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Abstract—With the advancement of unmanned aerial vehicle
(UAV) technology, UAV swarm has been showing its significant
security threats towards the ground facility. With current tech-
nologies, it is still challenging in unknown UAV swarm tracking
and neutralization. This paper proposes an analytical method in
predicting drone flying behavior based on the machine learning
algorithm, which could be integrated into swarm behavior
prediction. Radio frequency (RF) signals emitted from the UAV
are captured by software-defined radio (SDR) to form the time
series data. Using conventional short-time Fourier transform
(STFT), a time-frequency spectrum revealing the RF data energy
distribution is obtained to analyze the signal variance pattern
formed by the two different types of UAV flying trajectory. The
transformed time-frequency domain matrix would be applied in
multiple machine learning classifiers to tell the different flying
trajectories. The results present the applicability of using machine
learning in predicting the flying features and modes of intruding
UAV swarm. It shows the potential of enhancing the redundancy
of the UAV negation system.

Index Terms—UAV Trajectory Tracking; Machine Learning;
STFT; Software Defined Radio

I. INTRODUCTION

A fast-growing UAS market nowadays has made significant
impacts in most aspects of modern society. For example,
a UAV based transportation platform advances the package
delivery of post service, which shows its great convenience
and efficiency in reducing human resources, energy fuel costs
brought by conventional human labor centered industries.
Thanks to the advanced technologies developed in manufac-
turing, control, and communication, the amateur drone has
also shown excellent potential to be involved in ordinary
entertainment. However, significant threats underlying this
flourishing expansion of the UAV market also generate air
transportation security issues. As reported, over 100 airport
incidents have claimed that it is related to obscene UAV
in the past year, which catches much attention from federal
government organizations, such as FAA, DOHS, to develop
effective technology or system design to mitigate unknown,
intruding UAVs.

To effectively neutralize the intruding amateur UAV in
essential facilities, such as airport, nuclear power plant, ex-
isting technologies mainly focus on the physical suspension
of objects using aerial-based net capturing [1] anti-drone net
gun. With the evolution of machine learning and advanced RF
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jamming technologies, even more advanced UAV detection,
analytics, and jamming methods have been integrated into
real platforms [2]. However, a manual jamming platform
with human operation assistance could still have its defen-
sive vulnerabilities while facing a precisely planned attacking
plan. For example, a successive UAV intruding with multiple
operators is not applicable to be ceased by a limited number of
the jamming operator in the field. A more difficult defending
situation in the not far future would appear with the evolving
technologies in UAV swarm, making the technologies existing
nowadays not applicable anymore in suspending one UAV at
a time. A more autonomous anti multiple drone platform is
needed.

This paper proposes an analytical method in predicting
drone flying behavior based on the machine learning algo-
rithm. Radio frequency (RF) signal emitted by the UAV is
captured by software defined radio. Using conventional short
time fourier transform (STFT), a time-frequency spectrum
revealing the RF data energy distribution is obtained to analyze
the signal variance pattern formed by the two different types
of UAV flying trajectory. The transformed time-frequency
domain matrix would be applied in multiple machine learning
classifiers to tell the difference of different flying trajectories.
The result would show the potential applicability of using ma-
chine learning in predicting the flying trajectory of intruding
UAV.

RF signal is applied in most of the communication between
UAV and its controller, which creates a unique wireless link
compared with the environment noise [3] [4] [5]. In [6],
various SNR value with RF intrinsic energy distribution gives
the threshold of classification on detecting the presence of the
drone. [7] gives the method in classifying the number drone
when SDR receives signals from a group of UAVs based on
an indoor test environment. UAV’s transient signal gives us
enough information on UAV operation mode’s kernel features,
distance from the detector, speed, etc. Unlike the transient
signal fraction method, which is involved in feature extraction,
the transient signal’s energy distribution creates more typical
features in classifying the number and presence of UAVs [§]
[9].

The remainder of this paper is structured as follows. In
section II, the background of RF signal detection mechanisms



is given. Section III explains the experiment set up and
the SDR signal receiving module configuration. Section IV
presents the results of the UAV flying trajectory classification.
Finally, in section V, we conclude our paper and give future
research direction.

II. BACKGROUND
A. Radio Frequency Signal Variance

The first personal view (FPV) on UAV uses a radio fre-
quency antenna to transmit vision data from drone to a
remote controller or monitor. In transmission, two antennas
are adopted typically for different UAVs based on the appli-
cation: omnidirectional antenna and directional antenna. The
omnidirectional antenna radiates radio wave power uniformly
in all directions in a single plane, with the radiated power
reducing with the increase in its absolute elevation angle. The
following two equations give the electro-magnetic radiation
value in the far field.
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Equation (1),(2),(3) give the variance relation between
the observation point and source point. Therefore, with the
increasing of R, H(7) and F(7) decreases. The radio signals
are broadcasting from a location, and the signal radiates out
from the transmitter with a decreasing level of EM field
strength as the distance increases. The magnitude of the radio
signal shows up in the frequency spectrum after FFT has a
bigger value. Similarly, radio signal strength would become
weaker, or the wireless link would be lost as the signal receiver
and transmitter move away from each other. While the radio
signal transmitter moves relatively towards or further away
from the signal receiver, the doppler effects and wireless signal
EM field changes could cause the variance of signal magnitude
emitting frequency. Therefore, different flying modes with
various approaching trajectories relative to the receiver would
generate a rich amount of pattern in determining intruding
UAV features.

B. Transient Signal Energy Distribution

The transient signal’s energy distribution over the time-
frequency spectrum could reveal the instant signal strength
dynamics over different frequency components. Short time
fourier transform (STFT) provides one of the ways to represent
this transient signal spectrogram by calculating the magnitude
of signal as follows,
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Fig. 1. Spectrogram of UAV RF Signal
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where s(t) indicates the received RF signal, w(t) denotes the
discreet window function, n represents the sample number, and
N is the FT analyzing window. Index m is the positions of the
analysis window, in which m(i—1) = m(i)+nN. k indicates
the index of frequency components kwg where wg = 27 fs/N.

Fig. 1 shows the signal energy distribution over the time-
frequency spectrum of the UAV RF signal. By ignoring the
noise signal except the main radio transmission components,
an apparent signal strength variance could be seen on the
1020 - 1029 Hz frequency interval, corresponding to the
signal variance pattern of UAV straight flying trajectory in
the following section.

III. EXPERIMENT CONFIGURATION AND TIME SERIES
SIGNAL PATTERN

In this section, the experiment setting and a captured video
signal from the UAV transmitter would be discussed over a
time sequence. It represents the difference in signal magnitude
variance pattern over two different flying trajectories.

RF signal capturing was done in the DBRCA test field,
which includes a 100 meters flying track and a signal receiving
site. with 35 meters perpendicular distance away from the
runway. Besides the existing wireless signal over the ISM
band, there is no external signal inference over 5.8 GHz, which
is the centering frequency of UAV video signal transmission.
Two types of flying trajectory experiments are used to illustrate
the difference of the signal variance pattern.

A. Straight Flying

As shown in fig. 2, the UAV flight follows the straight flying
trajectory along with the flight track. The emitted RF signal
was received by the USRP N310. Green lines mark the flying
trajectory of UAV with two times the length of the runway.
According to the eq.(1)(2)(3), we could assume that the signal



strength of UAV varies with the variance of Euclidean distance
between UAV and USRP devices.

Fig. 2. Straight Flying Trajectory along with Run Way
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Fig. 3. Signal Amplitude Variance with UAV Straight Flying Trajectory

Fig.3 shows the same signal variation pattern as our assump-
tions above. The first time series signal pitch was generated by
the first time of UAV approaching the signal receiver. Then the
amplitude drops after the dropping of the distance between the
signal emitter and SDR receiver. Similarly, the second shorter
pitch was made while the UAV is on its back way.

B. Round Flying Surrounds Signal Receiver

In fig. 4, green lines mark the circling flying trajectory
of UAV with the same radiance. Similarly, as straight flying
mode, we could assume that UAV’s signal strength varies
with Euclidean distance between UAV and USRP devices.
Therefore, the signal strength should keep on the same level
over the sampling period. However, due to the variance of
different initial speed and not exact round flying trajectory, the
signal amplitude over time series could not follow the perfect
steady value.

Following the same pattern as we assumed of round flying,
the strengthening of signal amplitude over 0.3 x 107 samples
could be introduced by the initial approaching phase. Simulta-
neously, UAV could not hold a perfect tangent velocity, which
causes the factorized speed towards the signal receiver. Besides
that, the time-series signal holds a minimal amount of variance
over the rest amount of the sample points.

Fig. 4. Round Flying Trajectory
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Fig. 5. Signal Amplitude Variance with Round Flying Trajectory

C. Data Augmentation

Each flight captured by the spectrogram during the exper-
imental phase was considered to be one “event” on which
we were interested in classifying the UAV flying behavior.
In order to best model the behavior, each flight was treated
as a 2D image matrix consisting of 308 rows of time-series
observations, and 2048 signal feature columns representing
each of the available frequencies of captured data. The data
was then augmented by selecting eight of the ten signal
features across the spectrum corresponding to the significant
features identified in fig. 1. Once selected, the eight signal
features were shifted to each of 256 possible positions within
the matrix, creating an additional 255 images of data, with
variation in signal location within the data. This was done for
each of the eight available flight images, which allowed us to
expand our set of images to a total of 2048.

IV. RESULTS AND DISCUSSION

In this section, the spectrogram pattern’s classification result
from two different flying trajectories would be presented. We
would discuss the spectrogram pattern’s matrix form in 300x
2048 size, which represents 2048 frequency points with 300
time samples. By each column of the data representing the
signal variance overtime at each frequency point, fig.1 shows



that only 1020-1029 columns have the actual signal strength
variance in the process of video signal packet delivering.
Therefore, ten columns of the data were picked as the features
in the process of UAV flying mode classification. Three groups
of straight and surround flying data sets have been selected as
the training data, and 1 of each flying trajectory set has been
selected for verifying the classification result of the neural
network model.

Such a flying trajectory difference classified by the machine
learning algorithm falls into a typical binary classification
problem. Table. I shows the great accuracy in classifying two
different time series data patterns over ten picked frequency
points. With a similar spectrogram matrix, pattern and less
noise from radio interference added to the received radio signal
that we have seen in fig. 3 and fig. 5, this significantly high
accuracy of binary classification is expected. However, the
result gives an idea of the received signal strength indication
(RSSI) variance could be a vital criterion for detecting amateur
UAV presence. With the evolving technology of autonomous
vehicles, less constantly emitted RF signals could be applied
as the detection resources for investigating UAV in the se-
cured field. The UAV could still send the intermittent signal
for flying trajectory verification to the remote controller for
considering the redundancy of UAV fly control system design.
Therefore, this paper gives out the result that uses the emitted
video signal to verify the potential of SDR in detecting the
Doppler effects and RSSI variance of the UAV transmission
signal. A fully autonomous UAV swarm shares the same
detectable signal characteristic.

KNN | MLP | SVM DT
Accuracy 1 1 1 0.95826
Accuracy for 1 1 1 1 0.934615
Accuracy for 0 1 1 1 0.979381
Running Time(s) | 13.934 | 1.189 | 3.796 4.016
TABLE T

BINARY CLASSIFICATION ACCURACY OF MULTIPLE CLASSIFIER

Further considerations of comparing this UAV detection
method with other conventional real-time flying trajectory
tracking techniques, such as active radar, microphone array
formed detection field, RF signal tracking. This method gives a
unique viewpoint of using significantly fewer data to recognize
the UAV flying path by the initially less amount of data
signal variance data on RSSI and doppler effects, which
provides fewer data processing time and lower false positive
rate detection. It gives the UAV detection and negation system
enough time to evaluate the intruding objects’ threats in the
secured field.

V. CONCLUSION

This paper gives out the UAV flying mode classification
result by using a machine learning algorithm. The RSSI
variance and doppler effects brought by the different moving
trajectory of UAV could be served as the detection resources
by recognizing the signal amplitude pattern on the time-
frequency domain. The final result of binary verification gives

great accuracy in verifying the ability to recognize the signal
pattern on a trained neural network. A similar method could be
applied in detecting a moving object with a dynamic pattern
of the emitted signal.

In future work, predicting the UAV flying trajectory is
needed to be investigated based on the machine learning
technique. The physical distance data between signal emitted
source and SDR should be obtained in the field test, designed
as another feature of neural network training. It enhances
the UAV detection system ability in the accurate UAV tra-
jectory tracking and positioning, which extends the system’s
redundancy in the time of threat evaluation and neutralizes
suspicious intruding objects.
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