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Abstract— Haptic feedback allows an individual to identify
various object properties. In this preliminary study, we
determined the performance of stiffness recognition using
transcutaneous nerve stimulation when a prosthetic hand was
moved passively or was controlled actively by the subjects.
Using a 2x8 electrode grid placed along the subject’s upper arm,
electrical stimulation was delivered to evoke somatotopic
sensation along their index finger. Stimulation intensity, i.e.
sensation strength, was modulated using the fingertip forces
from a sensorized prosthetic hand. Object stiffness was encoded
based on the rate of change of the evoked sensation as the
prosthesis grasped one of three objects of different stiffness
levels. During active control, sensation was modulated in real
time as recorded forces were converted to stimulation
amplitudes. During passive control, prerecorded force traces
were randomly selected from a pool. Our results showed that
the accuracy of object stiffness recognition was similar in both
active and passive conditions. A slightly lower accuracy was
observed during active control in one subject, which indicated
that the sensorimotor integration processes could affect haptic
perception for some users.

1. INTRODUCTION

Haptic feedback is crucial to the understanding of various
interactions with our surroundings. Without visual or auditory
cues, object manipulation tasks can be performed through the
exploitation of touch sensation [1]. Upper limb amputees lack
this form of feedback resulting in limited dexterous control of
their assistive devices [2], [3]. Reductions in device utility
affects the user’s confidence and satisfaction leading to device
abandonment [3]. The delivery of sensory feedback describing
grasp forces and/or joint angles improves task performance
and promotes increased user confidence [4], [5].

A series of mechanoreceptors embedded in our skin allow
neurologically intact individuals to sense various forms of
tactile information [6]. Distinct receptors are responsible for
classifying tactile cues based on the stimuli’s frequency,
intensity, and location. When grasping a deformable object,
stiffness information can be characterized based on the rate of
change of the force imposed onto the skin surface. Stiffness is
a vital property that describes an object’s resistance to a given
force. Fine movements rely on the ability to perceive stiffness,
especially when manipulating delicate objects. Unfortunately,
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in the absence of tactile sensation, stiffness perception through
visual cues can be unreliable [7].

Prior work has shown that stiffness information can be
delivered using mechanical [8] or electrical stimulation [9]-
[11]. In these cases, stiffness recognition is performed through
the interpretation of modulated stimuli as it relates to the
exerted forces from a prosthetic limb. For example,
Raspopovic et al [10] utilized haptic sensations evoked using
proximal peripheral nerve stimulation via an intrafascicular
electrode in order to show that encoding stiffness as the rate of
change of the stimulation intensity allowed for the recognition
of various objects when paired with a prosthetic hand.
Alternatively, D’Anna et al [9] evaluated the recognition
accuracy when the subjects were not responsible for
controlling the prosthetic limb. In this case, a similar encoding
scheme was implemented; however, individuals were simply
given prerecorded stimulation trains that corresponded to
various prosthesis-object interactions. In comparison, active
users have the potential to receive excess information through
proprioceptive feedback during muscle activation, while
passive prosthetic users benefit from the opportunity to focus
on a single task. Both cases showed promising results, but the
two approaches raise the question of whether the active or
passive control condition of a prosthetic limb affects a user’s
stiffness perception accuracy.

Accordingly, the purpose of this study is to evaluate if and
to what degree recognition accuracy is affected when a
prosthetic hand is passively or actively articulated. Sensory
feedback was delivered using transcutaneous electrical
stimulation. Stimulation was delivered using a 2 x 8 electrode
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Figure 1. Diagram illustrating the placement of the 2x8 electrode grid and
EMG channels (A). Flowchart describes how the prosthetic hand is articulated
(D) and how stimulation amplitude is modulated during active control (B, C)
and passive control (E-H).
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grid placed along the medial side of the upper arm. By
selecting distinct electrode pairs, different set of axons in the
median and ulnar were activated producing somatotopic
sensations at distinct regions across the hand [12], [13]. In
addition, amplitude-modulated sensations can be perceived
and used to discriminate various object properties, such as
stiffness, shape, and surface topology, during passive control
[14], [15]. Building on this approach, myoelectric control was
implemented to introduce active control of a prosthesis. The
sensorized prosthetic hand interacted with objects of varying
stiffnesses. Recorded fingertip forces were translated to
stimulation amplitudes that evoked sensation along the
subject’s index finger. Stiffness recognition trials were
performed using one of three prosthetic articulation speeds
during both active and passive control. Based on the initial
data, future comparisons can help evaluate the sensorimotor
integration processes involved in prosthetic control
individually, i.e. motor/sensory modules, in the hopes of
improving prosthetic dexterity.

II. METHODS

A. Subjects

We tested three neurologically intact subjects (3 Male,
24-30 years of age). Each subject gave informed consent via
protocols approved by the Institutional Review Board of the
University of North Carolina at Chapel Hill.

TABLE L. ELECTRODE PAIRS AND SENSATIONS ELICITED
Electrode Elicited Sensory Motor

Subject Pair Sensation Threshold Threshold
Region (mA) (mA)

1 4-6 Index & Thumb | 2.6 3.5
Index, Middle,

2 4-12 & Ring 2.0 2.5

3 3-6 Index & Middle | 4.1 4.6

B. Experimental Setup

Subjects were sat with one arm placed on a table in front of
them. Using alcohol pads, the medial side of their upper arm
was cleaned. A 2x8 electrode grid was placed along the vector
connecting the medial epicondyle of the humurus and the
center of the axilla (Figure 1A). This location was selected due
to its superficial access to the median and ulnar nerves. To
maintain electrode-skin contact, a custom vice was used to
apply mild inward pressure. By selecting different electrode
pairs, unique electric fields are generated resulting in the
activation of different sets of axons innervating distinct
regions of the hand.

Custom MATLAB (MathWorks Inc) interfaces were used
to control a switch matrix (Agilent Technologies) and
stimulator (Multichannel Systems). The switch matrix chose
electrode pairs by linking one of 16 Ag/AgCl gel-based
electrodes (1 cm in diameter) to the stimulator’s anode and
cathode channels. The stimulator delivered charge-balanced,
biphasic, square waves (Figure 1C) with a fixed pulse width
and frequency of 200 pus and 150 Hz, respectively [12]-[14].

Current amplitude was modulated using force recordings
from a prosthetic hand. A force sensor (SingleTact) was fixed
on the prosthesis’ index fingertip (iLimb, Ossur) to record
pinch grasps forces. Forces exerted were converted to current
amplitudes using a subject-specific sigmoid function (Figure

IB). The sigmoid function is constructed using an allowable
stimulation range, minimum and maximum force, and a
steepness value [14], [15]. For each subject, the sensory
threshold and just below the motor threshold were used as the
stimulation range. Using current steps of 0.1 mA, the sensory
and motor thresholds were found when finger sensation or
finger motion first occurred, respectively. (Table 1)

Using a wireless acquisition system (Delsys Trigno, MA),
two electromyography (EMG) electrodes, placed on the
medial and lateral side of the subject’s forearm, recorded the
muscle activation of the flexor and extensor muscles of the
finger, respectively. The EMG was processed in real-time to
control the prosthetic’s index finger. Using a 200-ms window
with 100-ms overlap, the level of activation was extracted
from the rectified and filtered signal. The differential between
the EMG signals determined the direction (rest, close, or open)
in which the prosthesis articulated using one of three set
speeds.

To encode object stiffness, the rate of change of the index
force/sensation corresponded to the object’s stiffnesses. Three
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Figure 2. Example force traces (A) recorded as the prosthetic hand grasped
the low (green), medium (yellow), and high (red) stiffness object using the
highest hand closing speed. The average and std of the time to peak for each
combination of speed and object stiffness is shown as well (B).

stiffness-varied cubes were used, which included a soft foam
(1.7 N/mm), a stiff foam (2.9 N/mm), and a wooden block.
During active control, the prosthesis’ hand closing speed was
set to either 40, 55, or 67 degrees per second, which is
relatively fast for most object exploration task. This was
determined through preliminary testing. The prosthesis can
articulate at speeds between 20 and 80 degrees per second,;
however, at lower speeds the peak force attainable when
grasping the three objects varied greatly due to observed
prosthetic limitations. If these conditions were kept, subjects
could feasibly recognize the stiffness level simply based on
peak force exerted. Alternatively, if speeds were any higher,
the recorded forces would exceed the force range most utilized
by neurologically intact individuals during activities of daily
living [16]. Moreover, to minimize the variability in peak
forces exerted, a maximum force level of 5 N was utilized for
the sigmoid transfer function.

To evaluate the recognition accuracy during passive
control, prosthesis-object interactions were prerecorded. The
force traces were saved among a pool for each condition and
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then drawn from at random during the study. (Figure 1) Force
recordings were repeated 5 times for each combination of
object stiffness and speed to account for any variability in the
system. Example traces for the highest speed and the average
time to peak across all conditions are shown in Figure 2.

C. Procedures

The experiment began by searching through the electrode
grid for a pair that produced sensation along the subject’s
index finger. The selected pair was then coupled to the index
finger’s force sensor or recordings in order to modulate
stimulation intensity during active and passive control,
respectively. Each subject’s selected electrode pair and its
sensation region is described in Table 1.

The main experiment was broken into two experimental
blocks based on whether passive or active control was being
implemented. Each subject was visually and auditorily blinded
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Figure 3. Flowchart illustrating the experimental protocol

throughout the study. During passive control, three sub-blocks
tested the subject’s ability to recognize an object’s stiffness
using each hand closing speed. The three sub-blocks consisted
of 4 trials per object resulting in 36 total trials. Each trial
required subjects to report the stiffness perceived based on a
random force trace delivered. During active control, 36 trials
across three sub-blocks were again performed; however,
subjects now were responsible for manually articulating the
prosthesis through flexion and extension of the wrist. Prior to
the start of the active trials, subjects were given 5 minutes to
practice articulating the prosthesis. During each trial, subjects
were instructed to grasp an object using the prosthesis and
report its perceived stiffness. The order of the blocks and
speeds were randomized across subjects. Reinforcement
learning was utilized before the start of each sub-block.
Subjects were given 10-15 trials where they would attempt to
identify the object’s stiffness. This was the only time subjects
were given feedback about their response. A flowchart
describing the experimental protocols is shown in Figure 3.

III. RESULTS

We evaluated each subjects’ ability to recognize an object’s
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Figure 4. Confusion matrices illustrating the perceived stiffness when a given
ground truth and hand closing speed is employed during passive (A) and
active control (B).

stiffness during both active and passive control. Figure 4
shows two confusion matrixes that each compare the actual
and perceived object stiffness across all subjects. Each row
within a given stiffness level corresponds to individual hand
closing speeds. The confusion matrices detail the type of
recognition errors that occurred. Specifically, the majority of
recognition errors for both active and passive control arose
from trials where subjects reported an object as being one
stiffness level higher or lower than the actual. In other words,
no subject had issues discriminating between the stiffest and
the least stiff object at any of the hand closing speeds.
Additionally, the results suggest that as the speed increases the
number of errors and the distribution of the errors appear to
increase as well. Misidentification between the medium and
high stiffness objects occur more frequently as higher speeds
are implemented for both control schemes.

Figure 5 illustrates the recognition accuracies and standard
error across subjects when utilizing each of the three hand
closing speeds. For the individual recognition accuracies, the
order of the circles in the legend indicate which datapoints
correspond to which subject with subject 1 being purple,
subject 2 being green, and subject 3 being orange. The results
showed that subjects could identify a given object stiffness
during both control schemes at all three speeds. Specifically,
the closing speeds of 40, 55, and 67 degrees per second
resulted in an accuracy and standard error of 86.1% =+ 4.8%,
77.8% =+ 4.8%, and 83.3% + 14.4%, respectively, during
passive control. Alternatively, during active control, the
recognition accuracies were slightly lower resulting in
accuracies and standard errors of 83.3% + 8.3%, 75.0% =+
8.3%, and 75.0% =+ 8.3%, respectively. When evaluating
across hand closing speeds, active control showed a drop in
accuracy as the speed increased from 40 to 55 degrees per
second; however, no change was observed when assessing the
highest two speeds.

IV. DISCUSSION

This preliminary study sought to evaluate if stiffness
perception varies across active and passive prosthetic control
schemes. Amplitude-modulated haptic feedback localized
along the index finger was delivered using transcutaneous
electrical stimulation. Active control was implemented using
two channels of EMG that triggered the movement of the
prosthesis’ index finger using a set speed. Stimulation for
passive control was delivered using prerecorded force traces
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Figure 5. Bar graph illustrating the accuracy and standard error during each
combination of hand closing speed and control scheme.

391



that corresponded to each combination of hand speed and
object stiffness. Our results showed that both control schemes
allowed subjects to correctly identify the stiffness of the object
being grasped. Slightly lower accuracies reported in one
subject (denoted by red circle) for the active condition suggest
that factors, such as the need to focus on two tasks, could have
potentially affected some subject’s recognition performance.
This result indicates the need to further evaluate the motor and
sensory pathways of current human-machine interfaces
independently using evaluations of both passive and active
control, or open-/closed-loop systems.

Our results demonstrated that stiffness could be
recognized using both control scheme at all hand closing
speeds. This suggest that nerve stimulation delivered in this
manner provided subjects with sufficient information to make
appropriate recognitions. Our results did, however, show that
across hand closing speeds and control schemes there was a
reduction in recognition accuracy. Overall, increasing hand
closing speed appeared to reduce accuracy, which intuitively
makes sense given the reductions in average time to peak.
Regarding decreased accuracy between active and passive,
subjects were naive to prosthetic control and the sensory
feedback module indicating that this could have been a factor.
Extended training could alleviate current differences, but
further evaluations are required.

Sensation intensity was performed using amplitude
modulated stimulation. Our results indicate that the subject
with the largest stimulation range appeared to discern stiffness
better. This is likely due to their ability to distinguish more
distinct stimulation, i.e sensation, levels. Subjects with lower
stimulation ranges could potentially benefit from altering the
stimulation wave delivered. Reducing the pulse width of the
delivered biphasic square trains decreases the injected charge
and could potentially increase the range between the sensory
and motor threshold. Although this is supported
mathematically, this claim should be tested. Alternatively,
cathode-first biphasic stimulation trains and/or the inclusion
of an interphasic delay could potentially improve upon the
delivered stimuli [17]. Stimulation delivered in a more
biomimetic manner may improve the amount of transferable
information as well [18].

Three limitations of the current study include the lack of
amputee subject, sample size, and the use of a simple
trigger-based myoelectric control scheme. First, prior work
has shown that stimulation delivered to neurologically intact
individuals and amputees result in similarly elicited haptic
perceptions [12]. This suggests that a portrayal of amputee
behavior may be represented through the results from intact
participants. Secondly, this study was meant to be conducted
as a preliminary evaluation. Future work will be expanded to
include a larger population. Lastly, the use of a rather simple
control scheme allowed us to mitigate many of the variability
in exerted force present during active control ensuring that
stiffness was determined solely based on the rate of change of
the evoked stimuli. By utilizing set articulation speeds, direct
comparisons could be made between active and passive
control schemes. Although accuracies were similar, slight
differences suggest that other factors may affect sensory
perception. Realistically, many current prostheses are
operated using more complex controllers that relate muscle

activation to a finger position or velocity. Users of these
devices could potentially receive more information pertaining
to hand state through proprioception; however, cognitive
burden is likely to increase as well. As control schemes
become more complex, the benefit of testing sensory feedback
in active and passive formats are further increased through the
ability to detect potential issues residing in the motor and
sensory pathways of human-machine interfaces.
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