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Abstract

Several spectral features from the stellar and nebular objects arise due to the iron-peak Ti II fine-structure
excitations. Transition probabilities and electron excitation collision strengths of iron-peak elements are important
for a meaningful interpretation and analysis of the observed astrophysical spectra. Accurate description of atomic
structure with open 3d-shell elements is the key to the reliable and accurate computation of radiative and collision
rates. The term-dependent one-electron orbitals in the multiconfiguration Hartree–Fock approach with adjustable
configuration expansions and semi-empirical fine-tuning for energy corrections have been used in achieving highly
accurate target description. A total of 314 Ti II fine-structure levels of the ground 3d24s and excited 3d3, 3d4s2,
3d24p, 3d25s, 3d4s4p, 3d24d, 3d25p, and 3d24f configurations have been included in the calculations of these
atomic parameters. The present calculation of collision strengths has been performed in a close-coupling
approximation based on the B-spline Breit–Pauli R-matrix method with inclusion of spin–orbit interaction term in
the Hamiltonian matrices. Effective collision strengths over a Maxwellian distribution of electron velocities at
temperatures in the range from 103 to 105 K have been reported for transitions between the 314 fine-structure
levels. These wide array of transitions give rise to many main Ti II infrared, optical, and ultraviolet lines from a
variety of astrophysical objects. Our calculated parameters are compared with the available other theoretical and
experimental results, and through this comparison likely uncertainties in our results have been estimated, especially
for transitions among the low-lying fine-structure levels of astrophysical importance.

Unified Astronomy Thesaurus concepts: Laboratory astrophysics (2004); Excitation rates (2067)

Supporting material: machine-readable tables

1. Introduction

The iron-group elements have high abundances in various
astronomical objects and cover a wide metallicity range. The
abundance patterns with metallicity can assist to understand
the stellar nucleosynthesis and galactic chemical enrichment.
The combination of infrared and optical lines offer good spectral
diagnostics of astrophysical plasmas. In particular, numerous Ti
II lines have been detected in the spectrum of the η Carinae, one
of the very shining stars of our Galaxy, in a broad wavelength
region from ultraviolet to infrared. The Ti II resonance
transitions at 191.06 nm and 191.09 nm have been observed in
the spectra of large Magellanic Cloud toward SN A1987 and in
QSO absorption line systems (Meyer et al. 1995; Prochaska &
Wolfe 1999). In the last few decades considerable efforts have
been made to generate various atomic data sets for iron-peak
elements. However, Ti II radiative and collision rates data are
relatively scarce in comparison to other iron-peak elements. The
Ti II forbidden lines play an important role in the modeling of
low-density astrophysical plasmas. Usually, the forbidden
transitions are from metastable states, which decay mostly
through electric quadrupole (E2) and magnetic dipole (M1)
transitions. The first experimental lifetime investigation of
metastable levels in Ti II was carried out by Hartman et al.
(2003) as a part of the FERRUM Project. They measured the
lifetime of the 3d2(3P)4s4P5/2 level using the laser probing
technique and obtained a very long lifetime of 28±10s. This
value, however, is more than a factor of 2 larger than their own
theoretical calculation. Later, Hartman et al. (2005) reported
lifetimes of four more levels, 3d2(3P)4s4P3/2, 3d

2(3P)4s2P1/2,
and d s D3 4 22

3 2,5 2, together with measurement of decay rates

from the d s D3 4 22
3 2,5 2 levels. There were large uncertainties

associated with these measurements as the lifetimes were not
corrected for the effect of repopulation. The collision de-
excitation leads to quenching, which eventually results in the
shorter lifetimes than measured from pure radiative transitions.
Royen et al. (2007) developed a method of extracting radiative
decay lifetimes of the long-lived metastable levels by correcting
for the systematic effect of repopulation. This technique has been
used by Palmeri et al. (2008) to obtain lifetimes of two additional
levels, d D3 32

5 2 and 3d2(3P)4s2P3/2, along with revised values
of the previously published lifetimes. Palmeri et al. (2008) also
calculated lifetimes of 13 metastable levels using the Cowan
code (Cowan 1981) based on a pseudo-relativistic Hartree–Fock
model with empirically adjusted radial integral values, and
compared their calculated results with measurements. They also
presented transition probabilities for several decay channels from
these metastable levels.
The first extensive calculation of transition probabilities for

the forbidden transitions among the Ti II lowest 37 even parity
levels of 3d24s, 3d3, and 3d4s2 configurations has been
presented by Deb et al. (2009). They used the atomic structure
code CIV3 of Hibbert (1975) and Hibbert et al. (1991). The
Breit–Pauli interactions in the Hamiltonian matrices have been
considered to account for the relativistic effects. Deb et al.
(2009) also employed a fine-tuning technique (Hibbert 1996),
that allowed them to adjust calculated excited levels energies to
the observed values. Agreement between the calculated and
observed lifetimes of some metastable states has been found to
be good, and the agreement with calculated values of Palmeri
et al. (2008) has been between 5% and 50% for the 29 Ti II
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lines observed in the η Carinae Sr-filament. Deb et al. (2009)
presented transition probabilities for 535 forbidden transitions.
Deb et al. (2009) also concluded that both valence–valence and
core–valence correlation effects due to single and double
promotions are important for these forbidden transitions.

The 3d24p and 3d4s4p configurations in Ti II represent the
lowest odd parity configurations. The electric allowed (E1)
transitions between these configurations and the lower even
parity metastable levels give rise to strong spectral lines in Ti II.
Several experimental and theoretical studies have been carried
out for the allowed E1 transitions. The oscillator strengths for the
Ti II resonance lines at 191.06 nm and 191.09 nm have been
measured by Wiese et al. (2001). The review of earlier
measurements is presented in a recent publication of Lundberg
et al. (2016). They also reported new experimental radiative
lifetimes of four 4p levels and six 5s levels of Ti II. They
determined absolute transition probabilities and log gf values for
57 transitions by combining their measured lifetimes for the five
5s levels with the experimental branching fractions of Pickering
et al. (2001). Lundberg et al. also calculated transition
probabilities for 3336 spectral lines in the wavelength range
from 138 to 9966 nm using the pseudo-relativistic Hartree–Fock
method (Cowan 1981) with inclusion of core-polarization
effects. Their online Table 7 contains an extensive collection
of radiative transition rates together with the all other available
radiative rates for Ti II spectral lines. All theoretical studies of
oscillator strengths for E1 transitions in Ti II have been carried
out in semi-empirical approximations. The most recent and
extensive of these studies are the calculation of Kurucz (2011)
using the Cowan code (Cowan 1981) and the calculation of
Ruczkowski et al. (2016) using a pseudo-relativistic Hartree–
Fock model with empirically adjusted radial integral values.
These data cover a wide range of transitions and lifetimes for the
45 odd parity and 30 even parity Ti II levels belonging to the
3d24p, 3d24d, and 3d25s configurations.

In contrast to radiative data, there is a lack of electron-impact
excitation collision rates for Ti II in the literature. The electron-
impact excitation collision strengths of Ti II have been
previously calculated by Bautista et al. (2006). They employed
the Breit–Pauli R-matrix method (Burke et al. 1994), and
included the lowest 82 energy levels of the 3d3, 3d24s, 3d24p,
and 3d4s2 configurations in the close-coupling expansion. The
transitions rates and collision strengths for the forbidden
transitions were calculated mostly for use in their modeling
calculations. They presented log gf values for some transitions
and compared their results with the measured values of Pickering
et al. (2001), and Bizzarri et al. (1993), recommended values
from the National Institute of Standards and Technology (NIST)
compilation, and computed values of Kurucz (2000). The
transition rates for the forbidden transitions were used to
calculate lifetimes for the five metastable levels and these were
compared with the experimental lifetimes from the FERRUM
project (Hartman et al. 2003, 2005). The calculated lifetimes
were found to agree within 50% of the measured values. They
presented collision strengths of six forbidden transitions for
excitation from the 3d2(3F)4sa4F3/2 level to a4F5/2, a4F7/2,
a4F9/2, b

4F3/2, a
2F7/2, a

2D3/2 levels at temperatures from 5000
K to 20,000 K graphically.

Our aim in the present work is to perform elaborate and
extensive calculations for the electron scattering from Ti II to
provide comprehensive data sets of electron excitation collision
strengths and effective collision strengths together with radiative

transitions probabilities for a wide range of allowed and
forbidden transitions in Ti II. Our comprehensive atomic data
can be used for a detailed analysis and interpretation of the
available measured astrophysical spectra. The present calcula-
tions have been carried out in the close-coupling approximation
using the B-spline Breit–Pauli R-matrix method. The close-
coupling expansion included 314 fine-structure levels of Ti II
belonging to terms of the ground 3d24s and excited 3d3, 3d4s2,
3d24p, 3d25s, 3d4s4p, 3d24d, 3d25p, and 3d24f configurations.
The accurate target description of the open 3d-shell iron-peak
elements such as Ti II offers some challenges because individual
orbitals in the 3d shell with different occupation show strong
term dependence. The term dependence of the one-electron
orbitals can be accounted for either by adding a number of
specially designed pseudo-orbitals to a set of orthogonal one-
electron orbitals or by using sets of term-dependent non-
orthogonal orbitals. The former approach will require large
configuration–interaction (CI) expansions, which may become
computationally intractable in the case of open 3d-shell systems.
On the other hand, the term-dependent non-orthogonal orbitals
approach requires a large number of non-orthogonal one-
electron orbitals, but computationally manageable CI expan-
sions. In this respect, our B-spline R-matrix (BSR) method with
the term-dependent non-orthogonal orbitals (Zatsarinny 2006)
has the advantage of obtaining a highly accurate target
description with manageable CI expansions as was illustrated
in our recent calculations for electron collisions with Fe II (Tayal
& Zatsarinny 2018) and Cr II (Tayal & Zatsarinny 2020) where
the flexibility of the code has been used to generate a very
accurate target description.
The relativistic effects have been included in the close-

coupling expansions through the Breit–Pauli Hamiltonian. For a
more accurate description of the spin–orbit mixing of the various
terms, the target non-relativistic (LS) energies have been fine-
tuned to represent the observed fine-structure splitting as
accurately as possible. This procedure is intended to enhance
the accuracy of term-mixing coefficients in the target wave
functions and, therefore, to increase the accuracy of forbidden
transitions. Our collision rates have been compared with the
available calculation of Bautista et al. (2006) to assess the
accuracy of our calculated effective collision strengths. We have
used the comparison of radiative rates and lifetimes to check the
accuracy of the present target description and, therefore to some
extent, the accuracy of the associated collision rates as well.

2. Computational Methods

2.1. Description of Target Wave Functions

The target wave functions have been generated by using the
multiconfiguration Hartree–Fock (MCHF) code of Froese
Fischer et al. (2007) together with the CI code for non-
orthogonal orbitals (Zatsarinny & Froese Fisher 2000, 2009) in
fully ab initio calculations without any semi-empirical correc-
tion. The 1s, 2s, 2p, 3s, and 3p orbitals of the inner core
[1s22s22p63s23p6] have been determined from a Hartree–Fock
calculation for the ground state 3d24s, and the same core
orbitals have been used for all states considered in the present
work. The valence spectroscopic 3d, 4l (l=0−3), 5s, and 5p
orbitals have been determined in the term-average approx-
imation for each main configuration independently. The
valence orbitals have been found to have noticeable term-
dependence. For example, the average radius of the 3d orbital
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was found to be 1.56, 1.69, and 1.27 au for the 3d24s, 3d3, and
3d4s2 configurations, respectively, and the term-dependence
gave rise to correction in the configuration energies of about
0.1 Ry. It indicates the significance of term dependence of one-
electron orbitals in the accurate calculation of term energies. In
addition to the spectroscopic orbitals, we also determined
several sets of the 5l and 6l (l=0−4) correlation orbitals.
The correlation orbitals have been obtained specifically for one
chosen term of a given configuration using the MCHF code,
and then the set of these correlated orbitals was kept fixed for
all terms of that configuration.

Then we considered the one- and two-electron promotions of
the inner 3s and 3p orbitals to the valence orbitals what
accounted for the core–valence correlation effects. Both
valence–valence and core–valence correlation was found to
be important to obtain well-converged atomic wave functions.
To keep the target CI expansions to a reasonable size, the final
target expansions were restricted to the configurations with
mixing coefficients larger than ∼0.02.

The consideration of all possible single and double
promotions of valence electrons in Ti II leads to very large
configuration expansions. It is basically due to many different
intermediate terms of the open 3d shell. The large target
expansions are not feasible for use in collision calculations as
too much computational time is required for generation of the
Hamiltonian matrices. Therefore, we attempted to include
important correlation effects for the target states and kept the CI
expansions to a reasonable size by omitting all the insignificant
configurations. In order to achieve this objective we first
analyzed the full LS configuration expansions of Ti II, where
we included the relativistic shift due to the mass correction and
Darwin term without the spin–orbit interaction, which leads to
the fine-structure splitting. The Ti II wave functions can be
represented as a three electron system above the 3s23p6 closed
inner core. Our expansions contained all one- and two-valence
electrons excitations to the spectroscopic and correlated orbitals
described above. The resulting CI expansions accounted for the
major valence–valence correlation effects. Then we considered
one- and two-electron promotions of the inner core 3s and 3p
orbitals to the valence orbitals to account for the single and
double core–valence correlation effects. Both valence–valence
correlation and core–valence correlation effects have been
found to be important to obtain well-converged target wave
functions. To keep the target CI expansions to a reasonable
size, the final target expansions have been restricted to
configurations with mixing coefficients equal to or larger than
∼0.02. Different terms of a configuration exhibit different
convergence patterns and, therefore, required different cut-off
parameters. Therefore, the final cut-off parameters have been
varied in the range from 0.015 to 0.030 for the different terms.
This cut-off scheme kept the resulting CI expansions of size
from 300 to 600 for each LS target state. These CI expansions
have been found manageable for the scattering calculation with
the available modern computational resources. We then applied
fine-tuning to the theoretical LS energies to bring them closer
to the experimental weighted average over the fine-structure
levels obtained from the NIST compilation (Kramida et al.
2015). We have been able to reach an agreement with observed
LS energies of better than 0.1 eV for all considered states first
by including all the significant configurations in the CI
expansions and then by applying small corrections to the
diagonal elements of the Hamiltonian matrices.

The Breit–Pauli Hamiltonian formed on the basis of
multiconfiguration LS wave functions has been diagonalized
to obtain J-dependent fine-structure levels energies. We used
the CI approach with non-orthogonal orbitals (Zatsarinny &
Froese Fisher 2000, 2009) in our calculations. The target CI
expansions for fine-structure levels with the total angular
momentum J and parity π are described as follows

( ) ( )å b p a pY = Fb p

a

a pC J LS; . 1J

LS

LS

We included all three one-electron Breit–Pauli operators in our
calculations of J-dependent target wave functions. We did not
apply any cut-off parameter to the target CI expansions for the
fine-structure levels. The target CI expansions for each total
angular momentum J and parity π fine-structure level contain
on an average 1000 configurations. These CI expansions have
been found to be of manageable size in the subsequent collision
calculation. In Equation (1), the functions ΦαLSπ represent the
multiconfigurational expansions from LS calculations and the
coefficients C(βJπ;αLSπ) describe the spin–orbit mixing of
different LS terms. The accuracy of transitions between the
fine-structure levels depends significantly on the term mixing,
which in turn depends on both the spin–orbit interaction and
the energy separation between the LS states. The term mixing
was improved by making additional fine-tuning of the
calculated energies of fine-structure (LSJ) levels to closely
agree with the observed energy levels. The purpose of the fine-
tuning process is not only to bring the calculated energies
closer to the measured values, but also to improve the mixing
between levels. The fine-tuning procedure is frequently used in
the structure calculations (Hibbert 1996). The forbidden
transitions between the fine-structure levels are especially very
sensitive to the mixing coefficients, and the fine-tuning
procedure is found to improve significantly the accuracy of
relatively weaker forbidden transitions.

2.2. Details of Collision Calculation

The electron-impact collision strengths for fine-structure
excitation of Ti II have been calculated using an extended
version of the BSR code (Zatsarinny 2006), which is based on
the R-matrix method and employs B-splines as a basis for the
continuum orbitals. The details of collision calculation can be
found in our recent work for the electron-impact excitation of
Fe II (Tayal & Zatsarinny 2018). Here we describe only the
different steps of collision calculations that are specific to the
present fine-structure excitation of Ti II. We first carried out
calculation of the Hamiltonian matrices in LS-coupling and
then these have been transformed to the intermediate coupling
by adding the spin–orbit interaction for the scattering electron
to the final Hamiltonian matrices. This approach provides the
same level of accuracy as the direct Breit–Pauli calculation, and
at the same time avoids repetition of calculations of non-
relativistic Hamiltonian matrix elements for different J-values.
The non-relativistic Hamiltonian matrices in the inner region
for the close-coupling equation included 130 LS states and the
scattering problem contained up to 402 scattering channels in
the LS-coupling scheme. The partial waves up to L=50 and
total spin S=0–2 have been considered giving rise to overall
306 partial waves. We chose an internal region of radius
a=25 a0 and the continuum orbitals have been represented by
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96 B-splines of order 8 leading to the Hamiltonian matrices of
size up to 40,000. A very large number of two-electron matrix
elements have been involved in the construction of Hamilto-
nian matrices. The major computational effort was needed to
calculate the huge number of overlap integrals due to the non-
orthogonal term-dependent orbitals employed in the present
calculation for different Ti II ionic states.

The Breit–Pauli matrices have been then constructed in
several different steps using the transformation of LS
Hamiltonian matrices to the intermediate-coupling scheme.
First, we modified the LS Hamiltonian matrices using the fine-
tuning of LS term energies discussed above. It simply requires
modification of the diagonal matrix elements for the orthogonal
one-electron orbitals, but for non-orthogonal orbitals the
modification needed the diagonalization of the overlap matrices
as discussed in our recent calculations for Fe II (Tayal &
Zatsarinny 2018) in detail. Next, the Hamiltonian matrices in
the internal region are transformed to the jK coupling scheme
using the angular-coupling transformation coefficients. The
term-coupling coefficients from Equation (1) have been used to
transform Hamiltonian matrices from the jK coupling to full
intermediate coupling utilizing a newly developed BSR_RE-
COUP computer program. Finally, the Hamiltonian matrices
have been augmented with the spin–orbit interaction term
for the scattering electron. This approach has two distinct
advantages over the direct Breit–Pauli calculation; it allows us
to apply fine-tuning to the energy of the LS terms and to
include a much bigger scattering model than possible in the
direct Breit–Pauli calculation. The fine-tuning is expected to
improve the description of the target spin–orbit mixing, and
consequently, it also improves the description of spin-
forbidden transitions between fine-structure levels.

We included 314 fine-structure levels of Ti II 3d24s, 3d3,
3d4s2, 3d24p, 3d25s, 3d4s4p, 3d24d, 3d25p, and 3d24f
configurations in our intermediate-coupling scattering model,
indicated as BSR-314 in the following discussion. The B-spline
R-matrix calculations have been performed for the lower 50
partial waves of total angular momentum up to J=24 of both
even and odd parities. The maximum number of channels in a
single partial wave were 2050, and Hamiltonian matrices of
size up to 200,000 were constructed. The parallel version of the
STGF program (Ballance & Griffin 2004) was utilized in the
outer region of the R-matrix box to calculate collision
strengths. We used a fine energy grid of 10−4 Ry to adequately
include resonance structures in collision strengths in the
resonance energy region below the highest excitation threshold.
However, an electron energy grid of 10−2 Ry was chosen for
energies above the highest excitation threshold where the
collision strengths exhibit a smooth variation with incident
electron energies. The collision strengths have been calculated
for 11,700 incident electron energies up to 10 Ry. The collision
strengths for the forbidden, intercombination, and dipole-
allowed transitions display different energy dependence, and
have been extrapolated to higher energies above 10 Ry using
the standard asymptotic energy dependence for the different
types of transitions. The 50 partial waves are not sufficient,
especially for the dipole-allowed transitions and for transitions
between closely lying levels at higher electron energies. The
contributions of higher partial waves have been estimated with
a top-up procedure based on the Coulomb–Bethe method or on
geometric series approximation to achieve partial wave
convergence at all energies for different types of transitions.

The thermally averaged collision strengthsϒ(Te) have been
calculated by convoluting the collision strengths Ω over a
Maxwellian distribution for electron temperatures from 103 to
105 K as follows

( ) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟ò¡ = W -

-
-

¥

-T E E
E E

kT
d exp . 2i j

E
i je

th

eth

Here Te is the electron temperature, k is the Boltzmann
constant, and Eth is the transition energy for the i−j transition.

3. Results and Discussion

3.1. Excitation Energies and Transition Probabilities

In Table 1 we have displayed the present fine-tuned excitation
energies and lifetimes for the first 98 fine-structure levels of Ti
II, and compared present energies with the experimental values
taken from the NIST compilation (Kramida et al. 2015). The
excitation energies of all 314 fine-structure levels together with
their lifetimes are given in the Supplementary Material. The
levels in the table are arranged according to the energy positions
of their LS terms and each level is assigned an index. The
different transitions in the following discussion have been
denoted by these indices. The fine-tuned excitation energies
from the present calculation show excellent agreement with
experimental values. The differences between the present fine-
tuned and compiled results are within a few meV for most
excitation energy levels. The previous calculations of Bautista
et al. (2006) and Deb et al. (2009) as well as the present
calculation used different fine-tuning procedures to bring
ab initio calculated energies closer to experimental values. The
fine-tuning procedure works very well only for cases where
differences between the calculated ab initio energies and
experimental energies are very small. Bautista et al. (2006)
reported both ab initio and fine-tuned energies for the LS terms
only, and reported an overall agreement of about 10% between
their calculated ab initio energies and weighted experimental
values for many terms. However, they also noted “uncomfor-
tably large” differences for some even parity terms, especially
for the a2D term that could not be fine-tuned well because of
strong mixing with other even parity terms. Deb et al. (2009)
reported fine-tuned excitation energies for the 36 even parity
fine-structure levels and obtained excellent agreement with
measured values for the 30 excitation levels. They also could not
fine tune the excitation energies of six 3d3b2D3/2,5/2, d

2D3/2,5/2,
and 3d2(3P)4sb2P1/2,3/2 levels very well due to strong mixing
between these levels. However, we have been able to fine tune
excitation energies closer to the experimental values even for
cases of strong mixing because of the use of flexible term-
dependent non-orthogonal orbitals as well as due to the inclusion
of all carefully chosen strong CI effects. Overall, our procedure
of generating target wave functions should also lead to a better
description of the spin–orbit term mixing.
In Table 2 we have presented our calculated results for the

line strengths, oscillator strengths, and transition probabilities
for the electric dipole-allowed and forbidden transitions
between the 314 levels of Ti II. The radiative transition
probabilities for both the dipole-allowed and dipole-forbidden
transitions have been used for the calculations of lifetimes of
excited levels. These lifetimes have been included in Table 1.
There are a number of even-parity metastable levels that can
decay to lower levels only via forbidden electric quadrupole
(E2) and magnetic dipole (M1) transitions. The most extensive
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calculation of radiative transition probabilities and lifetimes for
the metastable levels of Ti II has been presented by Deb et al.
(2009). Comparison of their lifetimes with the present results is
given in Table 3. We note a very reasonable agreement
between the two calculations with standard deviation of about
20%. However, there are a few levels with considerable
disagreement. For example, the lifetimes of the d P3 32

1 2,3 2

levels of Deb et al. (2009) exceed our values by five times. For

the d P3 32 state we found extremely strong, almost half and
half, mixing with the 3d24s2P state. It makes even the
configuration assignment for these levels somewhat ambig-
uous. The matrix elements for the levels with such strong
mixing are very sensitive to the details of calculation and it may
be the reason for a large disagreement with the CIV3
calculation in this case. Another example of large discrepancies
is the levels d s D3 4 22

3 2,5 2 which also show strong mixing

Table 1
Ti II Fine-structure Levels Excitation Energies (in eV) and Lifetimes (in sec) Included in the Present Collision Calculations

Index Configuration Term J Present NIST τ(sec) Index Configuration Term J Present NIST τ(sec)

1 3d2(3F)4s a4F 3/2 0.00000 0.00000 50 3d2(3F)4p z4D 1/2 4.02896 4.03350 3.17E-09
2 5/2 0.01160 0.01167 2.82E+04 51 3/2 4.03887 4.04221 3.20E-09
3 7/2 0.02790 0.02798 1.01E+04 52 5/2 4.05334 4.05405 3.24E-09
4 9/2 0.04891 0.04878 7.59E+03 53 7/2 4.06701 4.06261 3.19E-09
5 3d3 b4F 3/2 0.11420 0.11257 5.02E+05 54 3d2(3F)4p z2G 7/2 4.28070 4.28283 3.96E-09
6 5/2 0.12246 0.12199 5.95E+04 55 9/2 4.31027 4.30827 3.96E-09
7 7/2 0.13383 0.13481 2.57E+04 56 3d2(3P)4p z2S 1/2 4.64074 4.64081 4.59E-09
8 9/2 0.14812 0.15074 2.18E+04 57 3d2(1D)4p z2P 3/2 4.87525 4.86432 4.49E-09
9 3d2(3F)4s a2F 5/2 0.57452 0.57388 4.79E+02 60 1/2 4.90638 4.91904 5.86E-09
10 7/2 0.60657 0.60724 4.38E+02 58 3d2(1D)4p y2D 5/2 4.90302 4.89451 4.37E-09
11 3d2(1D)4s a2D 3/2 1.07937 1.07997 8.17E+01 59 3/2 4.90314 4.91013 3.49E-09
12 5/2 1.08996 1.08416 9.85E+01 61 3d2(1D)4p y2F 5/2 4.95328 4.95029 3.47E-09
13 3d3 a2G 7/2 1.11660 1.11558 1.65E+02 63 7/2 4.96524 4.96863 2.91E-09
14 9/2 1.12823 1.13052 1.13E+02 62 3d2(3P)4p z4S 3/2 4.96300 4.96274 3.35E-09
15 3d3 a4P 1/2 1.16012 1.16096 1.65E+01 64 3d2(3P)4p y4D 1/2 5.00436 5.00032 3.65E-09
16 3/2 1.16664 1.16493 1.68E+01 65 3/2 5.01417 5.01215 3.64E-09
17 5/2 1.18080 1.18010 1.67E+01 66 5/2 5.03061 5.03148 3.61E-09
18 3d3 a2P 1/2 1.21348 1.22137 4.07E+01 67 7/2 5.05413 5.05836 3.56E-09
19 3/2 1.22182 1.23687 1.67E+01 68 3d2(3P)4p z4P 1/2 5.20805 5.20693 3.96E-09
20 3d2(3P)4s b4P 1/2 1.23393 1.22408 8.85E+00 69 3/2 5.21614 5.21587 3.95E-09
22 3/2 1.24531 1.23126 8.30E+00 70 5/2 5.23125 5.23323 3.94E-09
21 5/2 1.24165 1.24292 1.36E+01 71 3d2(1G)4p y2G 7/2 5.42368 5.42316 2.98E-09
23 3d3 b2D 3/2 1.56805 1.56578 2.35E+01 72 9/2 5.42742 5.42815 2.97E-09
25 5/2 1.57971 1.58182 2.59E+01 73 3d2(3P)4p x2D 5/2 5.56699 5.56719 3.69E-09
24 3d3 a2H 9/2 1.57159 1.57176 2.64E+01 74 3/2 5.56477 5.56873 3.68E-09
26 11/2 1.58502 1.58388 2.95E+01 75 3d2(3P)4p y2P 1/2 5.63674 5.63787 4.13E-09
27 3d2(1G)4s b2G 7/2 1.89184 1.89170 6.13E+01 76 3/2 5.64824 5.64735 4.16E-09
28 9/2 1.89205 1.89271 5.79E+01 77 3d2(1G)4p z2H 9/2 5.66932 5.66282 3.94E-09
29 3d2(3P)4s b2P 1/2 2.04724 2.04772 7.40E+00 78 11/2 5.68713 5.69195 3.89E-09
30 3/2 2.06019 2.06127 7.26E+00 79 3d2(1G)4p x2F 7/2 5.88865 5.88513 4.45E-09
31 3d3 b2F 7/2 2.59189 2.59025 2.17E+00 80 5/2 5.90111 5.90475 4.42E-09
32 5/2 2.59610 2.59769 2.13E+00 81 3d4s(3D)4p 4F 3/2 6.49134 6.48808 5.17E-09
33 3d4s2 c2D 3/2 3.09369 3.09479 3.64E-01 84 5/2 6.50912 6.50569 2.27E-09
34 5/2 3.12440 3.12353 3.87E-01 86 7/2 6.53712 6.53462 2.53E-09
35 3d2(3F)4p z4G 5/2 3.66743 3.66305 4.86E-09 88 9/2 6.57409 6.58313 4.36E-09
36 7/2 3.68828 3.68662 4.82E-09 82 3d4s(3D)4p 4D 1/2 6.49376 6.48924 2.80E-09
37 9/2 3.71416 3.71560 4.78E-09 83 3/2 6.50514 6.50414 4.16E-09
38 11/2 3.74469 3.74940 4.73E-09 85 5/2 6.52313 6.52540 2.87E-09
39 3d2(3F)4p z4F 3/2 3.82408 3.82323 3.35E-09 87 7/2 6.54739 6.55221 6.75E-09
40 5/2 3.83700 3.83838 3.38E-09 89 3d4s(1D)4p w2D 5/2 6.63947 6.63997 3.77E-09
41 7/2 3.85551 3.85760 3.35E-09 90 3/2 6.64568 6.64521 3.80E-09
43 9/2 3.87973 3.88084 5.73E-09 91 3d4s(3D)4p y4P 1/2 6.96753 6.97079 3.88E-09
42 3d2(3F)4p z2F 5/2 3.86868 3.86924 3.30E-09 92 3/2 6.97329 6.97402 3.87E-09
44 7/2 3.90474 3.90438 5.70E-09 93 5/2 6.98680 6.98355 3.84E-09
45 3d2(3F)4p z2D 3/2 3.93664 3.93732 5.83E-09 95 3d4s(1D)4p w2F 5/2 7.35836 7.35501 7.08E-09
47 5/2 3.97105 3.97067 2.91E-01 96 7/2 7.36956 7.37314 3.09E-09
46 3d24s a2S 1/2 3.94105 3.94120 5.72E-09 94 3d4s(1D)4p 2P 3/2 7.35573 7.36317 3.06E-09
48 3d3 d2D 3/2 3.99879 4.00165 1.07E-02 97 1/2 7.37703 7.36964 7.33E-09
49 5/2 4.01187 4.00877 1.41E-02 98 3d2(3F)5s e4F 3/2 7.71038 7.70939 2.99E-09

(This table is available in its entirety in machine-readable form.)
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with the 3d3 configuration levels. In this case, the lifetimes
from the CIV3 calculation are two times smaller than our
values.

The comparison of the present calculated lifetimes with the
measurements of Hartman et al. (2003, 2005) and Palmeri et al.
(2008) has been presented in Table 3 for seven levels belonging
to the 3d3, 3d24s, and 3d4s2 configurations. We have also
included available theoretical results of Bautista et al. (2006)
and Deb et al. (2009) in Table 3. Our calculated lifetimes
closely agree with the measurement of Palmeri et al. within the
experimental uncertainties. However, the differences with the
measurements of Hartman et al. (2003) are up to a factor of 2. It
indicates the importance of correction due to the repopulation
effects that was incorporated in the measurement of Palmeri
et al. (2008). It may also be the reason of discrepancies
between the previous theoretical results of Deb et al. (2009)
and Bautista et al. (2006) and experimental results of Hartman
et al. (2003, 2005). Good agreement of the present results with
measured lifetimes of Palmeri et al. (2008) confirms that our
target wave function expansions adequately include main
correlation corrections and also correctly reproduce the spin–
orbit mixing.

The electric-dipole (E1) transitions in Ti II received much
more attention both from experiment and theory. Lifetimes for
selected higher-lying levels of Ti II, which decay through the
E1 transitions, are given in Table 4. Comparison is made with
the two most extended recent calculations of Kurucz (2011)
and Ruczkowski et al. (2016), along with the available
experimental data of Kwiatkowski et al. (1985), Bizzarri
et al. (1993), Langhans et al. (1995), and Lundberg et al.
(2016). Kurucz (2011) used a semi-empirical approach based
on a superposition of configurations using a modified version
of the Cowan (1981) codes and experimental level energies.
We note a very good agreement of our lifetimes with the results
of Kurucz (2011), with average deviation of 10%. Less
satisfactory agreement is observed with the lifetimes reported
by Ruczkowski et al. (2016), who used a semi-empirical

oscillator strength parameterization method. The average
deviation with their calculated results is 21.5%. The larger
differences, up to a factor of 2, were found for the higher-lying
3d25s levels. The agreement between our results and the
experimental values is mostly within the experimental
uncertainties. We note a good agreement between the present
results and the most recent measurements of Lundberg et al.
(2016) who have included the higher-lying 3d25s levels. The
new measured results are somewhat smaller than the previous
measurements. The average deviation of the present calculated
results with the measured lifetimes of Lundberg et al. (2016) is
estimated to be within 5%.
The comparison of our calculated lifetimes for excited levels

and radiative rates for dipole-allowed and forbidden transitions
with the available experimental and other theoretical results to
some extent indicates the accuracy of present target wave
functions used in collision calculation. We have found a good
agreement for the strong dipole-allowed E1 transitions as well
as for the weak M1 and E2 forbidden transitions in Ti II. In
order to illustrate the level of agreement between the present
oscillator strengths and the existing radiative data sets for the
individual E1 transitions, Figure 1 provides comparison
between the present oscillator strengths (log gf) with the most
recent other calculated results of Lundberg et al. (2016) who
used the relativistic Hartree–Fock computer code of Cowan
(1981). They also used a model potential to include core-
polarization effects and applied a correction to the dipole
operator in their calculations of radiative rates. The semi-
empirically adjusted parameters yielded theoretical energy
levels that have been noted to be very close to the experimental
values. The calculation of Lundberg et al. (2016) for radiative
rates represents one of the most comprehensive data for the
dipole-allowed transitions in Ti II. The comparison in Figure 1
shows a reasonable agreement between the present results and
the calculation of Lundberg et al. (2016), with average
deviation of 30.5%. A better agreement is observed for the
stronger transitions, where the agreement between the two sets
of results is in the range of 10%–20%. The oscillator strengths
for weaker transitions (typically log gf<−2) are extremely
sensitive to small changes in the atomic wave functions, and
the strong cancellation effects can lead to errors in the radiative
rates ranging from 50% to a few orders of magnitude.
Lundberg et al. (2016) found similar agreement with other
previously available extensive semi-empirical calculations of
Ruczkowski et al. (2016) and to some extent with that of
Kurucz (2011). It may be noted that Kurucz (2011) and
Lundberg et al. (2016) used very similar methods of
calculation, except that the former did not include the core-
polarization in his calculation. In Figure 2 we have displayed
the comparison of the present oscillator strengths (log gf) with
the experimental values reported by Lundberg et al. (2016) for
57 dipole-allowed transitions from the 5s levels. There is a very
good agreement between our calculated results and the
experimental values, with average deviation of 10.1 %.
Lundberg et al. (2016) noted a good agreement between their
experimental values and the previous Fourier Transform
Spectroscopy measurements of Pickering et al. (2001) and
Wood et al. (2013). It is worth noting that we have omitted
configurations with smaller coefficients from our target CI
expansions in order to keep them manageable in the subsequent
scattering calculation. The accuracy of present radiative rates
for weaker transitions can perhaps be further improved by

Table 2
Present Calculated Line Strengths (S), Oscillator Strengths ( fik), and Transition
Probabilities (Aki(s

−1)) for E1, E2, and M1 Transitions in Ti II Together with
Their Wavelengths λ(Å)

i k Type λ(Å) S fik Aki(s
−1)

1 2 E2 1069071.97 1.03E+00 3.53E-17 1.37E-13
1 2 M1 1069071.97 9.64E+00 9.12E-09 3.55E-05
1 3 E2 444308.61 1.39E-01 6.63E-17 1.12E-12
1 5 M1 108568.07 3.06E-08 2.85E-16 1.61E-10
1 5 E2 108568.07 2.97E+01 9.75E-13 5.52E-07
1 6 E2 101241.75 2.87E+01 1.16E-12 5.03E-07
1 6 M1 101241.75 2.79E-04 2.78E-12 1.21E-06
1 7 E2 92643.34 3.54E+00 1.87E-13 7.26E-08
1 9 E2 21580.54 2.36E-06 9.84E-18 9.39E-11
1 9 M1 21580.54 3.39E-03 1.59E-10 1.52E-03
1 35 E1 3380.72 1.76E+01 3.95E-01 1.54E+08
1 39 E1 3242.23 1.38E+01 3.22E-01 2.04E+08
1 40 E1 3231.31 3.84E+00 9.03E-02 3.85E+07
1 45 E1 3149.53 4.62E-01 1.11E-02 7.49E+06
1 47 E1 3122.24 3.52E-02 8.56E-04 3.91E+05
1 50 E1 3077.36 5.30E+00 1.31E-01 1.84E+08
1 51 E1 3069.80 2.00E+00 4.95E-02 3.50E+07
1 52 E1 3058.85 1.35E-01 3.35E-03 1.59E+06

(This table is available in its entirety in machine-readable form.)
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setting much smaller cut-off parameters for generating config-
uration expansions, but it will lead to unmanageably large CI
expansions for scattering calculation.

3.2. Collision Strengths for Fine-structure Excitation

We have calculated collision strengths for all fine-structure
forbidden and allowed transitions between the 314 levels of Ti
II. In Figure 3, we have displayed collision strengths as a
function of incident electron energy for the two fine-structure
forbidden 3d24s4F3/2−4F5/2 (1–2) and 3d24s4F3/2− d F3 34

3 2
(1–5) transitions in the low-energy resonance region up to
0.6 Ry. It is clear from the figure that the collision strengths
are dominated by the strong resonance structures, especially in
the energy region from the lowest threshold at 0.00085 Ry to
0.30 Ry. There are several narrow and broad Rydberg series of
resonances converging to various ionic thresholds. There are
some strong and broad resonance features in the energy region
from 0.1 to 0.2 Ry. The resonant collision strengths are several
orders higher than the non-resonant collision strengths for the
forbidden transitions. The temporary capture of the scattering
electron to highly excited target states gives rise to various
Rydberg series of resonances. These resonance structures at
lower energies make a dominant contribution to the thermally

averaged collision strengths at lower temperatures, and are very
important for the accurate analysis and diagnostics of low-
temperature astrophysical plasmas. The collision strengths of
these transitions were also displayed by Bautista et al. (2006) in
Figure 1 (a) and Figure 1 (d) of their publication. They also
found similar resonance structures in their 82-level Breit–Pauli
R-matrix calculation. Their collision strengths in the energy
region below 0.3 Ry show good qualitative agreement with
the present results. It may be noted that they have plotted
log10 collision strengths in their paper, whereas we have
displayed collision strengths as a function of the incident
electron energy in Ry. It is important to correctly include overall
contribution of the resonance structures to the convoluted
effective collision strengths. The position and magnitude of
resonance structures are likely to be more accurate in our
calculation as we have used much better quality wave functions.
There are some significant differences between the two
calculations even for the background collision strengths for the
forbidden 3d24s4F3/2−4F5/2 (1–2) transition. The two calcula-
tions differ approximately by 40% around 0.6 Ry, indicating
significant differences in the quality of target wave functions
used in scattering calculations.
In Figure 4, we have displayed collision strengths for the

fine-structure dipole-allowed 3d24s4F3/2−3d24p4G5/2 (1–35)

Table 3
Comparison of the Calculated and Experimental Lifetimes (ns) for the Metastable States in Ti II

Theory Experiment

Index Configuration Term J This work Bautista et al. (2006) Deb et al. (2009) Hartman et al. (2005) Palmeri et al. (2008)

1 3d2(3F)4s a4F 3/2
2 5/2 2.82E+04 2.77E+04
3 7/2 1.01E+04 1.01E+04
4 9/2 7.59E+03 7.83E+03
5 3d3 b4F 3/2 1.14E+06 1.47E+06
6 5/2 5.95E+04 5.08E+04
7 7/2 2.57E+04 2.04E+04
8 9/2 2.18E+04 1.72E+04
9 3d2(3F)4s a2F 5/2 4.79E+02 3.20E+02
10 7/2 4.38E+02 3.19E+02
11 3d2(1D)4s a2D 3/2 8.17E+01 6.01E+01
12 5/2 9.85E+01 7.08E+01
13 3d3 a2G 7/2 1.65E+02 1.44E+02
14 9/2 1.13E+02 9.30E+01
15 3d2(3P)4s a4P 1/2 1.65E+01 1.26E+01
16 3/2 1.68E+01 1.34E+01
17 5/2 1.67E+01 1.30E+01
18 3d3 a2P 1/2 4.07E+01 2.02E+02
19 3/2 1.67E+01 1.05E+02
20 3d3 b4P 1/2 8.85E+00 1.23E+01
22 3/2 8.30E+00 3.11E+01 1.26E+01 1.80E+01(4)
21 5/2 1.36E+01 1.64E+01 1.31E+01 2.80E+01(4) 1.60E+01(1)
23 3d3 b2D 3/2 2.35E+01 2.73E+01
25 5/2 2.64E+01 3.33E+01 2.40E+01(3)
24 3d3 a2H 9/2 2.59E+01 3.37E+01
26 11/2 2.95E+01 3.97E+01
27 3d2(1G)4s b2G 7/2 6.13E+01 5.13E+01
28 9/2 5.79E+01 5.69E+01
29 3d2(3P)4s b2P 1/2 7.40E+00 1.27E+01 8.72E+00 1.40E+01(3) 7.70E+00(7)
30 3/2 7.26E+00 8.48E+00 7.00E+00(6)
31 3d3 b2F 7/2 2.17E+00 2.97E+00
32 5/2 2.13E+00 2.95E+00
33 3d4s2 c2D 3/2 3.64E-01 1.92E-01 1.80E-01 2.90E-01(1)
34 5/2 3.87E-01 1.96E-01 1.90E-01 3.30E-01(2)
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and 3d24s4F3/2−3d24p4F3/2 (1-39) transitions as a function of
incident electron energy in Ry. The collision strengths are shown
from the lowest excitation threshold energy to 10 Ry to illustrate
the energy behavior at higher energies. The collision strengths
show characteristic energy behavior of the dipole-allowed
transitions. The magnitude of collision strengths at higher
electron energies is directly related to the oscillator strengths for
the dipole-allowed transitions, which in turn depends up on
the quality of target wave functions. The dipole-allowed

3d24s4F3/2−3d24p4G5/2 (1–35) and 3d24s4F3/2−3d24p4F3/2

(1–39) transitions are strong and give rise to intense ultraviolet
features at 3380.72 and 3242.23Å in astrophysical plasmas.
The present oscillator strength (f-value) for the 3d24s4F3/2−
3d24p4G5/2 (1–35) transition is 0.395 and compares very well
(within 10%) with the measured values of 0.361 (Pickering et al.
2001) and 0.353 (Bizzarri et al. 1993) and the calculated
result 0.396 of Kurucz (2000). However, the present result differs
from the calculated value of 0.222 from Bautista et al. (2006) by

Table 4
Comparison of the Experimental and Calculated Lifetimes (ns) for Ti II

Theory Experiment

Index Configuration Term Present
Kurucz
(2011)

Ruczkowski
et al. (2016)

Lundberg
et al. (2016)

Kwiatkowski
et al. (1985)

Bizzarri
et al.
(1993)

Langhans
et al. (1995)

Lundberg
et al. (2016)

35 3d2(3F)4p z4G5/2 6.18 5.99 6.1 5.9(6) 5.7(3)
36 3d2(3F)4p z4G7/2 6.16 5.92 6.0 5.8(5) 5.6(3)
37 3d2(3F)4p z4G9/2 6.13 5.85 6.0 5.7(6) 5.6(3)
38 3d2(3F)4p z4G11/2 6.09 5.78 5.9 5.7(7) 5.6(3)
39 3d2(3F)4p z4F3/2 3.45 4.20 3.9 4.2(4) 4.1(2) 4.5(3)
40 3d2(3F)4p z4F5/2 3.48 4.15 3.8 3.76 4.1(3) 4.1(2) 4.3(3) 3.87(20)
41 3d2(3F)4p z4F7/2 3.46 4.13 3.8 4.4(6) 4.1(2) 4.5(2)
42 3d2(3F)4p z2F5/2 5.53 7.09 7.2 6.8(3)
43 3d2(3F)4p z4F9/2 3.41 4.10 3.8 4.3(4) 4.1(2) 4.2(2)
44 3d2(3F)4p z2F7/2 5.50 6.99 7.1 6.8(3)
45 3d2(3F)4p z2D3/2 5.83 6.85 6.8 5.87 6.3(10) 6.6(3) 6.10(20)
47 3d2(3F)4p z2D5/2 5.72 6.76 6.6 6.5(9) 6.6(3)
50 3d2(3F)4p z4D1/2 3.50 3.79 3.5 4.0(4) 3.9(2) 4.0(3)
51 3d2(3F)4p z4D3/2 3.53 3.85 3.6 4.1(5) 4.0(2) 4.0(3)
52 3d2(3F)4p z4D5/2 3.56 3.92 3.7 3.47 3.9(4) 4.0(2) 4.2(3) 3.86(20)
53 3d2(3F)4p z4D7/2 3.51 3.85 3.6 3.40 4.1(5) 4.0(2) 4.2(3) 3.75(20)
54 3d2(3F)4p z2G7/2 4.80 4.85 5.5 4.6(2)
55 3d2(3F)4p z2G9/2 4.79 4.85 5.5 4.8(4) 4.6(2)
57 3d2(1D)4p z2P3/2 4.57 4.46 5.1 5.5(3)
58 3d2(1D)4p y2D5/2 6.05 5.44 6.1 6.1(3)
59 3d2(1D)4p y2D3/2 4.48 5.50 4.2 4.5(2)
60 3d2(1D)4p z2P1/2 3.57 3.83 3.6 4.0(2)
61 3d2(1D)4p y2F5/2 3.99 4.43 3.7 3.9(2)
62 3d2(3P)4p z4S3/2 3.05 3.52 3.1 3.6(2)
63 3d2(1D)4p y2F7/2 3.89 3.76 3.5 4.1(4) 3.8(2)
64 3d2(3P)4p y4D1/2 4.27 4.48 3.3 4.6(5) 4.4(2)
65 3d2(3P)4p y4D3/2 4.27 4.46 3.3 4.5(2)
66 3d2(3P)4p y4D5/2 4.24 4.43 3.3 4.2(6) 4.3(2)
67 3d2(3P)4p y4D7/2 4.19 4.31 3.3 4.2(2)
68 3d2(3P)4p z4P1/2 4.38 4.81 4.6 4.8(2)
69 3d2(3P)4p z4P3/2 4.38 4.79 4.6 4.8(2)
70 3d2(3P)4p z4P5/2 4.37 4.76 4.6 4.8(2)
71 3d2(1G)4p y2G7/2 3.32 3.57 3.1 3.6(2)
72 3d2(1G)4p y2G9/2 3.31 3.57 3.1 3.7(2)
73 3d2(3P)4p x2D3/2 4.28 4.83 5.5 4.7(2)
74 3d2(3P)4p x2D5/2 4.27 4.81 5.5 4.7(2)
75 3d2(3P)4p y2P1/2 4.62 5.53 5.2 5.5(3)
76 3d2(3P)4p y2P3/2 4.65 5.53 5.3 5.5(3)
77 3d2(1G)4p z2H9/2 5.05 4.90 4.8 4.7(2)
78 3d2(1G)4p z2H11/2 5.01 4.81 4.7 4.6(2)
79 3d2(1G)4p x2F7/2 4.48 5.21 5.0 5.5(3)
80 3d2(1G)4p x2F5/2 4.47 5.16 5.0 5.4(3)
98 3d2(3F)5s e4F3/2 2.99 2.82 3.5 3.19 2.96(20)
99 3d2(3F)5s e4F5/2 3.00 2.82 3.19 3.05(20)
100 3d2(3F)5s e4F7/2 3.00 2.82 3.6 3.19 3.02(20)
101 3d2(3F)5s e4F9/2 3.01 2.82 3.19 3.14(20)
102 3d2(3F)5s e2F5/2 3.13 3.04 6.2 3.41 3.04(15)
105 3d2(3F)5s e2F7/2 3.14 3.05 6.2 3.41 3.02(15)
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about 44%. The 3d24s4F3/2−3d24p4F3/2 (1–39) transition has
oscillator strength of 0.322 from the present calculation and 0.250
and 0.233 from the calculation of Kurucz (2000) and measure-
ment of Pickering et al. (2001), respectively, where differences are
about 25%. The behavior of collision strengths at higher energies
can also provide a check on the convergence of the partial wave
expansions. The dipole-allowed transitions are dominated by large
angular momenta partial waves at higher incident electron
energies. In the present work partial waves for the total angular
momenta J=0–24 have been calculated in the B-spline R-matrix
calculations and the contributions of higher partial waves have
been estimated in a top-up procedure to provide converged
collision strengths. It is clear from Figure 4 that the resonance

contribution to the excitation of the dipole-allowed transitions
is very small, and the thermally averaged collision strengths
basically depend on the background non-resonant collision
strengths. There are a very few narrow resonances at low energies
that are likely to make minor contributions to thermally averaged
collision strengths. We have chosen these two strong dipole-
allowed transitions, which demonstrate characteristic ln(E)
asymptotic behavior at higher energies.
Table 5 displays effective collision strengths ϒi−j(Te))

obtained by convoluting collision strengths Ω with a
Maxwellian electron energy distribution at temperatures from
1000 K to 100,000 K. The indices i and j represent lower and
upper levels of a transition and have been assigned to levels in
Table 1. The table of effective collision strengths for all
transitions between the lowest 314 fine-structure levels of Ti II
is available online in a machine-readable format with an
associated ReadMe file. These transitions include many
infrared, optical, and ultraviolet emission lines observed in
low-density astrophysical plasmas, and should play an
important role in their analysis and modeling. The only
previously available calculation of Bautista et al. (2006) for
electron excitation collision rates at temperatures between 5000
and 20,000 K of Ti II appears to be primarily performed for
application in their modeling calculations. We note significant
differences with their effective collision strengths for many
dipole-allowed and forbidden transitions. Our prime objective
in the present work is to provide detailed collision and radiative
rates needed for reliable Ti abundance determination in a
variety of astrophysical objects.
The present effective collision strengths for the forbidden

fine-structure 3d24s4F3/2−4F5/2 (1–2), 3d24s4F3/2−4F7/2
(1–3), 3d24s4F3/2−4F9/2 (1–4), -d s F d F3 4 32 4

3 2
34

3 2 (1–5),
-d s F d F3 4 32 4

3 2
34

5 2 (1–6), and -d s F d F3 4 32 4
3 2

34
7 2 (1–7)

transitions have been compared with the 82-state Breit–Pauli
R-matrix calculation (RM-82) in Figure 5. The effective collision
strengths for transitions from the ground level to the first three
excited levels of the ground 3d24s configuration have been
displayed in the upper panels. The lower panels of the figure
display transitions from the ground level to the lowest three levels
of the 3d3 configuration. It is clear from Figure 5 that there are
significant discrepancies between the two calculations in
magnitude as well as in the behavior of effective collision
strengths with temperature. There is a reasonable agreement only
for the lowest 3d24s4F3/2−4F5/2 (1–2) transition. The present
results are larger than the calculation of Bautista et al. (2006) for
all six transitions displayed in Figure 5. There are large differences
at lower temperatures where resonance structures make substantial
contributions to the effective collision strengths. The present
calculation exhibits stronger resonance structures in the near-
threshold energy region and larger background collision strengths
than the RM-82 calculation. Another reason for the differences at
lower temperatures may be due to the differences in excitation
thresholds. The discrepancies at higher temperatures are primarily
due to the differences in target wave functions.
The comparison between the present effective collision

strengths and the calculation of Bautista et al. (2006) for the
dipole-allowed transitions as a function of log10 T (electron
temperature in K) is shown in Figure 6. We have chosen six
dipole-allowed fine-structure 3d24s4F3/2−3d2(3F)4p4G5/2
(1–35), 3d24s4F3/2−3d2(3F)4p4F3/2 (1–39), 3d24s4F3/2−
3d2(3F)4p4D5/2 (1–51), ( )-d F d F p G3 3 434

3 2
2 3 4

5 2 (5–35),

Figure 1. The log gf values from present calculation have been compared with
the semi-empirical calculation of Lundberg et al. (2016) for allowed transitions
from even parity levels to odd parity levels in Ti II. The average deviation
between the two calculations has been indicated.

Figure 2. Comparison between the present calculated log gf and the measured
values of Lundberg et al. (2016) for dipole-allowed transitions from the 5s
levels. The average deviation between the calculation and experiment has been
indicated.
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( )-d F d F p F3 3 434
3 2

2 3 4
3 2 (5–39), and ( )-d F d P3 334

3 2
2 3

p D4 4
1 2 (5–50) transitions for comparison. These transitions

are from the lower even parity 3d24s4F3/2 and d F3 34
3 2 levels

to higher odd parity levels of the 3d24p configuration.
The resonance structures are expected to make only small
contributions to the effective collision strengths in the

Figure 3. Collision strengths for the fine-structure forbidden 3d24s4F3/2−4F5/2 (1–2) and -d s F d F3 4 32 4
3 2

34
3 2 (1–5) transitions shown as a function of incident

electron energy in Ry.

Figure 4. Collision strengths for the fine structure allowed 3d24s4F3/2−3d24p4G5/2 (1–35) and 3d
24s4F3/2−3d24p_4F3/2 (1–39) transitions plotted as a function of

incident electron energy in Ry.

Table 5
Effective Collision Strengths for Electron-impact Excitation of Ti II

i j 1000 K 1500 K 2000 K 2300 K 2500 K 5000 K 7500 K 10000 K 13000 K 15000 K K

1 2 6.83E+00 6.49E+00 6.25E+00 6.14E+00 6.06E+00 5.46E+00 5.19E+00 5.05E+00 4.95E+00 4.89E+00 K
1 3 2.85E+00 2.66E+00 2.54E+00 2.48E+00 2.45E+00 2.18E+00 2.06E+00 2.01E+00 1.96E+00 1.94E+00 K
1 4 1.14E+00 1.03E+00 9.62E-01 9.34E-01 9.19E-01 8.10E-01 7.68E-01 7.49E-01 7.36E-01 7.27E-01 K
1 5 2.22E+00 2.23E+00 2.21E+00 2.20E+00 2.19E+00 2.10E+00 2.06E+00 2.06E+00 2.07E+00 2.08E+00 K
1 6 2.04E+00 2.04E+00 2.03E+00 2.02E+00 2.01E+00 1.86E+00 1.76E+00 1.69E+00 1.64E+00 1.60E+00 K
1 7 1.32E+00 1.30E+00 1.27E+00 1.25E+00 1.24E+00 1.10E+00 1.01E+00 9.56E-01 9.08E-01 8.82E-01 K
1 8 3.25E-01 3.48E-01 3.56E-01 3.56E-01 3.56E-01 3.26E-01 2.97E-01 2.76E-01 2.58E-01 2.48E-01 K
1 9 1.42E+00 1.46E+00 1.47E+00 1.46E+00 1.46E+00 1.46E+00 1.48E+00 1.49E+00 1.48E+00 1.47E+00 K
1 10 4.95E-01 5.27E-01 5.40E-01 5.42E-01 5.42E-01 5.14E-01 4.86E-01 4.64E-01 4.40E-01 4.26E-01 K
1 11 1.10E+00 1.05E+00 1.02E+00 1.00E+00 9.92E-01 9.33E-01 9.25E-01 9.27E-01 9.32E-01 9.35E-01 K
K K K K K K K K K K K K K

Note. i and j indicate the lower and upper levels indices, and the following columns indicate the electron temperature in K. The full table includes effective collision
strengths at 18,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 80,000, 90,000, and 1,00,000 K.

(This table is available in its entirety in machine-readable form.)
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low-energy region for the dipole-allowed transitions. There is
a mixed agreement of the present results with the calculation
of Bautista et al. (2006). There is a good agreement of

about 30% for the 3d24s4F3/2−3d2(3F)4p4G5/2 (1–35),
3d24s4F3/2−3d2(3F)4p4F3/2 (1–39), 3d24s4F3/2−3d2(3F)
4p4D5/2 (1–51), ( )-d F d F p F3 3 434

3 2
2 3 4

3 2 (5–39), and

Figure 5. Effective collision strengths have been displayed as a function of log10 T (electron temperature in K) for the fine-structure forbidden 3d24s4F3/2−4F5/2

(1–2), 3d24s4F3/2−4F7/2 (1–3), 3d24s4F3/2−4F9/2 (1–4), -d s F d F3 4 32 4
3 2

34
3 2 (1–5), -d s F d F3 4 32 4

3 2
34

5 2 (1–6), and -d s F d F3 4 32 4
3 2

34
7 2 (1–7)

transitions. The present RM-314 results (solid red line) have been compared with the RM-82 calculation of Bautista et al. (2006) (dashed blue line).

Figure 6. Effective collision strengths have been displayed as a function of log10 electron temperature in K for the fine-structure dipole-allowed 3d24s4F3/2−3d2(3F)
4p4G5/2 (1–35), 3d24s4F3/2−3d2(3F)4p4F3/2 (1–39), 3d24s4F3/2−3d2(3F)4p4D5/2 (1–51), ( )-d F d F p G3 3 434

3 2
2 3 4

5 2 (5–35), ( )-d F d F p F3 3 434
3 2

2 3 4
3 2

(5–39), and ( )-d F d P p D3 3 434
3 2

2 3 4
1 2 (5–50) transitions. The present RM-314 results (solid red line) have been compared with the RM-82 calculation of Bautista

et al. (2006) (dashed blue line).
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( )-d F d P p D3 3 434
3 2

2 3 4
1 2 (5–50) transitions. The large

discrepancies are noted for the ( )-d F d F p G3 3 434
3 2

2 3 4
5 2

(5–35) transition where present results are larger by about a
factor of two. The discrepancies between the two calculations
are likely caused by the differences in target wave functions
and, therefore, by the oscillator strengths. It is clear from the
upper panels of Figure 6 that the dipole-allowed 3d24s4F3/2−
3d2(3F)4p4G5/2 (1–35), 3d24s4F3/2−3d2(3F)4p4F3/2 (1–39)
transitions are stronger with oscillator strengths 0.395 and
0.322, respectively, than the 3d24s4F3/2−3d2(3F)4p4D5/2
(1–51) transition which has oscillator strength of 0.0495.
The other three transitions in the lower panels have similar
magnitudes. The effective collision strengths display
characteristic behavior of the dipole transitions at higher
temperatures.

The comparison between effective collision strengths from
the BSR-314 and RM-82 calculations for all forbidden and
allowed transitions between the lowest 12 levels of the
3d2(3F)4s, 3d3, and 3d2(1D)4s configurations and from these
levels to all other higher excitation levels considered by
Bautista et al. (2006) has been shown in Figure 7 at 5000,
10,000, and 20,000 K electron temperatures. The agreement
between the two calculations somewhat improves with
increasing temperature. The average deviations at 5000 K,
10,000 K, and 20,000 K are 37.9%, 34.4%, and 32.9%,
respectively. For some individual transitions we noted large
discrepancies between the two calculations, which may have
been caused by the differences in background collision
strengths as well as by resonance structures in the low-energy
region. In addition, we found substantial discrepancies with
Bautista et al. (2006) for transitions between higher-lying
excited levels, probably caused by errors in identification of
levels in their calculation. The resonance structures in the
energy region close to thresholds are more accurate in our
calculations because of the inclusion of a larger number of
levels in the close-coupling expansion. The background
collision strengths in our calculation are expected to be of
better accuracy due to better description of the target wave
functions. Bautista et al. (2006) considered 5000–20,000 K
temperature range, while we considered a much wider range of
temperatures from 1000 K to 100,000 K. In the absence of the
details of target wave functions and scattering calculation of
Bautista et al. (2006), it is rather difficult to determine
definitive reasons for significant discrepancies. The positions
of resonances close to the threshold energy region are sensitive
to the accuracy of target threshold energies and the conv-
ergence of the close-coupling expansions. Even though the

present fine-tuned threshold energies agree with measured
values to better than 0.01 eV for most levels and we have
included a large number of levels in the close-coupling
expansion, there is a possibility that the results may be
somewhat less accurate at very low temperatures.

4. Summary

We have reported radiative transition rates and thermally
averaged collision strengths for both forbidden and allowed
transitions among the 314 fine-structure levels of Ti II
belonging to terms of the ground 3d24s and excited 3d3,
3d4s2, 3d24p, 3d25s, 3d4s4p, 3d24d, 3d25p, and 3d24f
configurations. Overall, our data include 49142 transitions,
and represent the first comprehensive data set for Ti II
abundance determination in different astrophysical sources.
The collision calculations have been performed using the
B-spline Breit–Pauli R-matrix method. The B-splines are
employed as a basis for the representation of continuum
orbitals. The different modules of the BSR computer code have
been modified in the last couple of years to deal with
complicated iron-peak elements. The non-orthogonal orbitals
have been generated both for the description of the target states
as well as for the scattering continuum functions. The
optimization of different atomic wave functions independently
and well chosen important correlation configurations provided
a very accurate description of the target states. The term-
dependent one-electron orbitals also provided accurate repre-
sentation of relaxation effects in configurations with different
occupation in the 3d sub shell. Extensive valence–valence and
core–valence correlation effects, relativistic effects, and term
mixing are accounted for through the Breit–Pauli approx-
imation. The accuracy of collision rates was further improved
by using the fine-tuned target level energies. The fine-tuning
process also enhanced the accuracy of the term-mixing
coefficients for the target description used in our calculations
of radiative and collision rates.
Based on the detailed comparison of radiative rates with the

other calculations and available experimental results and
limited comparison of collision rates with Bautista et al.
(2006), our data should be accurate to about 30% or better for
many transitions of astrophysical importance, but may be less
accurate for weak transitions involving strong mixing and
cancellation effects or for transitions between closely lying
levels. The complete list of radiative data and effective
collision strengths are presented in the supplementary materials
for the abundance determination in astronomical objects.

Figure 7. Present effective collision strengths for the fine-structure transitions between the lowest 12 levels have been compared with Bautista et al. (2006). The
average deviations of RM-82 from the present BSR-314 are indicated in each panel.
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