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Polymeric materials with high-​performance character-
istics can be achieved by replicating monomeric units of 
often simple chemistry into functional macromolecules 
with desirable properties. Indeed, biology demonstrates 
the immense potential of this approach by using amino 
acids and sugars as the building blocks of diverse and 
hierarchical polymeric materials in the form of proteins 
and polysaccharides. Like proteins, synthetic polymers 
possess innumerable monomer combinations that may 
translate to favourable structure-​function relationships. 
From an engineering perspective, the combinatorial 
complexity of polymeric materials manifests itself in the 
curse of dimensionality, making the rational design of 
high-performance features (for example, ionic conductiv-
ity, photoconversion efficiency, shape-memory response 
and self-healing) difficult. Alternatively, combinato-
rial polymer chemistry provides efficient and informed 
surveys of high-​dimensional polymer design spaces.

The emergence of the fourth paradigm of science, 
that is, data-intensive scientific discovery, may open the 
door to new forays of combinatorial polymer chemistry 
in materials science. Indeed, artificial intelligence (AI) 
and machine learning (ML) are increasingly used in 
the physical sciences and engineering, as highlighted 
by the recent performance of DeepMind’s AlphaFold2 
in the 2020 Critical Assessment of Protein Structure 
Prediction (CASP) competition. Using ML methods 
trained with data of over 170,000 known protein struc-
tures, AlphaFold2 demonstrated unprecedented accu-
racy in predicting single-​chain protein folding, a grand 
challenge in structural biology. This achievement under-
lines the promise of ML in scientific applications and,  
in particular, for polymeric materials. After all, pro-
teins are polymers made of amino acids, whose primary 
sequence ultimately determines their structure and 
therefore function.

Converging ideas
The accessibility of benchtop and automated combi-
natorial polymer chemistry, advances in molecular 
modelling and the increasing availability of flexible 
machine learning software present new possibilities for 

data-​driven exploration of structure-​function relationships 
in polymers.

Combinatorial and automated polymer chemistry. 
Starting in the 1990s, laboratory synthesizers have ena-
bled the use of combinatorial and automated polymer 
chemistry in polymer research and material design1,2. 
However, the intolerance of polymerization reactions to 
ambient air (that is, oxygen and water) have long limited 
efficient and automated high-​throughput experimenta-
tion owing to the requirement of sealed reaction vessels 
purged with inert atmosphere or freeze–pump–thaw 
cycling. Air-​tolerant chemistries can address this limi
tation by allowing controlled living radical polymeriza-
tions to proceed in open air, including in well plates3. 
Therefore, combinatorial libraries can easily be pre-
pared on the benchtop by simple addition of starting 
reagents in routine labware. Moreover, open platform 
liquid handling robotics can be applied for fully or 
semi-​automated polymer synthesis, opening a new era 
of high-​throughput combinatorial polymer chemistry4.

The evolution of molecular modelling. Molecular model
ling has long been a valuable tool in materials design, 
complementing experimental work by providing 
detailed theoretical characterizations to reveal mecha-
nistic features and design principles. Recently, spurred 
by computing advances, algorithmic developments 
and the impetus of the Materials Genome Initiative, 
high-​throughput calculations and virtual screening have 
emerged as cost-​effective in silico design paradigms5. 
However, these approaches have mainly been applied 
for small-​molecule drug compounds and inorganic 
materials thus far and less so for polymers. This is partly 
because density functional theory (DFT), the work-
horse of high-​throughput molecular theory, is imprac-
tical or ill-​suited for characterizing polymers because 
they are often typified by large, disordered systems with 
properties that depend on weak interactions and con-
formational heterogeneity. Molecular dynamics (MD) 
modelling is typically more suitable but computation-
ally challenging for macromolecular systems at atomistic 
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resolution. However, coarse-​grained (CG) modelling, 
which sacrifices chemical resolution for computational 
tractability, may provide a practical solution to the quan-
dary of approaching theoretical polymer characterization  
at scales needed for ML6,7.

Data nexus of experimentation and modelling. Combi
natorial polymer chemistry is poised to harness ML 
by combining high-​throughput experimentation and 
modelling. An example of how theory can lead experi
mentation was the identification of organic light-​
emitting diodes (LEDs) by hundreds of thousands of 
time-dependent DFT calculations and ML; however, 
experimental calibrations and human assessment were 
needed for the final selection of candidates8. ML-​based 
polymer property prediction has been demonstrated 
using ML models trained on theoretical calculations, 
which show good correspondence to ML models 
benchmarked against available experimental data9. If 
data-​generation capabilities are mismatched between 

theory and experiment, transfer learning may provide a 
pathway toward high-​fidelity ML models that combine 
datasets from disparate sources.

Small steps to going big
Complex laboratory automation and exhaustive cal-
culations often require enormous capital and human 
resources. However, the application of new data-​centric 
tools can be achieved by implementing small but signifi
cant steps, enabling the widespread use of these tools in 
all polymer science laboratories.

The robo-​chemist. The robo-​chemist could become a 
new colleague in many polymer science laboratories. 
Fully automated robotics driven by AI will undoubtedly 
have a major impact on material discovery and design. 
With the emergence of air-​tolerant polymer chemistry3, 
a high number of new polymer designs within a com-
binatorial library (tens of polymers per library) can be 
produced by simple manual pipetting in well plates. 
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Fig. 1 | robotic systems for autonomous structure-function testing in combinatorial polymer libraries. Automated 
robotic systems driven by artificial intelligence (AI) and modelling enable design–build–test–learn workflows for a series  
of chemically distinct systems. New and historic data, generated experimentally and/or in silico, are used to train machine 
learning (ML) models that allow the prediction of application-​specific properties across the combinatorial chemical space. 
The developed ML models facilitate the identification of new, optimal polymer chemistries based on active learning 
paradigms, which are subsequently synthesized and tested, entering another round of the autonomous cycle.
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Low-​cost instruments with user-​friendly interfaces can 
automate simple tasks (for example, reagent additions, 
plate-​to-​plate transfers and serial dilutions), enabling 
the production of even more polymer designs within a 
library without requiring much training or programming 
skills (hundreds of polymers per library). Such systems  
allow low-​to-​medium-​throughput polymer chemistry, 
which is also amenable to data-​driven techniques. Robotic 
systems can dramatically improve high-​throughput  
workflows both in terms of scale (thousands of poly-
mers per library) and complexity. Ultimately, experi
mentalists should rationally approach these options 
according to realistic needs, leaving room for future 
upgrades. For example, some low-​cost instruments can 
easily be incorporated into future fully automated work-
flows through open-​source application programming 
interfaces (APIs).

Learning with less. Polymer datasets derived by experi-
ment or simulation remain relatively small by ML stan
dards; however, dataset size may not be a limiting factor 
for sequence-​based design of polymers. For example, 
accurate ML models describing polymer conformation 
have been trained from only a few hundred randomly 
chosen but distinct polymers6. In addition, active learning 
approaches are a promising route toward judicious data-
set construction. Here, ML models are iteratively trained 
with data points that are optimally selected according 
to an acquisition function. This strategy led to success-
ful identification of oligopeptides that self-assemble 
into nanoaggregates from only 186 CG simulations7. 
Although these examples are in the context of model
ling, the numbers are well within the capabilities  
of experimental combinatorial polymer libraries.

Organizing disorder. Critical to the success of Alpha
Fold2 was the existence of the protein data bank (PDB). 
Despite the construction of several polymer data-
bases (for example, PoLyInfo, the Polymer Genome, 
CHEMnetBASE-​Polymers, Polymer Property Predictor 
and Database), polymer characterization data are gene
rally not accessible in standardized and downloadable 
formats for data mining and ML. Moreover, available 
data are potentially obfuscated by a variety of variables 
(for example, molecular weight, processing history and 
characterization protocol) and mostly correspond to 
simple homopolymers. The question remains whether 
it is feasible, or necessary, to create orderly databases  
of combinatorial polymer chemistry for diverse applica-
tions. Many ML applications for polymers will likely use 
in-​house generated data, which may be informally shared 
amongst research teams and deposited in repositories, 
such as the Materials Data Facility. Nevertheless, discus-
sions on data organization and representing polymers, 
such as through BigSMILES language10, must continue. 
Relatedly, open-​access datasets for monomeric units, 

akin to the QM9 dataset for small-​molecule research, 
would greatly benefit polymer ML development.

Opportunities in polymer data science
Translating the chemical landscape of monomer combi-
nations as polymers into distinct structure-​function rela-
tionships remains challenging. The emergence of AI and 
ML, in tandem with advances in combinatorial chemistry,  
may provide a route toward the data-​enabled design of 
polymeric materials. In the future, we imagine the use  
of AI-​driven robotics to plan and optimize entire experi
ments (Fig. 1). Advances in systematic polymer model-
ling will encourage tightly integrated workflows that 
make use of in silico and experimental characterizations,  
guided and selected by efficient active learning para-
digms. These tools, driven by human innovation, will 
enable the autonomous design and engineering of new 
polymer materials with optimized application-specific 
properties in fashion.
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Related links
CHemnetBASe: http://poly.chemnetbase.com/
Critical Assessment of Protein Structure Prediction Competition:  
https://predictioncenter.org
materials data facility: https://materialsdatafacility.org/
materials Genome Initiative: https://www.mgi.gov/
PoLyInfo: https://polymer.nims.go.jp/en/
Polymer Genome: https://www.polymergenome.org/
Polymer Property Predictor and Database: https://pppdb.uchicago.edu/
Protein Data Bank: http://www.wwpdb.org/
Qm9: http://quantum-​machine.org/datasets/
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	Fig. 1 Robotic systems for autonomous structure-function testing in combinatorial polymer libraries.




