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Bianisotropic metasurfaces have enabled highly efficient wavefront transformation. However, a passive and
lossless bianisotropic metasurface must conserve local power at every point over the metasurface, hindering
its application in handling complicated wavefields other than plane waves. In this paper, the power flow-
conformal design methodology and bianisotropic unit cells are combined to comply with such a restriction.
Our proposed approach provides a general recipe for arbitrary wavefront transformation with maximum
power efficiency. As a demonstration, a transmission-type acoustic metasurface was designed to focus 3000
Hz plane wave airborne sound in the near field with theoretically unitary power efficiency. The metasurface
was validated by both numerical simulation and experiment.

People have long been interested in shaping sound
waves. Conventional beam-forming techniques require
active transducers with phase control circuits, which are
costly and complicated. Recently, passive acoustic meta-
surfaces have been used reshape acoustic waves in a va-
riety of ways1–4. The simplest acoustic metasurfaces are
designed based on the generalized Snell’s law5–8 and rely
on a linear transmission phase gradient along the meta-
surface.

However, linear phase gradient metasurface unavoid-
ably generate multiple diffractive orders that are gen-
erally undesirable. These higher order modes not only
distort the transmitted sound field, but also reduce
the energy transmission efficiency since the acoustic
power is carried by these unwanted modes. Improve-
ments were made by using arbitrary phase modulation
along the metasurface to match the field distribution on
both sides9. Later, amplitude modulation was incorpo-
rated into the unit cells to further suppress parasitic
diffraction10,11. This method comes with a price that
in order to achieve amplitude modulation, the unit cells
must be lossy, so that the overall power transmission ef-
ficiency is reduced. As a result, a question was raised
that we can design a ”perfect” metasurface that simulta-
neously suppresses unwanted modes and maximizes effi-
ciency.

For reflection type metasurfaces, one path towards a
perfect metasurface is to design non-local coupling of
sound waves along the metasurface12, but this metasur-
face is hard to realize experimentally. Another way is to
employ a curved, power flow-conformal design13 where
the intensity flow of the total sound field is, by design,
tangential to the metasurface interface. By complying
with the requirement of local power conservation, the to-
tal power efficiency of this metasurface is maximized.

For transmission type metasurfaces, it has been
shown that scattering-free manipulation of sound can be
achieved by using bianisotropic unit cells14–17. The ad-
vantages of using bianisotropic unit cells are that they
can be theoretically passive while achieving higher-than-
unity pressure transmission coefficients18,19. This en-

ables manipulation of sound waves without scattering
into unwanted modes. However, passive and lossless
bianisotropic unit cells require the power flow on both
sides of the metasurface to be balanced locally, which
is not true for the most general wavefront transforma-
tion. While bianisotropic metasurface design works well
with incident and transmitted plane waves, it cannot
be used by itself to realize more complex wave pat-
terns like focusing or beam splitting for which normal
power is not conserved.20 In these cases, a maximally effi-
cient wavefront transformation requires either gain media
or local energy redistribution along the metasurface21.
To solve the power disparity problem with bianisotropic
metasurfaces, people have augmented them with aux-
iliary surface waves20,22, or implemented double-layer
structures23. Nevertheless, these two designs suffer from
disadvantages such as low conversion efficiency between
propagating and surface modes and bulky geometries, re-
spectively.

Here we show that we can combine the merits of bian-
isotropic metasurfaces and power flow-conformal meta-
surfaces to achieve highly efficient manipulation of arbi-
trary acoustic wavefronts. The optimal geometric profile
of the metasurface is determined by matching the nor-
mal components of the incident and transmitted sound
intensity fields so that the power flow is balanced locally.
Then the local pressure field transformation is realized
using bianisotropic unit cells. As a demonstration, we
designed a power-flow conformal bianisotropic metasur-
face (PFCBM) that focuses a planar incident wave in
the near field and verified the design with simulation and
experiments.

We start with the general case where the incident
sound pressure field pi is transformed to the transmit-
ted field pt. For simplicity, we consider time-harmonic
waves in the 2D scenario so that pi = pi(~r)e

jωt and
pt = pt(~r)e

jωt, where ~r = x · x̂ + z · ẑ and ω is the
angular frequency of the sound. We would drop the
time-harmonic term ejωt in the following derivations for
conciseness. Using the acoustic wave equation in 2D:
ρ∂~v
∂t +∇p = 0, where ∇p = ∂p

∂x + ∂p
∂z , the particle velocity
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of both the incident and transmitted sound fields can be
written as ~v = x̂ · vx + ẑ · vz. Once the required sound
pressure field and particle velocity field are known, the
corresponding sound intensity field can be calculated by
~I = 1

2Re(p · ~v∗).
We then find the optimal geometric shape of the meta-

surface to ensure that the metasurface is power flow-
conformal. We assume an infinitely thin acoustic meta-
surface located at zs = zs(x). If the normal compo-
nent of the incident sound intensity vector and the nor-
mal component of the transmitted sound intensity vector
are not the same on both sides of the metasurface, i.e.
~Ii(x, zs) · n̂(x, zs) 6= ~It(x, zs) · n̂(x, zs), then there must
be net acoustic energy absorbed or generated within the
metasurface locally, corresponding to loss or gain of the
metasurface material. One way to achieve 100% energy
transmittance is to distribute the loss and gain so that
they average to zero along the metasurface24. However,
this method is not practically plausible as there lack pas-
sive gain acoustic materials to facilitate such loss/gain
pattern.

Here we adopt another strategy: the geometric shape
of the metasurface is tuned so that the metasurface is
power flow-conformal, i.e., ~Ii(x, zs) · n̂(x, zs) = ~It(x, zs) ·
n̂(x, zs). In this way, the required metasurface can be
lossless and passive. We define the residual sound inten-
sity field as:

∆~I = ~It − ~Ii = x̂ ·∆Ix + ẑ ·∆Iz. (1)

Thus the problem becomes how to find a curve such that

the ∆~I field normal to the curve is always zero. We also

define an auxiliary vector field ~N = −x̂ ·∆Iz + ẑ ·∆Ix.
It can be proven that13 if the fields on both sides of the
metasurface are source-free, i.e. ∇ · I1 = ∇ · I2 = 0, then

we have ∇ × ~N = 0, so that ~N can be written as the

gradient of a scalar field, ∇g = − ~N .

It can be seen that ~N is perpendicular to ∆~I. Sup-
pose zg = zg(x) is one of the level curves of the scalar
potential function g (g[x, zg(x)] = Const.), then the nor-

mal vector along zg must be parallel to the ~N vector, i.e.,
~N(x, zg)//n̂(x, zg). As a result, the power flow-conformal

condition ∆~I(x, zg) · n̂(x, zg) = 0 is satisfied. In short,
the geometric profile of the metasurface should be cho-
sen from the set of zg, i.e. zs ∈ {zg1, zg2, zg3, ...}. After
choosing one specific zs = zg|zg(0)=z0 , both the incident
field and the transmitted field are determined everywhere
on the x− z plane.

Third, we derive the physical structure of the pro-
posed metasurface with the field distribution on both
sides. The local response of the acoustic metasurface
can be characterized by a 2 × 2 surface impedance ma-
trix Z = Z(x, zs), whose elements Z11, Z12, Z21 and Z22

are defined by:

[
pi(x, zs)
pt(x, zs)

]
=

[
Z11 Z12

Z21 Z22

]
·
[
n̂(x, zs) · ~vi(x, zs)
n̂(x, zs) · −~vt(x, zs)

]
. (2)

Since the metasurface is lossless and passive, the
impedance matrix is purely imaginary, i.e., Zmn = jXmn.
We can then re-write the impedance matrix in the follow-
ing form so that each element can be determined with the
field distribution:

[
Re(pi) Im(pi)
Re(pt) Im(pt)

]
=

[
X11 X12

X21 X22

]
·
[
−Im(n̂ · ~vi) Re(n̂ · ~vi)
Im(n̂ · ~vt) −Re(n̂ · ~vt)

]
.

(3)
After the surface impedance profile is determined, we

then discretize the metasurface into a finite number of
bianisotropic unit cells. Here we choose to use a hybrid
structure composed of shunted Helmholtz resonators and
a straight channel, as shown in FIG. 2(a). The depths
of the cavities wa, wb, wc wd as well as the channel width
w1 can be varied to achieve the required bianisotropic
response. The details of the geometry are explained
in the Supplementary Materials. It has been shown in
REF.14,15 that such design possesses a large degree of
freedom and ensures compact structures.

As an example, a power flow-conformal bianisotropic
metasurface (PFCBM) is designed for sound focusing.
As shown in FIG. 1(a), plane incident sound pi =
Ai exp(−jkz) is focused to a single point at (0, 0) after
transmitting through the metasurface. The transmitted

sound can be written as pt = AtH
(1)
0 (kr) accordingly,

where H
(1)
0 (x) is the zero-th order Hankel function of

the first kind. Here k = ω/c is the wavenumber in air.
f = 3000 Hz is the designed frequency. c = 343 m/s is
the sound speed in air. Ai and At are the amplitudes
of the incident and transmitted waves, respectively. The
particle velocity fields of the incident and transmitted
waves are:

{
vx,i = 0

vz,i = Ai exp (−jkz)/Z0.
(4)

and


vx,t = −jAtH

(1)
1 (kr)

x

Z0r

vz,t = −jAtH
(1)
1 (kr)

z

Z0r
.

(5)

Here Z0 = ρc is the characteristic acoustic impedance of
the air, ρ = 1.225 kg/m3 is the density of the air at room

temperature. H
(1)
1 (x) is the first order Hankel function

of the first kind. Without losing generality, we assume
Ai = 1. Once the focal length f = −z0 is decided, we
can calculate At by equating the values of sound intensity
along z direction at (0, z0). Then we simply write the g
field and find the level curve that crosses (0, z0). Follow-
ing the methodology, as mentioned before, the PFCBM
can be designed. The scalar potential field g(x, z) and
the metasurface geometry zs = zs(x) is shown in FIG.
1(b). It suggests an important divergence from the plane
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𝑂 x
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g x,	zs 	=const

pi = Aiexp(-jkz)

Metasurface

FIG. 1. (a) Schematic of the power flow-conformal bian-
isotropic metasurface (PFCBM). (b) The scalar potential field
g(x, z) and the geometry of the proposed sound focusing meta-
surface. (c) Impedance profile along the proposed metasur-
face. Theo.: theory. Opt.: optimization.

wave reflection design, as mentioned in REF.13. We also
mention here that the shape of the metasurface is differ-
ent from the trivial guess of a circle, hyperbolic curve,
or a parabola. The geometric shape of the PFCBM for
single-point focusing is governed by a Riccati equation,
which can be found in the Supplementary Materials.

The metasurface is then discretized into 19 unit cells
spanning an aperture of 0.31 m. The corresponding
impedance of each unit cell is shown in FIG. 1(c). The

waw

h
(a) 

(b) 
Speakers

Metasurface sample

Scanning
microphone

h1

wb
wc wd

h3

h2

Unit cell

w1

FIG. 2. (a) The geometry of the unit cell. (b) Experimental
setup.

curves represent the theoretical calculation, while the cir-
cles represent optimized unit cells. The difference in Z11

and Z22 indicates that our design is bianisotropic25. The
focal length is f = 0.106 m. In order to find the optimal
geometric parameters for the bianisotropic unit cells, we
first run the genetic algorithm to derive the approximate
values of all the parameters with randomized initial pop-
ulation, then use the pattern search algorithm to find
the exact value of each parameter. In genetic algorithm
optimization, the impedance matrix of the structure is
calculated analytically for computational efficiency, while
in pattern search, the impedance matrix of a structure
is retrieved in COMSOL simulations for accuracy. The
method for analytical calculation and parameter retrieval
in simulations are outlined in14. For simplicity, only
the depths of the cavities of the 4 Helmholtz resonators
wa, wb, wc, wd and the channel width w1 are optimized
for, while other geometric parameters are fixed for all
unit cells. The details of the geometric parameters of
our design can be found in the Supplementary Materials.

We use the Pressure Acoustic module in COMSOL
Multiphysics 5.4 to perform a numerical simulation with

our PFCBM design. The sound intensity amplitude |~I|
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PFCBM experiment
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FIG. 3. Sound intensity map of the metasurfaces under plane
wave incidence. Colors are in arbitrary unit.(a) Linear phase
gradient metasurface (LPGM) (b) Arbitrary phase modula-
tion metasurface (APMM) designed with the synthetic field
distribution. (c) Power-flow conformal bianisotropic metasur-
face (PFCBM). (d) PFCBM, experimental result.

TABLE I. Energy transmittance.

Metasurface type [-0.15, 0.15] m [-0.05, 0.05] m
LPGM 60.8% 27.8%
APMM 95.4% 76.0%
PFCBM 97.4% 85.0%

is shown in FIG. 3(c) in arbitrary unit. For compari-
son, we have also drawn the sound intensity map of a
linear phase gradient metasurface (LPGM) in FIG. 3(a)
and the sound intensity map of an arbitrary phase mod-
ulation metasurface (APMM) designed with synthetic
field distribution method9 in FIG. 3(b). We can find
that our PFCBM can better localize the sound intensity
around the focal point (0, 0) compared with the other
two metasurface designs. Also, as is shown in FIG. 4(a)
and FIG. 4(b), the PFCBM has higher power transmit-
tance than the other two designs. We calculate the power
transmittance of all three metasurfaces by integrating
the sound intensity amplitudes along x axis. Both the
large region (x ∈ [−0.15, 0.15] m) and the small region
(x ∈ [−0.05, 0.05] m) results are shown in TABLE I.

(a) 

(b) 

FIG. 4. (a) Sound intensity gain along z = 0. (b) Sound in-
tensity gain along x = 0. All curves are compared with the in-
cident sound intensity. We can see that the sound transmitted
through the power flow-conformal bianisotropic metasurface
(PFCBM) has higher energy as well as is better localized.

For the experiments, we fabricated the designed meta-
surface with 3D printing and measured its performance
in a 2D waveguide. The experimental setup is shown in
FIG. 2(b). A line array of loudspeakers served as the
sound source. To generate an incident plane wave, all
speakers were calibrated so that their output sound pres-
sure amplitudes and phases were the same. A micro-
phone scanned across the region of interest to image the
2D sound field with a step size of 5mm. Sound absorbing
foam was placed around the edges to prevent echoes. We
sent a Gaussian pulse centered at 3000 Hz to drive the
speakers and time-gate the measured signal to minimize
reflection from the boundaries. Fourier transform was
used to extract the sound pressure signal’s amplitude and
phase at 3000 Hz from the measured acoustic waveforms.
Then we calculate the partical velocity field ~v by imple-
menting numerical spatial gradient on the sound pressure

data. After that the sound intensity ~I = 1
2Re[p∗~v] could

be readily derived The experimental results are shown
in FIG. 3(d). It can be seen that the acoustic energy is
focused at the desired location as designed, and diffrac-
tion into unwanted modes is suppressed compared to the
other 2 approaches shown in FIG. 4. It is worth not-
ing that although our design is 100% efficient in theory,
factors such as finite unit cell discretization, fabrication
errors, thermoviscous loss prevent it from achieving 100%
efficiency in practice.

To conclude, we have shown that a highly efficient
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metasurface for arbitrary wavefront transformation can
be constructed by combining a power flow-conformal ge-
ometric profile with bianisotropic unit cells. This design
is purely passive and can direct 100% of the transmitted
energy to the desired focal point in theory. Moreover,
the design process is general and applies to arbitrary
wavefront manipulation scenarios as long as the incident
and transmitted sound fields can be specified precisely.
This work has potential applications in sensing, ultra-
sound therapy, non-destructive testing, and other fields
where efficient sound focusing is of interest. The pro-
posed framework for arbitrary wavefront manipulation is
also expected to work for electromagnetic metasurfaces.

SUPPLEMENTARY

The geometrical parameters of the unit cells of
PFCBM and detailed discussion of the geometric shape
of the PFCBM is shown in the supplementary materials.

ACKNOWLEDGMENTS

This work was supported by an Emerging Frontiers in
Research and Innovation grant from the National Sci-
ence Foundation (Grant No. 1641084) and a CMMI
grant from the National Science Foundation (Grant No.
1951106). The authors would like to thank Ailing Song
and Xiaohui Zhu for their useful discussion.

DATA AVAILABILITY

Data is available from the corresponding author upon
reasonable request.

1Y. Li, X. Jiang, R.-q. Li, B. Liang, X.-y. Zou, L.-l. Yin, and J.-c.
Cheng, Physical Review Applied 2, 064002 (2014).

2J. Chen, J. Xiao, D. Lisevych, A. Shakouri, and Z. Fan, Nature
communications 9, 4920 (2018).

3T. Liu, X. Zhu, F. Chen, S. Liang, and J. Zhu, Phys. Rev. Lett.
120, 124502 (2018).

4R. Al Jahdali and Y. Wu, Applied Physics Letters 108, 031902
(2016).

5N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Ca-
passo, and Z. Gaburro, science 334, 333 (2011).

6Y. Xie, W. Wang, H. Chen, A. Konneker, B.-I. Popa, and S. A.
Cummer, Nature communications 5, 5553 (2014).

7Y. Li, B. Liang, X. Tao, X.-f. Zhu, X.-y. Zou, and J.-c. Cheng,
Applied Physics Letters 101, 233508 (2012).

8W. Wang, Y. Xie, A. Konneker, B.-I. Popa, and S. A. Cummer,
Applied Physics Letters 105, 101904 (2014).
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120, 254301 (2018).

17A. Melnikov, Y. K. Chiang, L. Quan, S. Oberst, A. Alù, S. Mar-
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