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polymer chemistry

Machine learning in combinatorial

Adam J. Gormley® '™ and Michael A. Webb

Polymeric materials with high-performance character-
istics can be achieved by replicating monomeric units of
often simple chemistry into functional macromolecules
with desirable properties. Indeed, biology demonstrates
the immense potential of this approach by using amino
acids and sugars as the building blocks of diverse and
hierarchical polymeric materials in the form of proteins
and polysaccharides. Like proteins, synthetic polymers
possess innumerable monomer combinations that may
translate to favourable structure-function relationships.
From an engineering perspective, the combinatorial
complexity of polymeric materials manifests itself in the
curse of dimensionality, making the rational design of
high-performance features (for example, ionic conductiv-
ity, photoconversion efficiency, shape-memory response
and self-healing) difficult. Alternatively, combinato-
rial polymer chemistry provides efficient and informed
surveys of high-dimensional polymer design spaces.

The emergence of the fourth paradigm of science,
that is, data-intensive scientific discovery, may open the
door to new forays of combinatorial polymer chemistry
in materials science. Indeed, artificial intelligence (AI)
and machine learning (ML) are increasingly used in
the physical sciences and engineering, as highlighted
by the recent performance of DeepMind’s AlphaFold2
in the 2020 Critical Assessment of Protein Structure
Prediction (CASP) competition. Using ML methods
trained with data of over 170,000 known protein struc-
tures, AlphaFold2 demonstrated unprecedented accu-
racy in predicting single-chain protein folding, a grand
challenge in structural biology. This achievement under-
lines the promise of ML in scientific applications and,
in particular, for polymeric materials. After all, pro-
teins are polymers made of amino acids, whose primary
sequence ultimately determines their structure and
therefore function.

Converging ideas

The accessibility of benchtop and automated combi-
natorial polymer chemistry, advances in molecular
modelling and the increasing availability of flexible
machine learning software present new possibilities for
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The design of new functional polymers depends on the successful navigation of their structure-
function landscapes. Advances in combinatorial polymer chemistry and machine learning
provide exciting opportunities for the engineering of fit-for-purpose polymeric materials.

data-driven exploration of structure-function relationships
in polymers.

Combinatorial and automated polymer chemistry.
Starting in the 1990s, laboratory synthesizers have ena-
bled the use of combinatorial and automated polymer
chemistry in polymer research and material design'”.
However, the intolerance of polymerization reactions to
ambient air (that is, oxygen and water) have long limited
efficient and automated high-throughput experimenta-
tion owing to the requirement of sealed reaction vessels
purged with inert atmosphere or freeze-pump-thaw
cycling. Air-tolerant chemistries can address this limi-
tation by allowing controlled living radical polymeriza-
tions to proceed in open air, including in well plates’.
Therefore, combinatorial libraries can easily be pre-
pared on the benchtop by simple addition of starting
reagents in routine labware. Moreover, open platform
liquid handling robotics can be applied for fully or
semi-automated polymer synthesis, opening a new era
of high-throughput combinatorial polymer chemistry*.

The evolution of molecular modelling. Molecular model-
ling has long been a valuable tool in materials design,
complementing experimental work by providing
detailed theoretical characterizations to reveal mecha-
nistic features and design principles. Recently, spurred
by computing advances, algorithmic developments
and the impetus of the Materials Genome Initiative,
high-throughput calculations and virtual screening have
emerged as cost-effective in silico design paradigms’.
However, these approaches have mainly been applied
for small-molecule drug compounds and inorganic
materials thus far and less so for polymers. This is partly
because density functional theory (DFT), the work-
horse of high-throughput molecular theory, is imprac-
tical or ill-suited for characterizing polymers because
they are often typified by large, disordered systems with
properties that depend on weak interactions and con-
formational heterogeneity. Molecular dynamics (MD)
modelling is typically more suitable but computation-
ally challenging for macromolecular systems at atomistic
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resolution. However, coarse-grained (CG) modelling,
which sacrifices chemical resolution for computational
tractability, may provide a practical solution to the quan-
dary of approaching theoretical polymer characterization
at scales needed for ML®".

Data nexus of experimentation and modelling. Combi-
natorial polymer chemistry is poised to harness ML
by combining high-throughput experimentation and
modelling. An example of how theory can lead experi-
mentation was the identification of organic light-
emitting diodes (LEDs) by hundreds of thousands of
time-dependent DFT calculations and ML; however,
experimental calibrations and human assessment were
needed for the final selection of candidates®. ML-based
polymer property prediction has been demonstrated
using ML models trained on theoretical calculations,
which show good correspondence to ML models
benchmarked against available experimental data’. If
data-generation capabilities are mismatched between
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theory and experiment, transfer learning may provide a
pathway toward high-fidelity ML models that combine
datasets from disparate sources.

Small steps to going big

Complex laboratory automation and exhaustive cal-
culations often require enormous capital and human
resources. However, the application of new data-centric
tools can be achieved by implementing small but signifi-
cant steps, enabling the widespread use of these tools in
all polymer science laboratories.

The robo-chemist. The robo-chemist could become a
new colleague in many polymer science laboratories.
Fully automated robotics driven by AI will undoubtedly
have a major impact on material discovery and design.
With the emergence of air-tolerant polymer chemistry’,
a high number of new polymer designs within a com-
binatorial library (tens of polymers per library) can be
produced by simple manual pipetting in well plates.
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Fig. 1| Robotic systems for autonomous structure-function testing in combinatorial polymer libraries. Automated
robotic systems driven by artificial intelligence (Al) and modelling enable design-build-test-learn workflows for a series
of chemically distinct systems. New and historic data, generated experimentally and/or in silico, are used to train machine
learning (ML) models that allow the prediction of application-specific properties across the combinatorial chemical space.
The developed ML models facilitate the identification of new, optimal polymer chemistries based on active learning
paradigms, which are subsequently synthesized and tested, entering another round of the autonomous cycle.
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Low-cost instruments with user-friendly interfaces can
automate simple tasks (for example, reagent additions,
plate-to-plate transfers and serial dilutions), enabling
the production of even more polymer designs within a
library without requiring much training or programming
skills (hundreds of polymers per library). Such systems
allow low-to-medium-throughput polymer chemistry,
which is also amenable to data-driven techniques. Robotic
systems can dramatically improve high-throughput
workflows both in terms of scale (thousands of poly-
mers per library) and complexity. Ultimately, experi-
mentalists should rationally approach these options
according to realistic needs, leaving room for future
upgrades. For example, some low-cost instruments can
easily be incorporated into future fully automated work-
flows through open-source application programming
interfaces (APIs).

Learning with less. Polymer datasets derived by experi-
ment or simulation remain relatively small by ML stan-
dards; however, dataset size may not be a limiting factor
for sequence-based design of polymers. For example,
accurate ML models describing polymer conformation
have been trained from only a few hundred randomly
chosen but distinct polymers®. In addition, active learning
approaches are a promising route toward judicious data-
set construction. Here, ML models are iteratively trained
with data points that are optimally selected according
to an acquisition function. This strategy led to success-
ful identification of oligopeptides that self-assemble
into nanoaggregates from only 186 CG simulations’.
Although these examples are in the context of model-
ling, the numbers are well within the capabilities
of experimental combinatorial polymer libraries.

Organizing disorder. Critical to the success of Alpha-
Fold2 was the existence of the protein data bank (PDB).
Despite the construction of several polymer data-
bases (for example, PoLyInfo, the Polymer Genome,
CHEMnetBASE-Polymers, Polymer Property Predictor
and Database), polymer characterization data are gene-
rally not accessible in standardized and downloadable
formats for data mining and ML. Moreover, available
data are potentially obfuscated by a variety of variables
(for example, molecular weight, processing history and
characterization protocol) and mostly correspond to
simple homopolymers. The question remains whether
it is feasible, or necessary, to create orderly databases
of combinatorial polymer chemistry for diverse applica-
tions. Many ML applications for polymers will likely use
in-house generated data, which may be informally shared
amongst research teams and deposited in repositories,
such as the Materials Data Facility. Nevertheless, discus-
sions on data organization and representing polymers,
such as through BigSMILES language'’, must continue.
Relatedly, open-access datasets for monomeric units,
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akin to the QM9 dataset for small-molecule research,
would greatly benefit polymer ML development.

Opportunities in polymer data science

Translating the chemical landscape of monomer combi-
nations as polymers into distinct structure-function rela-
tionships remains challenging. The emergence of Al and
ML, in tandem with advances in combinatorial chemistry,
may provide a route toward the data-enabled design of
polymeric materials. In the future, we imagine the use
of Al-driven robotics to plan and optimize entire experi-
ments (FIC. 1). Advances in systematic polymer model-
ling will encourage tightly integrated workflows that
make use of in silico and experimental characterizations,
guided and selected by efficient active learning para-
digms. These tools, driven by human innovation, will
enable the autonomous design and engineering of new
polymer materials with optimized application-specific
properties in fashion.
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RELATED LINKS

CHEMnetBASE: http://poly.chemnetbase.com/

Critical Assessment of Protein Structure Prediction Competition:
https://predictioncenter.org

Materials data facility: https://materialsdatafacility.org/

Materials Genome Initiative: https://www.mgi.gov/

Polylnfo: https://polymer.nims.go.jp/en/

Polymer Genome: https://www.polymergenome.org/

Polymer Property Predictor and Database: https://pppdb.uchicago.edu/
Protein Data Bank: http://www.wwpdb.org/

QM9: http://quantum-machine.org/datasets/
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