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Abstract—Every month, many new software vulnerabilities

are discovered and published which will pose security risks to

power grid systems if they are exploited by attackers. Thus the

vulnerabilities must be patched in a timely manner to reduce the

chance of being exploited. However, not all vulnerabilities can be

patched quickly due to limited security resources at many electric

utility companies. This paper studies dynamic risk-aware patch

scheduling to determine the order of patching vulnerabilities

and minimize the security risk brought by vulnerabilities. We

first predict the dynamic probability of exploit over time for

each vulnerability and define a metric to compute the vulner-

ability’s dynamic risk based on the predicted probability. We

then formulate two patch scheduling approaches. Evaluations

on real datasets show high accuracy in predicting the dynamic

probability of exploit and high effectiveness of our solutions in

risk reduction compared with other scheduling methods.

Index Terms—Vulnerability, risk, patching, scheduling

I. INTRODUCTION

Vulnerabilities in software/firmware pose significant secu-
rity risks to power systems since they can be exploited by
attackers. Vulnerabilities are unavoidable and could affect all
installed software and firmware components. Moreover, the
power grid is moving toward a more interconnected grid,
which carries the potential for higher risk exposure for those
vulnerabilities. Every month, many new vulnerabilities are
discovered and released [1], which need to be patched timely
to reduce the risk that they pose to the system. However, not all
vulnerabilities can be patched quickly due to limited resources
and security personnel at many electric utility companies.
Properly scheduling the vulnerability patching order can sig-
nificantly reduce the overall security risk that the system faces.
In practice, many electric utility organizations determine the

patching order for vulnerabilities based on security operators’
subjective assessment and/or preference. That could result in
random, ad hoc patching orders. Others schedule patches based
on the prioritization order provided by the patch management
software, where the patches are usually prioritized by vulner-
abilities’ risks measured by Common Vulnerability Scoring
System (CVSS) scores [2]. CVSS score shows the severity
of software vulnerabilities which is assessed and maintained
by the National Vulnerability Database (NVD) [3]. However,
existing metrics for prioritizing patches have two weaknesses.
First, they are static and hence cannot capture the time-
dependent nature of risks as elaborated below. Second, they do
not consider the time cost of applying patches. Thus, although
they could be used for prioritizing patches and generating a
simple patch schedule, the ignorance of patching cost could
lead to suboptimal decisions especially for small-sized and
medium-sized electric utilities with limited security resources.

The risk of a vulnerability depends on the likelihood of
exploitation and the impact of exploitation. The likelihood of
exploitation is dynamic in nature and changes with time. The
difficulty of developing exploit for a vulnerability depends on
the nature of the software (e.g., Windows or Linux software),
the nature of the vulnerability (e.g., buffer overflow or pro-
tocol design flaws), whether exploits have been developed
before for similar vulnerabilities, and how much value the
software/vulnerability has to the adversary. They all affect
how long it will take the adversary to develop exploits for
vulnerabilities. Our experimental study (see more details in
Section III-B and IV-A) shows that different vulnerabilities
have different time-likelihood curves.
Neglecting such dynamic natures will cause ineffective risk

reduction. For a simple example, suppose two vulnerabilities
va and vb are published at the same time, have the same overall
risk score (e.g., CVSS score), and each takes one day to patch.
va is highly likely to be exploited in day 1 after public release.
vb has a very low likelihood to be exploited in the first two
days after release but is more likely to be exploited after day
2. If patch scheduling only considers the overall risk score,
either of them can be patched first. However, in this example,
patching va first and vb next will have lower security risks.

Although the impact score of published vulnerabilities is
usually available (e.g., the CVSS impact score) as a good
estimate of their impact, their likelihood of exploitation is
usually unknown, not to mention the dynamic likelihood
over time. In this work, we first design a method to predict
vulnerabilities’ dynamic probability of exploit over time (we
define a vulnerability’s probability of exploit at time ⌧ as the
probability that known exploit code1 for the vulnerability is
available by time ⌧ after the vulnerability is released at time
0). A risk metric is defined based on the dynamic probability
of exploit. Then we formulate dynamic risk-aware patching
scheduling problems to minimize the total security risks posed
by vulnerabilities. This paper’s contributions are summarized
as follows:

• We formulate dynamic risk-aware patch scheduling prob-
lems. To the best of our knowledge, this is the first work
that considers the dynamic risks of vulnerabilities into
patch scheduling for electric utility companies. It can
reduce security risks posed by vulnerabilities and provide
formal guidance to security operations at electric utilities.

• To estimate dynamic risks, we design a method for
predicting vulnerabilities’ dynamic probability of exploit

1It is possible that an adversary has developed exploit code for a vulner-
ability but does not publish it. However, we only consider known exploit in
this paper to make the problem tractable.



over time based on neural network and natural language
processing techniques.

• We propose a baseline scheduling method that has opti-
mal risk reduction but high computation overhead, and
a group-based scheduling method that has much lower
computation cost but still effective risk reduction.

• We evaluate the proposed patch scheduling solution based
on a real dataset from an electric utility company and
in comparison with three other scheduling methods, and
demonstrate that our solution can significantly reduce the
security risks.

Although this work is presented in the context of electric
utility systems, it can be applied to many other applications
especially critical infrastructure systems.
The paper is organized as follows. Section II discusses

related work. Section III describes the method to predict
vulnerability’s probability of exploit and the patch scheduling
formulations. Section IV presents evaluation results and the
last section concludes the paper.

II. RELATED WORK

To the best of our knowledge, no work has been done to
schedule the patching order by considering vulnerabilities’
dynamic probabilities of exploit to minimize the security risk.
There have been some studies about patching prioritization
[4]–[9] and vulnerability remediation [10], [11]. Some of them
prioritize vulnerabilities by quantifying the vulnerabilities’
risk based on CVSS temporal and environmental scores [4]
and commercial metrics [9]. The work in [5] measures the
importance of vulnerabilities and their hosts by attack cost
and system risk respectively, and then combines the measures
to prioritize vulnerabilities. The work in [6] considers patch
operators and attackers as two players and models the patch-
ing management as a search game framework. It assumes
both players are rational and thus can predict the players’
behaviours with the game theory framework. The work in [7]
and [8] determines the patching order through game theory
in an attack/defense scenario. These works do not consider
the vulnerabilities’ dynamic nature and that the probability of
exploit is changing over time. Thus, they cannot adapt to the
dynamic risks posed by vulnerabilities.
There have been some existing researches on vulnerability’s

exploitability prediction. The work in [12] describes how
to predict the exploitability with Support Vector Machine
(SVM). The work in [13], [14] applies and compares several
machine learning algorithms such as Naive Bayes and SVM to
predict the exploitability. Sabottke et. al. [15] design an exploit
detector to detect exploits on Twitter, where vulnerability and
exploit related information might be posted. The work in [16]
predicts exploits with neural language model by collecting the
web post data. However, these works mainly predict whether
vulnerabilities can be exploited, but do not address how the
probability of exploit changes over time which is studied in
this paper.

III. APPROACH

The patching order of vulnerabilities can significantly affect
the total security risk that a system is facing. In order to
schedule the patching order, we need to know each vulnerabil-
ity’s risk. Thus in this section we first define the vulnerability
risk metric based on probability of exploit and impact of
exploit. We then predict vulnerabilities’ dynamic probability
of exploit which will allow calculation of vulnerability risks.
After getting each vulnerability’s risk, we formulate schedul-
ing problems to minimize the vulnerabilities’ total risk.

Fig. 1. Probability of exploit for vul-
nerability va

Fig. 2. Probability of exploit for vul-
nerability vb

A. Risk Metric

In practice, electric utility companies usually collect the
vulnerabilities of their assets from vendors, third party ser-
vices, public databases such as the NVD, or a combination
of these sources. The vulnerabilities come with or can be
easily matched to the standard CVSS metrics, which show
the principal characteristics of a vulnerability and provide a
numerical score (called CVSS score) reflecting the vulnerabil-
ity’s overall severity [17]. CVSS score can be used to quantify
a vulnerability’s risk (and is used by many companies to do
so). However, it is static and does not capture a vulnerability’s
dynamic probability of exploit that changes with time. Here
we define a new metric to quantify the dynamic risk that a
vulnerability poses to the system by considering its dynamic
probability of exploit and its impact on the system:

r(t) = I ·
Z t

0
p(⌧)d⌧ (1)

Here r(t) denotes the risk that the vulnerability has posed
to the system by time point t (assuming the vulnerability is
published at time 0), p(⌧) is the vulnerability’s probability of
exploit at time ⌧ , and I is the vulnerability’s impact score
on the system. For impact score, we follow the calculation
of the standard CVSS scoring system [18] which makes it a
constant irrelevant to time. Specifically, I = 10.41 · (1� (1�
ConfImpact)·(1�IntegImpact)·(1�AvailImpact)). Here
ConfImpact, IntegImpact, and AvailImpact are three
characteristics defined in CVSS metrics to show the vulner-
ability’s impact on the system’s confidentiality, integrity and
availability respectively. Each characteristic has three different
levels, ‘complete’, ‘partial’ and ‘none’, whose corresponding
numeric values are 0.660, 0.275 and 0.0 respectively [18].



The risk definition involves two factors. The first factor is
impact score, which is easy to understand. The second factor
is

R t
0 p(⌧)d⌧ . If the function p(⌧) is plotted as a curve (see

Fig. 1 and 2 for examples), this factor is essentially the size
of the grey area under the curve. It in turn considers two
factors, the probability that exploit code is available and the
time duration of exploit code being available. This makes sense
since the more quickly a vulnerability’s probability of exploit
increases and the longer time a vulnerability is exposed (i.e.,
stays unpatched) the higher risk it could pose to the system.
For the examples in Fig. 1 and 2, vulnerability va has higher
risk than vb when considering the exposure time up to day 5.

Fig. 3. Distribution of vulnerabilities in the day/time window of exploit after
vulnerability release

B. Predicting the Probability of Exploit

The exploit code for a vulnerability can be developed and
released any time after the vulnerability is published and,
in some cases, even before the vulnerability is published.
Knowing how soon the vulnerabilities are likely to have exploit
code can help schedule when to patch them. In this section,
we describe how to leverage neural network models to predict
a vulnerability’s probability of exploit.
1) Vulnerability Dataset: We collected all the vulnerabili-

ties in the Vulners database [19] in June 2019, which consist
of 67,965 vulnerabilities. 46,380 of them have no known
exploits, 17,260 already have exploits before vulnerabilities
are published, and for the other 4,325 vulnerabilities their
exploits are released after they are published. For the 4,325
vulnerabilities, the distribution of vulnerability exploit time
(i.e., the day when a vulnerability’s exploit code becomes
available) after a vulnerability is released is shown in Fig.
3. The X-axis shows the day (or time window) when exploit
becomes available for the vulnerability and the Y-axis shows
the number of vulnerabilities whose exploits become available
in that day (or time window). For example, 261 vulnerabilities
become to have exploit in day 1 after their release, 182
vulnerabilities become to have exploit in day 7 and day 8
after their release, and 1,983 vulnerabilities become to have
exploit available 100 or more days (up to 5,000 days) after
their release. We use the 4,325 vulnerabilities whose exploits
appear after they are published as the dataset for training the

prediction model. To keep the dataset’s balance, we randomly
sampled 4,325 out of the 46,380 vulnerabilities that do not
have known exploits and add them to the dataset as well. This
aggregate dataset will be used as training data to train the
neural network model.
2) Feature Extraction: To train the neural network model,

we need to select important features to represent each vul-
nerability as similarly done in prior work [12], [14], [15].
Since CVSS is used to describe the primary characteristic
of vulnerabilities, we use CVSS metrics as part of the fea-
tures which include: attack vector (how the vulnerability is
exploited, e.g. through network or local access), attack com-
plexity, user interaction (whether user interaction is needed
to exploit the vulnerability), privilege (the privilege level
required to exploit vulnerability), confidentiality impact (the
impact on the system’s confidentiality if the vulnerability is
exploited), integrity impact, availability impact, and CVSS
score (the vulnerability’s overall severity). Common weakness
enumeration (CWE) [20] which depicts the vulnerability type,
and software name are also used as features. Each vulnerability
has its description and title which also provide valuable
information. Since descriptions and titles are descriptive texts,
we apply tf-idf (term frequency-inverse document frequency)
[21] to extract important words from description and title
texts as features. Tf-idf is able to identify important words
and deprive the words that do not carry useful information
such as “the” and the common words that appear in most
descriptions and titles such as “CVE”. We use tf-idf to extract
bi-grams (two adjacent words) as features, which we found
has better performances than uni-gram (single word) in this
prediction task. The top 3,000 most important bi-grams such
as “windows server”, “execute arbitrary”, “verify certificates”,
“spoof servers”, “access restriction” from descriptions and the
top 500 most important bi-grams from titles are extracted
as features used in prediction (we tried other numbers but
found these two perform best as shown in table III and IV in
Section IV-A). Besides, each vulnerability has publish date,
modify date and last seen date. Publish date is the day when
the vulnerability is published; modify date is the day when
the vulnerability is modified such as the modification of its
title or description; and last seen date is the last date when
the vulnerability was seen. If a vulnerability is modified or
is still seen long after being published, it shows that this
vulnerability still persists and attracts people’s attention. Such
vulnerabilities may carry high risk and are more likely to be
attackers’ targets. Therefore, similar to [12], we also use the
time difference between modify date and publish date and the
time difference between last seen date and publish date as the
features. The number of features is shown in Table I. Each
vulnerability record has 3,512 features in total.
3) Prediction with Neural Network: We build neural net-

work models to predict the probability of exploit. The collected
vulnerability dataset described above can be used to train
the neural network models. We predict the probability of
exploit for vulnerabilities by each day. To do this, we build
one neural network model for each day. When building the



TABLE I
FEATURES USED IN PREDICTING THE PROBABILITY OF EXPLOIT

Feature Family CVSS metric CWE software name description title modify date - publish date last seen date - publish date

Number 8 1 1 3000 500 1 1

TABLE II
A MOTIVATING EXAMPLE FOR PATCH SCHEDULING

Vulnerability Impact score Patching
time cost

Exploit probability
by the 1st day

Exploit probability
by the 2nd day

Exploit probability
by the 3rd day

va 8.0 2 days 0.6 0.65 0.7
vb 7.0 1 day 0.6 0.8 0.9

model for predicting the probability of exploit by the nth

day after vulnerability release, we generate the training data
for this model by relabeling the vulnerability dataset. If a
vulnerability’s exploit code becomes available within n or
less days, it is labeled as 1; otherwise, it is labeled as 0.
Then this relabeled dataset is used to train the neural network
model and this model will be used to predict the probability of
exploit for the nth day. In this paper, we assume vulnerability
patch scheduling is done monthly, since most electric utility
companies follow this scheduling frequency. That means we
need to predict the exploit probability and build one model for
each day in the following month. Therefore, about 30 neural
network models need to be built in each scheduling cycle.
To predict for a new vulnerability, the vulnerability’s corre-

sponding features can be fed into the 30 trained neural models
which will output the exploit probability by each day of the
30 days.

C. Patch Schedule Optimization

A vulnerability’s probability of exploit is changing over time
and so is the risk that the vulnerability poses to the system.
It is important to carefully schedule the patching order of
vulnerabilities so that the system’s total security risk is as
low as possible. Here we take an example to show how the
patching order affects the total risk. Suppose that a system
has two vulnerabilities to patch, va and vb. va’s impact score
is 8.0, vb’s impact score is 7.0 and they are published at the
same time. The probabilities of exploit are shown in Table II.
It takes about 2 days to patch va and 1 day to patch vb. If we
prioritize the patches only by impact score, va will be patched
first. Then the risk from Va is 8.0 ·0.6 ·1+8.0 ·0.65 ·1 = 10.0,
the risk from Vb is 7.0 ·0.6 ·1+7.0 ·0.8 ·1+7.0 ·0.9 ·1 = 16.1,
and the total risk is 26.1. If Vb is patched first, the risk from Va

is 8.0·0.6·1+8.0·0.65·1+8.0·0.7·1 = 15.6, the risk from Vb is
7.0 ·0.6 ·1, and the total risk is 19.8. From the example, it can
be seen that different patching orders can significantly affect
the total risk, and considering dynamic risks matters. Next, we
formulate patch scheduling as optimization problems.
1) Baseline Scheduling: Let vi denote vulnerability i, pi(⌧)

denote the exploit probability of vulnerability vi over time ⌧ ,
Ii denote the impact score of vi, and di denote the time cost
of processing/installing patch i. Our objective is to schedule
the patch order so that the total risk that the vulnerabilities
pose to the system is minimized. The risk of an unpatched

vulnerability at time t is r(t) as defined in Equation 1. Since
a vulnerability cannot be exploited after it is patched, this
vulnerability will not pose any risk to the system after being
patched. Thus the total risk caused by vulnerability i is: ri(si+
di) = Ii ·

R si+di

0 pi(⌧) · d⌧ , where si is the time point when
patch starts. We convert this formula to discrete calculation
which is: ri(si + di) = Ii ·

P⌧=si+di�1
⌧=0

pi(⌧)+pi(⌧+1)
2 . In this

work, we set 30 minutes as the time unit (but it can be changed
based on different application scenarios). Then di = 2 means it
takes 2 time units to complete patching, which is 60 minutes.
si =10 means the patching starts at time unit 10. For all the
vulnerabilities, the total risk is:

Pn
i=0 ri(si + di), where n is

the number of vulnerabilities. The goal is to minimize the total
risk that the unpatched vulnerabilities pose to the system.
The formulation is given in Algorithm Baseline Scheduling.

The input of the model includes the set of vulnerabilities to
be patched, V , the set of available operators to apply patches,
A, the time cost di to patch vulnerability i, and the risk of
each vulnerability ri(t). si is the scheduled start patching time
for vulnerability i and X(i,a) indicates whether vulnerability
i is allocated to operator a. Both si and X(i,a) are variables
that need to be determined during the optimization. ✓(i,k) is
a support variable to determine whether the patching time of
two vulnerabilities are overlapped. Three constraints are set:
each patch must be assigned once to exactly one operator; if
two patches are assigned to the same operator, their execution
times cannot overlap; and if a patch is dependent on another,
this patch cannot start until its predecessor are completed.
This formulated scheduling model is a NP-hard problem.

The job shop scheduling problem (JSP) can be reduced to our
problem. JSP is a common scheduling problem where jobs of
varying time are assigned to resources (e.g. machines) [22].
The vulnerabilities to patch in our problem can be regarded
as the jobs and the operators can be regarded the resources in
JSP. Since JSP is NP-hard, this formulated scheduling model
is also NP-hard.
2) Group-based scheduling: The baseline scheduling model

can give an optimal patching order for all the vulnerabilities,
but since it is NP-hard, it takes too long time to get the
optimized schedule when there are many vulnerabilities. Our
experiments show that when there are 200 vulnerabilities, it
will take more than 2 days to solve it which is not practical.
However, in practice it is not uncommon for an organization to
have several hundred of vulnerabilities to patch in each month.



Thus, a computationally more efficient solution is needed.
To address this need, we propose a group-based scheduling
approach which can greatly reduce the computation overhead
while still providing good effectiveness in risk reduction.
The basic idea is to divide assets into groups based on

their functions and other relevant factors. Then the scheduling
problem can be solved in two phases. In the first phase (group-
level scheduling), we consider the vulnerabilities in each asset
group as one vulnerability (or task) and determine the order
of groups to be patched. In the second phase (intra-group
scheduling), we consider each group separately and schedule
the vulnerabilities in each group to determine their order of
patching. The computation cost of the first phase depends
on the number of groups, and the computation cost of the
second phase depends on the number of vulnerabilities in each
group. Since both numbers are much smaller than the total
number of vulnerabilities (i.e., the problem size in the baseline
scheduling), this group-based solution should have much lower
computation cost.

Algorithm Baseline Scheduling
Inputs:
V set of applicable vulnerabilities i 2 V
A set of all available operators a 2 A to apply patches
di execution delay to patch vulnerability i
ri(t) risk of vulnerability i
si scheduled start time of vulnerability i
X(i,a) allocation of vulnerability i, X(i,a) = 1 if operator a is
assigned to vulnerability i; otherwise, X(i,a) = 0
✓(i,k) support variable used to determine whether the processing
time of vulnerability i and k are overlapped. ✓(i,k) = 1 if
vulnerability k is started before i is completed, otherwise ✓(i,k) = 0

Goal:

Minimize:
P

i2V

P
a2A X(i,a)ri(si + di)

Subject to:

•
P

a2A X(i,a) = 1 (each patch must be assigned once to exactly
one operator)

• X(i,a) + X(k,a) + ✓(i,k) + ✓(k,i) <= 3 (if patch i and k are
assigned to the same operator, their execution times cannot
overlap)

• sk >= si + di (if a patch depends on another patch, it cannot
start until its predecessor is completed)

The idea of group-based scheduling is also consistent with
existing practices in vulnerability and patch management. In
current practices, organizations usually divide their assets into
different groups based on the assets’ functions and physical
locations for easier management. Security operators need to
coordinate with other system users to schedule downtime
for machines before applying patches. Once an asset group’s
machines are scheduled, all the patches applicable to the asset
group can be applied in succession.
Phase I: group-level scheduling In this phase, each asset

group is taken as one task. We use Rj(t) to denote the risk of
all vulnerabilities in asset group j over time t and Dj is the
execution delay to process all vulnerabilities in asset group j,
where Rj(t) =

Pi=nj

i=0 ri(t) and Dj =
Pi=nj

i=0 di. nj is the

number of vulnerabilities in asset group j. In an organization,
there might be multiple operators applying patches. One
operator can be responsible for one or several asset groups, but
when one asset group is assigned to an operator, the operator
will be responsible for all the vulnerabilities in that asset
group. With these considerations, the asset group scheduling
optimization problem can be formulated in Algorithm Group-
Based Scheduling - Group-Level Scheduling.

Algorithm Group-Based Scheduling - Group-Level Scheduling
Inputs:
J set of all asset groups j 2 J in the organization
A set of all available operators a 2 A to apply patches
Dj execution delay to process all patches in asset group j
Rj(t) total risk of all vulnerabilities in asset group j
Sj scheduled start time of asset group j
X(j,a) allocation of asset group j, X(j,a) = 1 if operator a is
assigned to asset group j; otherwise, X(j,a) = 0
✓(j,k) support variable used to determine whether the processing
time of asset group j and k are overlapped for each operator.
✓(j,k) = 1 if asset group k is started before j is completed,
otherwise ✓(j,k) = 0

Goal:

Minimize:
P

j2J

P
a2A X(j,a)Rj(Sj +Dj)

Subject to:

•
P

a2A X(j,a) = 1 (each group must be assigned once to exactly
one operator)

• X(j,a) +X(k,a) + ✓(j,k) + ✓(k,j) <= 3 (if asset group j and k
are assigned to the same operator, their execution times cannot
overlap)

Algorithm Group-Based Scheduling - Intra-Group Scheduling
for each asset group do:
Inputs:
V set of applicable vulnerabilities i 2 V in the asset group
di execution delay to process vulnerability i
ri(t) risk of vulnerability i
si scheduled start time of vulnerability i
✓(i,k) support variable used to determine whether the processing
time of vulnerability i and k are overlapped. ✓(i,k) = 1 if
vulnerability k is started before i is completed, otherwise ✓(i,k) = 0

Goal:

Minimize:
P

i2V ri(si + di)

Subject to:

• ✓(i,k) + ✓(k,i) <= 1 (two patches’ execution time cannot
overlap)

• sk >= si + di (a patch cannot start until its predecessor are
completed)

• si >= Sj (vulnerabilities can be patched after its asset group
start time Sj)

Phase II: intra-group scheduling After getting the asset
group patching order, we need to schedule the patching order
for the vulnerabilities in each group. We can get each asset
group’s patch start time Sj from first phase’s scheduling.
Then the vulnerabilities in this asset group should be patched
starting from Sj . The formulated optimization algorithm is



TABLE III
PREDICTION ACCURACY VS. NUMBER OF DESCRIPTION FEATURES

Number of
description features 0 500 1000 2000 3000 3500

Prediction accuracy 0.853 0.859 0.865 0.877 0.896 0.885

TABLE IV
PREDICTION ACCURACY VS. NUMBER OF TITLE FEATURES

Number of
title features 0 100 200 400 500 600

prediction accuracy 0.871 0.875 0.881 0.891 0.896 0.893

described in Algorithm Group-Based Scheduling - Intra-Group
Scheduling.
Similar to baseline scheduling, the group-based scheduling

problem is also NP-hard.
3) Solving the optimization problems: The solver for the

scheduling optimization problems is implemented with around
2,000 lines of Python code by using the OR-Tools library,
which is developed by Google for optimization problems [23].

IV. EVALUATION

A. Prediction on Probability of Exploit

Fig. 4. Exploitability Prediction

The dataset used in this exploitability prediction experiment
consists of 8,650 vulnerabilities, half of which have exploit
and half do not have exploit as described in Section III-B1.
In evaluations, we split the dataset into two parts: 67% as the
training data and the remaining as testing data. The neural
network prediction models were implemented with Python.
The vulnerabilities’ features as described in Section III-B2 are
the input of the neural network. Each model has two hidden
layers with 100 and 30 neurons respectively. The output layer
outputs the probability of exploit.
In order to determine the best number of features for

predictions, we first test the prediction accuracy over different
number of description and title features. The results are shown
in Table III and IV. It can be seen that when the number
of features increases, the prediction accuracy first increases
and then decreases. When there are 3,000 description features
and 500 title features, the performance is the best. Thus we
extracted the 3,000 most important bi-grams from descriptions

TABLE V
TRAINING AND PREDICTION TIME

training time 63.5 minutes

prediction time 1.34 milliseconds

and the 500 most important bi-grams from titles as features in
this evaluation (see other features in Section III-B2).
We then test the accuracy of prediction without considering

when the vulnerabilities’ exploits become available. No matter
when a vulnerability starts to have exploit, if it has exploit,
it will be labeled as ‘exploited’. The prediction accuracy is
shown in Fig. 4. It has 89.6% prediction accuracy (the portion
of correct predictions out of all predictions) and the true
positive (TP: having exploit and predicted to have it) is 89.7%.
The true negative (TN: not having exploit and predicted to not
have it), false negative (FN: having exploit but predicted to not
have it) and false positive (FP: not having exploit but predicted
to have it) are 89.3%, 10.3%, and 10.7% respectively.
Next we evaluate exploit predictions over time. For each

day’s exploit prediction, there is one neural network model
trained and tested specially for that day as discussed in Section
III-B3. Here we mainly predict the exploit probability for 30
days, and thus we have 30 neural network models. The models
were run on a laptop computer with 1.60 GHz CPU and 16.0
GB memory. The training time and prediction time of those
models are shown in Table V. It takes 63.5 minutes to train
all the models. These models are trained once a month and
can be trained in advance. Thus the training of the models will
not delay any patching. The prediction for each vulnerability is
super quick and it only takes 1.34 milliseconds. The prediction
accuracy is shown in Table VI. As the time goes by, the
prediction accuracy becomes higher and higher. For example,
the prediction accuracy for Day 1 is 74.7%, and the prediction
accuracy for Day 30 is 82.0%. This is because as the time
goes by, more vulnerabilities have exploits and the dataset
is more balanced between vulnerabilities with exploit and
vulnerabilities without it.

TABLE VI
EXPLOIT PREDICTION OVER TIME

Day Accuracy TP FN TN FP

1 0.747 0.742 0.258 0.753 0.247
2 0.783 0.772 0.228 0.795 0.205
3 0.784 0.768 0.232 0.803 0.197
4 0.799 0.788 0.212 0.810 0.190
5 0.801 0.789 0.211 0.814 0.186
6 0.802 0.789 0.211 0.818 0.182
8 0.804 0.784 0.216 0.827 0.173
10 0.809 0.809 0.191 0.808 0.192
15 0.816 0.801 0.199 0.834 0.166
20 0.812 0.81 0.19 0.818 0.182
30 0.820 0.819 0.181 0.821 0.179

We use two example vulnerabilities (vi and vk) and show
their predicted exploit probabilities over time in Fig. 5 and Fig.
6. The X-axis shows the nth day after being published and
the Y-axis denotes the probability of exploit (i.e., p(⌧)) at that
very day. As time goes by, the probability of exploit becomes



TABLE VII
COMPARISON BETWEEN BASELINE SCHEDULING AND GROUP-BASED

SCHEDULING IN RUNNING TIME

Number of Vulnerabilities 120 200

Baseline scheduling 319 seconds >48 hours
Group-based scheduling 14 seconds 29 seconds

higher and higher. For example, vi’s probability of exploit is
around 0.5 at Day 8. In the real dataset, vi also gets to have
exploit in the 8th day after being published. The prediction
can give a good estimate over when the vulnerabilities will
have exploit.

Fig. 5. Predicted probability of vul-
nerability vi

Fig. 6. Predicted probability of vul-
nerability vk

Fig. 7. Comparison with baseline model in total risk

B. Evaluation on Patch Scheduling

In this section, we test how our patch scheduling optimiza-
tion solution performs. We use the real software asset data
from one electric utility company to extract 390 applicable
vulnerabilities published in January 2019 from the Vulners
database. Based on the electric utility company’s input on the
time range of patching a vulnerability, we randomly generate
the patching time cost for each vulnerability within the range
from 0.5 hours to 4 hours. This utility company has 26
asset groups. We first predict the exploit probability for each
retrieved vulnerability with our neural network models. Then
we run the baseline scheduling and the group-based scheduling
methods to get optimal patching orders. One organization
usually has multiple security operators to apply patches. Thus

we also test how our solution performs when the number of
operators changes.
We compare our solution with three other patching meth-

ods widely used in practice, patching randomly, CVSS-based
patching, and time-based patching. In the random patching
method, the operators patch vulnerabilities in random orders.
In CVSS-based patching, the vulnerabilities with higher CVSS
scores are patched first. In time-based patching, the vulnera-
bilities which are published earlier are patched first.
These methods are compared along three metrics. The

first metric is the total amount of risks that unpatched vul-
nerabilities pose to the system, which can be calculated
as

Pn
i=0

Psi+di

t=0 ri(t). The second metric is the number of
vulnerabilities that are patched before exploits are available.
If some vulnerabilities cannot be patched before exploits are
available, we hope they can be patched as soon as possible
so that the system is exposed to the exploits for a shorter
time. Thus in the third metric, for those vulnerabilities which
are not patched before exploits are available, we calculate the
time difference between the patching time and the time of
exploits being available to see how long the system is exposed
to the exploitable vulnerabilities. It can be calculated asP

i(tpatch time � texploit time) if tpatch time > texploit time,
where tpatch time is the patching time and texploit time is
the time when exploit becomes available. We call the time
difference as recovery delay.
1) Comparison between group-based scheduling and base-

line scheduling: We first compare our group-based method
with the baseline method. Since it takes too long time for
the baseline model to get the optimized patching order for
all the 390 vulnerabilities, we only use 120 vulnerabilities
for this comparison. In this comparison, only one operator is
considered to perform the vulnerability patching operations.
The running time is shown in Table VII. The time was
measured on a laptop computer with 1.60 GHZ CPU and 16.0
GB memory. The running time of the group-based model to
get optimal schedule is 14 seconds, but that of the baseline
model is 319 seconds which is about 22 times longer. When
there are 200 vulnerabilities to patch, it only takes the group-
based method 29 seconds to get the optimal schedule, but it
takes more than 48 hours for the baseline model to get the
optimal schedule (we ran the method for 48 hours but still did
not get the optimal solution). It can be seen that the group-
based method has much higher computation efficiency and can
handle much larger problem sizes than the baseline method.
We then compare how the models perform on risk reduction,
which is shown in Fig. 7. For better comparison, CVSS-based
patching, random patching and time-based patching are also
compared. The total risk of group-based scheduling is higher
than the baseline scheduling which is not unexpected, but it
is much lower than the risks of the other three scheduling
methods, which means group-based scheduling is still very
effective in risk reduction. Thus, it achieves good tradeoff
between computation cost and effectiveness of risk reduction.
2) Comparison between group-based scheduling and other

scheduling methods: In this section, we compare our group-



Fig. 8. Total amount of risks of unpatched vulner-
abilities under one operator

Fig. 9. Number of vulnerabilities patched before
exploit appears under one operator

Fig. 10. Recovery delay under one operator

Fig. 11. Total amount of risks of unpatched
vulnerabilities under multiple operators

Fig. 12. Number of vulnerabilities patched before
exploit appears under multiple operators

Fig. 13. Recovery delay under multiple operators

Fig. 14. Total amount of risks of unpatched
vulnerabilities under one operator

Fig. 15. Number of vulnerabilities patched before
exploit appears under one operator

Fig. 16. Recovery delay under one operator

based method with random patching, CVSS-based patching
and time-based patching using all the 390 vulnerabilities. The
comparisons are shown in Fig. 8, 9 and 10 when there is only
one operator. Fig. 8 shows that the total risk can be signif-
icantly reduced when scheduling patches with our proposed
method. Our method reduces the total risk by about 70%,
60% and 56% respectively compared with random patching,
CVSS-based patching and time-based patching. From Fig. 9,
we can see that our method can patch most vulnerabilities
before they have exploits. Out of those 94 vulnerabilities
whose have exploits before they are patched, 49 of them
already have exploits before they are published (i.e., zero-day
vulnerabilities), which cannot be addressed by any scheduling
algorithm. Fig. 10 shows that our method has the lowest
recovery delay, which means the system is exposed to the
exploitable vulnerabilities for the shortest time.

Fig. 11, 12 and 13 show the comparisons when there are
multiple operators. From these figures, it can be seen our
proposed method has the lowest total risk, patches more

vulnerabilities before they have exploits, and has the lowest
recovery delay. When there are more operators, the differences
between these methods become smaller. This is because when
there are more operators, more vulnerabilities can be patched
timely no matter which method is used. Thus, our method is
especially useful for small-sized and medium-sized companies
that have relatively limited security personnel compared with
the amount of vulnerabilities they need to handle.

3) Comparison with other grouping-aware methods: We
also added grouping-awareness to random patching and CVSS-
based patching and compare them with our group-based
method. For the random patching with grouping method, we
first randomly select which asset group should be patched
first and then for the vulnerabilities in each asset group we
randomly determine their patching order. For the CVSS-based
patching with grouping method, we first calculate each asset
group’s CVSS score as the sum of the CVSS scores of the
vulnerabilities in the group and patch the asset group with
highest CVSS score first. Then for the vulnerabilities in each



Fig. 17. Total amount of risks of unpatched
vulnerabilities under multiple operators

Fig. 18. Number of vulnerabilities patched before
exploit appears under multiple operators

Fig. 19. Recovery delay under multiple operators

asset group, we determine their patch order based on their
CVSS scores. We did not add grouping-awareness to time-
based patching since it is hard to reasonably determine the
time when an asset group becomes to have exploit.
The results are shown in Fig. 14, 15 and 16 when there

is only one operator. It can be seen from Fig. 14 that our
method performs much better than the other two grouping-
based methods. The total amount of risk can be reduced
from 685,985 to 262,445 when compared with the CVSS-
based patching with grouping method, and from 913,641
to 262,445 when compared with the random patching with
grouping method. Fig. 15 shows that our method can patch
296 vulnerabilities before they have exploits, while the other
two can only patch 249 and 228 vulnerabilities respectively.
Fig. 16 shows that our method exposes the system to exploits
for the shortest time, which is 1,193 hours and 1,636 hours
less than the other two methods respectively.
The comparison with the other two grouping-based methods

under multiple operators is shown in Fig. 17, 18 and 19.
The results show that our group-based scheduling method
performs much better than the other two methods under
multiple operators.

V. CONCLUSION

In this paper, we proposed a scheduling solution to schedule
the patching order of vulnerabilities to minimize the risk
that vulnerabilities pose to a system. We first predicted the
vulnerabilities’ dynamic probability of exploit over time and
computed the dynamic risk for each vulnerability based on
the predicted probability and its impact score on the system.
Then we formulated the patching scheduling problem as
optimization problems in two ways - baseline scheduling and
group-based scheduling. The evaluation based on a real dataset
showed our solution can significantly reduce the risk compared
with several other patching methods.
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