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Polymers are uniquely suited for drug delivery and biomaterial applications due to tunable structural parameters
such as length, composition, architecture, and valency. To facilitate designs, researchers may explore combinato-
rial libraries in a high throughput fashion to correlate structure to function. However, traditional polymerization
reactions including controlled living radical polymerization (CLRP) and ring-opening polymerization (ROP) re-
quire inert reaction conditions and extensive expertise to implement. With the advent of air-tolerance and auto-
mation, several polymerization techniques are now compatible with well plates and can be carried out at the
benchtop,making high throughput synthesis and high throughput screening (HTS) possible. To avoidHTS pitfalls
often described as “fishing expeditions,” it is crucial to employ intelligent and big data approaches to maximize
experimental efficiency. This is where the disruptive technologies of machine learning (ML) and artificial intelli-
gence (AI) will likely play a role. In fact, ML and AI are already impacting small molecule drug discovery and
showing signs of emerging in drug delivery. In this review, we present state-of-the-art research in drug delivery,
gene delivery, antimicrobial polymers, and bioactive polymers alongside data-driven developments in drug de-
sign and organic synthesis. From this insight, important lessons are revealed for the polymer therapeutics com-
munity including the value of a closed loop design-build-test-learn workflow. This is an exciting time as
researchers will gain the ability to fully explore the polymer structural landscape and establish quantitative
structure-property relationships (QSPRs) with biological significance.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Polymers are central to a wide range of applications including drug
delivery, gene therapy, antimicrobial therapeutics, and drug formula-
tion. For instance, polymers can deliver bioactive molecules by improv-
ing circulation time and bioavailability, boost the solubility of
hydrophobic drugs, and disrupt bacterial cell membranes [1–8]. They
can also be utilized as scaffolds to present biomolecules or therapeutics
such as proteins, peptides, nucleic acids, and small molecule drugs at a
site of interest. With modern controlled living radical polymerization
(CLRP) techniques, polymers have several tunable parameters – such
as degree of polymerization (DP) or chain length [9–14], composition
[10,15,16], architecture [9], stereochemistry [17,18], compactness [19],
and valency [9,20] – that potentially enable polymer designs for specific
applications based on desired characteristics. Specific areas that can
benefit from precision polymer design include gene delivery, drug de-
livery, antimicrobial polymer therapeutics, and bioactive polymers in-
cluding polymer-peptide, polymer-nucleic acid, polymer-drug, and
protein-polymer conjugates [8,21–25]. As polymer design is often an
unintuitive process, future developments in these areas would be facil-
itated by sophisticated approaches to high throughput study and data-
driven design.

The domain of high throughput study can be separated into combi-
natorial chemistry, high throughput experimentation (HTE), and high
throughput screening (HTS). In combinatorial chemistry, relevant pa-
rameters (e.g. solvent, material composition, and additives) are tested
in a parallel manner. HTE involves testing of numerical variables such
as temperature, pressure, time, and volume while HTS is parallel,
rapid testing [26]. HTS initially expanded in the life sciences and
pharmaceutical industries in the 1950s with widescale screening of
small-molecule compound libraries [27–29]. More recently in the 21st
century, there have been advancements of HTS techniques in biomate-
rials and drug delivery with an increased use of automation to conduct
experiments [10,15,24,30]. Historically, polymer chemistry has not
progressed towards automation because of a need for reaction optimi-
zation and lack of polymer compositional flexibility, but this has
changed dramatically over the past 5–10 years [9–14,31–33].

Nonetheless, some have described these approaches as “fishing ex-
peditions,” which can be fair criticism because HTS lacks experimental
feedback, has a tendency to be influenced by personal biases, contains
high risk for false positives and false negatives, and presents difficulties
for intuitive data analysis or justification. There is a need for a feedback
mechanism to pinpoint which study elements should be incrementally
modified [34–37]. A reasonable selection process is also sought-after so
a diverse combinatorial library can be prepared and efficiently sampled
for hits [38,39]. Illustrating this need for experimental feedback, over
the time period when HTS became widely utilized in pharmaceutical
drug discovery (1990–2013), the number of new chemical entities
(NCEs) did not increase [40]. Limitations to HTE and HTS for polymers
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may be addressed through applications of artificial intelligence (AI)
and machine learning (ML).

Traditionally, AI approaches to polymer design have been rarely con-
sidered. However, the present day is an exciting time for automation, AI,
and ML, with applications emerging across sectors such as transporta-
tion, manufacturing, and healthcare. This has been aided by a greater
emphasis on handling “big data” and an increase in academic interest
(Fig. 1). In pharmaceuticals, interest in AI and ML has grown exponen-
tially over the past decade, whereas the field of drug delivery seems
to be approaching an inflection point. More specifically, collaborations
between pharmaceutical and technology companies have led to
the development of AI solutions to tackle healthcare challenges. Some
examples include partnerships between Novartis/Pfizer and IBM
Watson, AbbVie/Merck and Atomwise, Amgen and GNS Healthcare,
GlaxoSmithKline/Sanofi and Exscientia [41]. Partnerships between aca-
demia and industry have also formed for the same purpose such as the
Machine Learning for Pharmaceutical Discovery and Synthesis Consor-
tium (MLPDS) betweenMIT,Merck, Bayer, AstraZeneca, Novartis, Pfizer,
and others [42]. Further, AI strategies exist in about 16% of healthcare
companies but in over 30% of technology companies [41]. This disparity
represents an exciting growth potential for AI in the pharmaceutical
industry.

Despite this potential, automation, AI, andML are largely unexplored
and unknown in the polymer therapeutics and biomaterials communi-
ties. This review aims to present current research on this topic related to
polymer drug delivery. We will then highlight potential avenues by
which HTS, automation, and data-driven design can be employed by
studying its usage in organic synthesis of small-molecule pharmaceuti-
cals. To conclude, we will offer a perspective on potential drawbacks
and future trends.

2. Recent advancements in high throughput technologies for
polymers

2.1. Early efforts in high throughput polymer chemistry

High throughput experiments are useful in the realm of polymer
chemistry because important structure-property relationships can be
identified by exploring a large chemical space. Initial work in this
space in the 1990's involved the usage of parallel synthesizer vessels
with the capability to automatically prepare reactionmixtures in sealed
vessels. Here, we will describe some of this early work that lays the
foundation for the rest of this review.

As early work in HTS and combinatorial chemistry was being com-
pleted in the drug discovery space, the area of polymer chemistry was
exploring the utility of this approach. This includes groundbreaking
work in the late 1990s from Joachim Kohn's group which synthesized
a large library of 112 degradable polyarylate copolymers in parallel re-
action vessels [43,44]. After thorough characterization, a structure-



Fig. 1. PubMed hits for peer-reviewed publications involvingML, AI, pharmaceuticals, and drug delivery over the period from2000 to 2019. (A) Number of publications from 2000 to 2019
containing “machine learning,” “artificial intelligence,” and “pharmaceutical.” (B) Number of publications from 2000 to 2019 containing “machine learning,” “artificial intelligence,” and
“drug delivery.”
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activity relationship was developed between the copolymer composi-
tion and hydrophobicity, flexibility, glass transition temperature (Tg),
air-water contact angle, and cell proliferation. While this initial ap-
proach was promising, improvements could be made in terms of
throughput and reaction control [32].

Schultz and Zaffaroni had the goal of increasing throughput and
established Symyx Technologies in 1995 to provide platform technolo-
gies for high throughput polymer synthesis [26]. For instance, Bosman
et al. created a library of 384 star polymers for reaction optimization
by nitroxide-mediated radical polymerization (NMP) [45].While the in-
strument automated preparation of reaction mixtures, it required a
sealed reaction vessel, multiple freeze/thaw cycles, and precipitation
purification which limited throughput. Chemspeed is another company
that has developed tools for laboratory automation and HTE. The
Chemspeed Accelerator SLT106 synthesizer can conduct 16 parallel re-
actions in glass vials using four pipette heads. However, the instrument
has similar limitations as products from Symyx Technologies [46].

The progress made by Kohn, Schultz, Zaffaroni, and others intro-
duced combinatorial polymer chemistry to a wider audience and
made it possible for polymer science to branch out into various applica-
tions. For example, this was done in the field of drug and gene delivery
through the works of Anderson, Langer, and others. Combinatorial and
high throughput approaches allowed for themodulation of stem cell at-
tachment, growth, and differentiation to polymers [47–52] and an im-
proved understanding of material design parameters for degradability,
mechanics, and surface characterization [53–55]. Early reviews on com-
binatorial chemistry and high throughput approaches in polymer chem-
istry related to biomaterials and materials science can be found
separately [39,56,57].

2.2. Air-tolerant polymer chemistry

To achieve the ambitious goal of building quantitative structure-
property relationship (QSPR) models for polymer-based therapeutics, it
is crucial to synthesize large polymer libraries to define the role and im-
portance of various design parameters [32]. However, many of the early
advancements described in Section 2.1 are not amenable to synthesizing
and purifying large polymer libraries with fully automated workflows.
The major obstacle to establishing more user-friendly polymerization
techniques is air intolerance due to oxygen or humidity. In the past
3

decade, progress has been made by multiple groups who have demon-
strated open-air techniques for ring opening polymerization (ROP),
RAFT polymerization, and atom transfer radical polymerization (ATRP).
For more comprehensive information about this emerging field, see
review [31].

ROP is a widely used technique for synthesizing biodegradable poly-
mers such as polycaprolactone (PCL), poly(lactic acid) (PLA), and poly
(lactic-co-glycolic acid) (PLGA) [58]. However, ROP suffers a severe lim-
itationwhere polymerizationmust be conducted in inert atmosphere as
water impurities can cause lower molecular weight polymers [59].
To simplify the ROP method, scientists have investigated strategies
by which ROP can occur in aqueous conditions. For example,
Gleede et al. have reported ROP ofN-sulfonylaziridines where themois-
ture tolerance arises from the generation of a propagated active
chain that is stable in the presence of water and alcohol impurities
[60]. Furthermore, Nagai et al. have developed a cationic ROP of 1,3-oxa-
zolidine-2-thione using a water stable initiator methyl-trifluoromethane
sulfonate [61]. Interestingly, Wu et al. have reported ROP of α-amino
acid N-carboxyanhydrides (NCAs) in an open vessel using lithium
hexamethyldisilazide (LiHMDS) as an initiator [62]. Eachmethod utilizes
specific monomers and conditions to achieve moisture tolerance. There-
fore, it is important to develop a method for commonly used monomers
such as lactide or caprolactone.

Recently, an oxygen-tolerant technique was reported by
Matyjaszewski and others in which polymers of oligo(ethylene oxide)
methyl ether methacrylate (OEOMA) were synthesized via enzyme-
assisted initiators for continuous activator regeneration (ICAR) ATRP
[14]. Glucose oxidase served as the enzyme that scrubs oxygen in the
presence of glucose and sodium pyruvate. Controlled polymerization
was demonstrated, achieving a dispersity (Ð) < 1.3. This technique
was validated in open vials with as much as 25 mL in reaction volume.
In addition, Truong, Anastasaki, and co-workers found that the selection
of photoinitiated ATRP ligand, initiator, and solvent conditions affect ox-
ygen consumption and thus reaction control [63].

Similarly, Stevens, Chapman, and Gormley introduced enzyme-
assisted RAFT (Enz-RAFT) polymerization by which glucose oxidase was
demonstrated to enable deoxygenation in open vessels [11]. Not only
were they able to achieve controlled polymerization (Ð< 1.15) but also
synthesized polymers in aqueous and various aqueous/organic solvent
conditions. They further demonstrated that this technique could be
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carried out inwell plates, synthesizing various polymers composed of ac-
rylate, methacrylate, acrylamide, and methacrylamide monomers in
sealed 384-well plates with high control [12]. Another technique
was developed by Boyer and others, termed photoinduced electron
transfer-RAFT (PET-RAFT) [13]. Here, Ir(III) functioned as a photoredox
catalyst alongside a thiocarbonylthio chain transfer agent (CTA). They
synthesized several polymers consisting of acrylate, methacrylate, acryl-
amide, methacrylamide, vinyl ester, vinyl phosphonate, and N-vinyl
pyrrolidinonemonomers inambient conditionswithout adeoxygenation
step to initiate the reaction. Subsequentworkwas published on this sub-
ject [64–66] and on low-volume PET-RAFT in 96-well plates [9,33].

Other polymerization techniques have also been recently adapted. In
2019, Gibson and others developed a tertiary amine deoxygenation
photopolymerization technique that can be conducted in deep
well 96-well plates in non-DMSO solvents (dioxane, methanol, and tol-
uene) [67]; the proposed mechanism is that tertiary amines, such as
triethanolamine and triethylamine, transfer electrons to the
trithiocarbonate RAFT agent, which further reduces dissolved oxygen
to superoxide. Although this technique cannot controlmolecularweight
as well as PET-RAFT, it was used to synthesize about 400 polymers
in less than 40 h, demonstrating its potential utility as a rapid
polymerization for screening (especially if organic solvent conditions
are preferable). In addition, Gurnani et al. developed a PCR-RAFT
technique that is accessible for researchers in a biology laboratory, syn-
thesizing water-soluble acrylamide polymers by heating in a 96-well
thermocycler [68].

Despite the high throughput and air-tolerant polymerization
techniques available, researchers in polymer science typically purify
small-molecule impurities associated with polymerization or post-
polymerization functionalization by labor-intensive precipitation and
two-phase extraction [32,69,70] or overly complex high throughput
preparative HPLC methods [71–74]. Scientists may even rule out purifi-
cation because of these complexities [75]. Unfortunately, none of these
purification strategies are amenable for preparing large polymer librar-
ies. We recently published a gel filtration chromatography (GFC) tech-
nique with spin filtration columns that were pre-packed or manually
packed with size-exclusion resin. Along with significant reduction of
time and labor, we demonstrated a > 95% removal of small-molecule
impurities and > 85% polymer retention for a library of 32 polymers
[76]. An automated dialysis technique through the use of robotics to pu-
rify small-molecule impurities has also been recently reported by Schu-
bert et al. [77].

In addition, by complementing high throughput PET-RAFT and gel
filtration spin purification with high throughput polymer characteriza-
tion by small-angle X-ray scattering (SAXS), we synthesized over 450
unique polymers (homopolymers, random heteropolymers, and block
copolymers) and quantified features such as flexibility, compactness,
and hydrophobicity to reveal a phase relationship between hydropho-
bicity of the polymer backbone and parameters related to compactness
and flexibility [19].

In summary, various air-tolerant techniques have been established
over the past decade including open vessel ROP, ICAR ATRP, Enz-RAFT,
and PET-RAFT. More recently, progress has been made by our group
and others to correlate structural attributes (DP, geometry, and polymer
composition) to parameters of interest such as protein binding, flexibil-
ity, and compactness [9]. As synthesis, purification, and characterization
tools such as the ones described in this section become more widely
employed, we expect the progression of high throughput and combina-
torial polymer chemistry approaches in the drug delivery and biomate-
rials community.

2.3. Conjugate chemistry for high throughput testing

While development of small-molecule chemical scaffolds has been
in practice for many years, only modest efforts have been made with
4

macromolecules [78]. Amajor reason for this is the incompatibility of bi-
ologically relevant ligands with polymerization processes which neces-
sitates steps for post-polymerization functionalization. This requires
developing efficient conjugation strategies that are compatible with
high throughput polymer synthesis, require non-toxic reagents, and
can be performed under different reaction conditions. Current chemis-
tries for efficient conjugation are Diels-Alder, thiolene, tetrazine-based
cycloadditions and strain promoted azide-alkyne cycloaddition
(SPAAC) using cyclooctyne derivatives such as dibenzocyclooctyne
(DBCO) [79–81].

Tetrazene-norbornene conjugation reactions have been used to gen-
erate polymer-polymer conjugates and end-functionalized polymers in
both aqueous and organic solvents. O'Reilly and co-workers developed a
one-pot “mix and click” reaction to synthesize double core-shell mi-
celles combining RAFT with tetrazene-norbornene chemistry [82,83].
RAFT copolymerizations were completed to synthesize amphiphilic
block copolymers with norbornene and alkyne functionalities which
were subsequently dissolved in water to form micelles with a hydro-
phobic core and hydrophilic shell. Norbornene functional handles
were conjugated to tetrazine compounds while alkyne handles were
clicked to azide handles using copper(I)-catalyzed azide-alkyne cyclo-
addition (CuAAC) chemistry. This simple one-pot approach allows
functionalization of water soluble azide-bearing handles to themicellar
shell and hydrophobic-bearing tetrazine molecules to the core using
two different orthogonal click reactions. CLRP can typically tolerate a
lownorbornene concentration because of its reactivity towards radicals,
especially at high monomer conversion.

Another type of click reaction that has beenwidely used for polymer
modification is the thiolene reaction. While the radical mechanism of
thiol addition to alkenes has been known as early as the 1930's, the util-
ity of thiolene chemistry as ameans for functionalization came to prom-
inence much later. Initial applications were mainly focused on
modification of natural rubbers and extensive research over the last
few decades has resulted in a variety of post-polymerization substrate
modifications [84]. However, thiolene chemistry has proven to be ex-
tremely challenging for CLRP approaches because of the reactivity of
both thiols and alkenes under radical polymerization conditions.
Hawker and co-workers demonstrated a way towork around this prob-
lem by copolymerizing monomers that have modifiable alkenes with
vastly different reactivities [85]. Styrene and homoallyl functionalized
styrene were copolymerized using ATRP and RAFT techniques resulting
in polymers containing an allylic end which was used for subsequent
thiolene conjugation.

SPAAC is often a preferable click reaction for bioconjugation because
of cyclooctyne stability and high specificity towards azide-reactive
groups. To synthesize functionalized polymers with SPAAC handles,
NHS-activated esters are commonly used because of their ease of
copolymerization as well as their ability to react with various chemical
functional groups. Gormley, Boyer, and Chapman utilized this
ability to synthesize different polymer architectures and study their
effects on polymer binding, as described in Section 2.2 [9]. The
post-polymerization functionalization began with incorporation of
NHS-acrylate onto a polymer backbone using PET-RAFT. After polymer-
ization, scaffolds were functionalized with a strained alkyne (DBCO-
NH2) which allows for further functionalization with any desired azide
via SPAAC. For more information regarding post-polymerization
functionalization using NHS-activated esters, see another review
authored by Blasco and others [86].

Because click handles may be incompatible with CLRP, the majority
of these click functionalities are either introduced post-polymerization
or need to be chemically deprotected [87,88]. Popik and co-workers
developed a cyclopropenone masked dibenzocyclooctyne (cp-DIBAC)
that is photoactivated with UV light resulting in deprotection and gen-
eration of strained cycloalkyne [89]. The masking of DIBAC with a
cyclopropenone group renders it compatible with CLRP. Qu et al. then
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synthesized linear polymers incorporated with cp-DIBAC by RAFT and
ATRP [90–92].

Expanding on these studies, our lab in collaboration with
Robert Chapman's group, recently developed a single, one-pot,
dual-wavelength procedure for synthesizing SPAAC-ready linear or
star-shaped polymers [20]. We hypothesized that cp-DIBAC would be
compatible with PET-RAFT to generate conjugated polymer libraries
(Fig. 2). We synthesized cp-DIBAC either into the side chain of linear
polymers or into the Z group of a CTA to produce end-functional poly-
mers. Deprotection at an orthogonal wavelength (350 nm) followed by
click addition to azido ligands resulted in generation of bioactive poly-
mers in 96- and 384-well plates in DMSO. The cyclopropenone masking
nature of cp-DIBAC allows an interesting dual-functionalization strategy
that can be utilized for clicking multiple ligands onto polymers. To illus-
trate this, we generated polymers with two functional handles via DBCO
and DIBAC chemistries. The resulting polymers and conjugates showed
excellent control of molecular weight,Đ, conversion, and click efficiency.
We also investigated the use of cp-DIBAC for making end-functionalized
2-, 3-, and 4-arm star polymers. Click-versatility was exhibited by pre-
paring functional polymers containing bioactive peptides. In addition,
we demonstrated the high throughput capability of the system by syn-
thesizing a library of 80 linear polymers in 384-well plates with different
chain lengths and valency. The resulting polymers and conjugates
showed excellent control of molecular weights, Ð, conversion, and click.
3. Expansion into automation and data-driven design

3.1. Robotics and automation

Combinatorial, HTE, and HTS approaches were adopted as early as
the 1980s in the biological sciences. For instance, parallel synthesis
and screening of peptides along with polysaccharides and nucleic
acids were initially investigated [26]. High throughput techniques
were also introduced to the pharmaceutical sciences through the
screening of large drug compound libraries [26,93,94]. Major benefits
of incorporating automated instruments into experimental workflows
include accelerating repetitive tasks and limiting exposure to poten-
tially harmful materials while improving reproducibility [95]. Automa-
tion technologies have also been integrated into several high
throughput workflows, namely in the life sciences where liquid han-
dling instruments simplify serial dilutions, endpoint and kinetics assays,
and aliquot creation. In this section, we review more recent develop-
mentsmade in robotics and automation adapted for polymer chemistry.
Fig. 2. Various bioactive polymer architectures are possible in high throughput using cp-DIBAC
onto the polymer backbone. End-functionalized 2-arm, 3-arm, and 4-armpolymers can also be
at 290–350 nm prior to clicking ligand. Reprinted with permission from the American Chemic
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A high throughput, automation-friendly approach is not often uti-
lized in polymer chemistry and biomaterials. In numerous cases, auto-
mation and robotics have been used for optimizing reaction
conditions rather than synthesizing and screening large libraries of bio-
active materials [26,93,94,96]. This is due to the low throughput nature
of traditional polymer synthesis, which has left the chemical landscape
largely unexplored. As a result, there is a need to conduct polymer syn-
thesis, characterization, and screening experiments in a parallel fashion
rather than in a one-factor-at-a-time (OFAT) manner [26,96–99].

Some automation technologies exist to conduct ROP in a high
throughput fashion. Hoogenboom et al. first developed an automated
synthesizer in which the ROP of 2-ethyl-2-oxazoline was performed in
inert atmosphere conditions [100]; they achieved polymer libraries of
40 parallel polymerizations at 8 different monomer:initiator ratios. Fur-
thermore, they have developed a microwave-assisted automated
method for ROP of 2-oxazolines [101]. Waymouth and co-workers
more recently have developed an automated high throughput
continuous-flow reactor for ROP of polylactones [102]; they employed
urea anion catalysts for the rapid generation of a library of 100 distinct
homopolymers and block copolymers in less than 9 min.

There have also been numerous developments in the instrumenta-
tion and techniques related to combinatorial high throughput polymer-
ization. For instance, Schubert and co-workers demonstrated the utility
of a high throughput approach for synthesis of polymers by RAFT and
anionic polymerization along with process development [103]. Specifi-
cally, they evaluated the Chemspeed ASW2000, Chemspeed Accelerator
SLT100, and Chemspeed A100. Schubert and others further compared
these synthesizers based on achievable molecular weight, Ð, and repro-
ducibility [104]. Overall, depending on the set of reaction conditions, the
automated synthesizers either displayed similar or improved perfor-
mance relative to a manually-performed reaction. In 2012, Guerrero-
Sanchez et al. established a freeze-evacuate-thaw degassing method
that could be used to prepare combinatorial polymer libraries in parallel
reactor blocks [105]. Similar approaches are still taken in the present
day, as illustrated by work from Saldivar-Guerra and co-workers from
2019 [106]. This group conducted a semiautomated polymerization of
copolymers containing isoprene and glycidylmethacrylate via RAFT po-
lymerization. As was the case with previous synthetic workflows, pres-
surized parallel reaction vessels were needed with constant flow of
nitrogen. Unfortunately,manyof the same issues exist such asworkflow
inefficiencies alongwith a difficulty to optimize reaction conditions and
purify. Reviews that discuss traditional combinatorial and high through-
put polymerization techniques [107,108] and high throughput synthe-
sis equipment [109] have also been published.
. Linear functional polymers can be synthesized by polymerizing cp-DIBACmonomer (M1)
synthesized by utilizing respective RAFT agents (R2, R3, and R4). Deprotection is conducted
al Society. Copyright 2019 American Chemical Society [20].
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An early application of automation in gene delivery was revealed by
Anderson et al. in 2003 [110]. In this landmark work, a large library of
2350 poly(β-amino ester)s (PBAEs) were synthesized by Michael addi-
tion of amines to diacrylates. These cationic polymers were prepared in
DMSOanddiluted directly for in vitro experiments to assess transfection
efficiency. The polymer library was synthesized in 96-well plates be-
cause downstream cell culture experiments are also conducted in well
plates. A library of 486 polymers were further characterized to illustrate
that three factors affect transfection efficacy: polymer-DNA complex
size, polymer end group, and zeta potential [111]. This facilitates the
usage of automation for plate-to-plate transfers and serial dilutions. In
addition, for liquid handling robotics, a modular workflow is preferable
because it can be versatile and accessible [97,112,113]. For structurally
diverse libraries, a synthetic route with robust reaction conditions and
a scaffold-based approach aids in maximizing efficiency [34].

With automation playing a crucial role in the development of combi-
natorial polymer libraries, our group recently investigated the potential
of combining oxygen-tolerant Enz-RAFT and PET-RAFT chemistrieswith
a Hamilton MLSTARlet liquid handling robot [10]. Leveraging the high
level of customizability of the Hamilton MLSTARlet, Python scripts
were generated to create automated chemistry routines based on the
literature. These scripts took input polymer design parameters of mate-
rial composition, DP, and chemistry (Enz-RAFT or PET-RAFT) and trans-
formed the information into reagent lists, volumes, and sequence
instructions for the Hamilton MLSTARlet. Utilizing this system, we
demonstrated the ability to synthesize homopolymers, random
heteropolymers, and block co-polymers in 96 well-plates by robotic
PET-RAFT and homopolymers by robotic Enz-RAFT (Fig. 3).

We also used this system to implement multi-step post-
polymerization modification starting with NHS-acrylate in the copoly-
mer backbone. NHS-acrylate containing copolymers were then auto-
matically post-functionalized by addition of DBCO-amine, enabling
PEG-azide to be attached to the polymers through SPAAC click-
chemistry (Fig. 4). Furthermore, while the flexibility of highly versatile
liquid handling robotics like the Hamilton MLSTARlet enable complex
multistep synthesis, graphical user interfaces (GUIs) can be pro-
grammed for non-experts. This empowers users to utilize the software
and automationwith little programming experience and enables access
to highly advanced polymer chemistrywith only a few hours of training
required to run the instrumentation.

The seminal works of Schubert, Hoogenboom, Guerrero-Sanchez,
and others along with the prevalence of open-air polymerization tech-
niques influenced our group to combine these two aspects in a manner
that is inclusive of post-polymerization modifications. We believe that
these developments can be expanded in polymer science, biomaterials,
and drug delivery applications. Automation applications in these
Fig. 3. Schematic of automated polymer synthesis workflow incorporating liquid handling rob
and CTA type are supplied to a Python script which produces pipetting sequences, concentratio
robot carries out the open-air chemistry directly in 96-well plates. This process is compatible w
permission from Wiley-VCH Verlag GmbH & Co. KGaA. License can be found online (https://cr
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various fields and air-tolerant polymerization techniqueswill be further
explored in Section 4 [10,15,24].

3.1.1. Comparison of liquid handling robotics
In this section, we will present some key differences between vari-

ous automated liquid handling technologies. Each instrument has
unique capabilities that may suited for a particular end user or applica-
tion. For instance, the Chemspeed Accelerator SLT100 [114–117],
Chemspeed ASW2000 [114,118], Symyx instrument [45], and Freeslate
ScPPR [15] are systems that have been utilized to conduct polymer
chemistry and are more geared towards the non-programmer. The
Chemspeed models have been used for automated RAFT, ATRP, and
NMP in parallel reaction vessels with the ability to sample for kinetics
experiments, while the Freeslate ScPPR has been used for parallel
RAFT reactions [15,114–117].

Some customizable liquid handling robots can execute advanced ex-
perimental protocols that may involve physical movement and manip-
ulation of labware include the Chemspeed SWING, Tecan Freedom EVO,
and Hamilton Microlab systems. Meanwhile, the Thermo Scientific Ma-
trix PlateMate 2 × 3, Andrew Alliance Andrew+, Integra Biosciences
VIAFLO96/384, Rainin BenchSmart96, andOpentronsOT-2 aremanage-
able systems for the non-programmer with the ability to add reagents,
complete plate-to-plate transfers, and create a dilution series. For
more delicate reactions, many of these instruments can accommodate
a glovebox setup containing inert gas lines [97]. Some liquid handling
robotic systems, such as those from Unchained Laboratories and
Symyx, can also dispense solid materials for reagent preparation and
sample handling [95]. A comparison of various attributes (expertise,
features, compatibility, integration, and drawbacks) of several liquid
handling robots is provided in Table 1.

There aremany options available to laboratories in academia and in-
dustry and important selection criteria should include programmability,
required expertise, throughput potential, and ability to integrate with
additional instruments. Strategic and thoughtful implementation of liq-
uid handling robotics can be beneficial for laboratories that conduct re-
search in drug formulation, drug delivery, biomaterials, the life sciences,
and more.

3.1.2. Comparison of powder dispensing robotics
In this section, we summarize an assessment of commonly

employed powder dispensing instruments which was completed
through collaboration between pharmaceutical industry groups from
Merck, GlaxoSmithKline, Pfizer, AstraZeneca, and Bristol-Myers Squibb
[95].

The various powder dispensing instruments studied include the
Chemspeed SWING, Mettler-Toledo Quantos QB5, Unchained
otics and open-air Enz-RAFT and PET-RAFT. User inputs such as DP, polymer composition,
ns, dispensing volumes, and process information. The HamiltonMLSTARlet liquid handling
ith homopolymers, random heteropolymers, and block copolymers [10]. Reproduced with
eativecommons.org/licenses/by/4.0/).

https://creativecommons.org/licenses/by/4.0/


Fig. 4.Automated synthesis of functionalized polymers. The userfirst designs the polymer library by specifying DP, composition, and functionalization information. Reagents are loaded by
the user and then the liquid handling robot carries out dispensing steps. Post-polymerization modification was validated for strain-promoted azide-alkyne cycloaddition (SPAAC) [10].
Reproduced with permission fromWiley-VCH Verlag GmbH & Co. KGaA. License can be found online (https://creativecommons.org/licenses/by/4.0/).
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Laboratories Freeslate, and Unchained Laboratories Junior. Other instru-
ments that are similar but not covered in this section are the Mettler-
Toledo QX96, Chemspeed SDU, GDU-P FD, and J-Kem Eclipse. For a
more detailed review of this topic, several reviews are available
[96,97,134]. These instruments are often operated in the pharmaceuti-
cal industry to formulate active pharmaceutical ingredients
(APIs). Lower density solids such as L-proline and thiamine HCl
dispense more accurately compared to higher density and inorganic
solids such as D-mannitol and NaCl. Some polymers such as
polyvinylpolypyrrolidone (PVPP) can be dispensed accurately as well.
Many instruments lack the precision to dispense low mass solids. For
example, a 2 mg solid mass had up to a 680% and 1700% higher relative
standard deviation compared to 10 mg and 50 mg targets, respectively
[95]. The practicality of automated solid material dispensing is depen-
dent on the solid's tendency to adhere to a container anddensity. Instru-
ment accuracy, precision, and ability to perform high throughput
experiments can greatly contrast so it is crucial for researchers to under-
stand and evaluate an instrument before committing it to handle solids.

Lastly, the capacity of each instrument to dispense solids accurately
and precisely for automated high throughput experiments was deter-
mined [95]. The Chemspeed® SWINGwas found to be themost time ef-
ficient and handled dense powders most precisely, but it often
experienced technical difficulties which required outside intervention
and prevented it from being used in an unsupervised manner. The
Quantos QB5 had relatively high precision and accuracy, but it is not
compatible with 96-well plates. Meanwhile, the two Unchained
7

Laboratories instruments had a reasonable accuracy and precision, are
compatible with 96-well plates, and have a developed data reporting
structure that ensures data integrity and fast data transfer. However,
this instrument requires more optimization by an experienced user be-
cause of performance differences with the two dispense heads and en-
vironments (glovebox vs. benchtop).

Overall, each powder dispensing instrument has its own benefits
and drawbacks, meaning that selecting the optimal powder dispensing
instrumentwill depend on the nature of thework, type of samplemate-
rial, and experience of laboratory personnel. The applicability of this in-
strumentation may vary in the polymer chemistry and biomaterials
community depending on the ease of handling the material of interest
and level of throughput required.

3.1.3. Analytical instrumentation
While critical developments have been made in automated sample

handling equipment, it is equally important that rapid characterization
can also be performed such that various chemical, structural, and dy-
namic traits can be quantified. For polymers, this includes features
such as molecular weight, Ð, compositional drift, purity, compactness,
flexibility, Tg, crystallinity, mechanical strength, viscosity, Flory-
Huggins interaction parameter (χ), conjugation or crosslinking effi-
ciency, and degradation [135]. Despite the large diversity of structural
information that can be obtained for polymers and bioactive polymers,
several researchers take advantage of chromatography techniques. In
polymers and biomaterials work, size exclusion-multi-angle light

https://creativecommons.org/licenses/by/4.0/


Table 1
Comparison of commonly used liquid handling robots.

Expertise Instrument Features Compatibility Integration Drawbacks Ref

Beginner Thermo Scientific
Matrix PlateMax
2 × 3

Compound addition and
plating
Serial dilutions
Modular

96, 384, 864, and
1536-well plates
Reagent reservoirs

Barcode reader Less customizable [119,120]

Andrew Alliance
Andrew+

Anthropomorphic
control of pipettes
Modular
Object recognition and
vision-guided
movement
Remote protocol setup
and execution
Remote protocol design,
execution, and
monitoring

96-well plates
Centrifuge tubes
Reagent reservoirs

Handheld electronic pipettes Less customizable
Complex movement

[121]

Integra VIAFLO
96/384

Plating reagents or cells 96 and 384-well
plates
Reagent reservoirs

None Less customizable
Semi-automated
2 plate capacity
Not compatible with other
labware

[30,122–124]

Integra ASSIST
PLUS

Compound addition
Serial dilutions

96 and 384-well
plates
Reagent reservoirs

None Less customizable
2 plate capacity
Incompatible with other
labware

[125]

Rainin Benchsmart
96

Automated mixing
Plating reagents or cells

96-well plates
Reagent reservoirs

None Less customizable
Semi-automated

[126]

Intermediate Beckman Coulter
Biomek i7

Modular
Simulator
Data management
Remote monitoring

96 and 384, and
1536-well plates
Centrifuge tubes

Barcode reader
Grippers
UV–vis
Centrifuge
Flow cytometry
High content imaging
Plate labelers

Less customizable [127]

Chemspeed
Accelerator SLT100

4-needle head Reaction vessels
Test tubes

Temperature control Incompatible with other
labware
Limited capacity

[114–117,128]

Unchained Labs
Big Kahuna

Modular
Powder dispensing and
liquid handling
Contains grippers
Formulation

96-well plates with
multiple substrate
types
Vials

Grippers
Heating and stirring
Can use plates compatible with polarized
light microscopy, PXRD, and Raman
spectroscopy

Incompatibility with other
instruments
Influenced strongly by
dispensing head and
environment
Requires expertise

[95,129]

Opentrons OT-2 Modular
2-pipette mount
Open Source

96 and 384-well
plates
Centrifuge tubes

Thermocycler
Magnetic Module
Temperature Module

Less customizable
Not compatible with
external characterization
instruments

[130–132]

Advanced Chemspeed
SWING

Modular
Programmable
Rapid dispensing
Powder dispensing and
liquid handling
Dispensing range from
mg-g scale
Formulation and library
synthesis

96-well plates
Vials
Reaction vessels

Excel data storage of conditions (mixing
speed, temperature, time)

Error-prone
Require outside
intervention

[133]

Tecan Freedom
EVO

Modular
Programmable
Various size models
Simulation

96 and 384-well
plates
Centrifuge tubes
Reagent bottles

Barcode reader
7 types of robotic arms
UV–vis plate reader

Technical expertise needed
to program

[15]

Hamilton Microlab Modular
Programmable
Simulation

96 and 384-well
plates
Centrifuge tubes
Test tubes

Barcode reader
Grippers and robotic arm
UV–vis
Automated plate sealer
Incubator

Technical expertise needed
to program
Time-consuming liquid
class setup

[10]
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scattering (SEC-MALS), high-performance liquid chromatography
(HPLC), and ultra-performance liquid chromatography (UPLC) are typ-
ically used,while gas chromatography (GC) and supercritical fluid chro-
matography (SFC) are less common [136].

The development of high throughput analytical tools mirrored that
of automated synthetic platforms. With the emergence of HPLC in the
8

1940s, users were required to manually inject samples which made
characterization unnecessarily laborious. As high throughput systems
developed, autosamplers were incorporated into chromatography in-
struments in the 1980s. This facilitated less instrument supervision as
sample sequences could be implemented. In the 1990s, column
switching valves became the norm, simplifying and speeding up the
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process of experimental optimization [136,137]. More recently
throughout the 21st century, manufacturers have modified stationary
phases which has improved all aspects of an experiment such as accu-
racy, precision, efficiency, and column robustness. Because of these en-
hanced stationary phases, it is now possible to use smaller, high
throughput columns to obtain similar data quality with reduced run
time and complete multiple injections in a single experimental run
(MISER) [136].

Depending on the quality of the system being used and the diver-
sity of polymers being studied, optimization can be demanding and
require advanced expertise. This is due to the numerous parameters
that can potentially be varied – mobile phase pH, mobile phase salt
concentration, choice of mobile and stationary phase, column dimen-
sions, temperature, backpressure, flow rate, solvent ratios, and the
gradient slope. With all these routes of optimization, there is an in-
creasing focus on boosting time efficiency of chromatography exper-
iments. Early on in 2006, a microfluidic system containing 8 channels
and 16 solvent reservoirs was developed to compare 8 columns in
less than 30 min [136,138]. While impressive, this highly complicated
setup does not provide a way to account for differences in
backpressure between the various channels which influences perfor-
mance. Instead, UPLC systems that can accommodate columns as
small as 1 cm in length with fast run times of less than 1 min
have become more prevalent [136]. The trends over the past three
decades of decreasing column size, particle size, and runtime is also
illustrated (Fig. 5).

Chromatography software developmentwas necessary to keep pace
with these physical instrument refinements. This has been accom-
plished in two areas, experimental design and simulations. To
Fig. 5. Evolution of analytical chromatography from the 1990s to the present day. Over time, t
pressure limits and a wider pH range are also possible [136]. Reproduced with permission from
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streamline method optimization and automated data analysis, software
such as ChromSword® Auto, ACD/Autochrom™, and Fusion AE™ have
come to fruition. Virscidian Analytical Studio is another software that
eases data analysis and reporting through data exporting [112]. Waters
Empower™ can complete automated data analysis and has a structure
to track data for integrity purposes. Simulation and modeling software
have been utilized for mostly reversed phase chromatography as a
way of determining initial optimization conditions (e.g. mobile phase,
gradient, and temperature). Examples include ACD/Labs LC-
Simulator™, Chromsword®, and ACD/Labs ChromGenius. Typically, pa-
rameters such as pKa, logP, logD, and solubility are input for the sample
of interest to obtain a “robustness range” for each experimental param-
eter. This functionality is crucial in ascertaining experimental+ feasibil-
ity in a quality by design (QbD) approach [136].

Differential scanning calorimetry (DSC) and transmission X-ray dif-
fraction (XRD) are additional techniques that can be leveraged to deter-
mine polymer thermal stability and API crystallinity in the drug delivery
and formulation space. DSC can be utilized to measure thermal stability
through Tg.While DSC is typically labor intensive, theMalvernMicroCal
VP-Capillary DSC and TA Instruments Discovery DSC coupled with an
auto sampler enable relatively rapid experimental run times of as
many as 24 experiments/day with no user intervention. The Malvern
MicroCal VP-Capillary DSC can complete solution measurements
through reference subtracting in 96-well plate format [139]. Sample
preparation for solid stability DSCmeasurements can be amajor bottle-
neck, however [140]. High throughput transmission XRD is also possible
with the Bruker D8 DISCOVER HTS which can be used to determine
amorphous to crystalline form conversion of formulated APIs in well-
plate format [141,142].
he limits of column size, particle size, and run times have dramatically decreased. Higher
Elsevier.
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To fully characterize bioactive polymers that may contain biomole-
cules, some additional techniques can be explored. This includes dy-
namic light scattering (DLS), circular dichroism (CD), surface plasmon
resonance (SPR), enzyme-linked immunosorbent assay (ELISA), SAXS,
small-angle neutron scattering (SANS), NMR, and cryogenic electron
microscopy (cryo-EM). By DLS, the translational diffusion coefficient
and thus hydrodynamic size of macromolecules can be quantified. Be-
cause of the large number of samples that can be analyzed in a polymer
library along with hydrodynamic size dependence on buffer conditions
and concentration, the Wyatt Dynapro DLS Plate Reader may provide a
solution [135,143,144]. CD can be used to study the polymer-protein in-
terface and verify the presence of secondary (190–250 nm) or tertiary
(250–350 nm) structures of conjugated biomolecules [135,145]. SPR
and ELISA can validate binding of biomolecules but also screen the bind-
ing affinities of various bioactive polymers in a large library. The Cytiva
(formerly GE Healthcare Lifesciences) Biacore 8 K+ can screen up to
2300 molecules/day directly in 384-well plates and run unattended
for 72 h [135]. For downstream cell testing, high throughput pipettors
such as the Integra Biosciences VIAFLO 96/384, Integra Biosciences
ASSIST PLUS liquid handling robot, and Rainin Liquidator™ 96 can ac-
complish cell seeding into 96- or 384-well plates, serial dilutions, and
reagent addition.

Various characterization tools are available for both polymers and
bioactive polymers and can be incorporated into a high throughput ex-
perimental workflow. For characterizing polymers, chromatography
techniques such as gel permeation chromatography (GPC)/SEC, HPLC,
and UPLC are commonly used and have been developed over the
years to manage high throughput experiments. Smaller column dimen-
sions and smaller resin particle size have enabled rapid run times. DSC
and transmission XRD which can be utilized to characterize polymers
and APIs, respectively, can be conducted in well-plate format resulting
in greater efficiency. Lastly, structural traits of polymers and
biomacromolecules along with binding affinity can be characterized
by an array of techniques: DLS, SAXS, SANS, CD, and SPR. High through-
put characterization is crucial, as it provides researcherswith the ability
to obtain data in a rapid fashion to then be interpreted by traditional an-
alytical tools or data-driven design algorithms.

3.2. Artificial intelligence, machine learning, and simulation

While the adoption of robotic instrumentation in research has en-
abled HTS in chemical research and development, brute-force HTS ap-
proaches typically remain cost intensive and inefficient. Even with
well-designed protocols, resulting hypotheses ofmolecular design prin-
ciples fromHTSmay be incomplete or poorly understood. For polymers
and other soft materials, these limitations can be exacerbated due to
challenges associated with synthesis or characterization, as discussed
in previous sections, in addition to inherent complexity and hierarchical
origin of thematerial properties [146,147]. Traditionally, computational
and/or theoretical tools might be applied to bridge the gap between ex-
perimental observations and their mechanistic origins [148]. However,
AI and ML, perhaps integrated with theory and simulation, are playing
ever more important roles in polymer-based biomaterials and thera-
peutics. In this section, we highlight recent developments in AI, ML,
and modeling with relevance towards designing polymer-based mate-
rials; some specific applications of these techniques are discussed in
Section 4.5.

3.2.1. Emergence and role of databases
While the development and adoption of automated workflows

promises to accelerate data generation, the ultimate utility of that
data, beyond the initial use case for its generation, may depend on suc-
cessful integration into accessible, searchable databases. For hardmate-
rials and small molecules, the growth and utilization of databases
(e.g. the Materials Project, https://materialsproject.org; the Harvard
Clean Energy Project, http://cleanenergy.molecularspace.org; and the
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Computational Materials Repository, https://cmr.fysik.dtu.dk) have en-
abled virtual screening and design in application areas such as organic
photovoltaics, piezoelectrics, and Li-ion batteries [149]. By comparison,
efforts to effectively develop and utilize databases in the realm of soft
materials are both fewer in number and less mature in application.
Some notable examples include Chemical Retrieval on the Web
(polymerdatabase.com), the Polymer Genome (polymergenome.org),
Polymer Property Predictor and Database (pppdb.uchicago.edu), and
PoLyInfo (https://polymer.nims.go.jp/en/). Such databases may provide
specific thermophysical properties for a particular polymer or even offer
functionality to predict properties for inputted chemical structures.
Nonetheless, the formats and navigational features of such databases
are not well suited for ML, and it remains an open question as to
whether they should and to what end?

Well-known challenges for soft material databases include the qual-
itative diversification of soft materials systems and the contextual de-
pendence of emergent properties [146,147]. To what extent is a
compilation of thermophysical properties of homopolymer melts
informative for the design of heterogenous biomaterials and polymer
therapeutics? Often, the properties of interest, computational or exper-
imental, will be specific to the application area. These challenges are
likely to be resolved incrementally, perhaps resulting in a combination
of both more specific (e.g. the solubilities of protein-polymer conju-
gates) and more general databases (e.g. libraries of quantum chemistry
calculations for monomeric units).

Irrespective of the application, effective representation and
searchability of data will be desirable. Many of the same features that
make polymers attractive design platforms, such as tunability with re-
spect to composition, architecture, and molecular weight—also present
challenges for cataloging data, since simplified molecular-input line-
entry system (SMILES) strings or typical nomenclature will fail to ade-
quately describe the system. Some notable examples to build or expand
online notations to describe polymers include SYBYL Line Notation
(SLN) [150], Hierarchical Editing Language for Macromolecules
(HELM) [151], CurlySMILES [152], and BigSMILES [153]. Representa-
tions through HELM may be attractive for applications involving poly-
mer therapeutics, since the hierarchical nature enables description of
complex biomolecules and conjugates, while BigSMILES accounts for
the stochastic nature of somepolymer structures. In any case, additional
refinement, and importantly, routine adoption of these representations
will be required for widespread data dissemination.

3.2.2. Utility of machine learning techniques
Despite limitations in data availability, AI andML techniques, in var-

ious forms, have long been used to analyze and predict the properties of
polymer-based materials. Historically, chemists and medical scientists
have relied on intuition and experience to select chemical pathways
and establish hypotheses about materials properties and activity,
which can bias results towards preferred chemistries or predisposed
model interpretations [154,155]. Without guidance beyond human in-
tuition, it can be difficult to navigate a complex design space involving
choices regarding monomer chemistry, DP, architecture, sequence,
composition, etc. – all of whichmay be critically important to a particu-
lar property or figure of merit. Depending on the nature of the data, ML
techniques, often either supervised or unsupervised, can provide guid-
ance in soft materials design. In supervisedML, both inputs and outputs
are known across the dataset, whereas inputs are known but the out-
puts are left undefined for unsupervised ML. Both approaches have
been applied effectively in biological sciences and engineering, and
the utility of these ML approaches in the realm of polymer chemistry
is illustrated (Fig. 6).

UnsupervisedML algorithms typically take the form of dimensional-
ity reduction or clustering techniques for analyzing data. Dimensional-
ity reduction techniques, such as principal component analysis (PCA),
independent component analysis (ICA), and diffusion maps (dMaps)
seek to identify a low-dimensional parameterization of a high-

https://materialsproject.org
http://cleanenergy.molecularspace.org
https://cmr.fysik.dtu.dk
http://polymerdatabase.com
http://polymergenome.org
http://pppdb.uchicago.edu
https://polymer.nims.go.jp/en/


Fig. 6.ML approaches in the context of polymer chemistry. In polymer chemistry, relevant input parameters that can be controlled via the selected synthetic approach are DP, polymer
composition, monomer arrangement, polymer architecture, and valency. PCA and BO aim to determine which parameters most contribute to the variance in data while RF, SVM, GP,
and ANN can be utilized in property prediction.
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dimensional dataset, akin to feature extraction or pattern recognition.
Such techniques have helped to identify protein-folding pathways
[156,157] and key attributes in polymer precipitation inhibitors in
drug formulations [158]. Recent work by Green et al. [159] also demon-
strated the potential of unsupervised ML in using PCA to elucidate the
structure-function relationships in transfection, uptake, and cell viabil-
ity in a combinatorial library of PBAEs used for gene delivery. Mean-
while, clustering techniques, such as k-means, fuzzy C-means, and
agglomerative hierarchical clustering seek to organize or process data
into groups that exhibit similar characteristics; these techniques may
be useful for compound selection in drug discovery and HTS applica-
tions [160]. A notable application of clustering is in the analysis of
gene expression data to understand and manipulate cellular regulatory
networks [161].

Supervised ML which could function in tandem with insights pro-
vided by unsupervised ML, further enables construction of predictive
models to interrogate the chemical relationships underlying physio-
chemical polymer properties [162]. Using techniques such as random
forests (RFs), support vector machines (SVMs), Gaussian processes
(GPs), and neural networks (ANNs), models can be trained to find spe-
cific relationships between labeled output data and input features or de-
scriptors of a system, such as chemical fingerprints. Consequently,
supervised ML is being actively explored to predict polymer properties
based on structure and composition [148,154,162–170]. For material
discovery, quick and effective learning from iterative test cycles is espe-
cially critical [34,171]. Feedback-driven QSPR model adaptation to
newly obtained activity data andmultiple round screening through iter-
ative feedback has shown to lead to significantly better outcomes than
single large batch screens [172,173]. Realizing this, a subset of ML
methods known as active learning has recently been adopted to maxi-
mize the efficiency of learning from data generated in real time. Active
learningmethods assist in the selection process by considering both do-
mainsof the chemical space that havehighand lowamounts of informa-
tion available. In doing so, active learning algorithms “exploit” known
information in the QSPRmodel to suggest compoundswith a high prob-
ability of exhibiting properties of interest. These suggestions can also
add information in spaces of low chemical information [166,171].
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3.2.3. Simulation and modeling
Traditionally, the role of modeling and simulation in materials dis-

covery has been the development of insights or design principles
based on detailed mechanistic investigation. However, the coupling of
phenomena over a vast range of spatiotemporal scales presents techni-
cal challenges for simulating polymer-based systems, which necessitate
the use of specific techniques that are targeted to address properties at a
particular resolution. For example, quantum chemistry or electronic
structure calculations are somewhat limited in application [174] since
the computational expense of such methods limits the description of
systems to monomer units or perhaps small oligomers. More com-
monly, polymer-based systems are studied using some form of
Monte Carlo (MC) or Molecular Dynamics (MD) techniques [175] at
a resolution that makes calculating a given property or figure of
merit computationally tractable. While MD numerically integrates
(typically) classical equations of motion to produce a sequence of
polymer system configurations, MC produces configurations through
a stochastic move proposal process, which is not necessarily
constrained by physical laws. MD thus permits examination of both
dynamical and statistical properties, while MC is limited to interro-
gating the latter. Although MC may have an advantage over MD in
terms of efficiency for certain representations of polymer systems
(e.g. lattice models), MD is overall more common due to its versatil-
ity and relative ease of application.

Whatever the chosen simulation methodology, there is significant
interest in using simulation in materials discovery. Since the computa-
tional cost associated with simulating new polymer systems is typically
less than the material and labor cost of synthesizing and characterizing
newpolymers, simulations can provide useful information in two forms.
First, simulations can provide access to additional properties, micro-
structural characteristics, or molecular descriptors that are not accessi-
ble by experimentation, which may be useful in the construction of
more efficacious QSPRs. Second, since the computational cost associated
with new polymer compositions is typically less than the materials and
labor cost of synthesizing and characterizing newpolymers, simulations
may also significantly expand exploration of chemical space. An
emerging direction is to leverage simulated or computed properties in
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data-scarce regimes via transfer learning [176], a strategy nowbeing ex-
plored for drug discovery [177].

In recent years, there has been a growing emphasis on developing
high throughput modeling strategies [178] that can take advantage of
emerging data-centric design methodologies. Virtual screening ap-
proaches related to structure prediction or ligand binding have long
been a part of small-molecule drug discovery [179,180]; however, the
conformational heterogeneity and overall complexity of polymer sys-
tems limits the application of similar approaches. Alternatively, tailored
systematic screening methods that use simulation to rapidly generate
target system properties can be developed [168,169,181]. Although at-
omistic resolution simulations are likely to be too computationally ex-
pensive for many applications, so-called coarse-grained (CG)
simulations, which reduce the degrees of freedom present in a simula-
tion by grouping multiple atoms or functional groups together into
combined interaction sites [175], can make certain calculations more
tractable.

For biomaterial designs, an important facet of CG simulations is
whether the CG models reflect specific materials chemistry. Often, CG
simulations of polymeric systems may utilize generic models that de-
scribe classes ofmaterials, rather than particular chemistries; the results
of such simulationsmay still be useful in biomaterials discovery by pro-
viding general guidance towards desirable conditions, properties, or to-
pologies to achieve a target function. However, CG models may also be
developed in the context of a specific system. In some cases, pre-
parameterized models such as theMARTINI force field for biomolecular
systems [182,183] may be available for describing the desired chemical
space. Otherwise, CG models will need to be developed based on atom-
istic simulations or experimental measurements; the development of
methods for defining and parameterizing coarse-grained model is an
active area of research [184–191]. Nonetheless, the construction of CG
models can be non-trivial and require significant human intervention
and guidance [190]. Therefore, algorithms and software to automate
CG mapping [189–192] and parameterization [187,188] are of signifi-
cant interest for applications targeting high throughput simulation
and integration with AI and ML techniques [182,183].

3.2.4. Optimization
The utilization of optimization techniques is also an important con-

sideration for leveraging QSPR models for problems in materials design
[193,194]. Given the vast number of design variables for polymers con-
sidered as potential biomaterials or therapeutics, coupling an optimiza-
tion algorithm to a viable QSPR model enables efficient exploration of
design space and rapid identification of candidate materials.

Traditional optimization problems are often approached using
gradient-based techniques, such as the steepest-descent, conjugate-
gradient, or Broyden-Fletcher-Goldfarb-Shanno (BFGS)methods. A lim-
itation of gradient-based methods is the need for a continuous vector
space, upon which gradients can be constructed; this can be problem-
atic since the design space over molecular chemistry, let alone polymer
chemistry, is both large and discrete. Gómez-Bombarelli et al. demon-
strated a resolution to this issue by employing auto-encoders to trans-
form discrete chemical structures (as SMILES strings) into continuous
vector spaces that would further function as inputs for property predic-
tion [195]; using this approach, gradient-based optimization enabled ef-
ficient identification of functional drug-like molecules. Although their
application was limited to molecules with fewer than nine heavy
atoms, extensions and modifications should enable similar creative ap-
proaches in the space of polymer design.

Several gradient-free optimization techniques, including particle
swarm optimization [196], various evolutionary strategies [193], and
Bayesian optimization (BO) techniques [197] are also popular ap-
proaches that have been used in soft materials design.With these tech-
niques, it may not be necessary to transform chemical structures into a
latent vector space, although that may still be desirable. Implementa-
tion of BO frameworks is increasingly popular with data-driven design
12
paradigms, since existing datasets can be leveraged to form reasonable
startingpoints for Bayesian inference. BO in tandemwith the supervised
ML technique of GP regression is a powerful combination for both effi-
cient dataset construction via active learning and design.

4. Applications of automation and data-driven design

This section will focus on applications related to automation and
data-driven design approaches to polymer synthesis, antimicrobial
polymers, biodegradable polymers for gene delivery, polymers for oral
drug delivery, and drug discovery. Automation and data-driven design
have been introduced into biomaterials and drug delivery research,
and we believe that the growth of these concepts will only accelerate.

4.1. Antimicrobial polymers

Here, we describe the application of combinatorial and high
throughput polymer chemistry in the realm of antimicrobial polymers.
This area of research is exploratory and thus benefits from a combinato-
rial approach to potentially reveal QSPRs. As observed from numerous
examples presented in this review, a combinatorial and high through-
put polymer synthesis approach has accelerated research progress and
has uncovered some major findings.

Resulting fromwidespread antibiotic usage to treat infections, there
is a gradually increasing number of multidrug resistant bacteria, which
is a major global health problem [198–201]. This predicament is only
exacerbated by the fact that a new class of antibiotics has not been dis-
covered in over 30 years [202]. In fact, it is projected that multi-drug re-
sistance may cause 10 million deaths by 2050 [203]. Similar to
antimicrobial peptides (AMPs), antimicrobial polymers are being devel-
oped to contain cationic monomers that interact with the negatively
charged bacterial cell membrane surface and hydrophobic monomers
to infiltrate the lipidmembrane interior.With the advent ofmore robust
and efficient synthetic approaches, the main challenge is to strike a bal-
ance between charge and hydrophobicity such that polymers harm bac-
terial over mammalian cells [203,204]. As illustrated in this section, an
efficient process for identifying these polymers can involve combinato-
rial and high throughput polymer synthesis.

Boyer and Wong led an effort to accomplish this in planktonic
and biofilm bacteria associated with the gram-negative strain
Pseudomonas aeruginosa [203]. A small library of random hetero-
polymers was synthesized by RAFT containing cationic monomers
tert-butyl (2-acrylamidoethyl) carbamate (Boc-AEAm) and tert-butyl
(4-acrylamidobutyl) carbamate, along with hydrophobic monomers
isoamyl acrylate, 2-phenylethyl acrylate, and 4-(pyren-1-yl) butyl acry-
late. By quantifyingminimum inhibitory concentration (MIC), hemolytic
activity, and bactericidal activity, it was found that cationic and hydro-
phobic monomers were necessary to cause bacterial cell death in a spe-
cific manner. A further examination of potential polymer compositions
was required to begin establishing a QSPR.

This came in a collection of follow-up studies also fromBoyer,Wong,
and co-workers in which PET-RAFT was applied. First, 32 complex
quasi-block copolymers were synthesized containing fixed mol% of hy-
drophobic, hydrophilic, and cationicmonomers at DP= 20, 40, and 100
[205]. MICs for gram-negative and gram-positive bacteria along with
hemolytic activity was quantified to understand the specificity of each
polymer (Fig. 7). It was found that polymer DP and block organization
tuned activity against specific bacterial strainswhile composition of hy-
drophilic and hydrophobic monomers in local blocks affected specific-
ity. In the subsequent set of experiments, a library of 120 polymers
was synthesized by PET-RAFT at afixedDP=40 containing cationic, hy-
drophilic, and hydrophobic monomers [206]. Three groups of cationic
monomers were selected with primary, tertiary, or quaternary amines.
An MIC screen was done for each using gram-positive (Staphylococcus
aureus), gram-negative (Pseudomonas aeruginosa), and mycobacteria
(Mycobacterium smegmatis) strains. Differences in activity related to



Fig. 7. Representation block organization of polymers alongside a heat map of MIC for each. This enabled identification of hit polymer candidates that exhibited high bioactivity and
warrant closer consideration [205]. Reproduced with permission from Wiley-VCH Verlag GmbH & Co. KGaA.
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the presence of cationic monomer type were observed. Polymers con-
taining primary amines weremost effective against gram-negative bac-
teria while compositions with quaternary amines were most effective
against gram-positive and mycobacteria. For all strains, an MIC of
32–64 μg/mL was achievable. Overall, this work illustrates the potential
of utilizing a high throughput screening workflow to uncover the im-
portance of monomer composition. More recently in the space of anti-
microbial polymers, it was revealed that slug flow polymerization by
PET-RAFT in a flow reactor can yield over 27 g/day of polymer that
can be used for downstream applications [207].

Additional design considerationswere considered by others, namely
the effect of multivalent display of antimicrobial polymer and incorpo-
ration of sugar-derived monomers. Rather than focusing efforts on lin-
ear polymers for these experiments, Gibson and others aimed to
understand the effect of multivalent display of polymers [208]. They
created a library of 50 gold nanoparticles functionalized with polymers
synthesized by RAFT containing varying valency of cationic monomer
dimethylaminoethyl methacrylate (DMAEMA) relative to hydrophilic
monomer N-hydroxyethyl acrylamide (HEAm)whereby both polymers
13
were synthesized at DP = 10, 25, 50, and 100. Multivalent display of
polymer exhibited about two- and eight-fold improvements in
activity against mycobacteria and gram-negative Escherichia coli.
Because of the presence of carbohydrate receptors on the surface of bac-
terialmembranes, Zheng et al. synthesized a library of over 25 polymers
containing cationic N-[3-(dimethylamino)propyl] methacrylamide
(DMAPMA), hydrophobic N,N-diethylmethacrylamide (DEMAA), and
sugar-containing 2-(methacrylamido) glucopyranose (MAG) by
recyclable-catalyst-aided, opened-to-air, and sunlight-photolyzed
RAFT (ROS-RAFT) [209,210]. Through this approach, they concluded
that polymerswith the greatest antimicrobial activity had high incorpo-
ration of MAG and DEMAA despite low presence of cationic monomer
[210].

Progress has been made towards automation in the space of antimi-
crobial polymers. Since successful antimicrobial polymer candidates are
typically screened based on biological activity, it is beneficial to synthe-
size and prepare polymers directly in 96-well plates. Gibson and others
were able to apply these principles of high throughput polymer chemis-
try for antimicrobial purposes [24]. Taking advantage of the automated
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Gilson Pipetmax 268 liquid handling robot and an oxygen-tolerant
photo-RAFT technique that uses trithiocarbonate photoredox catalysts
[24,211], 108 polymers were rapidly synthesized in 96-well plates.
Fig. 8. Characterizing toxicity and screening antimicrobial polymer candidates after automated
sized into the polymer backboneat varyingmol%. Therewas shown to beminimal hemolytic act
hydrophilic monomer [24]. Reproduced with permission from Wiley-VCH Verlag GmbH & Co.

14
DMAEMAwas the cationic monomer randomly copolymerized to vary-
ing degrees with hydrophilic or hydrophobic monomers. It was found
that a copolymer containing poly(propylene glycol) methacrylate
synthesis. Along with base monomer PDMAEMA, co-monomers were chosen and synthe-
ivity for all polymers. PPGMAwas identified to have themost bioactivity overall as themost
KGaA.
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(PPGMA) displayed a 16-fold improvement in bioactivity by MIC com-
pared to DMAEMA homopolymer (Fig. 8). The authors remarked that
PPGMA was not the most hydrophilic or hydrophobic monomer, indi-
cating that there is likely data nonlinearity present. This implies that
data interpretation of these biological assays is not intuitive, and
that data-driven design may be well-suited for high throughput
experimentation.

For the early-stage research associated with antimicrobial polymer
identification, combinatorial chemistry and high throughput polymer
synthesis in conjunction with initial polymer rational design have
been crucial tools to speed up progress. Selectingdesign criteria of inter-
est can be challenging, however, given the wide range of possibilities
and limited time and material resources. Also, as referenced by Gibson
et al., data sets can be nonlinear, meaning it is nearly impossible for re-
searchers to interpret and form important decisions. As a result, further
development of high throughput tools and the advent of data-driven
design approaches in antimicrobial polymer discovery will push the
limits of research in this field.

4.2. Biodegradable polymers for gene delivery

In this section, we will review research related to polymers utilized
as gene delivery vehicles. Because these examples involve complexation
of polymers andDNA, all of the polymers described are biodegradable. A
combinatorial, high throughput approach is commonly utilized by re-
searchers in this field to identify a specific cationic polymer or set of
conditions (e.g. concentration or buffer type) required to maximize
gene delivery efficiency while maintaining sufficient cell viability.
While this field has been established for over a decade, high throughput
approaches havemainly been utilized for the purpose of polymerHTS in
a semi-automated fashion. Because of this, there is a massive opportu-
nity for high throughput, automation, and data-driven design of poly-
mers to impact gene delivery research.

Nucleic acids which are high molecular weight, anionic, and hydro-
philic are not naturally equipped to permeate the cell membrane and
have low bioavailability. In addition, these biomolecules are vulnerable
to nuclease activity [212–214]. As a result, DNA and RNA therapeutics
are challenging to deliver to cells, necessitating the use of an efficient
delivery vehicle. While there are toxicity and manufacturing concerns
associated with viral vectors, polymeric gene delivery has emerged as
a viable strategy [110]. Some common gene delivery strategies include
polyelectrolyte-nucleic acid complexes [213,214] and grafting-to poly-
mer bioconjugation [21,212]. In this section, the focuswill be on degrad-
able cationic polymers because this class of macromolecules has been
most extensively utilized in HTE and HTS related to gene delivery.

As described in Section 2.4, Anderson, Langer, and co-workers
provided an impetus to implementing a high throughput approach in
polymeric gene delivery [110,111]. Green, Langer, Anderson, and
co-workers demonstrated that a combinatorial polymer synthesis ap-
proach could yield candidates for gene delivery with similar effective-
ness as viral vectors [215]. They designed a combinatorial library of 36
PBAE polymers which were derived from 3 diacrylates modified with
12 diamines. In primary human umbilical vein endothelial cells
(HUVECs), transfection efficiency of promising polymer candidates
was similar to that of adenovirus while outperforming that of standard
polymer vehicle polyethylenimine (PEI) by about two times. In a more
expansive study, PBAEs were prepared by addition of amines to
diacrylates using a library of 129 amines and diacrylates [216]. Through
a high throughput synthesis, characterization, and screening for gene
delivery capability, a structure-activity relationship was uncovered.
Characteristics found to maximize gene delivery efficiency of eGFP in
COS-7 cells included the presence of hydroxyl side groups, primary
amine polymer end groups, small diameter (<200 nm), and about neu-
tral zeta potential. Similar to previous work, polymers were identified
that had similar efficiency as an adenovirus vector and greater efficacy
compared to standard polymers PEI and Lipofectamine 2000.
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Wilson, Green, and co-workers have further explored the effect of
polymer architecture on plasmid gene delivery [217]. Initial work with
biodegradable PBAEs focused on linear polymers, so branched poly
(ester amine) quadpolymers (BEAQs) were designed by various combi-
nations of diacrylate, triacrylate, and amino entities such that the degree
of branching correlates with the presence of triacrylates. Various prop-
erties of BEAQs, linear polymers, and standard polymers (PEI, JetPRIME,
and Liopfectamine 2000) were characterized by DNA binding assays,
DLS, electrophoretic light scattering (ELS), transmission electron mi-
croscopy (TEM), transfection studies, and cell uptake assays. This com-
binatorial approach enabled an extensive examination of transfection
efficacy, expression, and viability due to degree of branching and poly-
mer concentration (Fig. 9). Ultimately, BEAQs displayed enhanced
transfection efficacy of eGFP to HEK293T and ARPE-19 cells over linear
PBAEs and standard polymers while maintaining solubility in high
serum conditions.

In a similar manner, Yan and Zhu et al. synthesized and screened
a library of 126 degradable, cationic poly(alkylene maleate
mercaptamine)s (PAMAs) [218]. PAMAs were synthesized via
maleate-thiol Michael addition of 7 poly(alkyl maleate)s (PAMs) and
18 mercaptamines. Testing the effect of backbone or side group func-
tionality on polymer-nucleic acid solubility, gene delivery efficiency,
and DNA binding yielded a group of candidates. The leading polymer
was complexedwith plasmid DNA of TNF-related apoptosis-inducing li-
gand (TRAIL) in an in vivomousemodel, exhibiting a 93% tumor inhibi-
tion rate. This represents approximately six-fold improvement in
potency relative to standard PEI-based gene delivery. Once optimal can-
didates are identified, it is possible to take a finer approach, such as an-
alyzing subcellular structures to determine mechanism of action.

The field of gene delivery can benefit significantly with an auto-
mated and high throughput approach. Mishra and Wilson et al. have
taken a major step in this direction by demonstrating the utility of an
HTS workflow in identifying biodegradable polymers and transfection
conditions to deliver plasmid DNA into difficult-to-transfect human ret-
inal pigment endothelial (RPE) cells with high efficiency and minimal
cytotoxicity. A library of 140 polymers were prepared to package
mCherry and nuclear GFP plasmids. Additions, transfer of nanoparticles,
and media changes were completed using the semi-automated VIAFLO
96/384. The Thermo Scientific Cellomics VTI executed an automated
image collection and analysis protocol to obtain rapid evidence of cell
transfection efficacy and viability [30]. As described previously, the abil-
ity to synthesize polymers in 96-well plates in solvent such as DMSO
which is tolerable to cells at low concentration can result in streamlined
experimentation that can be automated. Polymer viscosity can impact
data quality and the ability to automate so this may need to be moni-
tored [110].

Through this review of biodegradable polymers for gene delivery,
it can be observed that combinatorial, high throughput, and semi-
automated methods are in use to identify cationic polymers that
efficiently delivery plasmid DNA with minimal cytotoxicity. Since the
biological screening process typically involves 96-well plates, it is ame-
nable to automation. Somedegree of user observation, however,may be
required to prevent the inclusion of highly viscous polymers that can
obfuscate results. Lastly, data-driven design strategies would signifi-
cantly improve polymer design and additional iterationswhile speeding
up experimentation time.

4.3. Polymers for oral drug delivery

Oral drug delivery is another area in which there is the potential to
employ automation and data-driven design techniques as they relate
to identifying polymer excipients for hydrophobic drugs. In this space,
combinatorial approaches are often leveraged with one recent instance
of automation being exploited to advance polymer synthesis and HTS.
Data-driven design of polymers has not been widely introduced to
this research field, so there are several unexplored avenues for further



Fig. 9. The effect of polymer concentration and degree of branching on transfection efficacy, expression, and viability. A rapid combinatorial synthesis approach allowed further study of
these conditions prior to additional screening experiments. Reprinted and adaptedwith permission from the AmericanChemical Society. Copyright 2019 American Chemical Society [217].
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progress. In this section, we will focus on applications related to oral
drug delivery as this is the most prevalent route of administration [8].

About 40% of approved drugs are classified as having low solubility
compared to 90% of drugs that are in the pipeline. Rapid crystallization
of poorly soluble drugs results in low bioavailability as drug is unable
to traverse the gastrointestinal tract. Amorphous solid dispersions
(ASDs) are typically created to formulate the drug, also referred to as
theAPI, promotingpolymer-drug non-covalent interactions (e.g. hydro-
gen bonding) (Fig. 10) [219]. These polymer-drug interactions present a
more favorable free energy state and thus prevent API crystallization to
achieve supersaturation [8,220]. This crystallinity can be determined to
varying extents by DSC, transmission XRD, and polarized light micros-
copy while Fourier-transform infrared (FTIR) and Raman spectroscopy
can confirm polymer-drug interactions. In addition, various modeling
approaches can be adopted to verify the likelihood of hydrogen bonding
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or interaction with water molecules [220–224]. Despite the vast chem-
ical space of API moieties, cellulose-based polymers, such as hydroxy-
propyl methylcellulose acetate succinate (HPMCAS), and poly
(vinylpyrrolidone) (PVP)-based polymers are overwhelmingly utilized
in the oral drug delivery community [8,219]. This is counterintuitive
given that APIs are often identified by HTS and data-driven design ap-
proaches, but the same level of complexity does not exist for polymer
excipients that are crucial in stabilizing these small molecules.

Numerous researchers have an objective of improving our under-
standing of polymer excipient design based on the functional groups
present on the hydrophobic API of interest. Matzger and others studied
the effect of functional groups (alkyl, ketone, and hydroxyl) that can
cause polymer heteronucleation or crystallization of APIs pyrazinamide
and hydrochlorothiazide. Side group functionalitieswere introduced via
post-polymerization modification which was useful in isolating the



Fig. 10. Preparation and mechanism of ASD interaction with drug. ASDs shown are prepared via spray drying to form a polymer and drug solid mixture. Polymer-drug interactions,
typically through non-covalent interactions, enable API supersaturation whereby precipitation or crystallization of API is prevented over a long period of time. Reprinted with
permission from the American Chemical Society. Copyright 2015 American Chemical Society (https://pubs.acs.org/doi/10.1021/acsbiomaterials.5b00234) [219]. Requests for permissions
should be directed to ACS.

Fig. 11. Comparison of various modified HPMCAS polymers for supersaturation of
probucol, danazol, and phenytoin at different drug wt% (10, 25, and 50 wt%). CEA-
modified HPMCAS performed best in dissolving probucol, likely due to hydrogen
bonding and hydrophobic interactions. Reprinted with permission from the American
Chemical Society. Copyright 2015 American Chemical Society (https://pubs.acs.org/doi/
10.1021/acsbiomaterials.5b00234) [219]. Requests for permissions should be directed to
ACS.
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effect of individual side groups on crystallization inhibition and polymer
heteronucleation [225]. Reineke and others synthesized a small library
of diblock terpolymers by RAFT to create spray dried dispersions
(SDDs) with the hydrophobic API probucol at 10 and 25 wt% API. The
first block consisted of poly(ethylene-alt-propylene) (PEP),
N-isopropylacrylamide (NIPAM), or N,N-diethylaminoethyl methacry-
late (DEAEMA), while the second block contained both N,N-
diethylmethacrylamide (DMA) and 2-methacrylamidotrehalose
(MAT). By DSC, the presence of amine functionality for hydrogen bond-
ing correlated to lower crystallization levels. Dissolution testing also re-
vealed solubility is maximized in acidic conditions (pH 3.1). This
combinatorial approach utilizing copolymers enabled efficient identifi-
cation of important structural traits of designer polymer excipients
[226]. Hillmyer and co-workers analyzed the effect of polymer end
groups and molecular weight by utilizing 10 RAFT CTAs in synthesizing
a 17-polymer library of various PNIPAMswhichwere used to form SDDs
with phenytoin at 10 wt% drug loading. They found that the highest
performing polymers inhibited crystallization of the API phenytoin for
about 6 h while exhibiting almost 20-fold improvement in dissolution
compared to API alone. Through this combinatorial approach, they iden-
tified that lower molecular weight PNIPAM and those containing a lon-
ger flexible alkyl chain tended to formmicelles (Rh> 30nm) and inhibit
API crystallization [227].

Similarly, Ting et al. set out to understand the effect of side groups
(methoxy, succinoyl, hydroxypropyl, and acetyl) on inhibiting crystalli-
zation of APIs probucol, danazol, and phenytoin. These APIs were se-
lected because they had contrasting logP, melting temperature (Tm),
crystallization kinetics, and functional groups responsible for crystalli-
zation. The effect of each polymer side group was isolated by
copolymerizing respective monomers MA, HPA, 2-carboxyethyl acry-
late (CEA), and acrylic acid (AA) with HPMCAS by RAFT before prepar-
ing SDDs of polymer and drug. FTIR was needed to characterize
polymer-drug interactions while polarized light microscopy, HPLC
aqueous dissolution experiments, transmission XRD, and DSC were
used to classify solubility and crystallinity. Through this screening, it
was found that CEA copolymers maintained supersaturation of the
slow crystallizer probucol while HPA performed adequately for faster
crystallizers danazol and phenytoin because of the presence of hydroxyl
groups to engage in hydrogen bondingwith API (Fig. 11) [219]. Johnson
et al. also considered a unique approach, creating polymer blends to be
used to attain API supersaturation such that the impact of individual
monomers can be quantified. They found that blending API with
NIPAM and HPMCAS, hydroxypropyl methylcellulose (HPMC), DMA,
17
and HEAm resulted in enhanced supersaturation of phenytoin relative
to individual homopolymers. Further characterization suggested that
the formation of micellar structures due to the presence of NIPAM
may encourage polymer-drug interactions [228].

https://pubs.acs.org/doi/10.1021/acsbiomaterials.5b00234
https://pubs.acs.org/doi/10.1021/acsbiomaterials.5b00234
https://pubs.acs.org/doi/10.1021/acsbiomaterials.5b00234
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In oral drug delivery, traditional combinatorial techniques have en-
abled researchers to quantify the effects of side groupmoiety,molecular
weight, polymer hydrophobicity, and polymermixtures on ability to su-
persaturate hydrophobic APIs [219,225–228]. While fruitful, many of
these workflows are throughput-limited and prone to error and vari-
ability due to labor intensive polymerizations and manual pipetting.
Ting et al. aimed to screen and characterize a library of over 60 polymers
to improve solubility of phenytoin, a fast-crystallizing API. The polymer
design planwas to synthesize random heteropolymers containing a hy-
drophilic monomer and a precipitation inhibition monomer at varied
incorporation that may hydrogen bond with API. RAFT polymerization
was automated with a Freeslate ScPPR which dispensed required vol-
umes of manually prepared monomer, initiator, and CTA in reaction
vessels that included nitrogen flow and temperature control. Addition-
ally, precipitation inhibition screening was automated with the Tecan
Freedom EVO 200 liquid handling robot as pipetting of polymer and
drug as well as preparation of HPLC samples at three time points was
rapidly completed. Evaluation of SDDs in biorelevant media and
in vivo pharmacokinetics showed over 20-fold improvement in area
under the dissolution curve compared to API alone [15].

As illustrated by recentwork in polymers used for oral drug delivery,
defining a clear polymer design paradigm will be key to improve API
dissolution and prevent crystallization. It is apparent from these exper-
iments that the goal of achieving supersaturation of poorly soluble
drugs is challenging and involves several parameters [226]. Not only is
polymer design important to maximize polymer-drug interactions, but
also other factors come into play such as drug loading level, conditions
for preparing SDDs, dissolution conditions, and more. As a result, estab-
lishing QSPRs will likely require some combination of automation and
data-driven design. Applying HTE and HTS to this space is an emerging
concept [15] with few recent cases of a high throughput or combinato-
rial approach being utilized.

4.4. Bioactive polymers

Multivalency plays an important role in biological and synthetic sys-
tems. The last two decades of research has seen an explosion in the field
of design and delivery of multivalent drugs with importance in drug de-
livery, glycoscience, immunology, cancer therapy, and regenerative
medicine. However, evaluating structure-function relationships for
multivalent polymer scaffolds is challenging because of the diverse na-
ture of available physicochemical characteristics. It is known that factors
such as polymer scaffoldflexibility and ligand presentation are crucial to
maximizing binding interactions of interest [229]. Because the ability to
design polymers for this purpose does not currently exist, high through-
put study and data-driven approaches could be beneficial in accelerat-
ing research progress and identifying useful design strategies. In
this section, the focus will be on bioactive polymers in vaccines,
glycopolymers, and polymer-peptide conjugates.

In protein-based vaccine development, formulation of small mole-
cule Toll-like receptor agonists (TLRa) leads to greater T cell immunity
and antibody response with applications in infectious diseases and can-
cer. Lynn et al. synthesized hydroxypropyl methacrylamide (HPMA)
and NIPAM polymer conjugates in a combinatorial fashion containing
two agonists TLR-7/8a to understand the effect of TLRa valency and
linker selection on innate immune activation [22]. While these authors
found that higher valency leads to greater innate immune response,
they also noted that it would be valuable to explore more diverse poly-
mer composition and architecture. Laga and others attempted to in-
crease the complexity of polymer design by synthesizing a library of
13 polymer-TLR-7/8a conjugates containing statistical copolymers,
diblock copolymers, multiblock copolymers, and particle-forming sta-
tistical co-polymers functionalized by azide-alkyne Huisgen cycloaddi-
tion or an acylation reaction [230]. They utilized a large library of
monomers such as HPMA, N-propargylmethacrylamide (PGMA), and
N-(2-aminoethyl)methacrylamide hydrochloride (AEMA)with valency
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ranging from1 to 11.7mol% andmolecularweight from about 36 kDa to
121 kDa. As a result of this combinatorial approach, TLR-7/8a conjugates
that induced the desired T cell immune response and displayed suffi-
cient potency were identified. Exploring these few parameters of poly-
mer composition and linker alone resulted in a large, diverse chemical
space [22,230,231]. Incorporating automation and data-driven design
would further increase the parameter space that can be studied while
ensuring efficient experimentation.

Glycopolymers are also bioactive materials that would benefit from
a similar approach. Carbohydrate-protein interactions at the cell surface
are crucial for cellular signaling and recognition with importance in the
immune response. Lectins are proteins that modulate interactions with
glycans and individually have low affinity to glycans in the mM range.
By the cluster glycoside effect, a multivalent presentation of glycans en-
hances the binding affinity of this interaction [232,233]. Because multi-
valent monosaccharides have high avidity but low specificity, there is a
focus on displaying multiple glycan types and increasing polymer com-
plexity to understand the design parameters necessary for particular in-
teractions. Gibson and co-workers synthesized nine homogenous and
heterogenous polymers containing varied mol% of galactose and man-
nose to determine activity against Ricinis communis agglutinin
(RCA120) and cholera toxin lectins [232]. By biolayer interferometry
(BLI), it was found that specific inhibition of RCA120 and cholera toxin
was improved with the incorporation of the two glycan types on the
same polymer scaffold. The benefit of including additional functional
units was supported by previous work [233]. More recently, in the con-
text of infectious disease detection, Richards et al. studied the interac-
tion between hemagglutinins (HAs) and sialoside glycoproteins
typically found on the surfaces Influenza A and human cell, respectively
[234]. They synthesized HEAm polymers by RAFT, functionalized with
galactosamine, and immobilized on the surface of various gold nanopar-
ticles (30, 50, and 70 nm diameter) to study the effect on binding affin-
ity to Influenza A HAs. In a similar study, Gibson and co-workers also
studied 30 formulations of HPMA and HEAm polymers functionalized
with galactosamine and grafted on the surface of gold nanoparticles
[235]. By BLI, both polymer types performed similarly despite different
aggregation behavior. However, this paper highlights that functional
molecule presentation and density can affect binding affinity.

Developments in open-air RAFT have already begun to make an
impact in this field. The ability to synthesize polymers by PET-RAFT in
96-well plates was a major step in efficiently generating large polymer
libraries, making it possible to investigate polymer design parameters.
For instance, Gormley, Boyer, Chapman, and co-workers synthesized a
polymer library by PET-RAFT with zinc tetraphenylporphyrin (ZnTPP)
as a photocatalyst [9]. ZnTPP converts triplet oxygen to singlet oxygen
which can then be scavenged by DMSO. A library of linear and star
(3-arm and 4-arm) polymers was synthesized at various DPs and func-
tionalized with mannose. A lectin binding assay was then completed to
determine that lower DP 3-arm star polymers performed best (Fig. 12).
This collection of work in bioactive glycopolymers has highlighted that
multivalent presentation of glycans and slightmodifications to polymer
design and architecture can have implications in binding affinity and ac-
tivity. Further experimentation by a high throughput, combinatorial,
and data-driven design approachwould likely result in evenmore poly-
mer design flexibility and analysis of structure-function.

In a seminal work,Moore and co-workers have recently reported the
use of multivalent polymer scaffolds for targeting protein aggregation
for the first time [236]. Proteinmisfolding leads to aggregation resulting
in a wide range of diseases including Alzheimer's and Parkinson's. Both
diseases are characterized by the formation of highly ordered amyloid
fibrils mainly arranged in β-sheets, however, investigating disassembly
of these fibrils remains largely unexplored. Moore and others designed
multivalent polymer-peptide conjugates that interact with and disas-
semble amyloid β fibrils in vitro. Building on previous work, HPMA
was copolymerized with NHS acrylate by RAFT followed by subsequent
attachment of peptide via NHS ester chemistry [237]. Five multivalent



Fig. 12. Effect of polymer DP and architecture on binding concanavalin A (ConA) via a lectin binding assay. The percentage of bound ConA is displayed for various DP linear, 3-arm, and 4-
arm polymers. 3-arm polymers performed best, especially at lower DPs, followed by linear and then 4-arm polymers. This illustrates the utility of the combinatorial library approach in
determining structure-activity relationships [9]. Reproduced with permission from Wiley-VCH Verlag GmbH & Co. KGaA.
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polymer-conjugateswith 7mol% peptide loading and variousmolecular
weights (22–224 kDa) were chosen to investigate the disassembly ef-
fect on preformed Aβ40 fibrils. The ability to disassemble fibrils in-
creased with increasing molecular weight. While Moore's group tested
a total of 10 polymers, this multivalent strategy can be adopted easily
to high throughput screening and data-driven design approaches.

Other recent developments in thefield include the fascinatingworks
by Gianneschi and co-workers in which they developed multivalent
synthetic scaffolds by organizing functional peptides as dense side
chain arrays onto polymeric scaffolds [145,238–240]. These materials
were classified as (1) peptide-polymer amphiphiles (PPAs) and
(2) protein-like polymers (PLPs). The design of PPAs was accomplished
by synthesizing block copolymers with a dense grouping of peptides as
the side chains of the hydrophilic block, connected to a hydrophobic
block to yield micelles that retain specific peptide interactions and ori-
entations. PPAs were synthesized using two approaches that involved
either conjugation of peptides to a synthesized polymer (graft-to) or
by the incorporation of peptides onto a growing polymer chain (graft-
through). Synthesis of PPAs via a graft-to approach involved generating
diblock copolymers by copolymerization of a hydrophobic norbornenyl
monomer with a hydrophilic monomer containing NHS ester using ring
opening metathesis polymerization (ROMP). Subsequent conjugation
with peptides was achieved using the NHS moiety. This technique was
employed to synthesize enzyme-responsive PPA micelle nanoparticles
attached to fluorescent probes for imaging different stages in in vivo
models of cancer, myocardial infarction, and peripheral artery disease
[241–243].

While the graft-to approach generates PPAswith versatile character-
istics, the authors utilized a graft-through approach to control spacing
and density of bioactive peptides. To achieve this, ROMP was used to
generate peptide-polymers with low Ð. While ROMP remains a viable
strategy for synthesizing graft-through polymerization of peptides
with different functionalities, it must be noted that some amino acids
in peptide sequences can interact with or coordinate to the metal-
based initiators. Therefore, theymust be either protected using different
functional groups or changes can be made to the peptide sequences
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while retaining the desired function. Utilizing the graft-through ap-
proach, Gianneschi and others demonstrated that PPAs can be particu-
larly used as drug carriers for delivering drugs to diseased tissues with
a high loading capacity. Two major issues that need to be addressed
when encapsulating drugs inside nanoparticles is (1) to prevent the
leakage and burst release of the drug before reaching the targeted tis-
sue, and (2) to pack a significant amount of drug inside the nanoparticle.
To address these challenges, PPAs were generated via graft-through po-
lymerization of matrix metalloproteinases (MMP)-responsive peptides
together with directly polymerized hydrophobic paclitaxel (PTX)moie-
ties. These drug-loaded polymeric scaffolds assembled into spherical
nanoparticles with MMP-responsive peptides forming the outer nano-
shell. As these nanoparticles entered the diseased tissue, upregulated
MMPs cleaved the peptides thereby releasing the drug into the sur-
rounding tissue. This “trojan horse approach” allowed Gianneschi and
co-workers to deliver an exceptionally high dosage of drug by intrave-
nous injection [244].

Expanding on this work, Gianneschi and others have also demon-
strated the design of bioactive peptide brush polymers via photoin-
duced reversible deactivation radical polymerization (photo-RDRP)
that is compatible for HTS and HTE [145]. Two bioactive peptide vinyl
monomers featuring enzyme-responsive and pro-apoptotic sequences
were copolymerizedwith DMA. This robust synthesis technique that al-
lows preparing bioactive polypeptide brushes using visible light in
aqueous solutions, is suitable for HTS approaches and can be easily ex-
tended to other small functional peptides that can tolerate these condi-
tions for biological screening. In the case of designing bioactive
polymers incorporating bulkier biomolecules, a graft-to approach pro-
vides greater versatility for diverse polymer libraries.

Here, we presented applications related to combinatorial polymer
chemistry in development of protein-based vaccines, glycopolymers,
and polymer-peptide conjugates. Though many of the required high
throughput polymer synthesis and bioconjugation tools exist, HTE and
HTS have not beenwidely employed in these areas of study. This is likely
due to the complexity of bioactive polymers compared to other polymer
systems discussed. It is evident that incorporating automation and data-
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driven design into the experimental workflow of bioactive polymers
would result in time and labor reductionwhile pushing forward innova-
tive developments.

4.5. Automation and data-driven design

Automation tools and data-driven design algorithms have slowly
begun making their way into applications related to polymer science.
However, data-driven design and the combination of automation and
data-driven design have not been featured heavily in drug delivery
and biomaterials research. Conversely, the combination of these princi-
ples is becoming increasingly prevalent in drug discovery and in the
synthesis of small molecule drugs. In this section, we will present
state-of-the-art research related to the automation and data-driven de-
sign of polymers and small molecule drugs.

4.5.1. Data-driven design of polymers
While high throughput systems aided by breakthrough automated

technologies enable researchers to screen polymer therapeutics, HTS
can potentially unravel into an inefficient “fishing expedition.”
Collecting large quantities of data without feedback for improvement
is not only inefficient but also adds difficulty in data analysis and inter-
pretation [34–37]. As a result, high throughput work tends to eliminate
rational design of the sample set. Paired with HTS, data-driven design
and predictive modeling equips scientists with information needed to
efficiently select experimental samples or make decisions about
whether or not specific polymers are worth exploring [245]. With the
emergence of automation in polymer therapeutics, it is important to re-
view published work related to the data-driven design of polymers and
assess current capabilities related to polymer therapeutics.

An early example of data-driven design in polymer therapeuticswas
published byWelsh and co-workers. Their objectivewas to build a QSPR
model to predict cell attachment, cell growth, and fibrinogen absorption
of fibroblasts on polymeric surfaces. They created a virtual combinato-
rial library of 40,000 homopolymers and random heteropolymers
using 33 methacrylate monomers with Molecular Operating
Fig. 13.ML approach to identify polymers that havehigh thermal conductivity. Bayesianmolecu
Tm. Transfer learning was then completed with limited data on thermal conductivity to ge
Reproduced with permission from Springer Nature. License can be found online (https://creat
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Environment (MOE) modeling software. A polynomial neural network
(PNN) model was built by taking advantage of a training set containing
79 polymers synthesized by a Chemspeed Accelerator SLT100 auto-
mated synthesizer [246,247]. With the input of molecular descriptors
from MOE and Dragon software [248,249], predictions were generated
for 13 data points outside of the training set for target property outputs
related to polymer biological performance. For each of the three target
properties there was a high association between experimental and pre-
dictive values (R2 > 0.80) [247].

More recently, there have been a few examples of ML algorithms
being developed in polymer science. Wu et al. conducted an ML-based
discovery of polymers with high thermal conductivity. Because of lim-
ited data on thermal conductivity, Bayesian molecular design was uti-
lized to predict monomer structures related to high Tg and Tm,
secondary properties typically related to thermal conductivity. Data
used to train thismodelwas obtained froma polymer database PoLyInfo
and monomer database QM9. Transfer learning was completed using
this data set of secondary properties alongwith a small data set of ther-
mal conductivity values for fine tuning and ultimately generating ther-
mal conductivity predictions (Fig. 13). Three monomers were chosen
and polymerized for model validation [250].

A few studies have also been completed to mine polymer databases
to validate ML algorithms. First, Ramprasad and others designed a pro-
tocol to design polymer dielectrics with properties such as electrical in-
sulation and capacitive energy storage. A chemical space was defined
based on common chemical groups located on polymers (e.g. CH2, NH,
CO, etc.) and crystal structures were obtained in the Vienna ab initio
software package (VASP) from which dielectric constant values could
be calculated anddatabased. Polymer structureswere alsofingerprinted
so they could be databased effectively. This was completed for over 200
polymers fromwhich 90%of the datawas used to train a kernel ridge re-
gression (KRR) ML algorithm [165,251,252] to predict dielectric prop-
erty values. There was reasonable agreement between predictions and
calculations. Additionally, they used a genetic algorithm to design poly-
mers with target properties, feeding into the predictive KRR algorithm
for each design iteration [165]. Kim et al. compared different active
lar designwas initially conducted to train amodel to predict secondary properties of Tg and
nerate predictions which were verified through the synthesis of three polymers [250].
ivecommons.org/licenses/by/4.0/).

https://creativecommons.org/licenses/by/4.0/
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learning methods (exploration, exploitation, balanced, and random se-
lection) with a goal of identifying high Tg polymers. However, here
they considered a tiny training set (5/736 samples), as all data was ob-
tained from the Polymer Properties Database. In terms of efficiency, or
the number of experiments required to obtain 10 polymers with a
high Tg, the balanced approach performed the best. Exploitation per-
formed reasonably but contained a high amount of error likely due to
overfitting. Additionally, exploitation exhibits the most improvement
with larger data sets and with a lower Tg threshold [166]. This study il-
lustrates that it is crucial for scientists to understand the size and quality
of the data set, feasibility of the property of interest, and diversity of the
chemical space before selecting an ML strategy.

In addition to data-driven design, molecular simulations can eluci-
date polymer structural properties. In one study, kineticMC simulations
were used to predict the chemical composition of olefin block copoly-
mers synthesized using the chain-shuttling coordination method
[253]. One ML algorithm was used to predict structural properties of
polymer given a set of experimental inputs (seven different reactant
concentrations), while a second algorithmwas subsequently developed
to predictwhich experimental inputswould give desired polymer prop-
erties. In another study, CG models of the thermoresponsive polymer
poly(N-isoproprylacrylamide) (PNIPAM) were simulated and ML algo-
rithms were used to analyze and evaluate the coil-to-globule phase
transition pathways which dictate thermoresponsive behavior [254]. A
similar study was also conducted using generic polymer models with
MC simulations [255]. ML techniques have also been heavily used as a
means of developing and improving new CG models of polymers
[254,256,257].

Integrating CG modeling with ML in data-driven design has also
proven promising in a several recent applications. Work by Shmilovich
et al. utilized CG MARTINI simulations of π-conjugated oligopeptides
along with active learning and BO to identify molecules that would
self-assemble into nanoaggregates [168]. In their approach, iterative
CG simulations are performed for candidate molecules whose self-
assembly behavior is quantified, the chemical space of the candidates
is projected into a low-dimensional latent space, a GP regression
model is constructed to connect the latent space to self-assembly be-
havior, and active learning is combinedwith theGPmodel uncertainties
to select new candidates for simulation. Wang et al. employed a very
similar approach (combining CG MD simulations with supervised ML
and BO) to reveal the QSPR between ionic conductivity and a set of CG
model descriptors for solid polymer electrolytes [169]. These recent
works demonstrate that simulation,ML, and optimization can be tightly
coupled for design of relatively complex softmaterials systems. Applica-
tion of these techniques along with possible integration of automated
experimentation and feedback would provide a new frontier for explo-
ration and design of polymer therapeutics and biomaterials.

In summary, applications related to automation, data-driven design,
and molecular modeling have slowly appeared in polymer chemistry,
however, rarely have they been merged. Initial work has been com-
pleted to better design for polymer material and structural properties
such as Tg, thermal conductivity, and phase transition pathways. In ad-
dition, the application of CG modeling has expanded the utility of com-
putational data for designing soft matter systems. As these algorithms
and models increase in complexity, it is expected that this approach
would become more applicable to drug delivery and therapeutics-
based research.
4.5.2. Automation and data-driven design in drug discovery
Currently, data-driven design is more heavily developed and imple-

mented in the areas of drug discovery, organic synthesis, medicinal
chemistry, and process chemistry [34,97,147] compared to biomaterials
and drug delivery. Now that current practices utilizing automation, ML,
and data-driven design have been reviewed in polymer science, it is im-
portant to examine the same in the space of small molecule
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pharmaceuticals. As a result, important lessons can be drawn that
apply to polymer therapeutics for future expansion.

Automating various chemistries can be amajor challenge but can be
valuable in reducing thenumber of repetitive steps thatwere previously
completedmanuallywhile minimizing experimental variability. Steiner
et al. set out to create a standard programmable and automation-
friendly workflow for synthesis of small molecule pharmaceuticals.
The user can define the synthesis route with a formal chemical descrip-
tive language (XDL). XDL can be readily converted to chemical assembly
(ChASM) language. The user can also input information about physical
instrumentation into a GraphML file. The Chempiler system translates
ChASM and GraphML code into instructions for the robotic system
such as module transfers, priming the system, reagent additions,
mixing, changing temperature, extraction, filtration, evaporation, and
crystallization. The system also can simulate the code and ensure
there are no syntax errors. This group validated programmable robotics
by synthesizing small molecules sildenafil, rufinamide, and nytol [258].
The benefit of separating out synthesis scheme and physical hardware
information is that the same synthesis procedure can be adopted to
other platforms, encouraging collaboration. Additionally, writing
ChASM and GraphML code is relatively straightforward, making this
workflow accessible to those who have limited programming
experience.

These automation technologies for chemical synthesis can be en-
hanced when the loop is closed between synthesis and characteriza-
tion. Christensen et al. demonstrated this by developing a setup to
implement automated kinetic profiling of a Suzuki cross-coupling re-
action by HPLC with UV detection. A Chemspeed Swing liquid han-
dling robot sampled the reaction volume and interfaced with an
Agilent 1100 Series HPLC. A two-position valve and fluidic linkage en-
abled one-way communication from the robot to HPLC via an electri-
cal stimulus that activated the HPLC run. The Chemspeed Autosuite
software contained valve and HPLC control. Through automated ki-
netic profiling, reaction conditions were identified to yield a five-fold
reaction rate increase [133].

Another major obstacle in organic synthesis of small molecule ther-
apeutics is planning synthesis steps. This requires extensive expertise
but even so may entail painstaking effort to optimize. Coley et al. lever-
agedML and AI to aid in organic synthesis planning and to complete re-
actions in a rapid, automated manner. They linked computer-aided
synthesis planning (CASP), synthetic route creation, and robotic synthe-
sis (Fig. 14). From the Reaxys database, about 15 million reaction
outcomes were input into the ANNmodel for CASP. For data augmenta-
tion, over 100 million cases of minor additional products for the given
reactions were fed into the algorithm to serve as negative reaction out-
comes [259,260]. The user can input the molecule of interest into the
software which accepts SMILES format of molecular identification.
Chemical recipe files (CRFs) are output to contain reaction conditions
and only require the user to provide stoichiometries. Once finalized,
the robotic platform executes the reaction. This platform consists of a
UR3 six-axis manipulator that can arrange modules (reactors and sepa-
rators) from a storage area while there is automated control of pumps,
fluidic delivery, waste removal, and extraction [259].

As shown in this section, data-driven design and molecular model-
ing are becoming more widely utilized for polymer design of material
properties and structural parameters. Moving forward, it will be critical
to combine many of the techniques described in this review in the drug
delivery space in a design-build-test-learn workflow to improve exper-
imental design and efficiency. An outlook for doing so is provided in
Section 5.

5. Perspective on polymer therapeutics and bioactive polymers

With the promise of automation and data-driven design in applica-
tions highlighted in Section 4, we will now focus on understanding
how these concepts can be advanced in drug delivery and biomaterials



Fig. 14. Robotic and data-driven design system for CASP. (A) Comparison of this work to previously published work (gray bars denote areas inwhich automation has been achieved). This
work has demonstrated automation in every aspect of the organic synthesis process except recipe formulationwhich requires some user input (e.g. stoichiometry and confirming reaction
conditions). (B)ML approach that utilizes chemical reaction data found in the Reaxys database. (C) Image of the six-axis roboticmanipulator alongwithmodular setup of theworking area
[259]. Reproduced with permission from the American Association for the Advancement of Science.
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research. As shown in Section 4.5.2, automation and data-driven design
aremore fully integrated in drug discovery research. Here, wewill draw
lessons from the advances in drug discovery research for polymer ther-
apeutics, underscore some limitations, and discuss trends relevant to
work in polymer chemistry, drug delivery, and biomaterials.

5.1. Lessons for polymer therapeutics and bioactive polymers

In polymer therapeutics and biomaterials, the sequence of design-
build-test-learn is typically done [32]. Once testing is completed, exper-
imenters can glean useful information that can be utilized for the next
phase of experimentation. However, in the realm of HTE and HTS with
massive data sets, the gap between testing and redesign can be im-
mense given the difficulty in not only analyzing but also learning from
such data. By incorporating ML and AI into high throughput experi-
ments, the time lag between testing and redesign can be significantly
reduced. This process can only be enhanced by a standardized and auto-
mated method of databasing an enormous amount of data. Not only
does this ease internal data handling, but it also fosters collaborations
and ensures rigor and reproducibility. As described previously, there is
a methodology and database to concisely list important structural
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parameters for smallmolecule compounds [259–262]. Progress towards
a cheminformatics approach in polymer science has beenmade through
the creation of an indexing system, but there are some additional exper-
imental details that could be databased [147,153].

In the automation realm, there are various design considerations. In
general, a modular, customizable approach is preferable because it of-
fers the flexibility to carry outmultiple types of experiments while test-
ing experimental conditions in a parallel format. It also allows for
interaction with ML and AI algorithms that generate input files and
code [10,97,112,113,258]. Robotic arms and grippers give robotic sys-
tems greater versatility with the ability to integrate with characteriza-
tion by GPC, HPLC, DLS, or UV–Vis plate readers for both optimizing
conditions and full-scale testing [95,133,135,263,264].

As polymer therapeutics andmaterials science improve throughput,
perhaps themost important rule will be to avoid large-scale “fishing ex-
peditions.” It is crucial to understand how much data can be generated
by the synthetic process and to never operate at excess capacity. Re-
searchers should not squander time generating a large quantity of
data without sufficient feedback [34–39]. Additionally, designing an ap-
propriate data-driven design algorithm is vital because it will ensure
quality post-experimentation feedback [147,166,251,252].
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5.2. Limitations

Despite its promise, an automation and data-driven design approach
comes with its drawbacks. For one, automation instrumentation can be
cost prohibitive and can require resources and expertise to set up and
use, making accessibility improvements for the end user critical. False
positives and negatives can also occur, so it is necessary to include suf-
ficient controls within each experiment or set of parallelized reactions
(e.g. in each 96-well plate) and track if these controls shift over time
[26]. Especially in polymer science, there can be difficulty automating
the handling of solids, so powder dispensingwould likely only be useful
in preparing reagents or stock solutions [95]. Viscosity can also be a con-
cern for liquid handling so monitoring solutions and minimizing con-
centrations would be required [110]. Other challenges include
implementation of a controlled, versatile polymerization mechanism
and ambiguity associated with “scoring” criteria that determine success
and failure [34,135,261].

Other challenges are related to the big data component of HTE and
HTS. To reduce the likelihood of embarking on a “fishing expedition,”
proper design is needed to not strain the high throughput workflow
or test too many parameters. This type of screening of over 100,000
compounds in one phase of experimentation is overly inefficient be-
cause data analysis becomes impractical without ML/AI tools. This is es-
pecially true with data sets that are non-linear or not intuitive, due to
the nature of the structure-activity relationship, randomness, experi-
mental or analytical error, or data fragmentation [26,34]. ML and AI re-
quire a large data set for experimental validation, but this does not
currently exist in polymer therapeutics in the form of data repositories.
While some resources exist such as TensorFlow and scikit-learn, the
polymer science community lacks a centralized location to house data.
Additionally, polymer nomenclature and storing relevant information
can be complex. There is not a consensus on polymer naming conven-
tions in the polymer science community, but it is also problematic to
store information pertaining to structure, architecture, branching, com-
position, chirality, synthetic route, and experimental conditions. Poly-
mer informatics is crucial for the design-build-test-learn workflow
[26,34,147,148].

However, as newmolecular entities (NMEs), novel polymers can be
challenging to approve and arrive to market. This is due to extensive
regulatory requirements, high research and development costs from
the benchtop to clinical trials, and the difficulty of identifying optimal
polymers [265–267]. To a certain extent, the high throughput, auto-
mated, and ML/AI approach described in this review should alleviate
these concerns. Researchers should also be mindful that variations in
physicochemical parameters can have a major effect on performance.
For instance, it was found that molecular weight and Đ of polymers
used in ASDs, along with processing conditions, has a significant effect
on drug supersaturation and precipitation inhibition [268].With impor-
tant parameters in mind, insightful characterization methods can be
built into high throughput workflows.

On the execution side, a balance is essential between automation
and ML/AI. This balance is impossible to design especially with varia-
tions in group-to-group throughput capabilities. By attaining an optimal
number of design-build-test-learn loops, the feedback obtained and
thus efficiency can be maximized [34]. Misconceptions exist about ML
and AI, so it is the responsibility of researchers to accurately describe
the capabilities and potential of these techniques when communicating
findings. As is the casewith any cutting-edge technology, it will be chal-
lenging to shift community perceptions [261].

5.3. Trends and future direction

It is important to be aware of some trends that exist to understand
the future direction of polymer therapeutics and bioactive polymers.
As previously described, storing structural and experimental
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information is a difficult task because polymer nomenclature is not
clearly defined to include important traits such as composition, archi-
tecture, chirality, and more in a concise manner. For instance, a struc-
tural representation system based on SMILES, BigSMILES, was
developed in 2019 to include stochastic polymers [153,269,270]. The
authors state that this language is succinct, accessible, and can accom-
modate many applications. They demonstrated its ability to describe
and notate bonds, fragment names, stochastic objects, branched poly-
mers, end groups, macrocycles, ladder polymers, and polymers with re-
peating units. BigSMILES could be a practical language for describing
and databasing polymer information as it can also be utilized for molec-
ular fingerprinting, a practice that is useful in ML involving small mole-
cule drugs. If a transition takes place towards a design-build-test-learn
scheme, large scale data management will become crucial [26,32,135].
With the ability to organize extensive databases, it will be possible to
employ anML or AI algorithm beforehand to aid in initial experimental
design as well as reduce costs and labor [165,166]. This is illustrated by
the recent work of Webb and co-workers who combined CG modeling
with ML to design over 2000 polymers that have a wide range of size
and conformation [271]. Similarly, Reineke and others recently merged
combinatorial polymer synthesis with ML to design polymers for ribo-
nucleoprotein delivery [272].

As previously described in Table 1, many liquid handling robotics
can interface with external instrumentation, often useful for synthe-
sis or characterization. As these instruments continue to develop,
there will likely be an advancement of complementary robotic com-
ponents (e.g. robotic arms and grippers) to achieve greater degrees
of freedom of physical manipulation with a high level of autonomy
[273]. Another exciting possibility is the development of characteriza-
tion instrumentation that will be crucial for the “test” component of
a design-build-test-learn workflow. As shown in Fig. 5, chromatogra-
phy experienced a major shift towards becoming high throughput
friendly over the past 20–30 years. It is reasonable to expect this
trend to continue in characterization, as it is becoming more realistic
to conduct experiments without human intervention. A shift in poly-
mer science towards high throughput, as described in numerous
publications by our group and others [9–12,14,19,20,31,32,76,135],
will allow researchers to take this approach in biomaterials and
drug delivery.

6. Conclusion

Polymers are incredible materials that can be tuned in various ways
depending on the application. With current synthesis capability, scien-
tists can varymolecular weight, architecture, composition, stereochem-
istry, valency, and other parameters. We reviewed several
combinatorial and high throughput approaches that took advantage of
this large chemical space in antimicrobials, gene delivery, and drug de-
livery. Each of these research areas has expanded into the realm of ro-
botics and automation in different ways to aid in polymer synthesis or
complete several pipetting steps that would otherwise be done manu-
ally. Because of the emergence of AI and ML in the pharmaceutical in-
dustry to complement automation in the development of small
molecule therapeutics, we found it crucial to review some of this work
and begin uncovering insights that could be utilized and accessible to
the drug delivery and biomaterials space. This is an exciting time period
as we are rapidly approaching an inflection point in this community
where data-driven design can ultimately boost research productivity
and accelerate progress.
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