
  

  

Abstract— Haptic feedback allows an individual to identify 

various object properties. In this preliminary study, we 

determined the performance of stiffness recognition using 

transcutaneous nerve stimulation when a prosthetic hand was 

moved passively or was controlled actively by the subjects. 

Using a 2x8 electrode grid placed along the subject’s upper arm, 

electrical stimulation was delivered to evoke somatotopic 

sensation along their index finger. Stimulation intensity, i.e. 

sensation strength, was modulated using the fingertip forces 

from a sensorized prosthetic hand. Object stiffness was encoded 

based on the rate of change of the evoked sensation as the 

prosthesis grasped one of three objects of different stiffness 

levels. During active control, sensation was modulated in real 

time as recorded forces were converted to stimulation 

amplitudes. During passive control, prerecorded force traces 

were randomly selected from a pool. Our results showed that 

the accuracy of object stiffness recognition was similar in both 

active and passive conditions. A slightly lower accuracy was 

observed during active control in one subject, which indicated 

that the sensorimotor integration processes could affect haptic 

perception for some users.  

 

I. INTRODUCTION 

Haptic feedback is crucial to the understanding of various 
interactions with our surroundings. Without visual or auditory 
cues, object manipulation tasks can be performed through the 
exploitation of touch sensation [1]. Upper limb amputees lack 
this form of feedback resulting in limited dexterous control of 
their assistive devices [2], [3]. Reductions in device utility 
affects the user’s confidence and satisfaction leading to device 
abandonment [3]. The delivery of sensory feedback describing 
grasp forces and/or joint angles improves task performance 
and promotes increased user confidence [4], [5]. 

A series of mechanoreceptors embedded in our skin allow 
neurologically intact individuals to sense various forms of 
tactile information [6]. Distinct receptors are responsible for 
classifying tactile cues based on the stimuli’s frequency, 
intensity, and location. When grasping a deformable object, 
stiffness information can be characterized based on the rate of 
change of the force imposed onto the skin surface. Stiffness is 
a vital property that describes an object’s resistance to a given 
force. Fine movements rely on the ability to perceive stiffness, 
especially when manipulating delicate objects. Unfortunately, 
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in the absence of tactile sensation, stiffness perception through 
visual cues can be unreliable [7].    

Prior work has shown that stiffness information can be 
delivered using mechanical [8] or electrical stimulation [9]–
[11]. In these cases, stiffness recognition is performed through 
the interpretation of modulated stimuli as it relates to the 
exerted forces from a prosthetic limb. For example, 
Raspopovic et al [10] utilized haptic sensations evoked using 
proximal peripheral nerve stimulation via an intrafascicular 
electrode in order to show that encoding stiffness as the rate of 
change of the stimulation intensity allowed for the recognition 
of various objects when paired with a prosthetic hand. 
Alternatively, D’Anna et al [9] evaluated the recognition 
accuracy when the subjects were not responsible for 
controlling the prosthetic limb. In this case, a similar encoding 
scheme was implemented; however, individuals were simply 
given prerecorded stimulation trains that corresponded to 
various prosthesis-object interactions. In comparison, active 
users have the potential to receive excess information through 
proprioceptive feedback during muscle activation, while 
passive prosthetic users benefit from the opportunity to focus 
on a single task. Both cases showed promising results, but the 
two approaches raise the question of whether the active or 
passive control condition of a prosthetic limb affects a user’s 
stiffness perception accuracy. 

Accordingly, the purpose of this study is to evaluate if and 
to what degree recognition accuracy is affected when a 
prosthetic hand is passively or actively articulated. Sensory 
feedback was delivered using transcutaneous electrical 
stimulation. Stimulation was delivered using a 2 x 8 electrode 
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Figure 1. Diagram illustrating the placement of the 2x8 electrode grid and 
EMG channels (A). Flowchart describes how the prosthetic hand is articulated 
(D) and how stimulation amplitude is modulated during active control (B, C) 
and passive control (E-H). 

978-1-7281-1990-8/20/$31.00 ©2020 IEEE 3909



  

grid placed along the medial side of the upper arm. By 
selecting distinct electrode pairs, different set of axons in the 
median and ulnar were activated producing somatotopic 
sensations at distinct regions across the hand [12], [13]. In 
addition, amplitude-modulated sensations can be perceived 
and used to discriminate various object properties, such as 
stiffness, shape, and surface topology, during passive control 
[14], [15]. Building on this approach, myoelectric control was 
implemented to introduce active control of a prosthesis. The 
sensorized prosthetic hand interacted with objects of varying 
stiffnesses. Recorded fingertip forces were translated to 
stimulation amplitudes that evoked sensation along the 
subject’s index finger. Stiffness recognition trials were 
performed using one of three prosthetic articulation speeds 
during both active and passive control. Based on the initial 
data, future comparisons can help evaluate the sensorimotor 
integration processes involved in prosthetic control 
individually, i.e. motor/sensory modules, in the hopes of 
improving prosthetic dexterity. 

II. METHODS 

A.  Subjects 

We tested three neurologically intact subjects (3 Male, 
24-30 years of age). Each subject gave informed consent via 
protocols approved by the Institutional Review Board of the 
University of North Carolina at Chapel Hill. 

TABLE I.  ELECTRODE PAIRS AND SENSATIONS ELICITED 

Subject 
Electrode 

Pair 

Elicited 

Sensation 

Region 

Sensory 

Threshold 

(mA) 

Motor 

Threshold 

(mA) 

1 4-6 Index & Thumb 2.6 3.5 

2 4-12 
Index, Middle, 

& Ring 
2.0 2.5 

3 3-6 Index & Middle 4.1 4.6 

B. Experimental Setup 

Subjects were sat with one arm placed on a table in front of 
them. Using alcohol pads, the medial side of their upper arm 
was cleaned. A 2x8 electrode grid was placed along the vector 
connecting the medial epicondyle of the humurus and the 
center of the axilla (Figure 1A). This location was selected due 
to its superficial access to the median and ulnar nerves. To 
maintain electrode-skin contact, a custom vice was used to 
apply mild inward pressure. By selecting different electrode 
pairs, unique electric fields are generated resulting in the 
activation of different sets of axons innervating distinct 
regions of the hand. 

Custom MATLAB (MathWorks Inc) interfaces were used 
to control a switch matrix (Agilent Technologies) and 
stimulator (Multichannel Systems). The switch matrix chose 
electrode pairs by linking one of 16 Ag/AgCl gel-based 
electrodes (1 cm in diameter) to the stimulator’s anode and 
cathode channels. The stimulator delivered charge-balanced, 
biphasic, square waves (Figure 1C) with a fixed pulse width 
and frequency of 200 µs and 150 Hz, respectively [12]–[14]. 

 Current amplitude was modulated using force recordings 
from a prosthetic hand. A force sensor (SingleTact) was fixed 
on the prosthesis’ index fingertip (iLimb, Ossur) to record 
pinch grasps forces. Forces exerted were converted to current 
amplitudes using a subject-specific sigmoid function (Figure 

1B). The sigmoid function is constructed using an allowable 
stimulation range, minimum and maximum force, and a 
steepness value [14], [15]. For each subject, the sensory 
threshold and just below the motor threshold were used as the 
stimulation range. Using current steps of 0.1 mA, the sensory 
and motor thresholds were found when finger sensation or 
finger motion first occurred, respectively. (Table 1) 

Using a wireless acquisition system (Delsys Trigno, MA), 
two electromyography (EMG) electrodes, placed on the 
medial and lateral side of the subject’s forearm, recorded the 
muscle activation of the flexor and extensor muscles of the 
finger, respectively. The EMG was processed in real-time to 
control the prosthetic’s index finger. Using a 200-ms window 
with 100-ms overlap, the level of activation was extracted 
from the rectified and filtered signal. The differential between 
the EMG signals determined the direction (rest, close, or open) 
in which the prosthesis articulated using one of three set 
speeds.  

To encode object stiffness, the rate of change of the index 
force/sensation corresponded to the object’s stiffnesses. Three 

stiffness-varied cubes were used, which included a soft foam 
(1.7 N/mm), a stiff foam (2.9 N/mm), and a wooden block. 
During active control, the prosthesis’ hand closing speed was 
set to either 40, 55, or 67 degrees per second, which is 
relatively fast for most object exploration task. This was 
determined through preliminary testing. The prosthesis can 
articulate at speeds between 20 and 80 degrees per second; 
however, at lower speeds the peak force attainable when 
grasping the three objects varied greatly due to observed 
prosthetic limitations. If these conditions were kept, subjects 
could feasibly recognize the stiffness level simply based on 
peak force exerted. Alternatively, if speeds were any higher, 
the recorded forces would exceed the force range most utilized 
by neurologically intact individuals during activities of daily 
living [16]. Moreover, to minimize the variability in peak 
forces exerted, a maximum force level of 5 N was utilized for 
the sigmoid transfer function.  

To evaluate the recognition accuracy during passive 
control, prosthesis-object interactions were prerecorded. The 
force traces were saved among a pool for each condition and 

 
 

Figure 2. Example force traces (A) recorded as the prosthetic hand grasped 

the low (green), medium (yellow), and high (red) stiffness object using the 

highest hand closing speed. The average and std of the time to peak for each 

combination of speed and object stiffness is shown as well (B).   
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then drawn from at random during the study. (Figure 1) Force 
recordings were repeated 5 times for each combination of 
object stiffness and speed to account for any variability in the 
system. Example traces for the highest speed and the average 
time to peak across all conditions are shown in Figure 2. 

C. Procedures 

The experiment began by searching through the electrode 
grid for a pair that produced sensation along the subject’s 
index finger. The selected pair was then coupled to the index 
finger’s force sensor or recordings in order to modulate 
stimulation intensity during active and passive control, 
respectively. Each subject’s selected electrode pair and its 
sensation region is described in Table 1. 

The main experiment was broken into two experimental 
blocks based on whether passive or active control was being 
implemented. Each subject was visually and auditorily blinded 

throughout the study. During passive control, three sub-blocks 
tested the subject’s ability to recognize an object’s stiffness 
using each hand closing speed. The three sub-blocks consisted 
of 4 trials per object resulting in 36 total trials. Each trial 
required subjects to report the stiffness perceived based on a 
random force trace delivered. During active control, 36 trials 
across three sub-blocks were again performed; however, 
subjects now were responsible for manually articulating the 
prosthesis through flexion and extension of the wrist. Prior to 
the start of the active trials, subjects were given 5 minutes to 
practice articulating the prosthesis. During each trial, subjects 
were instructed to grasp an object using the prosthesis and 
report its perceived stiffness. The order of the blocks and 
speeds were randomized across subjects. Reinforcement 
learning was utilized before the start of each sub-block. 
Subjects were given 10-15 trials where they would attempt to 
identify the object’s stiffness. This was the only time subjects 
were given feedback about their response. A flowchart 
describing the experimental protocols is shown in Figure 3. 

III. RESULTS 

We evaluated each subjects’ ability to recognize an object’s 

stiffness during both active and passive control. Figure 4 
shows two confusion matrixes that each compare the actual 
and perceived object stiffness across all subjects. Each row 
within a given stiffness level corresponds to individual hand 
closing speeds. The confusion matrices detail the type of 
recognition errors that occurred. Specifically, the majority of 
recognition errors for both active and passive control arose 
from trials where subjects reported an object as being one 
stiffness level higher or lower than the actual. In other words, 
no subject had issues discriminating between the stiffest and 
the least stiff object at any of the hand closing speeds. 
Additionally, the results suggest that as the speed increases the 
number of errors and the distribution of the errors appear to 
increase as well. Misidentification between the medium and 
high stiffness objects occur more frequently as higher speeds 
are implemented for both control schemes. 

Figure 5 illustrates the recognition accuracies and standard 
error across subjects when utilizing each of the three hand 
closing speeds. For the individual recognition accuracies, the 
order of the circles in the legend indicate which datapoints 
correspond to which subject with subject 1 being purple, 
subject 2 being green, and subject 3 being orange. The results 
showed that subjects could identify a given object stiffness 
during both control schemes at all three speeds. Specifically, 
the closing speeds of 40, 55, and 67 degrees per second 
resulted in an accuracy and standard error of 86.1% ± 4.8%, 
77.8% ± 4.8%, and 83.3% ± 14.4%, respectively, during 
passive control. Alternatively, during active control, the 
recognition accuracies were slightly lower resulting in 
accuracies and standard errors of 83.3% ± 8.3%, 75.0% ± 
8.3%, and 75.0% ± 8.3%, respectively. When evaluating 
across hand closing speeds, active control showed a drop in 
accuracy as the speed increased from 40 to 55 degrees per 
second; however, no change was observed when assessing the 
highest two speeds.  

IV. DISCUSSION 

This preliminary study sought to evaluate if stiffness 
perception varies across active and passive prosthetic control 
schemes. Amplitude-modulated haptic feedback localized 
along the index finger was delivered using transcutaneous 
electrical stimulation. Active control was implemented using 
two channels of EMG that triggered the movement of the 
prosthesis’ index finger using a set speed. Stimulation for 
passive control was delivered using prerecorded force traces 

 
 

Figure 4. Confusion matrices illustrating the perceived stiffness when a given 
ground truth and hand closing speed is employed during passive (A) and 
active control (B). 

 
 

Figure 3. Flowchart illustrating the experimental protocol 

 
 

Figure 5. Bar graph illustrating the accuracy and standard error during each 
combination of hand closing speed and control scheme. 
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that corresponded to each combination of hand speed and 
object stiffness. Our results showed that both control schemes 
allowed subjects to correctly identify the stiffness of the object 
being grasped. Slightly lower accuracies reported in one 
subject (denoted by red circle) for the active condition suggest 
that factors, such as the need to focus on two tasks, could have 
potentially affected some subject’s recognition performance. 
This result indicates the need to further evaluate the motor and 
sensory pathways of current human-machine interfaces 
independently using evaluations of both passive and active 
control, or open-/closed-loop systems. 

Our results demonstrated that stiffness could be 
recognized using both control scheme at all hand closing 
speeds. This suggest that nerve stimulation delivered in this 
manner provided subjects with sufficient information to make 
appropriate recognitions. Our results did, however, show that 
across hand closing speeds and control schemes there was a 
reduction in recognition accuracy. Overall, increasing hand 
closing speed appeared to reduce accuracy, which intuitively 
makes sense given the reductions in average time to peak. 
Regarding decreased accuracy between active and passive, 
subjects were naïve to prosthetic control and the sensory 
feedback module indicating that this could have been a factor. 
Extended training could alleviate current differences, but 
further evaluations are required. 

Sensation intensity was performed using amplitude 
modulated stimulation. Our results indicate that the subject 
with the largest stimulation range appeared to discern stiffness 
better. This is likely due to their ability to distinguish more 
distinct stimulation, i.e sensation, levels. Subjects with lower 
stimulation ranges could potentially benefit from altering the 
stimulation wave delivered. Reducing the pulse width of the 
delivered biphasic square trains decreases the injected charge 
and could potentially increase the range between the sensory 
and motor threshold. Although this is supported 
mathematically, this claim should be tested. Alternatively, 
cathode-first biphasic stimulation trains and/or the inclusion 
of an interphasic delay could potentially improve upon the 
delivered stimuli [17]. Stimulation delivered in a more 
biomimetic manner may improve the amount of transferable 
information as well [18].     

Three limitations of the current study include the lack of 
amputee subject, sample size, and the use of a simple 
trigger-based myoelectric control scheme. First, prior work 
has shown that stimulation delivered to neurologically intact 
individuals and amputees result in similarly elicited haptic 
perceptions [12]. This suggests that a portrayal of amputee 
behavior may be represented through the results from intact 
participants. Secondly, this study was meant to be conducted 
as a preliminary evaluation. Future work will be expanded to 
include a larger population. Lastly, the use of a rather simple 
control scheme allowed us to mitigate many of the variability 
in exerted force present during active control ensuring that 
stiffness was determined solely based on the rate of change of 
the evoked stimuli. By utilizing set articulation speeds, direct 
comparisons could be made between active and passive 
control schemes. Although accuracies were similar, slight 
differences suggest that other factors may affect sensory 
perception. Realistically, many current prostheses are 
operated using more complex controllers that relate muscle 

activation to a finger position or velocity. Users of these 
devices could potentially receive more information pertaining 
to hand state through proprioception; however, cognitive 
burden is likely to increase as well. As control schemes 
become more complex, the benefit of testing sensory feedback 
in active and passive formats are further increased through the 
ability to detect potential issues residing in the motor and 
sensory pathways of human-machine interfaces. 
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