLE haloes are plotted in blue. The halo mass is the total FoF mass
from all particles, which in the hydrodynamic versions includes baryons.
Hydrodynamic and dark matter-only haloes are matched by their mass rank,
rather than by position. The displayed ratio thus represents the correction
factor needed to apply to the dark matter-only haloes in order to recover the
hydrodynamic mass function. The dashed black lines show simple fits to
these relationships, down to 101 p! Mg, which we discuss in Section 8.

hydrodynamic HMFE. However, applying this correction would
not necessarily result in the correct dependence of the HMF on
environment.

Our result is consistent with the results of Vogelsberger et al.
(2014a) and Schaller et al. (2015), who looked at matched haloes
in [lustris and EAGLE, respectively. Additionally, Springel et al.
(2018) looked at this same quantity for the IllustrisTNG simulations
and found a trend that is different from both Illustris and EAGLE.
Baryons in the IllustrisTNG seem to have a larger impact on low-
mass haloes and a smaller impact on high-mass haloes compared
to Mlustris. This is to be expected, since IllustrisSTNG has weaker
AGN feedback than the original Illustris simulation, which affects
more massive haloes. The effect of feedback on lower mass haloes
in TNG is stronger than that in [llustris due to the wind model used
in TNG.

Fig. 8 emphasizes the fact that the effect of baryons on the halo
mass function is to decrease the HMF to lower masses. However,
it is clear that this effect is very different in these two different
simulations. The effect of baryons on the HMF in the EAGLE
simulation is more prominent at lower masses, and the ratio of
hydrodynamic halo mass to DMO halo mass increases almost
linearly with log halo mass. In Illustris, the effect of baryons on
the HMF is more prominent at higher masses, and the relationship
is more complex than it is in EAGLE. In other words, the halo mass
function is significantly affected by baryonic feedback processes,
but there is no consensus among hydrodynamic simulations on what
the correct feedback model is.

This halo mass function discrepancy presents a challenge when
using an HOD framework to populate haloes from a DMO simula-
tion with galaxies. The HOD parameters only describe how many
galaxies to put in a halo of a given mass, but do not take into account
how many haloes there are in a given mass bin. Therefore, because
the DMO versions of Illustris and EAGLE have mass functions
that are shifted to higher masses, there are more high-mass haloes,
so more galaxies are placed overall. Thus, even when applying
the correct HOD parameters as extracted from the hydrodynamic
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simulation, the overall galaxy number density will be too high when
this HOD is applied to the DMO simulation.

One possible solution to this is to adjust the HMF in the DMO
simulation so that it is consistent with the HMF in the hydrodynamic
version. We do this by identifying the most massive halo in the
DMO simulation and assigning it the mass of the most massive
halo in the hydrodynamic version, and then we do the same for the
next most massive halo, and so on. In other words, we multiply
the DMO halo masses in each simulation by their y-axis value in
Fig. 8. This process serves to isolate the effect of baryons on the
halo mass function, allowing us to correct the DMO HMFs so that
they agree with the HMFs from the hydrodynamic simulations. We
note that this technique does not involve matching haloes based on
position or particle-IDs. Because of this, we are not explicitly taking
environment into account, so we are not correcting the conditional
HME. We have examined the conditional HMF in Illustris, however,
and have found that the effect of baryons on the HMF only
depends on environment at very high halo masses. Additionally,
we have examined the effect on our clustering statistics if we use an
environment-dependent HMF correction and find that the difference
is negligible. We have also examined the halo correlation functions
in Hlustris and EAGLE in two different halo mass bins for the
hydrodynamic simulations, the DMO simulations, and the corrected
DMO simulations, and have found that the corrected DMO halo
correlation functions are in better agreement with the hydrodynamic
halo correlation functions.

We now explore to what extent applying mass corrections to
DMO halo masses improves the agreement between the clustering
statistics of hydrodynamic and DMO+HOD galaxies. We first
multiply each DMO halo mass by the correction shown in Fig. 8
(i.e. we use our abundance matching technique for each halo as
described above, and not the dashed-black fits shown in the figure).
We then make new mock galaxy catalogues by applying the same
best-fitting HOD (from Table 2) to our new mass-adjusted dark
matter haloes. We thus have 1000 new mock catalogues for each
sample. We then repeat the same procedure outlined in Sections 4
and 5 to get new clustering statistics and new p-values, which we
list in Table 3 (in the rows labelled ‘Halo Mass Function’).

Fig. 9 presents our p-values for the four samples (two simulations
and two luminosity samples) for all six statistics we consider. The
left-most point in each panel shows the original p-value we obtained
and discussed in Section 5. The second point in each panel shows
the new p-value we get after first applying a correction factor to the
DMO halo masses. Horizontal dashed lines show the 1o, 20, 30,
40, and 5o tolerance levels. As we can see in Fig. 9, after correcting
the masses of haloes, our ability to accurately predict galaxy number
density (top left-hand panel) with our vanilla HOD model shows
a drastic improvement for all samples. Thus, the vanilla form of
HOD that we have adopted is sufficient for accurately (better than
20 tolerance) predicting galaxy number density if it is applied to
the correct population of haloes.

In addition to the improvement in our galaxy number density
predictions for all samples, correcting the halo mass function yields
a slight improvement to the other clustering statistics across all
samples. For the M 2! samples, after correcting the halo mass
function, all clustering statistics are at or better than the 2o level.
Thus, when applied to the correct halo population, the five parameter
HOD model is able to accurately predict all clustering statistics for
our high luminosity samples of galaxies. For the low luminosity
samples, although the other clustering statistics do improve, most
are still below the 3o level, with the exception of the group
multiplicity function in the EAGLE M"? sample and the singular
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probability function in the Ilustris M;~'° sample. It is worth noting
that the VPF does improve in all samples after correcting the halo
mass function, indicating that part of the original VPF discrepancy
was due to the incorrect number density. However, for the Illustris
M~ sample the VPF is still below the 30 level, and for the EAGLE
M sample it is still well below 50, so we can conclude that not
all of the issues with reproducing the VPF can be attributed to the
number density.

These results indicate that although the HOD model for the
brightest galaxies is successful when applied to the correct halo
population, the HOD model for fainter galaxies is less successful,
even when applied to the correct halo population. Thus, there must
be some other assumptions in our HOD that are incorrect when
applied to a low luminosity sample of galaxies. In the next section,
we investigate possible extensions to our vanilla HOD.

7 EXTENSIONS OF THE HOD

7.1 Spatial bias

In our vanilla HOD model, we assume that each central galaxy
lives at the centre of its halo, and that satellite galaxies trace the
spatial distribution of dark matter within the halo. However, it
is possible that these assumptions are incorrect, i.e. that galaxies
exhibit spatial bias. More specifically, central spatial bias occurs
when the central galaxy is not located at the centre of its halo,
and satellite spatial bias occurs when the satellite galaxies do not
trace the distribution of dark matter particles within their halo. To
test for the presence of spatial bias, one option is to add spatial
bias parameters to our HOD model and find a new best-fitting
model that includes spatial bias. However, a simpler alternative is
toremove the potential effects of spatial bias from the hydrodynamic
simulation. If doing this yields better agreement between clustering
statistics from our DMO+HOD mocks and the simulation galaxies,
this would indicate that there is spatial bias in the hydrodynamic
simulation, and therefore spatial bias parameters will need to be
included in any future HOD modelling work to account for the
possibility that there is spatial bias present in survey data.

We first test for the presence of central spatial bias. We do this
by taking the Illustris and EAGLE galaxies identified as centrals
and give them the position of their host halo, which is the position
of the particle with the minimum gravitational potential energy. We
do this without changing any central velocity information or any
satellite galaxy information, in order to isolate the effect of central
spatial bias. Thus, if there is any central spatial bias present in the
original simulation, this procedure would remove it, yielding better
agreement with our HOD model. The results of this show no change
for either simulation or sample, indicating that any central spatial
bias has a negligible impact on clustering statistics.

We next test for the presence of satellite spatial bias. We do this
by taking the galaxies identified as satellites in the hydrodynamic
simulations and assigning them the positions of random dark matter
particles in their host halo (also in the hydrodynamic simulations).
We do this without changing any satellite velocity information or
any central galaxy information, in order to isolate the effect of
satellite spatial bias. We repeat this process 1000 times, in order to
generate 1000 different realizations of our simulation with satellite
spatial bias removed. We can therefore generate 1000 different p-
values for each clustering statistic. Table 3 (rows labelled ‘Satellite
Spatial Bias’) lists the median p-values from these 1000 realizations
of our simulation with satellite spatial bias removed. We note that it
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Figure 9. p-values from comparing the clustering of galaxies in hydrodynamic simulations to the clustering of mock galaxies in their dark matter-only (DMO)
counterparts. Each panel shows results for a different clustering statistic, as listed at the top of each panel. The dark red diamonds and dark blue squares
represent the high luminosity samples of Illustris-2 and EAGLE, respectively, while the light red inverted triangles and the light blue triangles represent the
low luminosity samples of Illustris-2 and EAGLE, respectively. The horizontal dashed grey lines denote the 1o, 20, 30, 40, and 5o confidence levels. The
x-axis in each panel corresponds to different modifications to the haloes or to the galaxies in the simulations. From left to right, p-values are shown for (i) the
original DMO-+HOD model; (ii) the same DMO-+HOD model after adjusting the DMO halo mass function to match the mass function in the hydrodynamic
simulation; (iii) additionally removing satellite spatial bias from the hydrodynamic simulation galaxies; (iv) additionally removing central and satellite velocity
bias from the hydrodynamic simulation galaxies; (v) additionally removing assembly bias from the hydrodynamic simulation galaxies. The last three p-values
in each panel (with the exception of number density) are the median of many realizations (1000, 1000, and 4000), with error bars showing the 16th and 84th
percentiles. For the low luminosity sample of EAGLE (light blue), several points are not shown because they fall below 107, The values of these points are
given in Table 3.

is possible that placing satellite galaxies on dark matter subhaloes
rather than particles would alleviate some of the tension that we see
between our HOD and the hydrodynamic simulations. However,
traditional HOD models do not use subhaloes, in part because the
DMO simulations to which they are applied often do not have
high enough resolution to resolve small subhaloes. Therefore, we
do not explore the option of placing satellite galaxies on dark
matter subhaloes in this analysis, but note that it would be worth
investigating in future work.
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The third point in each panel of Fig. 9 shows these median p-
values that result from both correcting the DMO halo masses and
removing satellite spatial bias from the hydrodynamic simulations.
Error bars show the range of p-values that correspond to the
middle 68 percent of our 1000 realizations with satellite spatial
bias removed. We can see that the M2' samples show either
slight improvement or no change after removing satellite spatial
bias, while the M !° samples show significant improvement. In

particular, the projected and redshift-space correlation functions are
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much improved in the M!? samples of both EAGLE and Illustris.
From these results, we can conclude that the galaxies in EAGLE
and Illustris do exhibit satellite spatial bias, the effects of which are
more prominent when considering low luminosity galaxies. We can
also conclude that the effects shown are definitively the results of
spatial bias and not a difference in halo profile due to the presence
of baryons; if the clustering differences were due to a difference in
halo density profile when baryons are included versus when they
are not, then giving the satellite galaxies the positions of random
dark matter particles in the halo (in the hydrodynamic simulation)
would not have a significant effect on clustering.

The extent and nature of the satellite spatial bias is similar in
the two different simulations. In Fig. 5, it is clear from looking
at both the projected and redshift-space correlation functions that
Ilustris M ' galaxies are less clustered on small scales than the
DMO+HOD mock galaxies, or in other words, [llustris galaxies are
less concentrated than the dark matter. When satellite spatial bias is
removed, the satellite galaxies become more concentrated, and are
thus a better fit to the HOD on small scales. The picture looks a bit
different in Fig. 6, where EAGLE M'° galaxies are less clustered
than DMO+HOD mock galaxies on small scales. However, this
amplitude difference in the correlation functions extends to large
scales and is thus not caused by satellite spatial bias (it is caused by
assembly bias, as we will see later). If we examine the slopes of the
correlation functions at small scales in Fig. 6, we see that EAGLE
M galaxies have a shallower slope than DMO+HOD, which
means that they are less concentrated within their haloes (Berlind &
Weinberg 2002), similar to Ilustris M,"!? galaxies.

Despite the improvement that we see in Fig. 9 when removing
spatial bias, many clustering statistics for the M!° samples are
still not well predicted by our HOD model, even after correcting
the halo mass function and removing satellite spatial bias from
the simulations. This is especially true for EAGLE M" galaxies,
where all statistics except number density and group multiplicity
function still show a significant discrepancy between hydrodynamic
and DMO+HOD galaxies.

7.2 Velocity bias

The vanilla HOD model also assumes that each central galaxy moves
with the mean velocity of its halo (i.e. there is no central velocity
bias), and that satellite galaxies trace the velocity distribution of
dark matter within their halo (i.e. there is no satellite velocity bias).
Once again, it is possible that these assumptions are incorrect, due
to the effects of phenomena such as mergers, dynamical friction,
and tidal stripping.

To test for the presence of central velocity bias, we take the
Illustris and EAGLE galaxies identified as centrals and assign them
the velocity of their host halo. By doing this, we are removing the
possibility that the central galaxy might not be at rest with respect
to its host halo. In Illustris, this is the sum of the mass-weighted
velocities of all particles/cells in the group, multiplied by 1/a. (In
EAGLE, the velocity of the parent halo is not provided, so this
test is not possible. Central galaxies already have the velocity of
the central subhalo.) As in the case of central spatial bias, removing
central velocity bias has a negligible effect on the clustering statistics
we consider.

To remove satellite velocity bias, we take the hydrodynamic
simulation galaxies identified as satellites and assign them the
velocities of random dark matter particles in the halo. We do this
in combination with other effects (e.g. central velocity bias, central
spatial bias, satellite spatial bias). In other words, we take the central
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galaxy and give it the position and velocity of its host halo, and we
take satellite galaxies and give them the positions and velocities of
randomly chosen dark matter particles in the halo, so that all spatial
and velocity bias has been removed from the simulation galaxies.
We repeat the random selection of dark matter particles 1000 times,
so that we ultimately generate 1000 different realizations of the
simulation galaxies after removing all spatial and velocity bias. The
results of this are shown in Table 3, where the p-values given are
the median of 1000.

The fourth point in each panel of Fig. 9 shows these median p-
values that result from correcting DMO halo masses and removing
spatial and velocity bias from the hydrodynamic simulations. Once
again, error bars show the range of p-values that correspond to
the middle 68 per cent of our 1000 realizations with satellite spatial
and velocity bias removed. The figure shows that removing velocity
bias provides an additional improvement for our clustering statistics
for the M " samples. In particular, the Ilustris M, ' sample
shows significant improvement in the void probability function and
slight improvement in all other clustering statistics. All statistics
now show no significant discrepancy between the hydrodynamic
galaxies and our DMO-+HOD model. The EAGLE M sample
shows improvement in the redshift-space correlation function, as
well as both counts-in-cells statistics. Itis to be expected that number
density does not change when spatial and velocity bias are removed,
because the number of galaxies is not affected. Additionally the
projected correlation function is by design not affected by velocity,
S0 it is not surprising that there is no change after removing velocity
bias. Despite these improvements, the differences between the
statistics of EAGLE M galaxies and the DMO+HOD model
are still highly significant.

At this point, after removing all spatial and velocity bias from our
simulations, all statistics are well predicted (<20 tension) by our
HOD model for the Illustris M~'® sample, while the number density
and group multiplicity function are well predicted (<2¢ tension)
for the EAGLE M ' sample. However, the correlation functions
and counts-in-cells statistics are still not well predicted for EAGLE
M. This indicates the possibility that the number of galaxies in
a halo may depend on a halo property other than mass, such as age
or concentration. This will be discussed in the next section.

7.3 Assembly/secondary bias

Halo assembly/secondary bias is the phenomenon whereby halo
clustering depends on a secondary parameter, such as age or
concentration, at fixed halo mass (e.g. Gao et al. 2005; Wechsler
et al. 2006; Salcedo et al. 2018). If the number of galaxies in a halo
depends on this secondary parameter, the clustering of galaxies
will inherit this additional halo clustering, a phenomenon known as
galaxy assembly bias (e.g. Croton et al. 2007; Zentner et al. 2014).
Galaxy assembly bias could be present in Illustris or EAGLE, but it
is explicitly not present in our DMO+HOD model. We now remove
any effects of assembly bias from our hydrodynamic simulation
galaxies, with the understanding that if this procedure improves our
ability to predict clustering statistics with our DMO-+HOD model,
this is an indication that future HOD modelling should incorporate
parameters that deal with assembly bias.

To remove the presence of assembly bias from our simulation
galaxies, we identify pairs of haloes with similar masses, and swap
the positions and velocities of their galaxies. This is done after
already removing all spatial and velocity bias. In other words,
we first generate 1000 realizations of the simulation galaxies after
removing spatial and velocity bias (as described above), and then
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exchange galaxies in haloes of similar mass. When we exchange
galaxies in pairs of haloes, we shift the galaxy positions by the
difference in halo centre positions, so that a galaxy is in the same
position relative to the halo centre, but the halo centre has been
switched. For the velocities, we take the peculiar velocity of a
galaxy and subtract the mean halo velocity, thus putting the galaxy
in the frame of the halo. We then add this velocity to the velocity of
the new halo to get the new velocity of the galaxy. In other words,
we keep the velocity of the galaxy in the frame of its halo the
same, and simply give it a new halo velocity. We use four different
combinations of halo pairs, ultimately resulting in 4000 realizations
of our simulation galaxies after removing all spatial, velocity, and
assembly bias.

This procedure of exchanging galaxies in haloes of similar mass
effectively removes assembly bias from our data because it nullifies
any environmental effects on the number of galaxies in each halo.
If the number of galaxies in each halo was already only dependent
on halo mass, then this procedure should not produce any change
in clustering statistics. However, if the number of galaxies in a halo
had a dependence on a property other than halo mass, then swapping
galaxies in haloes with similar masses would remove the effect of
this phenomenon on our clustering statistics. The results of this are
detailed in Table 3. Once again, the p-values given are the median
of many realizations (in this case 4000).

The last point in each panel of Fig. 9 shows these median p-values
that result from removing assembly bias (in addition to correcting
the HMF and removing all spatial and velocity bias). Once again,
error bars show the range of p-values that correspond to the middle
68 per cent of our 4000 realizations. Removing assembly bias results
in all clustering statistics being well predicted by our HOD for
both simulations and luminosity samples. In the M,! samples, all
clustering statistics were already well predicted, so there is very little
change. More importantly, in the M'° samples, there are slight
improvements in all clustering statistics for the Illustris galaxies,
and there are major improvements for the correlation functions
and counts-in-cells statistics for the EAGLE galaxies. Of particular
note is the void probability function for the EAGLE M!? sample,
which remained below 5o until assembly bias was removed, at
which point it reached 1o confidence that the HOD model is a
good fit to the simulation. This agrees with the results of Chaves-
Montero et al. (2016), who detected galaxy assembly bias in the
EAGLE simulation, and found that the signature of assembly bias
was stronger for low-mass galaxies. This is also consistent with the
results of Tinker et al. (2006), which suggested that VPF is sensitive
to the presence of assembly bias. More recently, Wang et al. (2019)
also showed that counts-in-cells statistics can be powerful probes
of assembly bias.

8 SUMMARY AND DISCUSSION

In this work, we have examined the validity of using HOD modelling
to reproduce galaxy clustering statistics. Halo models provide a
simple and computationally inexpensive way to investigate the
connection between galaxies and their dark matter haloes, but
they rely on the assumption that the role of baryons can be
easily parametrized in the modelling procedure. Using two dif-
ferent hydrodynamic simulations, Illustris-2 and EAGLE, we have
investigated the accuracy of using a simple five-parameter HOD to
reproduce clustering when applied to a high luminosity sample of
galaxies as well as a low luminosity sample. The HOD was fit to
each simulation and luminosity sample separately, and applied to
haloes from the DMO counterparts of Illustris and Eagle to create
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mock galaxy catalogues. Our clustering statistics were measured in
the same way on our simulation galaxies as they were on our mock
catalogues. Our main results are the following:

(i) Overall, the vanilla HOD model is more successful when
applied to a high luminosity sample of galaxies than it is when
applied to a low luminosity sample of galaxies.

(i1) The simple five-parameter HOD model is able to accurately
(within 3¢ tolerance) reproduce correlation functions, the group
multiplicity function, the void probability function, and the singular
probability function, for the high luminosity sample of galaxies in
both Illustris and EAGLE, as well as the number density in EAGLE.

(iii) In our M2 Mlustris and EAGLE samples, the errors among
our 1000 mocks are much larger than the cosmic variance errors
from the 400 SDSS-like mocks. In other words, an SDSS size M, %!
survey would perhaps be sensitive to clustering differences that
we are unable to detect in our analysis. In our M '° Illustris and
EAGLE samples, the errors among our 1000 mocks are smaller
than the cosmic variance errors from the 400 SDSS-like mocks.
This means that a survey with the precision of SDSS might not be
able to detect the differences that we find between hydrodynamic
galaxies and the HOD model. A future survey like the Dark En-
ergy Spectroscopic Instrument (DESI; DESI Collaboration 2016),
however, will have better precision than the SDSS due to its larger
volume, allowing it to potentially detect these small differences in
clustering measurements.

(iv) In general, the halo mass function is shifted to higher masses
when baryons are not included, resulting in an over prediction
of galaxy number density when an HOD is applied to the haloes
from the DMO simulations. After correcting the DMO halo mass
function, the vanilla HOD model is able to accurately reproduce
all clustering statistics in the high luminosity sample of galaxies in
both Illustris and EAGLE. It is also able to accurately reproduce
galaxy number density in both low luminosity samples.

(v) Even after correcting the halo mass function, the vanilla HOD
model is still unable to accurately (within 3o tolerance) reproduce
most of the other five clustering statistics for the low luminosity
samples of galaxies in Illustris-2 and EAGLE. However, after
removing the potential effects of spatial, velocity, and assembly
bias from the galaxies in the original simulations, the HOD model
(with mass function correction) is able to accurately reproduce all
clustering statistics in both samples and both simulations.

These results demonstrate the prominent differences between the
EAGLE and Illustris simulations, in terms of the ways that baryons
affect halo masses and galaxy clustering. For example, the EAGLE
and Illustris simulations are very different in terms of the amount
of spatial, velocity, and assembly bias they exhibit. Additionally,
neither EAGLE nor Illustris reproduces the galaxy luminosity
function from the SDSS. Therefore, we cannot use the results from
our analysis of the clustering in these two hydrodynamic simulations
to draw conclusions about galaxy clustering in the real Universe.
Because of this, we do not attempt to infer the true amounts of
spatial, velocity, and assembly bias in the real Universe based on
this work, but rather recommend that any future work involving
HOD modelling should include free parameters for these biases.
Moreover, our work suggests that future work aiming to use HOD
modelling to study cosmology would benefit from focusing on high
luminosity galaxy samples, which seem to be less affected by the
aforementioned biases.

Additionally, different clustering statistics are sensitive to dif-
ferent biases. For example, the void probability function seems to
be particularly sensitive to the presence of assembly bias, while
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Table 4. Our fits to the halo mass ratios in Illustris-2 and EAGLE, as well as TNG100-2. In

the third column, x is equal to logMhajo-

Simulation Mass range

Mhalo, Hydru/Mhalo, DMO

Tustris-2

Tllustris-2 M >9.57 x 1012
EAGLE M > 1.00 x 10"
TNG100-2 1.00 x 1019 < M < 2.74 x 10'2
TNG100-2 2.74 x 10" < M < 1.06 x 103
TNG100-2 M > 1.06 x 1013

1.00 x 10" < M <9.57 x 10'2

—0.10771x + 2.21907
0.07174x — 0.10774

0.05956x + 0.16413

—0.10171x% + 2.37863x — 12.97684
0.00189x + 0.84450
0.09429x — 0.35479

the redshift space correlation function is sensitive to satellite
velocity bias, as can be seen in the low luminosity sample of
EAGLE galaxies. Therefore, properly constraining HOD param-
eters (especially when including spatial, velocity, and assembly
bias parameters), necessitates measuring several different clustering
statistics.

Of particular note is the difference in how baryons alter the halo
mass function between the two different simulations. Any future
work hoping to use HOD modelling will have to first correct the
DMO haloes by shifting the mass function to lower masses, so
that it more closely resembles what the mass function would look
like with baryons included in the simulation. However, the exact
nature of this correction to the halo mass function clearly depends
upon which hydrodynamic prescriptions are regarded as the truth.
The large difference that we see between the two simulations in
Fig. 8 demonstrates the extent to which mass corrections depend on
the details of supernova and AGN feedback physics. This result is
somewhat alarming because, unlike the other biases we examine in
this study, the effect of baryons on the halo mass function cannot be
easily parametrized, making it unclear how one must proceed with
halo modelling of observed clustering measurements.

At a minimum, we recommend that future halo modelling efforts
repeat their analyses a couple times, applying different corrections
to the DMO halo masses. This will provide a rough estimate of
the systematic uncertainty due to baryonic effects on the halo mass
function. For example, if a study finds strong evidence of assembly
bias when applying no correction to the halo masses, but then the
evidence disappears when the analysis is repeated using a mass
correction, one should not claim any detection of assembly bias.
To facilitate such a procedure, we fit simple functions to the mass
corrections shown in Fig. 8. In the case of EAGLE we fit a single
line, while for Illustris we fit a broken line. These fits are shown as
dashed lines in Fig. 8. In Table 4 we list the parameters for these
fits to the mass corrections in Illustris and EAGLE.

We have tested these fits and confirmed that they produce the
same results as doing the full abundance matching correction that we
performed in our analysis. Additionally, we present fits to the same
mass correction in IlustrisTNG (Marinacci et al. 2018; Naiman
et al. 2018; Nelson et al. 2018; Pillepich et al. 2018; Springel et al.
2018). TNG is more recent than both Illustris and EAGLE, and
makes use of updated feedback mechanisms, which results in a
halo mass correction that is different than what we see in either
Illustris or EAGLE. We make no assumptions about which of these
simulations produces the correct relationship between the masses
of their hydrodynamic and DMO haloes, but we recommend that
future halo modelling work makes use of one or more of these
corrections.

Rather than viewing these results as evidence that DMO sim-
ulations are insufficient for halo modelling and should thus not

be used to study galaxy clustering, we interpret these results
as confirmation that there is no consensus among hydrodynamic
simulations. Therefore, DMO simulations and halo models are still
very relevant tools for investigating the galaxy—halo connection, as
long as the halo model is given sufficient freedom, and the effect of
baryons on the halo mass function is accounted for.
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