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SUMMARY

An animal’s social behaviour both influences and changes in response to its parasites. Here we consider
these bidirectional links between host social behaviours and parasite infection, both those that occur from
ecological versus evolutionary processes. First, we review how social behaviours of individuals and
groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in
turn, can alter host social interactions by changing the behaviour of both infected and uninfected
individuals. Together, these ecological feedbacks between social behaviour and parasite infection can
result in important epidemiological consequences. Next, we consider the ways in which host social
behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to
maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host
social behaviours shape the population genetic structure of parasites and the evolution of key parasite
traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and
parasites are an important yet often underappreciated component of population-level disease dynamics

and host-parasite coevolution.

Keywords: social behaviour, parasite transmission, behavioural ecology, disease ecology, host-parasite
coevolution, epidemiology, evolutionary parasitology, parasite-induced behavioural plasticity, avoidance

behaviour, sickness behaviour
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INTRODUCTION

Social behaviours, which serve key roles in parasite transmission, can both influence and respond to
parasite infection through ecological and evolutionary processes (Fig 1; Ezenwa et al. 2016a). While past
work has documented diverse ways in which an animal’s social behaviours influence parasite ecology
(Fig 1A), the ability of parasites to, in turn, alter host social behaviours via ecological (Fig 1B) or
evolutionary (Fig 1C) processes has been understudied relative to predators, the other major class of
natural enemy (Krause and Ruxton, 2002). Further, the role of host social behaviours in driving the
evolution of parasite traits (Fig 1D) such as virulence and host range has received surprisingly little
attention (Schmid-Hempel, 2017). Given the importance of social behaviours for the transmission, and
thus fitness, of diverse types of parasites, understanding the ways in which parasites and host social
behaviours interact is critical for predicting both parasite evolution (Schmid-Hempel, 2017), and disease
dynamics at population scales (Ezenwa et al. 2016a).

Here we consider the key bidirectional interactions, both ecological and evolutionary, that occur
between parasites and host social behaviours, which we define broadly as any direct behavioural
interaction between conspecifics (Box 1). Work to date has shown that host social behaviours can be
important yet complex drivers of parasite risk through ecological processes (Fig 1; Arrow A; Altizer et al.
2003; Schmid-Hempel, 2017). For example, social behaviours such as gregariousness (Box 1) can
increase the probability or extent of parasitism by bringing hosts into close proximity (Rifkin ez al. 2012),
but gregariousness can also augment the ability of hosts to resist or tolerate parasites and pathogens once
exposed (Ezenwa et al. 2016b). Parasite infection, in turn, can have reciprocal and far-reaching ecological
effects on animal social behaviours (Arrow B), both by altering the social behaviours of infected hosts
(e.g. Lopes et al. 2016) and, in some cases, the uninfected conspecifics with which they interact (e.g.
Behringer et al. 2006). In addition to these ecological processes, parasites can influence animal social
behaviours via evolutionary mechanisms (Arrow C) by driving selection on group size and avoidance
behaviours that help to ameliorate the costs associated with heightened risk of parasitism for highly social
individuals (e.g. Loehle, 1995; Buck et al. 2018). Finally, social behaviours of hosts are predicted to exert
strong selection on traits of parasites (Arrow D) given the importance of these host behaviours for parasite
fitness (i.e., spread and long-term persistence). Thus, we end by considering how host social behaviours
might shape the genetic structure of parasite populations and the evolution of parasite traits (Arrow D).

Given the vast literature on host social behaviours and parasites, we do not attempt an exhaustive
review, but instead selectively synthesize key concepts in the field and exciting new findings or
perspectives. We structure our review by considering ecological and evolutionary processes
independently, but we note that these processes will show considerable overlap and feedback.

Importantly, ecological processes for hosts often occur on timescales relevant for parasite evolution.
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Thus, we end our review with a brief discussion of ecological-evolutionary feedbacks between host social
behaviours and parasites. We limit the taxonomic scope of our review to animal hosts, but by defining
social behaviours broadly, we discuss concepts and examples that apply to taxa exhibiting a wide degree
of sociality (Box 1). Finally, although the COVID-19 pandemic underscores the importance of reciprocal
interactions between social behaviours and parasites in humans (e.g. Block et al. 2020), we focus our
review on non-human animals for brevity, while recognizing that the concepts discussed here can be

extended to all social taxa and their parasites (e.g. Townsend et al. 2020).

SECTION 1. ECOLOGY: SOCIAL BEHAVIOURS INFLUENCE AND RESPOND TO PARASITE
INFECTION

Social behaviours, which by definition bring conspecifics into close proximity, have long been
recognized as particularly likely to influence and respond to parasite spread (e.g. Alexander, 1974;
Loehle, 1995). In this section, we consider both how social behaviours alter parasite transmission (Arrow
A; Fig. 1), and in turn, how parasite infection can dynamically alter host social behaviours (Arrow B).
Although it has long been recognized that parasites can alter animal behaviour (reviewed in Moore,
2002), the extent to which parasites influence the social dynamics of hosts via ecological processes, and
the degree of individual heterogeneity in infection-induced changes in sociality, are only beginning to be
uncovered. We focus on this exciting growing area, highlighting potential sources of heterogeneity in
parasite-mediated changes in host social behaviours (Fig 2), and their consequences for epidemiological

and coevolutionary feedbacks (Ezenwa et al. 2016a).

1i. Host social behaviours alter parasite ecology (Arrow A)

Parasites spread via close contact between conspecifics over time or space (which we term “socially
transmitted parasites” hereafter for simplicity; Box 1) are hypothesized to pose a greater risk for host
species that exhibit social behaviours such as group living (Krause and Ruxton, 2002). Classic
mathematical models for socially transmitted parasites (e.g. susceptible-infectious-recovered [SIR]
compartmental models) often assume that the rate of contact between susceptible and infectious
individuals increases with host density (Begon et al. 2002). On a local scale, this results in higher contact
rates, and thus parasite transmission, for animals in larger social groups. Indeed, two meta-analyses
support the hypothesis that larger social groups generally harbor higher prevalence and/or infection
intensity (Box 1) of parasites spanning diverse transmission modes (Rifkin et al. 2012; Patterson and
Ruckstuhl, 2013). In contrast, however, there is some evidence that group living can dilute host risk of
infection with highly mobile parasites by reducing per capita attack rates (the encounter-dilution effect;

Coté and Poulin, 1995). The encounter-dilution effect primarily applies to parasites that actively seek
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hosts by flying or swimming; the likelihood of being singled out by these parasites can decrease with
increasing group size (Co6té and Poulin, 1995; Patterson and Ruckstuhl, 2013).

Recent work suggests that social group substructure may in some cases be equally or more
important than group size in predicting parasite risk (Griffin and Nunn, 2012; Nunn et al. 2015; Sah et al.
2018). If the majority of close social interactions in large groups occur between subsets of individuals
(e.g. ‘cliques’), this modularity (Box 1) can act as a “social bottleneck™ that contains parasite spread
within subgroups and reduces spread to the group at large (e.g. Nunn et al. 2015). In support of this idea,
the social networks of eusocial insect colonies can be highly structurally subdivided, and epidemiological
models show that this constitutive modularity dampens transmission of an entomopathogenic fungus
within colonies (Stroeymeyt et al. 2018). Similarly, a comparative study of 19 non-human primate species
found that higher levels of modularity may help ameliorate the heightened risk of parasite spread in large
social groups, as higher modularity was associated with lower parasite richness (Griffin and Nunn, 2012).
However, perhaps because of its protective function, social group modularity tends to increase with group
size across taxa (Nunn ef al. 2015), making it challenging to tease apart whether resulting patterns of
parasitism are a function of group size, modularity, or both.

Individual variation in social behaviours can also have important effects on transmission risk. As
shown through descriptive network approaches that quantify social connections among conspecifics using
direct behavioural interactions or physical proximity, individuals that have ties to multiple social ‘cliques’
(VanderWaal et al. 2016) or those highly connected to neighboring conspecifics (e.g. Bull et al. 2012) can
have an increased likelihood of parasite infection (but see Drewe, 2010 for the importance of type and
directionality of interactions). Similarly, bold or “pro-active” personality traits, which correlate with
social network centrality in some taxa (e.g. Aplin et al. 2013), may influence social parasite transmission:
two studies of mammalian species found that bolder individuals had higher seroprevalence of viruses
largely spread via aggressive interactions (Natoli et al. 2005; Dizney and Dearing, 2013). While these
correlational studies suggest effects of variation in social behaviour on parasite risk, field studies
generally cannot directly elucidate cause and effect (Arrow A versus B: does behaviour affect parasites or
vice versa?). Further, it is challenging to disentangle the relative contributions of individual variation in
exposure versus susceptibility to field patterns of transmission (VanderWaal and Ezenwa, 2016; see
Section 7iii), particularly when traits relevant for both exposure and susceptibility can simultaneously be
influenced by social context (e.g. Miiller-Klein et al. 2019). Experimental studies, while not possible for
all host-parasite systems, can isolate the effects of host social behaviour per se on parasite transmission
risk. For example, Keiser et al. (2016) used experimental epidemics to show that bolder female social

spiders (Stegodyphus dumicola) had a higher risk of acquiring a cuticular microbe. Future studies could
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examine how individual differences in “social personalities”, which are seldom quantified in themselves
(e.g. Kulahci ef al. 2018), influence the transmission dynamics of socially transmitted parasites.

Overall, the social behaviours of groups and individuals appear to strongly influence parasite
transmission risk (Arrow A). However, in order to fully elucidate effects of social behaviours on parasite
transmission, it is critical to also consider how parasite infection affects host social behaviours (Arrow B),

as both processes together will ultimately underlie the dynamics of socially transmitted parasites.

1ii. Parasite infection influences host social behaviours (Arrow B)

The way in which parasite infection alters the social behaviours of both infected hosts and their
uninfected conspecifics (Arrow B), has received relatively less attention than effects of social behaviours
on parasite risk (Arrow A; Section 1i). This is somewhat surprising given that it has long been recognized
that hosts often behave differently during infection (reviewed in Moore, 2002). Changes in social
behaviours during infection can broadly result from parasite-mediated manipulation of host behaviours to
promote transmission to new hosts (reviewed in Klein, 2003), or from host-mediated behavioural
changes, which typically occur from one of three mechanisms: 1) as side effects of tissue damage or
energy needs associated with infection, 2) via expression of “sickness behaviours” that are part of a host’s
broader, adaptive immunological responses to infection (Hart, 1988), or 3) as active self-isolation to
prevent ongoing spread, a behaviour largely seen in eusocial insects (Shorter and Rueppell, 2012). All
four possibilities, whether parasite- or host-mediated, can lead to notable changes in social behaviours of
hosts, with important consequences for parasite transmission. For example, three-spined sticklebacks
(Gasterosteus aculeatus) infected with the socially transmitted parasite Glugea anomala are more likely
than their uninfected counterparts to be attracted to conspecifics, a behaviour predicted to augment
transmission (Petkova et al. 2018). Whether behavioural changes in that system are parasite- or host-
mediated remains unclear, but in this section we focus on changes in behaviour during infection that are
likely host-mediated, and consider parasite-mediated behavioural changes in Section 2ii.

Host-mediated changes in behaviour during infection, such as self-isolation and sickness
behaviours, often reduce the degree of interaction with conspecifics and thus the spread of socially
transmitted parasites. While active self-isolation is rare outside of eusocial insects, sickness behaviours
are a conserved component of vertebrate immune responses that include general reductions in activity
levels and specific reductions in non-essential activities (Hart, 1988), such as many forms of social
interaction (e.g. allogrooming). For example, Lopes et al. (2016) stimulated sickness behaviours in wild
house mice (Mus musculus domesticus) by injecting individuals with bacterial endotoxin, and found that
immune activation resulted in lower activity levels and fewer direct social interactions with conspecifics

relative to controls. Similarly, work in two other mammalian systems found that infected individuals (or
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those expressing sickness behaviours) are less likely than control individuals to engage in affiliative
allogrooming with conspecifics [banded mongooses (Mungos mungo), Fairbanks et al. 2014; vampire
bats (Desmodus rotundus), Stockmaier et al. 2018]. In vampire bats, these changes in allogrooming
during sickness behaviour expression, potentially in combination with reduced contact calling
(Stockmaier et al. 2020a), result in significant reductions in several measures of social connectedness
relative to controls (Ripperger ef al. 2020). Overall, host-mediated reductions in social interactions during
infection, particularly when they occur during the host’s infectious period, likely reduce transmission of
socially transmitted parasites.

The extent to which infected hosts alter their social behaviour is likely to depend on the energetic
costs of a given parasite infection and the importance of that social behaviour for maintaining host fitness
(Ezenwa et al. 2016b). In some systems, social behaviours of hosts appear to be maintained during
infection (Powell et al. 2020), which may be common for infections by low-virulence parasites. In other
cases, infected animals may maintain a subset of social interactions potentially most important to host
recovery, including those with high inclusive fitness benefits. For example, vampire bats injected with
endotoxin to induce sickness behaviours continued to groom close kin (mother or offspring) at levels
similar to controls, but reduced the extent to which they groomed non-kin (Stockmaier et al. 20205). In
some systems, social behaviours of hosts can even be augmented during infection. For example, male
guppies (Poecilia reticulata) with high loads of a socially transmitted ectoparasite showed higher sociality
relative to males with lower parasite loads (Stephenson, 2019), and rhesus monkeys (Macaca mulatta)
given low-dose endotoxin injection show marked increases in social behaviours with conspecifics
(Willette et al. 2007). The ultimate mechanisms underlying these patterns remain unknown, but in some
systems, the maintenance or even augmentation of sociality during infection may be a form of tolerance
(Box 1), allowing hosts to minimize the fitness impacts of infection via group living (Ezenwa et al.
2016b). For example, recent work in Grant’s gazelle (Nanger granti) suggests that association with larger
groups benefits gazelle infected with gastrointestinal parasites by allowing them to better ameliorate the
costs associated with infection-induced anorexia (Ezenwa and Worsley-Tonks, 2018). Given that infected
hosts experience anorexia (e.g. Adelman et al. 2013) and higher predation risk (e.g. Alzaga et al. 2008;
Stephenson et al. 2016) in many social taxa, future work should examine whether enhanced
gregariousness during infection is a common mechanism of tolerance across taxa, with important
consequences for ecological feedbacks between social behaviour and parasite transmission.

Parasite infection can also alter social interactions by changing the behaviour of uninfected hosts
toward their infected conspecifics. Among taxa spanning fish, birds, crustaceans, social insects, and
mammals, infected or immune-activated individuals display visual cues of infection (e.g. lethargy:

Zylberberg et al. 2012) or release distinct chemical cues that conspecifics can use to avoid them (e.g.
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Arakawa et al. 2009; Anderson and Behringer, 2013; Stephenson and Reynolds, 2016) or, in the case of
honey bees (Apis mellifera), remove them from the colony (Baracchi ef al. 2012). Intriguingly, recent
work in mice suggests that the scent of uninfected hosts themselves can change when they are housed
with an infected conspecific (Gervasi et al. 2018), suggesting the potential for complex downstream
effects of infection status on social group dynamics and resulting transmission.

In some highly social animals, uninfected groupmates continue to engage in intimate interactions
such as allogrooming with conspecifics that are infected or expressing sickness behaviours. At the
extreme are some eusocial insects, where individuals care for infected conspecifics, likely because their
high degree of relatedness favors the evolution of seemingly “altruistic” behaviours via kin selection (see
Section 2i). But even in systems where groupmates are not as closely related, uninfected individuals often
maintain intimate social interactions with infected conspecifics. For example, uninfected conspecifics in
two social mammals groom visibly diseased groupmates or those expressing sickness behaviours at
similar intensity to controls, even when allogrooming reciprocity from these individuals is greatly reduced
(e.g. mongooses: Fairbanks et al. 2014; vampire bats: Stockmaier et al. 2018); furthermore, uninfected
vampire bats continue to share food with conspecifics expressing sickness behaviours (Stockmaier et al.
2020b). In mandrills (Mandrillus sphinx), the degree to which uninfected individuals maintain social
interactions with infected conspecifics appears to depend on kinship: mandrills reduce grooming toward
parasitized partners that are non-kin, but maintain grooming if these potentially contagious partners are
offspring or close maternal kin (Poirotte and Charpentier, 2020). Finally, in other systems, uninfected
conspecifics are attracted to feed near (male house finches, Haemorhous mexicanus: Bouwman and
Hawley, 2010) or socially explore (mice: Edwards, 1988) infected conspecifics. Understanding
heterogeneity in the behaviour of uninfected hosts toward infected conspecifics (Fig 2B), which can vary
from avoidance to attraction, will help predict the conditions in which parasite-induced changes in
sociality lead to positive or negative ecological feedbacks that ultimately maintain or dampen parasite
epidemics (Fig 1).

The effects of infection on social interactions between groups are also key to understanding
pathogen transmission dynamics (Cross et al. 2005), but have generally received less attention than
within-group social interactions. Because infected individuals or those expressing sickness behaviours are
less likely to explore their surroundings than uninfected individuals (e.g. Lopes et al. 2016), they may be
less likely to interact with other social groups, either temporarily or permanently (as occurs in banded
mongooses; Fairbanks et al. 2014). In other cases, infected individuals may be more likely to leave an
existing group, as has been observed among European badgers (Meles meles meles) with bovine
tuberculosis (Cheesman and Mallinson, 1981; Weber et al. 2013). Whether infected individuals join new

social groups, either temporarily or permanently, will also depend on whether infected individuals are
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“accepted” by conspecifics in the new social group (Butler and Roper, 1996). Uninfected guppies appear
to largely prevent integration of experimental intruders with ectoparasite infections into existing shoals
(Croft et al. 2011). In contrast, honey bee colonies were more likely to accept entry by foreign bees
infected with Israeli acute paralysis virus than foreign controls, which may represent a unique case of
pathogen manipulation of chemical signals that mediate aggressive interactions in this species (Geffre et
al. 2020; see Section 2ii). The movement or dispersal of uninfected individuals between groups can also
be driven by conspecific infection or disease status, as occurs in western lowland gorillas (Gorilla gorilla
gorilla), where adult females are more likely to emigrate from social groups with a higher prevalence of
facial lesions associated with a contact-transmitted skin disease (Baudouin et al. 2019). Overall, more
studies are needed on how parasite infection influences among-group movements for both infected hosts
and uninfected conspecifics, particularly for taxa where social group composition is relatively fluid, such
as fission-fusion societies.

Studies have only recently begun to address how changes in social behaviours of both infected
and uninfected conspecifics scale up to influence host social networks and disease dynamics. Chapman et
al. (2016), for example, used a deworming approach to examine how parasite infection in vervet monkeys
(Chlorocebus pygerythrus) influenced social interactions in ways relevant to population-level spread.
Dewormed individuals (particularly juveniles) had more frequent social interactions with more total
conspecifics, suggesting that uninfected individuals may generally be more central in vervet monkey
social networks, thereby attenuating parasite spread. Likewise, two recent studies combined experimental
manipulations of infection status or sickness behaviour with network modeling to examine how parasite
infection might influence the dynamics of socially transmitted pathogens (Lopes ef al. 2016; Stroeymeyt
et al. 2018). Lopes et al. (2016) used empirical contact data from mice induced to express sickness
behaviours to simulate disease outbreaks across social networks, showing that changes in social
interactions associated with sickness behaviours resulted in highly attenuated disease outbreaks. Although
Lopes et al. (2016) did not find evidence of conspecific avoidance in their system, recent work in Lasius
niger ants showed that responses of both parasite-contaminated ants and their uncontaminated nestmates
contributed together to changes in group social networks that inhibited the spread of pathogens through
colonies (Stroeymeyt et al. 2018). Thus, understanding the behaviour of both infected hosts and the
uninfected conspecifics they interact with is key for elucidating ecological feedbacks that dampen or

augment disease spread within and among social groups.

1iii. Synthesis: ecological feedbacks between social behaviours and parasite infection (Arrows A and B)
The bidirectional feedbacks between host social behaviours and parasite infection make it challenging to

determine whether ecological patterns such as group size-parasitism relationships (Section Ii) result from
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the effect of social interactions on parasite risk (Arrow A), the effect of infection on social behaviours
(Arrow B), or both. Experimental manipulation of parasite infection allows direct elucidation of causality.
For example, Ezenwa and Worsley-Tonks (2018) treated a subset of Grant’s gazelles with anti-helminthic
drugs and found that individuals in larger social groups re-acquired gastrointestinal parasites more
rapidly, supporting the idea that larger group sizes augment the risk of acquiring parasites (Arrow A).
Because they also found that parasitized gazelle benefit from larger group sizes where they can spend
more time foraging (see Section 1ii), parasitized Grant’s gazelles may actively seek out larger social
groups (Arrow B), further contributing to patterns of higher parasite prevalence in larger groups.
Although such changes in sociality with parasitism have not yet been explicitly examined in this system,
the ability of gregariousness to augment host tolerance of infection may produce positive feedbacks
between infection and social behaviour, facilitating longer persistence of parasite loads in larger groups.

The strength of ecological feedbacks between social behaviour and infection will be influenced
by the degree of heterogeneity in the behaviour of both infected and uninfected hosts (Fig 2), as well as
the way in which behavioural heterogeneity covaries with physiological resistance to parasites. Recent
studies reveal that individual variation in social behaviour among uninfected individuals often covaries
with their susceptibility to infection (Fig 2B), a pattern with unknown causality but hypothesized to result
from hosts balancing their investment in behavioural versus physiological immunity. Individual hosts
with less effective physiological defences against parasites appear to avoid behaviours entailing high
infection risk (Barber and Dingemanse, 2010): mice (Filiano et al. 2016) and zebrafish (Danio rerio;
Kirsten et al. 2018) that express lower levels of interferon gamma (and are therefore potentially more
susceptible to intracellular parasites) are less social, and house finches with lower levels of circulating
immune proteins more strongly avoid conspecifics expressing sickness behaviours (Zylberberg et al.
2012). Stephenson (2019) built on these findings by demonstrating that the pattern is similar, with the
most susceptible individuals showing strongest conspecific avoidance, when considering susceptibility to
the most prevalent parasites in an animal’s environment, rather than a general immune component.
Intraspecific variation in parasite susceptibility can therefore covary with intraspecific variation in
behaviour, leading to potential dampening of ecological feedbacks, and reduced epidemic potential, if
individuals that are the most social are also least likely to acquire infection (Hawley et al. 2011).

Once transmission occurs, behavioural changes of parasite-contaminated or actively infected
hosts are also heterogeneous (Fig 2A). Factors extrinsic to the host, such as social context (Lopes, 2014)
and seasonality (Owen-Ashley and Wingfield, 2006), as well as factors intrinsic to the host, such as sex
(Silk et al. 2018; Stephenson, 2019), social caste (Stroeymeyt et al. 2018), and previous exposure to the
parasite (Walker and Hughes, 2009), can dramatically affect behavioural changes in response to infection.

Additionally, behavioural changes of infected animals often positively covary with infection intensity

10
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(Edwards, 1988; Houde and Torio, 1992; Barber and Dingemanse, 2010), which is naturally highly
variable in host populations (Shaw ef al. 1998). Thus, hosts that harbor the highest infection intensity (a
potential proxy for infectiousness) are also typically the ones most likely to alter their social behaviours
(and thus contact rates) in ways that result in ecological feedbacks relevant for parasite transmission.
Hawley et al. (2011) used an SIR model to show that positive covariation among individuals between
their infectiousness and contact rate, whereby the most heavily infected individuals are the most social,
can lead to rapid epidemic spread. Recent work demonstrating that infected animals can benefit from
living in groups (Almberg et al. 2015; Ezenwa and Worsley-Tonks, 2018) suggests that this positive
covariation may occur broadly in systems where animals use social behaviour to increase tolerance.
Conversely, when the most infectious individuals elicit the strongest avoidance in uninfected conspecifics
(e.g. in guppies: Stephenson et al. 2018), this negative covariation can lead to rapid fade-out of a parasite
from a host population. Experimental probing of individual-level relationships (e.g. Stephenson 2019)
will ultimately allow a better understanding of the potential ecological feedbacks that arise from
bidirectional relationships between social behaviour and parasite infection, and the way in which these
feedbacks are influenced by sources of heterogeneity both intrinsic and extrinsic to hosts (Fig 2; Hawley

et al. 2011; VanderWaal and Ezenwa, 2016; White et al. 2018).

SECTION 2. EVOLUTION: PARASITES DRIVE, AND EVOLVE IN RESPONSE TO, HOST SOCIAL
EVOLUTION

Parasites are considered key drivers of and constraints on the evolution of host social behaviour
(Alexander, 1974; Hart, 1990; Loehle, 1995; Buck et al. 2018; Fig. 1, Arrow C), but effects of parasites
on host social evolution have largely been inferred using comparative studies within and among taxa to
elucidate signatures of the “ghosts of parasites past” (cf Mooring et al. 2006). In this section, we consider
ways in which parasites likely influence the evolution of host social behaviours, and discuss some of the
constraints on and opportunities for studying these effects. In addition, parasites themselves are likely to
evolve in response to variation in host social behaviours (Hughes et al. 2008; Schmid-Hempel, 2017),
which provide key opportunities for parasite transmission and thus fitness (Fig. 1, Arrow D). We
therefore consider how host social behaviours can shape parasite population genetics and their potential to
respond to selection, as well as the ways in which host social behaviours impose selection on parasite

traits like virulence, transmission mode, and host manipulation.
2i. Parasites and the evolution of host social behaviour (Arrow C)

Akin to parasite-induced changes in social behaviour via ecological processes (Section 1ii), the social

behaviours of both infected and uninfected individuals can evolve in response to parasites (Townsend et

11
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al. 2020). Here, we focus on evolutionary changes in the social behaviours of uninfected hosts that are
likely to reduce the fitness costs imposed by their socially transmitted parasites. These include: reductions
in overall individual gregariousness (mechanism 1) that manifest as lower average group sizes for group-
living taxa; reductions in social interactions with some but not all conspecifics (mechanism 2), which
often manifest as increases in modularity; and reductions or augmentation in specific social behaviours
that either increase or decrease parasite risk, respectively (mechanism 3). While these three mechanisms
involve fixed phenotypic changes in social behaviours in response to parasite-mediated selection, the
costs associated with reduced sociality for many taxa may favor the evolution of conspecific avoidance
only in the presence of specific cues of infection (mechanism 4; Amoroso and Antonovics, 2020;
Townsend et al. 2020). We briefly explore each of these four mechanisms and discuss constraints
associated with evolving phenotypic changes in social behaviours in the face of parasites.

Mechanism 1: Evolutionary changes in overall gregariousness. Given the higher risk of parasite
spread associated with larger group sizes for many systems (e.g. Nunn and Altizer, 2006; Woodroffe et al.
2009; Rifkin et al. 2012), socially transmitted parasites are predicted to exert selection against individual
association with larger groups. For example, given heritable variation in individual gregariousness (e.g.
halictid bees: Kocher et al. 2018; shoaling guppies: Kotrschal et al. 2020), socially transmitted parasites
may drive the evolution of reduced gregariousness and lower average host group sizes by causing higher
parasite-mediated mortality in more gregarious individuals. Recent evidence suggests, for example, that
attraction to conspecific chemical cues in social Carribean spiny lobsters (Panulirus argus) has declined
over time, potentially in response to the emergence of the lethal PaV1 virus (although other factors might
have contributed; Childress et al. 2015). Overall, direct empirical evidence for parasite-mediated shifts in
gregariousness resulting from evolutionary processes is scarce, potentially (at least in part) because these
shifts are obscured by those driven by predators, which are often hypothesized to have opposing effects to
those of parasites (Mikheev ef al. 2019). Larger groups can serve a protective function against predators,
and empirical studies have documented heritable, positive associations between predation pressure and
social tendencies of prey (e.g. Seghers, 1974; Jacquin et al. 2016). While the immediate mortality
associated with predation could exert stronger selection pressure than that associated with many parasites
(e.g. Koprivnikar and Penalva, 2015; Daversa et al. 2019), parasites and the “landscape of disgust” that
they elicit (i.e. the detection and avoidance of areas with high potential parasite risk; Weinstein et al.
2018) are posited to have far-reaching evolutionary consequences, rivalling those of predators, for host
behaviours. Nonetheless, determining the relative strength of selection by parasites versus predators on
host social behaviours remains a considerable challenge.

Common garden and experimental evolution studies that rely on variation in parasite presence

(either naturally, for common garden studies, or experimentally) provide promising approaches for
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directly characterizing evolutionary effects of parasites on host gregariousness. However, even these
studies can be challenging to interpret, as results will depend on the virulence of the parasite considered,
as well as the competing fitness benefits generated by particular social behaviours. One common-garden
study in Trinidadian guppies, for example, found consistent evidence for a heritable, positive effect of
predatory pressure on shoal size, but a relatively weak and non-heritable negative effect of parasite
pressure on shoal size (Jacquin et al. 2016). However, populations were characterized as having been
under selection by parasites based on one observation of the presence or absence of a single species of
ectoparasite. In general, strong selection against sociality is most likely imposed by highly virulent
parasites with epidemic rather than endemic dynamics (Kessler et al. 2017), as may be the case for many
emerging pathogens (Bolker et al. 2009). Further, opposing selection pressures from predation and the
many other benefits of group living [e.g. access to mates (Adamo et al. 2015), foraging efficiency (Krause
and Ruxton, 2002), transfer of protective microbes (Ezenwa et al. 2016b), opportunities for social
learning and information transfer (McCabe ef al. 2015; Romano et al. 2020), and social support (Snyder-
Mackler et al. 2020)] likely limit the ability of many hosts to evolve lower levels of gregariousness in
response to parasite pressure (Townsend et al. 2020).

The evolution of lower gregariousness in response to socially transmitted parasites will also be
constrained by the conflicting selection pressure that other parasites can place on host social behaviours
(Townsend et al. 2020). For example, while socially transmitted parasites should generally select against
gregariousness and association with large groups (Anderson and May, 1982; Schmid-Hempel, 2017),
some mobile and vector-borne parasites may select for higher gregariousness in systems where per capita
attack rate declines with group size (Mooring and Hart, 1992; see Section 1i). Given that all hosts are
likely affected by communities of parasites with distinct transmission modes (e.g. Townsend et al. 2018),
opposing selection pressures across parasite taxa could obscure parasite-mediated selection on
gregariousness. Further, even parasites that are socially transmitted might not always select against
sociality if group living ameliorates the fitness costs of a given parasite infection, as appears to be
common across taxa (Almberg ef al. 2015; Ezenwa et al. 2016b; Ezenwa and Worsley-Tonks, 2018;
Snyder-Mackler et al. 2020). For example, the food-finding benefits or enhanced predator protection
provided by social groups might be sufficiently important for parasitized individuals (e.g. Adelman et al.
2017) that the same parasite can exert opposing selection pressures on its host: selection against overall
gregariousness to reduce infection risk, but selection for gregariousness to reduce fitness costs once
infected. Thus, the degree to which specific social behaviours are favored will depend on the parasites
that are prevalent and most virulent in a given environment, and the extent to which a given social

behaviour leads to infection or reduces fitness costs for each parasite.
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Mechanism 2: Evolutionary reductions in social interactions with some but not all conspecifics.
Given the diverse benefits of group living, parasite-mediated selection may favor reductions in particular
social interactions within or among host social groups, rather than reductions in overall gregariousness
(and thus group size). Reductions in interactions with certain conspecifics can, in some cases, manifest as
higher modularity either within or among groups. Nunn et al. (2015) found that diverse social taxa show
higher levels of modularity in larger social groups, and that this within-group substructuring protected
larger groups from socially transmitted parasites in network-based models (see Section 1i). However, it
remains unknown whether this higher modularity in larger social groups represents an evolved response
to limit parasite spread (as likely occurs in eusocial insects; Stroeymeyt et al. 2018), or simply a side-
effect of the need for individuals to limit social interactions within larger groups (Nunn ez al. 2015).
Further, while colony-level selection from parasites could generate the within-colony modularity
(Stroeymeyt et al. 2018) and even the age-structured division of labor (Udiani and Fefferman, 2020) seen
in many eusocial insects, the behavioural traits on which individual-level selection would act to generate
emergent differences in within-group modularity for social taxa outside of eusocial insects remain
unclear.

Reducing interactions with other groups or colonies (often termed “outgroup” interactions) may
have protective effects for individuals by reducing the input of parasites from outside groups (Freeland,
1976). While there is indirect support in humans for the idea that heightened parasite stress promotes in-
group interactions (e.g. Fincher and Thornhill, 2012), it remains unknown whether there is heritable,
individual-level variation in the degree of ingroup versus outgroup interactions in non-human animals,
and whether such behaviour responds to selection from socially transmitted parasites. Finally, as with
overall gregariousness, there are likely numerous constraints on the ability of taxa to evolve their social
structure in ways that minimize the spread of all socially transmitted parasites. For example, Sah et al.
(2018) found that no single social network organization had the lowest epidemic probability or duration
when transmission potential of a hypothetical parasite was varied in network simulations. Thus,
behavioural traits that underlie social network structure such as modularity may be unlikely to respond to
selection if they do not provide protection against a wide range of socially transmitted parasites infecting
a given host taxa.

Mechanism 3. Evolutionary changes in specific social behaviours. Parasite-mediated selection
may be most likely to favor reductions in specific high-risk social behaviours such as agonistic
interactions, allowing hosts to reduce transmission risk without concomitant loss of the broader benefits
of sociality. For example, in banded mongooses, within-troop aggression facilitates wound invasion by
Mycobacterium mungi (Flint et al. 2016). Thus, given heritable variation in aggression in this species, this

emerging pathogen could favor reductions in the degree of aggression in which banded mongooses
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466  engage. Tasmanian Devil Facial Tumour Disease (DFTD), a disease caused by contagious cancer cells
467  that are transmitted largely via biting (Hamede et al. 2013), may represent an example of this process:
468  Hubert et al. (2018) document that some of the genes under selection in devils (Sarcophilus harrisii)
469  since the emergence of DFTD have homologues associated with human social behavioural disorders.
470 Similarly, selection pressure from parasites could favor a higher frequency of specific social

471  behaviours that reduce parasite spread, such as social grooming or hygienic behaviours (i.e., removal of
472  dead or infected individuals from the colony, as occurs in many eusocial insects; Cremer et al. 2018).
473  Indeed, in eusocial insect colonies, hygienic behaviours are known to be heritable (Spivak and Reuter,
474  2001), with candidate genes that show evidence for positive selection (Harpur et al. 2019). Increases in
475  allogrooming frequency may similarly evolve in response to parasite-mediated selection from

476  ectoparasites when such behaviours effectively reduce ectoparasite load (e.g. Brooke, 1985). However,
477  allogrooming can simultaneously expose the groomer to socially transmitted endoparasites such as those
478  spread via fecal-oral routes (Biganski et al. 2018). Thus, hosts may be under simultaneous selection

479  pressure to avoid grooming individuals with endoparasitic infections, as occurs in mandrills (Poirotte et
480  al 2017).

481 Mechanism 4. Evolution of avoidance of infected conspecifics. Parasite-mediated selection on
482  social behaviours is likely to favor the ability of hosts to specifically avoid individuals that pose high
483  infection risk. This would allow social interactions with uninfected individuals, and their associated

484  benefits, to be maintained, while reducing interactions most likely to facilitate pathogen transmission
485  (Amoroso and Antonovics, 2020). Thus, it is no surprise that diverse social taxa have evolved the ability
486  to detect and avoid conspecifics that likely pose infection risk (see Section /if). The degree of heritability
487  of these avoidance behaviours in natural systems, and thus their ability to respond to selection, is not well
488  understood, but the genetic basis of the detection and avoidance of conspecifics has been demonstrated in
489  mice (Kavaliers et al. 2005), whereas imprinting during development appears to be key in guppies

490  (Stephenson and Reynolds, 2016). Future work should examine the extent to which the detection and
491 avoidance of infected conspecifics is heritable, which may require the use of study systems amenable to
492  captive breeding.

493 Kin selection may play a role in the degree to which infected animals evolve to express sickness
494  behaviours, thus altering the ability of uninfected animals to detect and avoid them in ways that promote
495  inclusive fitness. Shakhar and Shakhar (2015), for example, proposed that kin selection would most likely
496  favor social withdrawal after infection in species that live in close contact with kin, leading to the

497  prediction that sickness behaviours and social withdrawal would be more pronounced in these species.
498  Although this prediction has not been tested with respect to sickness behaviours in particular, active self-

499  isolation of infected individuals (e.g. Bos et al. 2012) is present almost exclusively within eusocial
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insects, for which high within-colony relatedness facilitates the evolution of several seemingly altruistic
collective defense behaviours (i.e. “social immunity” or “behavioural immunity”) via kin selection
(reviewed in Schmid-Hempel, 2017; Cremer et al. 2018). While these patterns support the existence of an
‘inclusive behavioural immune system’ (Shakhar and Shakhar, 2015), studies outside the eusocial insects
are sorely needed.

Kin selection will also alter the extent to which uninfected individuals evolve to avoid or care for
infected individuals. In terms of avoidance, the degree to which a reduction in affiliative social
behaviours is favored after infection may vary with the inclusive fitness benefits that these behaviours
confer (Shakhar and Shakhar, 2015), as occurs in mandrills (see Section 1ii). Certain parasites could even
favor the evolution of care-giving, as seen in eusocial insects that preferentially allogroom pathogen-
contaminated individuals (Cremer et al. 2018), if care of infected kin contributes to inclusive fitness by
enhancing host recovery and subsequent reproduction. The degree to which such care is favored is also
likely to depend on the potential costs of infection. For example, a simulation-based analysis of human
societies (Kessler ef al. 2017), suggested that parasites with intermediate virulence (e.g. measles) could
select for substantial care-giving behaviour towards kin; in contrast, pathogens with high fatality and
transmission rates (e.g. Ebola) selected for avoidance of all infected individuals, while low-virulence,
widespread pathogens (e.g. scabies) were relatively neutral, as care-giving and avoidance had little effect
on either recovery or transmission. Other parasites might favor care-giving even if highly virulent. For
example, parasites that have strong, negative impacts on fecundity (e.g. that cause host castration) but are
not easily transmitted among group members might promote helping behaviour by infected individuals,
essentially creating a sterile caste of helpers within their family groups (O’Donnell, 1997). Thus, traits of
parasites such as virulence and transmission mode, which can themselves evolve in response to host

social behaviours, are critical to consider.

2ii. Host social behaviours influence parasite evolution (Arrow D)

For socially transmitted parasites, host social behaviours shape transmission opportunities (Section Ii),
which in turn determine a parasite’s population structure and evolutionary dynamics. The relatively short
generation time of parasites means that host social behaviours may lead to genetic changes in parasite
populations within just one or a few host generations. Here, we consider the influence of host social
behaviours on 1) fundamental population genetic processes and 2) adaptive evolution of parasites. Our
scope of social behaviours includes a diversity of host interactions (Box 1) that may have distinct effects
on parasite evolution (Schmid-Hempel, 2017). We focus on social behaviours that change the size and

connectivity of host groups, with a brief consideration of behaviours that might change host relatedness.
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We first consider the role of host behaviour in shaping the population genetics of parasites and
thereby their potential to respond to selection. Increases in the size and connectivity of host social groups
can decrease parasite population structure, increase gene flow, and promote genetic diversity, leading to
overall increases in the effective size of parasite populations. This prediction applies particularly when
parasite prevalence increases with host group size, and when transmission opportunities increase with
host connectivity. Because larger host groups often maintain larger parasite populations (see Section 1i;
Rifkin et al. 2012; Patterson and Ruckstuhl, 2013), host social grouping can contribute to the maintenance
of parasite genetic diversity at neutral loci and loci under selection by limiting the probability of
stochastic extinction of parasite populations (Barrett et al. 2008). In addition, connectivity of social
groups can increase connectivity of groups of parasites (i.e. demes), if parasite transmission increases
alongside direct contacts of hosts. Increased connectivity means increased gene flow and reduced genetic
differentiation between parasite groups, both at the level of host individual and population (e.g. Nadler et
al. 1990). In a test of these predictions, Van Schaik et al. (2014) compared the parasites of greater mouse-
eared bats (Myotis myotis) and Bechstein’s bats (M. bechsteinii), congeners which differ in their social
system: maternal colonies of M. myotis mix readily, and individuals hibernate in large clusters, mate in
harems, and migrate relatively long distances, while maternal colonies of M. bechsteinii never mix, and
individuals hibernate alone, meet briefly during mating, and migrate relatively short distances. Their
respective Spinturnix wing mite species differ accordingly in their population genetic structure: nuclear
genetic diversity of S. myoti is very high, with little genetic differentiation between mites in different bat
colonies, while nuclear genetic diversity of S. bechsteini is lower, with marked differentiation between
colonies, suggesting strong genetic drift in small, isolated mite populations. This work demonstrates that
larger, more connected social groups host parasite populations that are more genetically diverse.

Increasing host connectivity can also reduce parasite aggregation, with parasites more uniformly
distributed rather than clumped on a subset of hosts. Reducing parasite aggregation lowers within-host
competition and variance in reproductive success, increasing effective population size for parasites
(Whitlock and Barton, 1997; Poulin, 2007). Empirical data support reduced aggregation for ectoparasites
with increased host sociality: comparative studies show reduced aggregation of lice in colonial bird
species relative to territorial species (Rozsa et al. 1996; Rékasi et al. 1997) and in large versus small
social groups of Galapagos hawks for amblyceran lice (Buteo galapagoensis;, Whiteman and Parker,
2004). Taking these processes of parasite connectivity and aggregation together, we generally expect
increases in the size and connectivity of host social groups to decrease effects of genetic drift and promote
responses to selection in parasite populations (reviewed in Nadler, 1995; Barrett ef al. 2008). However, in
both bat and avian systems, the sensitivity to host social system varied among parasite taxa, with the

structure of some parasites (bat flies and avian ischnoceran lice) unresponsive to differences in group size
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and connectivity of the same bat (M. bechsteinii) and bird (B. galapagoensis) hosts (Whiteman and
Parker, 2004; Reckardt and Kerth, 2009; van Schaik ef al. 2015) that produced notable changes in the
population structure of wing mites and amblyceran lice, respectively. This contrast between parasite taxa
highlights the fact that host social behaviour is but one of many factors that can shape parasite population
genetics, and it would be valuable to weigh its relative importance across a broader diversity of host-
parasite systems.

In addition to shaping the population genetic structure of their parasites, host group size and
connectivity may impose direct selection on virulence, a key parasite trait (Box 1). The common
assumption of a trade-off between transmission and virulence predicts that reduced connectivity, or
increased modularity, of host groups selects against virulence. The ecological structure of host groups
means that parasites with high transmission and virulence should end up with low effective transmission
rates because they rapidly deplete the local density of susceptible hosts. This process of “self shading”
favors mutants with low transmission and low virulence, which maintain a higher average density of
susceptible hosts and lower probability of extinction (Boots and Sasaki, 1999). Genetic structure could
also lead to “kin shading”: within host groups, nearby parasites are likely kin, such that reduced
transmission also confers an inclusive fitness benefit (Wild ez al. 2009; Lion and Boots, 2010). Moreover,
Lipsitch ez al. (1995) proposed a “law of diminishing returns”: repeated contact between hosts selects for
lower virulence because the increased opportunities for transmission between individuals makes the
benefits of increasing transmission rate too small to offset the cost of increased virulence. By these
arguments, the clustering associated with modularity of social groups should select for parasites with low
virulence.

Though they do not directly consider social behaviour, theoretical models support the evolution
of reduced virulence with increased modularity of host populations (e.g. Claessen and de Roos, 1995;
Rand et al. 1995; Boots and Sasaki, 1999). In models that explicitly incorporate spatial structure,
transmission ranges from global to local, either by modifying transmission of the parasite (e.g. Boots and
Sasaki, 1999) or by varying host contact structure from random interactions between hosts to clustered,
regular interactions, modeling modularity within social groups (e.g. Van Baalen, 2002). Generally, as
transmission becomes increasingly local, or host contacts become more clustered, the evolutionary optima
for transmission rate and correlated virulence shift lower (though see Read and Keeling, 2003). Consistent
with theory, Boots and Mealor (2007) found that, in experimental populations of the host Plodia
interpunctella, a granulosis virus (PiGV) evolved reduced infectivity when host mobility was reduced (for
further experimental support from other systems, see Kerr ez al. 2006; Dennehy et al. 2007; Berngruber et
al. 2015). In contrast to modularity, other characteristics of social groups — such as size — may select for

increased virulence. Indeed, increasing the size of host modules in spatial models brings the evolutionary
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dynamics closer to that of well-mixed host populations (Van Baalen, 2002). With transmission and/or
host interactions less clustered and regular, the cost of self-shading falls, boosting the evolutionary optima
for transmission and virulence. While these models generally assume that host mobility or contact
networks (and by extension, modularity) do not vary with parasite status, it is important to also consider
infection-induced changes in behaviour and their inherent heterogeneity (Section 1iii; Fig 2). These
dynamic behavioural feedbacks in response to infection (Arrow B) may alter predictions for virulence
evolution (e.g. see Pharaon and Bauch, 2018 on human social behaviour).

Virulence may also evolve indirectly in response to selection that host social behaviour imposes
on parasite transmission mode. For parasites with genetic variation in transmission mode, frequent
transmission opportunities in host social groups are expected to select for an increased rate of horizontal
transmission, whereas among solitary or territorial hosts, reduced transmission opportunities should favor
vertical transmission, which ensures transmission from parent to offspring (Antonovics et al. 2017).
Selection on transmission mode may in turn impose selection on virulence: experimental studies show
that parasite lineages evolve higher virulence with increased opportunities for horizontal transmission
(Bull et al. 1991; Turner et al. 1998; Messenger et al. 1999; Stewart et al. 2005), whereas a recent
comparative study suggests that vertical transmission favors the evolution of obligate mutualisms (Fisher
et al. 2017). Thus, assuming a trade-off between transmission modes, social grouping may indirectly
select for increased virulence via evolutionary shifts in transmission mode. It is not clear, however, how
many host-parasite systems have significant genetic variation in transmission mode (Antonovics et al.
2017). Moreover, in a key proof of principle study, Turner ef al. (1998) did not find that transmission
mode evolved in response to host density, a potential proxy for host social behaviour.

A further indirect mechanism through which host social behaviour may affect parasite virulence
evolution is through its effects on the likelihood of coinfection, which is hypothesized to alter the costs
and benefits of virulence for parasites (Bremermann and Pickering, 1983; Alizon et al. 2013). Several
studies have found that larger, more connected host groups support richer, more genetically diverse
parasite communities (Ranta, 1992; Griffin and Nunn, 2012) and populations (e.g. van Schaik ef al.
2014). These studies suggest that hosts in such groups are more likely to be co-infected with multiple
species or strains of parasites (though see Bordes et al. 2007). Coinfection could select for increased
virulence, if virulence stems from the depletion of host resources: in this case, within-host competition
favors more virulent parasites that draw more aggressively on host resources (Bremermann and Pickering,
1983; Frank, 1992; de Roode et al. 2005). Alternatively, coinfection could lead to reduced virulence, if
virulence stems from collective action, like the production of public goods: in this case, competition

between unrelated strains favors cheaters, limiting growth of the parasite population and suppressing
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virulence (Turner and Chao, 1999; Chao et al. 2000; Brown et al. 2002). As of yet, these predictions are
untested in the context of host sociality.

Overall, there is a substantial body of theory and data indicating that host social behaviours likely
drive virulence evolution through several interacting pathways: host group size and modularity affect
parasite population genetics, and impose both direct and indirect selection on virulence. In contrast, there
is surprisingly little research investigating the effect of host social behaviours on the evolution of other
parasite traits (Schmid-Hempel, 2017). Here we highlight two topics-- host specialization and
manipulation-- that have received some attention, in hopes of stimulating more research in these areas.
First, behaviours that dictate how social groups or modules assemble may determine parasite prevalence
and selection for specialization. In many systems, individual hosts preferentially interact with kin due to
active choice or physical proximity (e.g. Grosberg and Quinn, 1986; Archie et al. 2006; Davis, 2012).
Parasitism may even enhance kin grouping, if, for example, individuals actively avoid parasitized non-kin
but continue to associate with parasitized kin (see Section 1ii). Kin association boosts the mean
relatedness of hosts encountered by a parasite lineage, above that predicted if hosts met at random. Taken
to its extreme, socializing with kin could create conditions for a parasite akin to host monoculture (King
and Lively, 2012; Lively, 2016): on average, increased relatedness, or decreased genetic diversity, of host
groups promotes parasite transmission (i.e. the monoculture effect as in Baer and Schmid-Hempel, 1999;
Altermatt and Ebert, 2008; Ekroth et al. 2019). Moreover, host relatedness can mimic the selection
parasites face under serial passage (Ebert, 1998): generations of transmission within relatively
homogeneous host groups may lead to the evolution of host specialization (Bono et al. 2017), either due
to trade-offs or relaxed selection for performance on alternate hosts (Kassen, 2002). In systems where
hosts do not associate with kin (e.g. Russell ef al. 2004; Riehl, 2011; Godfrey et al. 2014), we expect the
opposite: increased genetic diversity of interacting hosts should limit parasite spread and maintain
parasite populations with relatively broad host ranges. This argument makes the interesting prediction that
parasites that jump to novel host populations or species may preferentially derive from diverse host
groups. We emphasize that there are few tests of these ideas — our predictions for the impact of group
assembly on parasite evolution are based on studies of non-social systems and a few social insect systems
(Sherman et al. 1988; Schmid-Hempel, 2017).

Finally, behavioural manipulation of hosts, which includes any parasite-induced change in host
behaviour that promotes parasite transmission (Poulin, 2010), is a trait that may experience selection in
the context of social behaviour. Parasites transmitted socially could increase their probability of
transmission by increasing the rate at which infected hosts interact with susceptible hosts. By this
argument, selection on parasite manipulation would intensify host social behaviour. Nonetheless, there is

little evidence in support of this hypothesis. Although there is strong evidence of host manipulation in
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parasites with other transmission modes such as trophic (e.g. trematodes - Carney, 1969) or vector-borne
transmission (e.g. Leishmania - Rogers and Bates, 2007), there are few accounts of socially transmitted
parasites manipulating host contact rates (Poulin, 2010). Some socially transmitted viruses, including
rabies, can increase aggression and thereby physical contact, but whether this constitutes adaptive
manipulation remains under review due to the variable manifestation of symptoms (Lefevre et al. 2009;
Poulin, 2010). In fact, across parasites, it is far more common that parasitism leads to reduced activity and
social isolation (Poulin, 2019). An exception are the microsporidia and cestode parasites of brine shrimp
(Artemia franciscana and A. parthenogenetica): these parasites increase swarming of brine shrimp near
the water surface, which may increase trophic transmission of the cestode to its avian host and direct
transmission of microsporidia to nearby Artemia (Rode et al. 2013). Poulin (2010) hypothesizes that
evidence for host manipulation in socially-transmitted parasites is limited because the benefits of
manipulation are smaller than the costs: for host taxa with high degrees of sociality, many factors already
promote interactions with conspecifics, so parasites may gain relatively little in the way of additional
transmission opportunities by augmenting contact within groups. Recent work, however, suggests that
parasites may induce behavioural changes that increase an infected host’s probability of acceptance into
new social groups. Geffre et al. (2020) found that honey bees infected with Israeli acute paralysis virus
(IAPV) are accepted into foreign colonies at higher rates than control bees, even though bees can detect
and avoid IAPV-infected nestmates. In comparison, colonies did not show higher acceptance of foreign
bees that were immune-stimulated but not infected, suggesting a specific manipulation by IAPV to
increase between-colony transmission. The authors speculate that these results point to a coevolutionary

battle between parasite manipulation of host social behaviour and hosts’ own social defenses.

2iii. Synthesis: evolutionary feedbacks between host social behaviour and parasite traits

The evolution of host social behaviours in response to parasites (Section 2i) and parasites in response to
hosts (Section 2ii) support the potential for coevolutionary feedback between social behaviour and
parasite traits. Although direct examination is challenging, theoretical models have begun to explore
reciprocal adaptation between host social behaviour and parasite traits, and the impact of the behavioural
environment on coevolutionary trajectories. For example, Bonds ef al. (2005) examined feedback
between virulence and social behaviour, measured as variation in host contact rate. They made the key
assumption that more gregarious hosts live longer, so increased contact carries both a fitness benefit and
cost (parasite transmission). As a result, increasing contact rates select against virulence: the lower death
rate of more gregarious hosts prolongs the window for parasite transmission, reducing the advantage of
parasites with high transmission rates and, by correlation, high virulence. Decreasing virulence reduces

the cost of social behaviour, thereby selecting for host contact. These changes in virulence and contact
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rate increase parasite prevalence, which, at its highest level, further selects for host contact: hosts may as
well reap the benefits of socializing when there is no hope of avoiding infection. Prado et al. (2009)
extended this work to incorporate spatial structure, showing that sociality selects for high parasite
virulence and that high virulence, in turn, selects against sociality. Though their results differ somewhat,
both models suggest that coevolutionary feedbacks between social behaviour, parasite prevalence, and
virulence could generate either positive or negative correlations between parasitism and social traits, like
group size, depending upon the life history and coevolutionary history of the study populations.

Other studies suggest that social behaviour is a contextual variable that alters the trajectory of
coevolution between host resistance and parasite traits. Best et al. (2011) explored the evolution of host
resistance and parasite virulence in a coevolutionary model with spatial structure. As in the above models
of virulence evolution, Best ef al. (2011) did not explicitly consider social behaviour, but drew parallels
between social grouping of hosts and the treatment of host reproduction and parasite transmission as local
(i.e. host offspring or new infections are placed in neighboring sites, forming clusters) or global (i.e.
placed randomly across the network). They found that local host reproduction and transmission select for
increased host resistance and reduced parasite virulence. Similar to prior evolutionary models, the
explanation for these coevolutionary patterns lies in the spatial distribution of susceptible and infected
hosts (ecological structure) and the clustering of kin (genetic structure). A key result from Best e al.
(2011) is that reproduction and transmission within local (e.g. social) groups could lead to heavily
defended hosts with parasites that have low transmission rates and low virulence. Interestingly, this
theoretical result matches Hughes ef al. (2008)’s verbal prediction for social insects and their parasites.
Given the importance of the scale of host interactions and transmission for these predictions, further
understanding of the among-group movements of infected hosts (see Section 1ii, Grefree et al. 2020)
would facilitate prediction of coevolutionary outcomes.

Host social behaviour may further alter coevolutionary trajectories if behavioural defenses
negatively covary with physiological defences against parasites (see Section 1iii). Physiological defenses
may decline in the presence of behavioural defenses if there are trade-offs between defense components
(Sheldon and Verhulst, 1996; Parker ef al. 2011) or if physiological defenses prove redundant and thus
experience relaxed selection (Evans et al. 2006; Amoroso and Antonovics, 2020). There is some support
for negative covariance of behavioural and physiological defenses in social insect systems (Evans et al.
2006; Viljakainen et al. 2009; Harpur and Zayed, 2013; Lopez-Uribe ef al. 2016) and more broadly
(Klemme et al. 2020; see Section liii). A key implication of covariance between defense traits is that host
social behaviours could fundamentally alter the host defenses against which parasites battle and thereby
change the traits predicted to be under coevolutionary selection. Given the potential for behavioural

defenses to alter not only host evolution but also the strength and nature of reciprocal adaptation, it would
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be valuable to use an experimental evolution approach to directly test the trade-offs between behavioural
and physiological defences.

Finally, host social behaviour may structure coevolutionary dynamics via its effect on parasite
population genetics. Specifically, data from natural host-parasite interactions suggest that the size and
connectivity of host social groups contributes to determining genetic diversity and gene flow in their
associated parasite populations (see Section 2ii). Coevolutionary models show that gene flow and genetic
variation define the capacity for parasite populations to adapt to their evolving host populations and
thereby drive coevolution (Lively, 1999; Gandon, 2002; Gandon and Michalakis, 2002). In particular,
experimental evolution studies (Forde et al. 2004; Morgan et al. 2005) and meta-analyses of tests with
natural host-parasite populations (Greischar and Koskella, 2007; Hoeksema and Forde, 2008) show that
relatively low rates of gene flow can prevent parasites from adapting to their local host populations.
While social behaviour entails its own complexities, the parallels we highlight suggest that the extensive
body of work on the geography and spatial structure of host-parasite coevolution may prove valuable in
formulating hypotheses and experiments on the evolution and coevolution of host sociality and parasites

(Thompson, 2005).

CONCLUSIONS

The fundamental interactions between a host’s social behaviours and its parasites have long been of
interest, but we still have much to learn about the reciprocity of these interactions, and how these
relationships play out for both ecological and evolutionary dynamics (Ezenwa et al. 2016a). The
bidirectional relationships between host social behaviour and parasites, which we visualize as four distinct
arrows (Fig 1), have largely been studied independently, although some have begun to connect these
arrows. For example, Stephenson (2019) examined the full ecological feedback loop between behaviour
and parasitism (i.e., Arrows A and B) by quantifying social behaviours of guppies both before and during
infection, and illustrated that susceptibility-behaviour correlations can change dramatically in the
presence of infection. While male guppies most susceptible to parasite infection were most likely to avoid
social groups that may pose parasite risk, these highly susceptible guppies became most attracted to social
groups once infected (Stephenson, 2019). Because these correlations between host susceptibility and
social behaviour likely have important implications for both epidemiological and coevolutionary
dynamics (see Sections 1iii and 2iii), these feedback loops should be examined using systems amenable to
experimental infections and, ideally, experimental evolution. Such a system would enable, for example,
artificially imposing selection on host social behaviour and testing whether parasite susceptibility evolves
in tandem, or vice versa; exploring how parasites evolve in response to such artificially selected host

lines; and testing how host social behaviours evolve in response to endemic parasitism.
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While we largely considered ecological and evolutionary processes separately here, they are
likely to interact in important ways (Ezenwa et al. 2016a). For example, our discussion of ecological
interactions suggests that more gregarious host populations maintain larger, more genetically diverse
parasite populations. This increase in the size and diversity of parasite populations may apply strong
selection on host traits, including social behaviours like gregariousness (Arrow A affects C). Further, their
large effective population size means that parasite populations of gregarious hosts could respond more
readily to selection imposed by their host populations, resulting in more rapid evolutionary changes in
virulence, stronger local adaptation (Arrow A affects D), and ultimately more intense coevolution. These
evolutionary changes in host social behaviours and parasite traits could feed back to alter the ecological
interactions of host and parasite: for example, evolutionary changes in host sociality (Arrow C affects A)
and parasite virulence (Arrow D affects A) would both affect parasite prevalence and hence parasite
population size. While there are informative models investigating some of these ideas (e.g. Bonds ef al.
2005; Pharaon and Bauch, 2018), experimental studies explicitly addressing these eco-evolutionary
feedbacks between host social behaviour and parasite evolution would be welcome additions to this field.

Individual host heterogeneity is one factor that needs more explicit consideration from an eco-
evolutionary perspective. Here we discuss one potential source of such heterogeneity as an example,
though there are many others (Fig. 2). In many systems, host sex affects both an individual’s social
behaviour in the presence and absence of infection (Stephenson, 2019), and individual susceptibility
(Klein, 2000; Duneau and Ebert, 2012). As a result, male and female hosts support parasite communities
differing in size and composition, and provide their parasites with different transmission opportunities
(e.g. Christe et al. 2007, Stephenson ef al. 2015; Gipson et al. 2019). Parasite fitness therefore depends on
the sex of the host, so selection should favour parasite preference for or specialization on one host sex
(Duneau and Ebert, 2012), which a growing body of evidence supports (Christe et al. 2007; Duneau et al.
2012; Campbell and Luong, 2016). Whether such host specialisation by parasites contributes to sex-
specific evolution of physiological or behavioural parasite resistance (such as sex-specific social
behavioural evolution) is an exciting and as yet untested idea. Overall, an explicit theoretical examination
of the eco-evolutionary implications of heterogeneity between hosts, such as that due to sex, for
behaviour-infection feedbacks is sorely needed.

The recent large-scale social distancing by humans in response to COVID-19 is arguably one of
the most dramatic illustrations of the way in which host social behaviour can both influence and respond
to parasite spread (Block et al. 2020). Perhaps one small positive outcome of this otherwise devastating
pandemic will be renewed interest in the dynamic interactions between a host’s social behaviours and the
ecology and evolution of its parasites. Understanding these interactions not only sheds important light on

basic scientific questions such as the costs and benefits of animal sociality, but also addresses critical

24



804
805
806
807
808
809
810
811
812
813
814
815
816

public health questions about the way in which the behaviours of ourselves and our domesticated animals

(via imposed housing conditions) may facilitate pathogen emergence, spread, and evolution.
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BOX

Box 1. Glossary of terms commonly used throughout the paper (note that this list is not exhaustive but

includes terms for which definitions sometimes vary across contexts).

Gregariousness / sociality: Used interchangeably to describe the tendency to associate with conspecifics in

social groups. The temporal stability of group associations can be highly variable across taxa.
Infection intensity: The number of parasites of a certain type in a single infected host.

Modularity: The degree of substructuring or subdivisions within and among social groups in a given

interaction network.

Parasite / pathogen: Used interchangeably to represent organisms that live on or within hosts, deriving

benefit while reducing the fitness of their hosts.

Social behaviour: Defined here broadly as behavioural interactions that occur among conspecifics and vary
in duration (Blumstein ef al. 2010). These interactions can be ‘negative’ (e.g. aggression, avoidance) or
‘positive’ (e.g. allogrooming, affiliation) in nature (Hofmann et al. 2014), and can occur within or outside
the context of discrete social groups. For brevity, we do not discuss mating behaviours in this paper,

although they fall within the scope of our definition.

Socially transmitted parasite: Used here to encompass parasitic taxa that spread via close contact between
host conspecifics over space or time. For our purposes, this includes several types of horizontal transmission
(defined broadly as that occurring within a generation): direct contact (touching, biting, etc.), airborne
(respiratory), and two indirect modes: fomite (spread via surfaces) and environmental, which includes
faecal-oral spread (as per Antonovics et al. 2017). For brevity, we do not discuss sexual horizontal

transmission.

Susceptibility / Resistance: Used interchangeably to represent a host’s physiological ability (‘resistance’)

or lack thereof (‘susceptibility’) to prevent or eliminate infection by parasites or pathogens.
Tolerance: The ability of hosts to reduce the fitness costs of a given parasite load.

Virulence: The degree of harm that a parasite causes its host, typically measured as reductions in host

fitness.
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FIGURE LEGENDS

Figure 1. Host social behaviours influence and respond to parasites via both ecological (light green

arrows) and evolutionary (dark blue arrows) processes. In terms of ecological processes, social

behaviours such as allogrooming can influence exposure and physiological responses to parasites (4). In
turn, parasite infection can alter social behaviours of actively infected hosts and their uninfected
conspecifics (e.g. allogrooming given or received) (B). In terms of evolutionary processes, parasites can
shape the evolution of group size and relative investment in parasite avoidance behaviours such as
allogrooming (C). Host social behaviours such as allogrooming can also exert selection on parasite traits

like virulence by altering host connectedness (D). Inset picture: Gray langur (Semnopithecus sp.):

https://commons.wikimedia.org/wiki/File:Monkeys Grooming.jpg

ecological

Host social
behaviours

Parasite
infection

evolutionary
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Figure 2. Factors both intrinsic and extrinsic to individuals underlie heterogeneity in the extent to which
hosts alter social behaviours in the face of infection. Here we list factors that have thus far been shown to
influence the degree of parasite-induced social behaviour changes for infected (A) or uninfected (B)
hosts, with representative references. While parasite manipulation can also alter social behaviours of
infected hosts (A), here we focus solely on behavioural changes hypothesized to be host-mediated.

[1] Stephenson, 2019; [2] Houde and Torio, 1992; [3] Siva-Jothy and Vale, 2019; [4] Walker and Hughes,
2009; [5] Owen-Ashley and Wingfield, 2006; [6] Stockmaier et al. 2020b; [7] Lopes et al. 2012; [8]
Zylberberg et al. 2012, [9] Bouwman and Hawley, 2010; [10] Stroeymeyt et al. 2018; [11] Stephenson et
al. 2018; [12] Poirotte and Charpentier, 2020.

A. Infected animal :  B. Uninfected animal

Intrinsic Intrinsic :
Parasite load [1,2] Susceptibility [1,8] :

Sex [1,3] Sex [9]

Previous exposure [4] Social caste [10]

Extrinsic
Seasonality [5]

Extrinsic

Infectiousness of

Degree of relatedness conspecific [11]

with conspecific [6] Degree of relatedness

with conspecific [12]

Social context [7]
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