Contextualizing Rename Decisions using Refactorings,
Commit Messages, and Data Types

Anthony Peruma®* Mohamed Wiem Mkaouer®, Michael J. Decker®, Christian
D. Newman?®

%Rochester Institute of Technology, Rochester, NY, USA
bBowling Green State University, Bowling Green, OH, USA

Abstract

Identifier names are the atoms of program comprehension. Weak identifier
names decrease developer productivity and degrade the performance of auto-
mated approaches that leverage identifier names in source code analysis; threat-
ening many of the advantages which stand to be gained from advances in arti-
ficial intelligence and machine learning. Therefore, it is vital to support devel-
opers in naming and renaming identifiers. In this paper, we extend our prior
work, which studies the primary method through which names evolve: rename
refactorings. In our prior work, we contextualize rename changes by examining
commit messages and other refactorings. In this extension, we further consider
data type changes which co-occur with these renames, with a goal of understand-
ing how data type changes influence the structure and semantics of renames. In
the long term, the outcomes of this study will be used to support research into:
1) recommending when a rename should be applied, 2) recommending how to
rename an identifier, and 3) developing a model that describes how developers
mentally synergize names using domain and project knowledge. We provide
insights into how our data can support rename recommendation and analysis in
the future, and reflect on the significant challenges, highlighted by our study,

for future research in recommending renames.

*Corresponding author
Email addresses:  axp6201@rit.edu (Anthony Peruma), mwmvse@rit.edu (Mohamed
Wiem Mkaouer), mdecke@bgsu.edu (Michael J. Decker), cnewman@se.rit.edu (Christian D.
Newman)

Preprint submitted to Journal of Systems and Software April 14, 2021



20

25

Keywords: Program Comprehension, Identifier Names, Refactoring, Rename

Refactoring, Data Types

1. Introduction

Program comprehension is the pillar of a developer’s everyday development
tasks; almost every programming task requires a certain degree of understanding
of the existing codebase. In this way, software maintenance and evolution criti-
cally rely on the degree to which developers comprehend their codebases. Many
studies demonstrate the significance of the effort, in terms of time, undertaken
by developers when comprehending code [1, 2]. For instance, the time spent by
developers in reading and comprehending code is significantly longer than the
time spent in writing new instructions [2]. Therefore, developers’ productivity
can be optimized by decreasing the time needed for them to understand the
existing code [3, 4, 5, 6].

One of the most atomic activities in source code development is the naming
of code elements (e.g., class names, function/method names, etc.) collectively
referred to as identifiers. Identifier names are the basic building blocks of pro-
gram comprehension. Choices made when constructing identifier names directly
impacts productivity [4, 6, 5, 7]. For example, abbreviated terms may hinder
comprehension for both tools and humans. In response, studies search for ways
to standardize and normalize identifier names to support both developers and
tools [8, 9] and many research projects, both recent and otherwise, aim to en-
hance identifier naming using machine learning, static analysis, and by studying
naming inconsistencies [10, 11, 12, 13, 14, 15].

One way to improve identifiers is to apply a rename refactoring [16]. Rename
refactorings are defined as refactorings which modify the name of an identifier
without modifying the intended behavior of the code for which the identifier is a
part. Many Integrated Developer Environments (IDEs) offer a built-in rename
refactoring functionality. Most of these IDEs only support the mechanical act of

renaming; they allow a developer to choose what identifier they want to rename,



30

35

40

45

50

55

what new name should be used, and then perform checks to ensure that the new
name will not introduce name collisions and that the new name is applied in all
appropriate locations. There is little or no support to help inform developers
of when to rename an identifier (e.g., when a name is of sub-optimal quality),
and how to rename them (i.e., what words to use within the name). Instead,
renames are typically performed when a developer notices that an identifier does
not accurately reflect the behavior it represents. This causes renaming to be
applied in a manner that is not always wholly systematic. Further, a developer
is free to come up with whatever name they like (i.e., within the limits of naming
conventions defined for the project). This new name may be even worse than
the original, but there is no formal method to determine when this is the case.

Because naming heavily affects comprehension for both tools and humans,
it is important to fully support developers when they must modify identifier
names. That is, research must support developers in applying rename refactor-
ings. Recent research on naming focuses heavily on suggesting identifier names
[13, 14, 10, 11], studying how names correlate with behavior [12, 17], and ana-
lyzing names to reveal interesting properties [18, 19, 20, 21, 22]. We focus this
work on investigating how names evolve [23, 24, 18, 25, 26] (i.e., are changed via
rename) and how these changes affect/are affected by: 1) other changes made
to the code (i.e., behavior preserving or not) as part of 2) a larger development
plan/context. This information is critical if we are to support the evolution of
identifier names through recommending when and how to rename an identifier.

In this paper, we study renames in two ways. 1) This paper utilizes a tax-
onomy of rename types published by Arnoudova et al. [18] to understand the
types of changes applied to identifier names within our dataset. That is, we
study how individual terms within an identifier are modified both syntactically
and semantically when a rename refactoring is applied. 2) The paper contextu-
alizes these rename types by analyzing changes to data types, commit log data,
and refactorings which co-occur with renames. This allows us to understand
how changes, to the code surrounding an identifier, affects changes to the iden-

tifier’s name and, likewise, how development activities (i.e., written in a commit



60

65

70

75

80

85

log) affect changes to the identifier’s name.

This paper is an extension of two prior works. Our initial work on renames
investigated how method, class, and package identifier names evolve and how
this evolution was described in commit messages. Our aim was to understand
how names evolve and how this evolution is documented. Our assumption was
that the choice of wording used during a rename is influenced by external fac-
tors which may appear in commit messages [23]. Through this work, we deter-
mined some preliminary trends in how development activities, such as adding
features, influenced the terminology used during a rename. However, due to
the limitations of natural language analysis techniques, and the occasionally
information-light nature of commit messages, the results we found were not as
actionable as we wanted. The trends we detected were nevertheless instruc-
tive and helped guide us toward ways to improve our approach. Thus, we
extended [23] by taking into account the types of refactorings which occur be-
fore, or after, a rename refactoring while performing commit message analysis
on these surrounding operations [24]. This allowed us to more clearly identify
how names are influenced by their surrounding changes (e.g., Extract Method
and Move Attribute frequently occur before certain types of renames) and how
these influences are documented in commit messages. It also highlighted further
challenges, which we discussed as research directions for ourselves and the larger
software engineering research community.

In this paper, we extend our recent work [24] by additionally considering
the situation where a rename is applied to an identifier, and that identifier’s
corresponding data type is changed. Data type changes are interesting because,
unlike refactorings, they may change the external behavior of their associated
identifier. Data types tell us what data and behavior an identifier represents
(i.e., the data type tells us what attributes and methods can be used with this
identifier). Therefore, when an identifier and its data type both change, this
indicates a potential shift in behavior (e.g., added methods, new API), a shift
in the data represented by an identifier (e.g., added attribute), or shift in the

representation of data and behavior in a system (e.g., a change to improve



90

95

100

105

110

115

120

comprehension). By studying this situation, we can gain a more acute under-
standing of name evolution using a type of code change (i.e., data type changes)
that has a stronger, direct influence on the behavior of a given identifier, and
provide means for previous rename recommendation techniques to consider type
migration as another dimension to learn a more suitable name.

The goal of this extension is to understand the influence that data type
changes have on the structure and meaning of a rename. We emphasize data
type changes for three reasons: 1) Changes to an identifier’s type are relatively
easy to detect in many programming languages. Therefore, making suggestions
to developers on the fly when a type change is performed is already feasible in
modern IDEs. 2) Types have strong influence over the data and behavior rep-
resented by an identifier, so changes to the type can have heavy significance on
their associated identifier. 3) Type changes are a simple way for us to explore
some non-refactoring code changes related to renames. These results will pro-
vide insight for our long term goals. In the long term, the outcomes of this study
will be used to support research into: 1) recommending when a rename should
be applied (e.g., after specific types of refactorings), 2) recommending how to
rename an identifier (e.g., what words to use), and 3) developing a model that
describes how developers mentally synergize names using domain and project
knowledge. We provide insights into how our data can support future recom-
mendations. Additionally, we expand our reflection on the significant challenges
for future research in recommending renames. Hence, we answer the following
research questions:

RQ1: What is the distribution of experience among developers
that apply renames? We want to know how much experience developers
who apply renames typically have. We use this question to understand the
population from which our data has been obtained; contextualizing our data
with respect to the level of experience of the developers it was generated by.
This is important for future comparison with our dataset.

RQ2: What are the refactorings that occur more frequently with

identifier renames? With this question, we aim to understand which types of



125

130

135

140

145

150

refactorings tend to occur before or after a rename. Our assumption is that the
changes made to code immediately before or after a rename have a relationship
with the rename itself.

RQ3: To what extent can we use refactoring occurrence and com-
mit message analysis to understand why different semantic changes
were applied during a rename operation? Using our refactoring co-
occurrence data from RQ2, we add in commit message data in an effort to
see how effectively we can pinpoint the development reason for certain changes
(e.g., using more general words) to words in identifier names.

RQ4: What structural changes occur when an identifier and its
corresponding type are changed together? When an identifier is renamed
in-tandem with its data type, it may indicate a behavioral or semantic change
since modifying the type ultimately may mean that the amount, or type, of
data represented by an identifier has changed. This question explores struc-
tural changes made to an identifier to understand how type names are included
in/removed from identifier names and changes to types affect structural changes
made to identifier names.

RQ5: What semantic changes occur when an identifier and its
corresponding type are changed together? When an identifier is renamed
in-tandem with its data type, it may indicate a behavioral or semantic change
since modifying the type ultimately may mean that the amount, or type, of data
represented by an identifier has changed. We explore how identifier and type
naming semantics evolve together in this question, including how the plurality
of identifier names correlate with collection types and whether there is a covari-
ant or contravariant relationship between semantic updates to type names and
identifier names.

RQ6: What refactorings most frequently appear before and after
an identifier and its corresponding type are changed together? Are
there specific semantic changes which correlate with these refactor-
ings? This question helps us understand if there is a common set of refactoring

operations applied before or after renames which involve an identifier name and



155

160

165

170

175

its corresponding data-type. Further, we explore if these refactorings imply

different semantic changes to the identifier name.

2. RELATED WORK

Since the choice of adequate naming for identifiers is critical for code under-
standability, there have been many studies that analyze the quality of identi-
fiers and how identifier quality affects comprehension and developer efficiency.
Hence, we divide our discussion of related work into two areas - studies that
explore identifier renamings from a natural language perspective and studies

that investigate the quality attributes that an identifier should exhibit.

2.1. Identifier Renaming

Arnoudova et al. [18] studies and proposes an approach to analyzing and
classifying identifier renamings by mining rename operations and contrasting
between the old and new forms of a given identifier. Their technique leverages
the lexical database WordNet to understand how words in the old and new
versions of an identifier are related. They additionally conduct a survey showing
that 68% of developers want more support in naming identifiers and see name
recommendation as an important problem. As part of their work, the authors
introduce a taxonomy for identifier renames and report on the distribution of
each type of classification, that was part of the taxonomy, in a dataset. Our
work looks at understanding the motivations that drive developers to perform
identifier renames and how these motivations affect the name’s evolution. Hence,
we utilize Arnoudova’s taxonomy as a mechanism to measure the evolution of
a name and contextualize this evolution using commit messages, refactorings,
and data types. Additionally, our study examines a larger number of rename
operation types compared with [18].

Our previous work [23] is a study on how terms in an identifier change, and
we contextualize these changes by analyzing commit messages using a topic mod-

eler; looking for words that indicate what development activity had occurred



180

185

190

195

200

205

210

with the change. We extended [24] to attempt contextualization using not only
commit messages, but also the refactorings which surround a given rename (i.e.,
a refactoring is applied before or after the application of a rename). We found
that certain refactorings, such as extract method, move attribute, move class,
and rename (method, variable) were the most likely to occur before a rename
and that these refactorings had motivations which could be obtained via the
commit message, such as reverting the code (rename followed by rename) and
architectural changes (move class). In this study, we further extend this work
by considering rename operations which, in addition to changing an identifier’s
name, change the same identifier’s corresponding data type; an important rela-
tionship to consider due to how the type is how developers reason about both
behavior (e.g., methods) and data (e.g., attributes) that an identifier represents.

NATURALIZE, a framework, based on statistical language models, to mine
natural source code naming conventions, was implemented by Allamanis et al.
[27]. NATURALIZE looks for potential variable renaming opportunities by
learning the coding conventions in the source code via syntactic restrictions,
sub-grammars on existing identifier names. The authors extended this work
[28] to suggest the renaming of methods based on their bodies and renaming
classes based on their methods. Their work tries to find renaming opportunities,
whereas we analyze renames to understand identifier name evolution. Our work
focuses on analyzing how the words in a name evolve as a result of a rename and
external factors, where external factors are obtained though commit message
analysis or implied by other, co-occurring refactorings/data type changes.

Liu et al. [25] propose an approach that monitors the rename activities per-
formed by developers and then recommends a batch of rename operations to all
closely related code elements whose names are similar to that of the renamed el-
ement by the developer. They also study the relationship between argument and
parameter names and utilize the patterns they found to detect naming anoma-
lies and suggest renames to developers [26]. The authors determine what other
names a developer should pay attention to given that a rename has been applied

and regularity in the naming structure between parameters and arguments. The



215

220

225

230

235

240

focus of our work is complementary to this as we are looking at the semantics
behind changes made to a name and the motivation for these changes, which
could assist Liu’s approach by helping determine how to rename an identifier
(e.g., narrow the meaning) and provide more information as to when to rename

(e.g., after a Move Attribute).

2.2. Identifier Name Quality

There are several recent approaches to appraising identifier names for vari-
ables, methods, and classes. Liu et al. [11] propose an automated approach
based on deep learning to debug method names based on consistency between
the method’s name and its implementation. Kashiwabara et al. [14] use asso-
ciation rule mining to identify verbs that might be good candidates for use in
method names; this work focuses on word co-occurrence to find any emergent
relationships. [13] uses an ontology that models the word relationships within
a piece of software. They then generate suggestions for new identifier names
using different schemes for how to choose sequences of words to put together
to form the identifier. Allamanis et al. [10] use a novel language model called
the Subtoken Context Model, which is a neural network that has some sim-
ilarity to n-grams (in that it uses a previously seen set of tokens to predict
a new token). The difference is that the neural network is able to take into
account long-distance features (e.g., identifier names that occur very far away
from the target location) and produce neologisms (essentially, new identifiers)
by concatenating words together (i.e., as is commonly done by developers).

Liblit et al. [29] discuss naming in several programming languages and make
observations about how natural language influences the use of words in these
languages. Schankin et al. [4] focus on investigating the impact of more infor-
mative identifiers on code comprehension. Their findings show an advantage of
descriptive identifiers over non-descriptive ones. Hofmeister et al. [5] compare
comprehension of identifiers containing words against identifiers containing let-
ters and/or abbreviations. Their results show that when identifiers contained

only words instead of abbreviations or letters, developer comprehension speed



245

250

255

260

265

270

increased by 19% on average. Lawrie et al. [6] study 100+ programmers, asking
them to describe twelve different functions. These functions used three different
“levels” of identifiers: single letters, abbreviations, and full words. The results
show that full word identifiers lead to the best comprehension, though there were
cases where there was no statistical difference between full words and abbrevi-
ations. Butler et al. [7] extend their previous work on java class identifiers [30]
to show that flawed method identifiers are also (i.e., along with class identifiers)
associated with low-quality code according to static analysis-based metrics.

Hgst and Ostvold [12] designed automated naming rules using method signa-
ture elements, i.e., return type, parameter names, and types, and control flow.
They call this technique method phrase refinement, which takes a sequence of
part of speech tags (i.e., phrases) and concretizes them by substituting real
words. (e.g., the phrase <verb>-<adjective> might refine to is-empty). Ad-
ditionally, they use static analysis to group method names (in phrase form)
together by behavior. Binkley et al. [21] presented empirically-derived rules
that certain types of identifiers (e.g., class field identifiers) should follow. One
of these rules is that class fields should never be just an adjective.

Arnaoudova et al. [17] define a catalog of linguistic anti-patterns that are
found to deteriorate the quality of code understanding. The authors show
the negative impact of linguistic anti-patterns by conducting two studies with
software developers and finding that the majority of programmers perceive
anti-patterns as poor naming practices. In their study of readability metrics,
Fakhoury et al. [31] show that current metrics may not be effective at capturing
readability improvements; highlighting the importance of further research into
the quality of naming and how names evolve over time.

Previous studies consider the current state of the software to analyze identi-
fiers, without considering the history of their previous renames. We complement
these studies by examining how names evolve, the semantics behind this evolu-
tion, and correlated code change activities that motivate this evolution. While
existing studies focus on static names (i.e., identifiers in their current state

rather than analyzing how they change), our approach focuses on how names

10



275

280

285

290

295

evolve over time. Thus, we add to the body of knowledge represented by these
related papers. The dataset we collected can be used to augment the accuracy
of rename recommender techniques, along with unlocking the possibility to per-
form empirical studies and understand to what extent developers follow naming

conventions and best practices over a system’s lifetime.

3. ANALYSIS OF RENAMES

The hypothesis of this paper is as follows: Changes to the name of an identi-
fier are most likely related to other code changes made locally (i.e., in the same
class, function, or file) and/or the motivation behind those changes (e.g., using
a new API fixing a bug). Under this hypothesis, we should be able to corre-
late the types of changes made to a name with other local code changes and/or
change descriptions (e.g., in commit messages). We use a taxonomy created
by Arnaoudova et al. [18] to analyze rename refactorings and categorize them
into the different types prescribed by this taxonomy. In this section, we briefly
discuss the taxonomy, but encourage the reader to read the original work for
a more thorough discussion of each category. We also take a look at examples
of renames and how they are influenced by surrounding changes found in our

dataset. We will start with the taxonomy.

8.1. Taxonomy for Rename Refactorings

Entity Kind: Entity kind records the source code entity that a given iden-
tifier represents. For example, the identifier may be the name of a type, class,
getter, setter, etc.

Form of Renaming: This category reflects the lexical change made to
the identifier. It is broken down into a few subcategories: Simple, Complex,
Reordering, and Formatting. Simple changes are those that only add, remove,
or change one term in the identifier. Complex changes add, remove or change
multiple terms. Reordering is where two or more terms in an identifier switch

positions (i.e., GetSetter becomes SetterGet), and Formatting changes are those

11



300

305

310

315

320

325

where there is no renaming but a letter in a term changes case or a separator
(e.g., underscore) is added or removed.

Semantic Changes: These are changes due to adding/removing terms
or modifying terms (e.g., to another term that is a synonym of the original)
such that the meaning of the identifier may have been modified. The following
heuristics are used to figure out whether the idenifier’s semantics have been
preserved or modified.

We consider the identifier’s meaning preserved if one of the following
holds: 1) the change added/removed a separator, 2) the change expanded an
abbreviation, 3) the change collapsed a term into an abbreviation, 4) the old
term was changed to a new term which is a synonym of the old term, 5) multiple
old terms were changed to multiple new terms which are synonyms OR use or
removal of negation preserves meaning of the identifier (i.e., ItemNotVisible
becomes ItemHidden).

We consider the identifier’s meaning modified if one of the following holds:
1) Broaden meaning— the old term is renamed to a hypernym of itself OR
a term (i.e., adjective or noun) was removed which generalizes the identifier
(e.g., GetFirstUnit becomes GetUnit). 2) Narrowing meaning— the old term
is renamed to a hyponym of itself OR a term was removed which narrows the
meaning of the identifier (e.g., GetUnit becomes GetFirstUnit). 3) We consider
meaning changed (i.e., not narrowed or broadened) when an old term is changed
to a new term which is unrelated to the old; when a new term is the old term’s
meronym /holonym, or antonym; OR when multiple terms are changed AND a
negation reverses a synonym of the old term. 4) Add meaning— one or more new
terms were added to the identifier AND the addition does not fall into one of
the categories above (e.g., narrow meaning). 5) Remove meaning— one or more
terms removed from the identifier AND the removal does not fall into one of the

categories above (e.g., broaden meaning).

12



330

335

340

345

350

355

8.2. Contextualizing Rename Refactorings

Developers rename identifiers for multiple reasons. Through careful analysis
of rename refactorings, one can gain insight into how developers choose their
words, why they choose certain types of words over others, and how to mimic this
process automatically. In this subsection, we show examples of how developer
activity, recorded in commit messages and refactoring operations, is reflected in
their renaming choices.

By analyzing the following method rename: setDisableBinLogCache —
setEnableReplicationCache, we observe that the meaning of the name has
changed; the developer has modified the name by changing disable to en-
able. This change is reflected in the commit message entered by the developer:
“Changes replication caching to be disabled by default” [32]. Similarly, the re-
naming of a class from Key — EntityKey demonstrates an act of narrowing the
meaning of the identifier. Once again, the purpose of this rename is reflected in
the commit message: “Rename Key to EntityKey to prepare specialized caches”
[33].

Developers may also rename identifiers to: 1) better represent the existing
functionality and not when they are changing or narrowing it, or 2) adhere
to naming standards or correcting a spelling/grammatical mistake. For exam-
ple, here the developer renamed the class TestProxyController — ProzyCon-
trollerTest by reordering the term names to “..fixred names that were not in
standards” [34]. In the next example, the developer preserves the meaning of
a method by renaming it from inactivate — deactivate, through the use of a
synonym. This is, again, reflected in the commit message: “Renaming method
to proper English...” [35], where renaming to ‘proper English’ indicates that the
meaning has not been modified but should now be easier to comprehend.

Finally, commit messages are not the only way to contextualize rename refac-
torings. Changes to the code surrounding a name also help in understanding
what the developer’s intention. Unfortunately, most types of changes to the
code are not part of a pre-defined taxonomy. That is, it is difficult to under-

stand the abstract, domain-level goal of individual changes. Luckily, some types

13



360

365

370

375

380

385

of code changes are taxonomized. Specifically, refactorings are a taxonomy of
changes made to the code for a specific goal; typically to optimize non-functional
attributes of the code [16]. We can look at refactorings that happen just before
and right after a given rename to help us understand what the developer was
doing before and after they applied a rename refactoring.

For example, in commit [36] the developers applied an Extract Method refac-
toring with the following comment: “using the Jangaroo parsing infrastructure;
all tests green; getters inherited”, before applying rename: getCompilationsUnit
— getCompilationUnit. This preserves the meaning of the name but puts the
name more in-line with its type, as stated by the commit message for this change:
“Corrected type in internal method name” [37].

Another example comes from a move class refactoring, where a class was
moved from one package to another [38]. This refactoring commit had the fol-
lowing comment: “Incremental changes, some package refactorings etc”. Fur-
ther, a rename was performed after this commit: JsonViewResult— JsonView
[39]. This rename broadens the meaning of the name by removing result, making
the identifier more general in meaning. The commit message associated with

)

the rename is: “Cleaned up some file names for easier usage...”, meaning the
developer was likely going through and renaming things after the move class
refactoring.

In addition to surrounding code changes, a change in the data type associ-
ated with an identifier can also help contextualize a rename of an identifier. For
example, in commit [40], the developer performs the following Rename Variable:
Date sqlDate — Timestamp timestamp with the commit message “fixes issue
#29. java.util.Date and jodatime.Datetime instances would loose time informa-
tion...” From this example, we see that reason for the rename is to fix a bug by
utilizing the Timestamp data structure instead of Date.

The question we ask, in the context of these examples, is whether there are
overarching themes to the way names change given that a refactoring or data

type change has occurred in a commit surrounding it. If so, then it is possible to

study these trends and use them to support developers in their naming activities.

14



390

395

400

[ I = Github— s

Engineered open- 800 random Clone projects & Code refactoring
source projects Java projects extract commit data mining
Data Collection Stage T

et = K

| |
4 < < <
O: O O s

Rename Rename data Rename Rename
co-occurrence type change developer semantic
detection detection experience detection

Detection Stage

Figure 1: Methodology overview

4. Methodology

Our methodology consists of two stages - Data Collection and Detection. The
Data Collection stage consists of constructing our dataset while the Detection
stage consists of examining and querying the dataset for specific characteristics
to help answer our research questions. Figure 1 represents an overview of the
approach used to conduct our experiments. In the subsequent subsections, we
explain in detail the approach for each activity. Furthermore, the dataset uti-
lized in this study is available on our project website [41]. Due to performance
requirements associated with this volume of data mining and data analysis, the
activities associated with both phases were performed on a dedicated virtual
machine with 16 GB of RAM, and a 3.40 GHz i7 CPU. With this configuration,
the Data Collection Stage took approximately four weeks to complete, while the

Detection Stage was completed in around 1.5 weeks.

15



405

410

415

420

425

430

4.1. Data Collection Stage

Projects: A key element to an empirical research study is the relevance of
the dataset on which the study is based. To obtain a viable dataset, we select
800 random, open-source Java projects hosted on GitHub. These projects are
part of a curated dataset of engineered software projects made available by
[42]. The authors of this dataset classified engineered software projects based
on the project’s use of software engineering practices such as documentation,
testing, and project management. For each of these 800 projects, after cloning
the project repository, we enumerate over the commit log of each project to
extract metadata associated with each commit. The extracted data includes
the author (name and email) who was responsible for the original creation of
the commit, the creation timestamp of the commit, and the names of the files

that were part of the commit.

Refactorings: To obtain the set of refactorings from each project, we utilize
RefactoringMiner [43]. At the time of our study, RefactoringMiner can detect
28 different refactoring operations. From this list of operations, seven are re-
name based operations. At a high-level, we utilize RefactoringMiner to iterate
over all commits of a repository in chronological order. During each iteration,
RefactoringMiner compares the changes made to Java source code files in order
to detect refactorings in the code based on a pre-defined set of refactoring rules.
While there are a few other tools that can mine refactoring operations [44], we
selected RefactoringMiner since it represents state of the art in the field of refac-
toring detection [45], along with a precision of 98% and a recall of 87% [43, 46].
Therefore, it is well suited for our large-scale mining study. We investigate the
renaming operations on five types of identifiers - classes, attributes (i.e., class-
level variables), methods (including getter and setters), method parameters,
and method variables. Furthermore, we conduct our experiments on the entire

commit history of the project (and not on a release-by-release comparison).

16



435

440

445

450

455

460

4.2. Detection Stage

Rename Forms € Semantics: We utilize the tool from one of our prior
studies [23] for the detection of rename-based form and semantic updates made
to an identifier’s name. The tool follows the rules specified by Arnaoudova et
al. [18] to determine the type of form and semantic change an identifier name
undergoes when renamed. Input for the tool is the pair of old and new names
associated with a renamed identifier.

First, from the output provided by RefactoringMiner, we extract all rename-
based refactoring operations. Next, from these operations, we extract: 1) each
pair of old and new names, 2) the name of the source code file containing the
renamed identifier, 3) the name of the class containing the renamed identifier,
and 4) the unique ID of the commit associated with the refactoring.

Since most identifier names are composed of multiple terms, a pre-requisite
to performing the form and semantic analysis is the splitting of each name
into its constituent terms. Hence, the tool utilizes the Ronin splitter algorithm
implemented in the Spiral package [47] to determine the terms that form a name.
The tool primarily relies on Python’s Natural Language Toolkit (NLTK) [48]
to compare the old and new identifier name to determine the type of semantic
change made by the developer. To determine the relationship between terms in
the names, the tool makes use of WordNet [49], to obtain the semantic and part

of speech details about each term.

Renames With Data Type Changes: We built a custom tool to identify
data types associated with identifiers that undergo a rename. Based on Java
technical documentation [50], our experiments consider the following eight data
types as primitives: byte, short, int, long, float, double, boolean, and char.
Additionally, we examine the distribution of data types that store a group of
values/references (i.e., arrays and collections) [51]. For methods, we consider
the return type of the method as the data type. As void is not considered a
type in Java [52], we exclude instances where the return type changed to/from

void. This exclusion allowed our analysis on methods to be consistent with

17



465

470

475

480

485

490

the other identifiers that have types— attributes, method variables, and method
properties; these identifiers must be associated with a data type (either primitive
or non-primitive) and thus cannot have void as their type. However, for all other
instances, we apply the same processing we performed on the other identifiers
in our experiment.

Our study of data type changes and their involvement in rename refactorings
is limited to attributes, methods, method parameters, and method variables
since classes do not have types. For each rename instance of these types of
identifiers, we extract the name of the data type associated with the old and
new name of the identifier. For example, the Rename Attribute refactoring
long connTimeToLive — TimeValue timeToLive also contains a change in
data type. In this instance, the developer changes the type of the identifier
from long to TimeValue when renaming the attribute from connTimeToLive to

timeToLive.

Rename Co-occurrence With Refactorings: We built a custom tool to
identify refactorings that occur before and after rename refactoring. The
tool functions by iterating over the commits which contain refactorings in our
dataset. This is done in chronological order (based on the author-date — the
date the commit was originally made). Since our rename refactorings are related
to classes, attributes, methods, method parameters, and method variables, we
restrict our detection to refactorings that are applied to only these types of iden-
tifiers. For each renamed identifier type, we first extract all unique instances.
Next, we iterated through all refactorings searching for refactorings that in-
volved the specific instance. Our process does not take into account the time
duration between commits when looking for surrounding refactoring commits.

To better highlight this process, consider the example where we de-
tect the class stormpot.CountingAllocatorWrapper as being renamed to
stormpot.CountingAllocator [53]. We first query our list of unique attributes,
methods, parameters, and variables for identifiers that were part of this class and

had also undergone a refactoring. Our search results in an attribute, counter,

18



495

500

505

510

515

520

belonging to this class, which had undergone a rename refactoring (prior to
the class being renamed) [54]. We utilize the author-date attribute associated
with a commit to determine the order of the commits. Finally, we record this
pair of refactorings in our database. It should be noted that the version of
RefacotringMiner we utilize only supports rename refactoring operations for
parameters. Hence, we did not obtain other types of refactoring operations that

developers might apply to parameters.

Rename Co-occurrence With Data Type: The purpose of this activity is
to detect and analyze the co-occurrence of rename refactorings that also contain
a data type change to the renamed identifier. Hence, we follow an approach sim-
ilar to the general rename refactoring co-occurrences described above. However,
in this new approach, we limit the dataset to only rename instances with a data
type change; the general approach did not consider data type changes. For ex-
ample, the Rename Attribute refactoring HistoryMap historyMap — History
history contains a data type change from HistoryMap to History [55]. How-
ever, before performing this rename, the developer performs a Pull Up Attribute
refactoring operation on the attribute [56]. In this instance, the refactoring op-
erations Rename Attribute and Pull Up Attribute co-occur when the data type

of the attribute changes during its rename.

Commit Log Analysis: To derive the developer’s rationale for performing a
rename, we look at the commit log as a means of contextualizing the rename.
Hence, our experiment involves the performance of a topic modeling and n-gram
analysis of commit messages. For our topic modeling analysis, we utilize the
Latent Dirichlet Allocation (LDA) [57] algorithm. Additionally, we use a com-
bination of topic coherence [58] and manual empirical analysis as a means to
determine the ideal number of topics; past research has shown that the num-
ber of topics can vary between studies and datasets [59]. A prerequisite to
these activities was a text preprocessing task where we cleansed and normalized
the commit messages. Normalization is a process of transforming non-standard

words into a standard and convenient format [60]. Some key steps in our pre-

19



525

530

535

540

545

550

processing include: removal of stopwords, URLs, numeric and alphanumeric
characters/words, and non-dictionary words. Additionally, we also expand con-
tractions (e.g., ‘I'm’ — ‘I am’) and perform stemming and lemmatizing on

words.

Taxonomy: To support our discussion of the challenges involved in our study
(refer Sections 6.3 and 6.2), and to better understand the rationale behind the
renaming of an identifier, we perform a qualitative analysis on the source code
changes that accompany rename refactorings. In this experiment, we manually
review the diff of the commit in order to understand if the rename was made
in conjunction with other changes to the code or by itself. As a setup for this
experiment, we select 30 random rename instances from each of the five types
of identifiers. This results in a total of 150 source code files for our manual re-
view; where at least two authors review each file. When performing the review,
the reviewers first examine changes made by the developer to surrounding code
elements and the commit message. Next, the reviewers determine the rationale
for the rename. Finally, the reviewers compare their individual taxonomy anno-
tations and agree on a final set. The reviewed source files were then annotated

using this finalized taxonomy.

Developer Experience: The purpose of this activity is to determine the ex-
perience of the developers that refactor the source code in a project. As our
study is on renames, we derive the experience of developers where the develop-
ers refactoring operations are limited to only renames, developers who perform
all refactoring operations, and developers who perform only non-rename refac-
toring operations. As this is a large empirical study, obtaining the experience
of each developer, associated with a project, in our dataset is not feasible and
can also be subjective. Hence, to overcome this challenge, we perform a more
objective-based experiment where we follow the approach utilized by [61]. In
their approach, the authors use project contribution as a proxy for developer
experience within a project. Hence, for each developer in each project, we calcu-

late the Developer’s Commit Ratio (DCR). This ratio measures the number of

20



555

560

565

570

575

individual commits made by the developer against all project commits. In other

WOI‘dS, DCR = (IndwzdualContmbutorCommzts

Total AppComarits ). We utilize the project’s commit

log along with the output of RefactoringMiner to determine the developers that
belong to each of the three groups. Using details in the commit log, we first
calculate the DCR for all developers in a project. Next, using the output of
RefactoringMiner, we split the developers into their respective groups based on
the type of refactoring operations they had performed during the lifetime of the
project. To mitigate the threat of misattributing commits due to the use of
GitHub features such as pull requests, we only consider the author of a commit

as its developer.

5. Experimental Results

In this section, we discuss the results of our experiments. The discussion
is broken down into six Research Questions (RQs). While RQs 1-3 focus on
all rename refactorings, RQs 4-6 focus specifically on rename refactorings in
which the renamed identifiers also had a change in data type. The RQs are
designed to help us understand how data type changes affect the evolution of
identifier names when these changes are applied in tandem. In RQ1, we focus
on the experience of developers that perform rename refactorings versus other
types of refactoring operations. In RQ2, we discuss what types of refactorings
occur before or after a rename refactoring. Additionally, we look at how often
rename refactorings are preceded or followed by another refactoring, and what
types of refactorings these preceding or following changes represent. In RQ3,
intending to contextualize identifier renames, we combine and discuss data from
RQ2 with commit message information and the semantic change types discussed
in Section 3.1. Our end goal is to utilize the commit message and refactoring
information to contextualize the semantic change types we detected in our set
of renames. In RQ4, we examine the structural changes applied to an identifier
name when both it and its corresponding type are changed together. In RQ5,

we apply similar analysis as in RQ4 except we look at semantic, instead of

21



580

585

590

595

Table 1: Distribution of the top five refactorings

Refactoring Type Count Percentage

Rename Attribute 137,842 19.37%
Rename Variable 84,010 11.81%
Rename Method 82,206 11.55%
Move Class 76,265 10.72%
Extract Method 47,477 6.67%
Others 283,695 39.87%

structural, changes; identifying how the meaning of identifier names evolve when
their type is changed in-tandem. Finally, RQG6 is similar to RQ2, but we focus
on refactorings surrounding identifier renames which include a change to the

corresponding type.

5.1. Data Summary

For context, we present a summary of our dataset before we discuss our
results. First, with regards to project cloning, in total, we collected 748,001
commits with a project containing 732 commits and 19 developers on average.
In terms of recentness, the projects were cloned in early 2019, and approximately
74.6% of the projects had their most recent commit within the last four years.
Next, looking at the RefactoringMiner output, we identified 711,495 refactoring
operations, with each project in our dataset exhibiting more than one refactoring
operation. After the removal of outliers (via the Tukey’s fences approach),
on average, each project had 450.8 refactoring operations performed by seven
developers. Approximately 53.51% of the refactoring operations in our dataset
were rename based. We present the top five refactoring operations, from our
mined dataset, in Table 1.

Looking at the form type and semantic updates data, obtained during the
Detection stage (Section 4), we observed that developers more frequently per-

form a Simple form type rename compared to Complex, Formatting, and Re-

22



Table 2: Distribution of rename forms and semantic meaning updates made to identi-

fier names by developers

Type Count Percentage

Rename form types

Simple 259,754 68.31%
Complex 109,860 28.89%
Formatting 8,916 2.34%
Reordering 1,732 0.46%

Rename semantic meaning updates

Preserve 29,568 7.78%
Change 350,694 92.22%
Change — Narrow 44.21%
Change — Add 37.93%
Change — Broaden 15.09%
Change — Remove 2.58%
Change — Antonym 0.19%

oo ordering. In terms of semantic updates, most identifiers undergo a change in

meaning, with a narrowing in meaning occurring the most. Shown in Table

2 is the distribution of rename form and semantic meaning types that were
performed by all developers in our dataset.

From our analysis of renames with data type changes, approximately 17.39%

o5 (53,962) of renames were performed with a change in data type. From this set,

developers frequently change the type of method variables followed by method

parameters. A breakdown into the individual identifier types is presented in Ta-

ble 3. Out of the 800 projects in our dataset, 769 (= 96.13%) of these projects

exhibited rename instances that had a change in data type. Looking at the indi-

23



610

615

620

625

Table 3: Distribution of rename-based type changes

Type Changed Type of Rename Count Percentage
No Rename Attribute 128,486 41.41%
No Rename Variable 61,665 19.87%
No Rename Method 37,923 12.22%
No Rename Parameter 28,086 9.05%
Yes Rename Variable 21,885 7.05%
Yes Rename Parameter 16,285 5.25%
Yes Rename Attribute 9,355 3.01%
Yes Rename Method 6,397 2.06%
No Move And Rename Attribute 187 0.06%
Yes Move And Rename Attribute 40 0.01%

vidual identifier types, approximately 80.25% of all projects in the dataset had
an attribute rename with a change in data type, while approximately 73.65%,
92.25%, and 81% of projects had a rename of a method, variable, and parameter
occurring in tandem with a data type change respectively. Furthermore, approx-
imately 42.75% of the projects from our dataset of 800 contained a refactoring
occurring either before and/or after a rename refactoring that also contained a
data type change.

Finally, we followed [18]’s approach to identify documented renamings in
our dataset. From the set of mined rename refactoring commits, approximately
6.9% (or 4,701 out of 68,121) of the commits documented the renaming, com-
pared to less than 1% in [18]’s dataset. This means that most commit messages
do not explicitly discuss the rename operation. However, while renames are
not always documented, the motivation behind the rename may still be gleaned
from the commit message (e.g., the commit may discuss clean-up, bug fixing,
changing a method’s behavior). Not all commit messages which document re-

names specify why the rename is needed (e.g., “renaming some variables” [62])

24



630

635

640

645

650

655

and, likewise, some rename motivations can be found in commit messages which
do not mention the rename itself (e.g., “extract method to convert db entity to
generic entity” [63]). This percentage does indicate a potential need for rename
documentation support.

We have made available, on our website [41], the dataset utilized in this

study for replication and extension purposes.

5.2. RQI1: What is the distribution of experience among developers that apply

renames?

To compare the distributions of DCR for developers who had performed only
renames, only non-renames, and a mix of rename and non-rename refactorings,
we follow the same approach as [61]. Since the number of developers in each
project differs, we calculate an adjusted DCR value for each developer by di-
viding the developer’s original DCR value by the number of developers in the
project. We also restrict our experiment to projects that had only two or more
developers. Figure 2 depicts the distribution of DCR values for developers based
on the type of refactoring performed in their project.

Our observation of developers who perform all types of refactorings having
a higher DCR than those that perform only rename refactorings is in line with
the research indicating that rename operations are considered simpler, or more
accessible, compared to other refactoring operations. That is, developers who
are less experienced feel more comfortable applying them [64, 65, 66]. However,
it is interesting that developers who perform only renames share a similar DCR,
value as those that perform only non-rename refactorings. To further validate
these findings, we perform a nonparametric Mann-Whitney-Wilcoxon test on the
DCR values for developers that belonged to these categories. We obtained a
statistically significant p-value (< 0.05) when the DCR values of developers who
performed only rename refactorings were compared to developers that perform
all types of refactorings. This value confirms that developers that contribute less
to a project are more likely to perform rename refactorings, which are generally

considered easier to apply due to wide IDE support despite developers also

25



660

665

0.4+

0.3+

0.2+

Density

0.14

0.04

le-05 le-03 le-01
Developer Commit Ratio (Log Scale)

I:l All Refactorings I:l Only Non-Renames I:l Only Renames

Figure 2: Distribution of DCR values for developers based on the type of refactoring

performed in their project

generally agreeing that renaming is a difficult problem [18].

Looking at the different types of identifier rename forms, we observe that
there is no significant difference in the distribution of renaming forms between
developers that perform only renames and those that perform all types of refac-
torings. Similarly, the types of semantic updates to an identifier name also
showed no significant differences among these two groups of developers. Ta-
ble 4 provides a breakdown of the distribution of rename form and semantic
meaning updates based on developer type. Our experiment on developer expe-
rience shows that developers with more project experience (i.e., contributions)
are more accustomed to performing a multitude of different types of refactor-

ing operations. This is not surprising as these developers have more experience

26



670

675

680

685

690

695

and knowledge of the codebase (and system) and would be more comfortable
in implementing design/structural changes to the project. Given that rename
refactorings have broad IDE support and are syntactically simple modifications,
inexperienced developers will naturally be drawn into making such refactorings
in the project.

Summary for RQ1: Developers with limited project experience are more
inclined to perform only rename refactorings than other types of refactorings
(which may alter the design of the system). This is an important context for
any future recommendation effort and particularly for our data. Given that
many of the developers performing the renames we analyzed have less experience
on average, our results may reflect this lack of experience. Further research is
needed to confirm the connection between the quality, of renames and developer

experience.

5.8. RQ2: What are the refactorings that occur more frequently with identifier

renames?

To derive the extent to which non-rename refactorings can either influence or
be influenced by a rename, we study the type of refactoring commits that occur
just before and after a rename refactoring commit. This is based on the idea that
renames are likely to occur with other refactorings; an assumption supported by
Murphy-Hill et al. [67] who shows that developers perform renames in batches
more so than other refactorings and, most often, that refactorings occur on
multiple related code elements. This part of our study focuses on the renames
of classes, attributes, methods, method parameters, and method variables. For
each entity type, we extract the list of unique instances that underwent a rename
and then search for the refactoring that directly precedes and directly follows
(i.e., there may be non-refactoring commits that we skip) the rename for either
the same entity or child entities (as in the case of classes and methods).

Interestingly, we observe that for all elements that are subject to renames,
developers frequently perform the rename in isolation with respect to other

refactorings. In other words, approximately 91.97% (or 349,731) of rename

27



Table 4: Distribution of rename form and semantic meaning updates split by devel-
opers who performed all refactoring operations and those that performed only rename

refactoring operations.

Only Renames All Refactorings

Type
Percentage Percentage
Rename form types
Simple 64.65% 67.01%
Complex 30.55% 29.96%
Formatting 4.56% 2.52%
Reordering 0.24% 0.51%

Rename semantic meaning updates

Preserve 9.97% 8.50%
Change 90.03% 91.50%
Change — Narrow 48.99% 48.08%
Change — Add 29.93% 32.68%
Change — Broaden 18.33% 16.46%
Change — Remove 2.58% 2.56%
Change — Antonym 0.17% 0.21%

28



Table 5: Top 3 refactoring operations that occur before a class, attribute, method and

method variable are renamed

Refactoring
Count Percentage

Operation

Commit Message

Key Terms

Refactoring operations before a class rename

Move Class 3,069 26.96%
Rename Method 2,062 18.12%
Rename Variable 1,376 12.09%
Others 4,875 42.83%

package, structure, change
code, clean, change, fix
add, code, test, support
N/A

Refactoring operations before an

Move Attribute 1,499 83.32%
Pull Up Attribute 220 12.23%
Push Down Attribute 73 4.06%
Others 7 0.59%

attribute rename

added, fix, support, test
added, simplification, extract

separate, remove, added

N/A

Refactoring operations before a

Rename Method 1,760 19.58%
Extract Method 1,666 18.53%
Rename Variable 1,364 15.17%
Others 4,201 46.72%

method rename

revert, implementation, test
fix, added, modified, test
added, test, fix, change
N/A

Refactoring operations before a method variable rename

Rename Variable 3,067 90.66%
Extract Variable 305 9.02%
Inline Variable 6 0.18%
Others 5 0.15%

revert, added, test, fix
added, string, test, fix

fix, working, change

N/A

29



700

705

710

715

720

725

commits had no refactorings occur one commit before or one commit after.
However, this does not mean that rename is the only action applied to this
element during its lifetime. Upon the inspection of some cases, there were
changes, applied to the element, which are not considered refactoring (e.g.,
adding lines of code to a method, adding a given identifier as a parameter to
another method). For scenarios where there are refactorings either before or
after a rename, we noticed that more operations occur before a rename (=
6.27%) than after (= 1.73%).

In general, the majority of the refactorings that occur before a rename are re-
lated to changes/updates to functionality. Additionally, we observe that some of
these commits are bug fix related or due to developers either adding or updating
unit test files. For example, in order to include new functionality, a developer
refactors the existing code by creating a new method called getClassURL by per-
forming an FEzxtract Method operation [68]. Thereafter the developer renames
the newly created method to getClassUrl to ensure that name follows “Google’s
style rules” [69].

Even though the number of refactorings occurring after a rename is much
smaller, we did notice that most of these refactorings are associated with some
form of code reversal/reverting. As an example, a developer initially renames
a method from getIncludedPublishers to getEnabledSources when introducing
new functionality [70]. However, in a subsequent commit [71], the developer
removes this functionality from the method and also reverts back to the original
method name.

As the majority of refactoring operations occur before a rename, in the
following subsections, we drill-down into each element type with the aim of
discovering the common types of refactorings that precede the renaming of the
element and also the extent to which the commit log can contextualize the
relationship between these refactorings. Table 5 highlights the distribution of
the top three refactoring operations that occur before a class, attribute, method,
and method variable is renamed. Also provided in this table are the common

terms we extracted from our topic-modeling and n-gram analysis of the commit

30



730

735

740

745

750

755

messages that are associated with these refactoring operations. The complete
list of refactorings that proceed and follow a rename refactoring is available on

our project website.

5.3.1. Class Rename

Our study of class renames involve identifying the refactorings performed
on the class and all elements within the class (i.e., attribute, methods, method
parameters, and method variables) immediately before and after the developer
renames the class. We observe that developers more frequently performed a
Mowe Class refactoring before renaming the class. Results from our topic mod-
eling and n-gram analysis coupled with a manual analysis of random messages
showed that activities related to restructuring project structures and change of
package names cause developers to rename class names. For example, in [72] a
developer moves the class BasicAuthLoginCommand from com.heroku.api.command
to com.heroku.api.command.login with the message “reorganized commands into
appropriate packages.” The next refactoring operation 73] performed on this
class is renaming the class to BasicAuthLogin. The reason for the rename is
“...to simplify some of the names.”

Looking at the number of non-refactoring commits that separate a Mowve
Class from a Rename Class, we observe that the majority of renames (= 7.15%)
occur in the commit immediately following the move. We also observe that a
majority of these pairs of refactoring commits fell within one to five commits
of each other — approximately 27.73% of the time. This lends support to the
idea that they are related; Move Class refactorings are frequently done near
the same time as Rename Class. While further investigation is required to
determine when it is appropriate to recommend a rename in this situation, our
data highlights this relationship as a good avenue for future, deeper research
into what indicates that the rename will be performed versus when it will not

be.

31



760

765

770

775

780

5.8.2. Attribute Rename

Similar to classes, developers perform move operations on attributes be-
fore renaming them. Looking at the commit messages, change in functionality
(specifically adding of new features) is one of the most common reasons develop-
ers move an attribute. As an example, in commit [74], the developer moves the
attribute String jobId with the message “added the jobld to a few more logs”.
The subsequent refactoring commit [75] for this attribute involves a renaming
operation in which the attribute is renamed to context as part of a “cleanup”
activity. We observe that around 71% of the renames occur in the commit im-
mediately after the developer moves the attribute. Additionally, around 82%
of rename refactorings take place within five commits after the Move Attribute

operation.

5.3.3. Method Rename

For methods, we investigate the refactorings that are applied to the method
and its members (i.e., parameters and variables) just prior to and after the
method is renamed. Interestingly, we observe that developers perform a rename
to the method before renaming it again more than any other type of refactoring.
Based on the terms in the commit log, we observe that the reason for the initial
rename is due to developers changing the behavior/purpose of the method.
Furthermore, we notice that the second occurrence of the method rename reverts
the first rename operation. For example, in [76], the developer renames the
method showDelivery to showOwnDelivery as part of a functionality change, with
the commit message “Minor changes to access controls in instructor MVC”. In
the subsequent commit [77], the developer reverts the name change as part of
cleanup activities with the message “Final tidy of older instructor MVC”.

Looking at the interval between commits, the majority (= 15.22%) of the
method-rename pairs of refactorings occur one after another. Further, a gap of
between 1 to 5 commits occurs around 37.68% of the time between two method

renarmes.

32



785

790

795

800

805

810

5.3.4. Method Variable Rename

Like methods, method variables also undergo rename operations in succes-
sion. Once again, looking at the commit messages, we observe that the reason
for the initial rename tends to be due to either refactoring or change (including
reversals) in functionality. It is also interesting to note that the developers re-
vert the variable name of the initial commit in the next rename. For example, in
[78] the developer renames the variable drop to assembledDrop with the message
“simplified drop assembly a bit”. The next commit [79] reverts the variable
name when the developer performs a “misc code cleanup” activity. Finally, a
gap of between 1 to 5 commits occurs around 33.94% of the time between two
variable renames.

Summary for RQ2: We show that in most scenarios, renaming of an
element does not generally seem to be influenced by, nor does itself influence
another type of refactoring on the same element. This indicates that an analysis
of non-refactoring operations will be required to understand how changes to
code around a rename affect or are affected by the rename. However, there is a
subset of renames that occur directly before or after another refactoring. Most
commonly, the refactorings occurring before a rename are Eztract Method, Move
Attribute, Move Class, and Rename. In particular, we observe that 71% of the
time, a rename occurs in the commit directly following a Move Attribute, and
82% of the time, this rename is within five commits after the Move Attribute
operation. In other cases (Move Class, Rename Method), this percentage rests
between 15 and 27%. Finally, in situations where a rename follows another
rename, we observe that developers revert to the original name when performing

the second rename.

5.4. RQ3: To what extent can we use refactoring occurrence and commit mes-
sage analysis to understand why different semantic changes were applied
during a rename operation?

To answer this question, we look at the types of semantic changes applied

to identifier names given that another refactoring was applied in the previous

33



Table 6: An overview of the types of semantic updates an identifier name undergoes

Identifier Refactoring Top 3 Types of Type of Top 3 Semantic
Type Before Rename Rename Forms Semantic Update Change Subtypes
Simple (57.82% Narrow (63.56%
Move Class ple ( ) Change (84.14%) ( )
Complex (34.68%) Broaden (28.13%)
(Total Count: 3,160) . Preserve (15.85%)
Class Formatting (5.54%) Add (3.65%)
Simple (65.26%) Narrow (57.42%)
Rename Method Change (90.0%)
Complex (30.29%) Broaden (31.56%)
(Total Count: 2,179) . Preserve (10.0%)
Formatting (2.98%) Add (6.78%)
R Variabl Simple (61.19%)
ename Variable
Complex (34.69%) Change (100.0%) Narrow (100%)
(Total Count: 1,479) .
Formatting (2.64%)
Simple (67.44%) Add (54.05%)
Move Attribute Change (94.66%)
Complex (29.75%) Narrow (24.59%)
. (Total Count: 1,499) . Preserve (5.34%)
Attribute Formatting (2.54%) Broaden (16.07%)
Simple (55.91%) Narrow (66.84%)
Pull Up Attribute Change (85.0%)
Complex (35%) Broaden (25.67%)
(Total Count: 220) Preserve (15.0%)
Formatting (8.18%) Add (3.21%)
Simple (62.16%) Narrow (70.21%)
Push Down Attribute Change (63.51%)
Complex (28.57%) Broaden (23.4%)
(Total Count: 74) . Preserve (36.49%)
Formatting (6.76%) Add (2.13%)
Simple (66.22%) Narrow (36.42%)
Rename Method Change (81.19%)
Complex (23.17%) Broaden (31.16%)
(Total Count: 2,158) Preserve (18.81%)
Method Formatting (9.87%) Add (24.14%)
Simple (52.42%) Narrow (64.06%)
Extract Method Change (85.42%)
Complex (43.15%) Broaden (26.12%)
(Total Count: 1,694) . Preserve (14.58%)
Formatting (3.96%) Add (4.49%)
Simple (51.62%) Narrow (49.28%)
Rename Variable Change (87.41%)
Complex (43.98%) Broaden (32.86%)
(Total Count: 1,387) . Preserve (12.59%)
Formatting (3.89%) Remove (9.17%)
Simple (87.41%) Add(77.35%)
Rename Variable Change (98.89%)
Complex (12.36%) Narrow (14.93%)
. (Total Count: 3,067) . Preserve (1.11%)
Variable Formatting (0.23%) Broaden (6.17%)

Extract Variable
(Total Count: 305)

Simple (61.64%)
Complex (36.72%)
Formatting (1.31%)

Change (92.13%)
Preserve (7.87%)

Narrow (71.17%)
Broaden (19.57%)
Add(6.05%)

Inline Variable
(Total Count: 6)

Simple (83.33%)
Complex (16.67%)

Change (100%)

Add (66.67%)
Narrow(33.33%)

34



815

820

825

830

835

840

845

commit. We then analyze this data to understand whether the refactoring that
happened before the rename had any effect on the semantic change applied
during the rename. Additionally, we perform an analysis of commit messages
using LDA and bi/trigrams in an effort to further contextualize the semantic
change; using information about why a given refactoring was applied before the
rename to help us understand the semantic changes observed during renames
applied afterward.

The first observation we make is that renames applied after another refactor-
ing most frequently changed the target name’s meaning somehow; the meaning
was less frequently preserved. Therefore, we will first look at renames that
changed the meaning of the identifier they were applied to. Please refer to 3.1
for a refresher on the semantic change categories. Table 6 highlights the distri-
bution of these change types for elements that undergo a rename after another
type of refactoring operation.

We observe that the majority of the name changes were related to a nar-
rowing in the meaning of the name. Generally, a narrowing in the meaning of
an identifier name is related to a specialization of functionality. For example,
in commit [80], a developer created the method readImage(width int, height
int) by performing an Eztract Method operation in order to add “missing func-
tionality”. In a subsequent refactoring operation on this method, the developer
renames the method to readZlibImage(width int, height int) with the mes-
sage “Added read support for GM8 gmk files” [81]. As can be seen by the
message, the developer specializes the method and hence reflects this behavior
in the new method name by narrowing its meaning.

The next most common type of semantic change was the broadening of the
identifier’s name. Developers perform a broadening of the name when they
generalize the behavior of the identifier. As an example, in commit [82], a
developer performs a Pull Up Attribute on idColumn as part of generalizing
change — “Create generic table class” . Thereafter, the developer renames the
attribute to id in order to make it consistent with the earlier generalizing task

— “Rename generic table column fields” [83]. Finally, adding to the identifier

35



850

855

860

865

870

875

name was the third most frequent type of semantic change.

There are a few interesting things to point out in Table 6. The first is that a
Rename Variable followed by another Rename Variable tended to add meaning
instead of narrow or broaden. The same applies to renames occurring after a
Move Attribute refactoring and after an Inline Variable refactoring. However,
these are the only examples of a break from the typical pattern of Narrow
being the most common semantic change type. If we only contextualize using
refactorings applied before renames, there are few significant differences in the
types of semantic changes applied after different types of refactorings. While
this data does indicate the popularity of narrowing, adding to, or broadening
the meaning of a name, it does not completely help us understand what the
developers were trying to accomplish; an FExtract Method refactoring occurring
before a rename does not serve as a strong indicator of what semantic change
will happen if a rename is applied afterward.

To help us further contextualize these refactorings and the renames occurring
afterward, we perform LDA and n-gram analysis on commit messages associ-
ated with the rename refactorings occurring after a refactoring operation. Our
previous work also used LDA in a similar context [23], but it performed LDA
analysis on the commit message associated with the rename without taking
into account if the rename occurred in isolation or immediately after another
refactoring. We extend the topic modeling approach in [23] by incorporating
additional text preprocessing and the use of topic coherence scores in order to
improve the quality of our text analysis compared to the original paper. The
results of this analysis are in Tables 7, 8, 9, and 10. In each table, we show the
two strongest topics from LDA along with either a bigram or trigram analysis.
We present either the bigram or trigram that is the most relevant. Using the
data in these tables, we can see some indication of what development activity
caused different types of semantic changes when applying a rename.

Table 7 shows data for all method renames that are preceded by a variable
rename, and resulted in the name of the method broadening in meaning. These

preceded a rename which resulted in a broaden meaning. The data here indicates

36



Table 7: Broadening of a method name after a variable rename

Analysis Output

change (0.090), model (0.086), past (0.068),
discussed (0.068), allow (0.019), lambda(0.019),
route(0.019), work(0.015), early(0.014),
simplified(0.014)

LDA Topic 1

change (0.088), model (0.061), past (0.049),
discussed (0.049), fix (0.028), factory (0.026),
changed (0.023), loader (0.023), add (0.017),
set (0.013)

LDA Topic 2

discussed, past, model), (change, discussed, past),

model, change, discussed), (past, model, change),

(
(
Trigram (discussed, past, added), (changed, loader, factory),
(loader, factory, changed), (factory, changed, loader),
(

location, model, change), (render, nicely, html)

Table 8: Narrowing of a variable name after its extraction

Analysis Output

code (0.091), binding (0.083), data (0.081),
updated (0.074), fix (0.028), add (0.025),
support (0.017), cr (0.009), custom (0.009),
request (0.009)

LDA Topic 1

code (0.067), updated (0.060), binding (0.059),
data (0.058), record (0.013), id (0.010),

LDA Topic 2

custom (0.010), introduced (0.010), remove (0.010),

cr (0.007)

(data, binding), (binding, code), (updated, data),
Bigram (code, updated), (revamped, hibernate),(added, method),

(array, fix), (attribute, handle), (binding, warning)

37



Table 9: Narrowing of an attribute name after its pulled-up

Analysis

Output

LDA Topic 1

work (0.094), introduce (0.043), security (0.034),
option (0.034), addition (0.034), start (0.018),
add (0.018), took (0.018), thread (0.018),
ongoing (0.018)

LDA Topic 2

symbol (0.077), table (0.077), work (0.061),
unit (0.031), option (0.031), property (0.024),
fixed (0.022), hierarchy (0.016), added (0.016),
implementation (0.016)

Trigram

hierarchy, option, reduce),
implemented, hierarchy, option),

option, reduce, code), (reduce, code, duplication),

duplication, implemented, hierarchy),

(

(

(

(code, duplication, implemented),

(

(gross, value, gross), (addition, security, addition),
(

code, added, support), (entity, id, field)

38



Table 10: Adding meaning to a class name after moving it

Analysis

Output

LDA Topic 1

method (0.189), added (0.083), adding (0.072),
increased (0.071), incremental (0.071), stub (0.071),
anonymous (0.071), truly (0.071), fix (0.013),
subset (0.013)

LDA Topic 2

test (0.198), validation (0.043), removing (0.030),
enable (0.029), mapping (0.029), upgrade (0.029),
failing (0.029), concept (0.029), collection (0.015),
contains (0.015)

Trigram

added, method, adding), (adding, truly, anonymous),
incremental, stub, method), (method, added, method),
method, adding, truly), (stub, method, added),

(

(

(

(truly, anonymous, increased),
(anonymous, increased, incremental),
(

cleaned, scorer, removing), (field, tree, context)

39



880

885

890

895

900

905

changes to a model and changes to a factory. An analysis of the commit messages
associated with these topics shows that the updates are due to bug fixes or code
optimizations. For example, in commit [84], the broadening of the name is

4

associated with the message “...Made the factory generic”, which a broaden
meaning rename would logically follow. Table 8 has similar data but for a set
of FExtract Variable refactorings which preceded a narrowing of the identifier
name meaning via rename. The topics and bigrams here indicate code related
to data binding, code updates, and code fixes. Again, we took a look at the
commit messages associated with this data and found that most of the data
bindings were specific to a certain project in our corpus. In this instance [85],
the developer uses a generic message, “Updated data binding code...”. Ignoring
this set of commits, a majority of the remaining messages were associated with
bug fixes.

Table 9 shows the implementation of options and reduction in code dupli-
cation which preceded a narrowing in meaning. An analysis of the commit
messages associated with this table shows that the removal of duplicate [86]
and legacy [87] code is a task associated with code cleanup activities. These
activities can also range from simple identifier renames [88] to more intensive
structural changes [89]. Finally, Table 10 indicates the addition of new meth-
ods associated with moving a class to a different location, which preceded an
add meaning change. Examining these commit messages reveals that methods
are added in response to enhancing the existing design of the system after the
class is moved and hence contribute to the renaming of the class, such as in the
case of [90], where the developer performs a “...Method grouping” in the newly
moved class.

Preserve meaning was the least occurring semantic type, and not surpris-
ingly, the frequently occurring terms in these commit messages were not change
related. These terms include ‘fix’; ‘test’” and ‘work’. Generally, such terms are
associated with behavior correction. Hence, developers feel that the update
they make to the code does not necessarily deviate from the originally expected

behavior of the identifier. For example, in [91] as part of updates to the user

40



910

915

920

925

930

935

interface, the developer performs a Pull Up Method operation on the method
calcTotal. The next update [92] to this method is to address an issue, and
as part of this task, the developer renames the method to calculateTotal to
better represent its intended behavior. A cursory glance at the method shows
no changes to the functional behavior exhibited by this method.

Summary for RQ3: Developers frequently change the semantic meaning
of an identifier name when performing a rename after a refactoring, rather than
preserving it. Most frequently, a rename will change this meaning by narrowing
(i.e., specializing) the identifier name it is applied to. While the rationale for
some semantic changes can be derived from the commit log in addition to the
actions that occurred just prior to the rename, classical ways of analyzing large
numbers of commit messages provide only a high-level understanding of this
rationale and require significant manual analysis to help us fully understand
the rationale. The answer to this RQ is that refactorings, occurring before and
after a rename, and commit messages can give us some high-level insight into
how names semantically change and why. Still, our data shows that further re-
search using additional software artifacts, and new methods of natural language
text analysis for software engineering, are required to provide us with stronger

insights.

5.5. RQ4: What structural changes occur when an identifier and its correspond-

ing type are changed together?

From our analysis of 310,309 identifier rename instances, we observe that
17.39% (or 53,962) of identifier renames involve a change to their corresponding
type. We are interested in understanding how changes to the type name corre-
late with modifications to the structure of an identifier name. A breakdown of
renames which included a change in data type is shown in Table 3.

First, we look at rename forms (i.e., Simple, Complex, Reordering, and For-
matting). As mentioned in Section 3.1, a Simple rename involves a change
of a single term between the old and new name of the identifier (e.g., char[]

password — byte[] encodedPassword). The Rename Variable refactoring op-

41



940

945

950

955

Table 11: Distribution of identifier form types when a change in data type occurs

Form Type Count
Percentage
Change (Total: 53, 962)
Simple 32,448 60.13%
Complex 21,169 39.23%
Formatting 314 0.58%
Reordering 31 0.06%

eration String moveCoords — Point point, on the other hand, falls under a
Complex rename as more than one term between the old and new identifier name
has changed. Reordering involves a change of position of terms (e.g., RecordId
recordIld — IdRecord idRecord), while Formatting is due to change of case or
the addition/removal of a special character (e.g., AbstractDropDown dropdown
— DropDown dropDown). Looking at the types of rename forms, as shown in
Table 11, we observe that approximately 60.13% of data type changes are as-
sociated with Simple changes to the identifier’s name, while Complex changes
account for approximately 39.23%. Formatting and Reordering changes each
account for less than 1%.

Additionally, we investigate the extent to which an identifier’s name contains
the name of its data type to see if the type is generally added or removed as
identifiers are changed. Prior work considers the inclusion of a type name in the
associated identifier’s name as an impediment to software maintenance and code
comprehension activities [2]. As some insight into this, it could be argued that,
in strongly typed languages, including the name of a type in an identifier’s name
is redundant due to the type being explicitly present already, and modern IDEs
will generally inform the developer of an identifier’s type using annotations.
Another drawback of this naming approach is that the developer will be forced
to rename the identifier when changing its data type (or risk the name becoming

out of date). This might be a substantial number of instances throughout the

42



960

965

970

975

980

985

codebase; not just the statement declaring the identifier. For example, when
naming the variable String tupleString, the developer appends the name of
the data type, String, to the identifier’s name. For this specific example, we
observe that the developer, in a subsequent commit, renames the identifier to
List<String> tuple. Assuch, it can be seen that the developer had to adjust
the name of the identifier due to the old data type being present in the name.

For each instance of a rename refactoring in our dataset, we check if the old
and new name contains its respected data type as part of its name (i.e., the iden-
tifier name either starts with, ends with, contains or is an exact case-insensitive
match of the name of the data type). First, looking at all rename instances (i.e.,
renames with and without a data type change), we observe that approximately
83.69% (out of 310,309) of the rename refactorings did not contain the name of
the data type as part of the old or new identifier’s name. Within this 83.69% of
renames, approximately 10% of these renames had a change in data type, while
the remaining 90% retain the same data type.

Focusing on the remaining 16.31% (or 50,621) of renames on identifier names
which contain the name of their corresponding data-type, we have two groups
which are summarized in Table 12: G1) identifiers whose corresponding data
type changed (top half of the table with 26,227 rename instances); and G2)
identifiers whose corresponding data type did not change (bottom half of the
table with 24,394 rename instances). Identifier names in G1 tended to exactly
match the name of their type even after being renamed (e.g., LocationStrategy
locationStrategy — ElementLocator elementLocator) 34.86% of the time
and, when the name of the type was not originally present, they tended to
be changed to exactly match their type during a rename (e.g., BitRateType
bitRate — BitRateType bitRateType) 18.73% of the time. This indicates
that when a data type and identifier name are changed in-tandem, there is a
tendency to include (or keep) the name of the type within the identifier name.

Identifier names in G2 are similar in that the majority of most frequent cases
involve adding (or keeping) the data type name to (in) the identifier name.

The primary difference between G1 and G2 is that G1 identifiers tend to be

43



990

995

1000

1005

1010

1015

1020

exact matches; the identifier name and type name are exactly the same. In
G2, the type names are most frequently appended to the end of the identifier
name; the type name is a substring of the identifier name. An explanation for
this difference may be that, since types in G1 were modified in-tandem with
identifier names, the identifier names are more intricately linked to the type
name. Either by already having included it (in the 34.86% case) or for some
other reason (in the 18.73% case). Next, we look at the data in this set of 18.73%
to try and determine what these other reasons might be. While there was no
visibly generalizable trend, we notice that rename instances in this set contain a
mix of primitive and non-primitive data types associated with the original name
of the identifier and, as part of the rename process, all primitive data types were
converted to non-primitive data types (e.g., long timestamp — Clock clock).
This might indicate that one of the trends for the primitives in this data is that
these are a case of broaden-meaning changes, where identifiers with primitive
types are made into objects with more data and behavior. Our project webpage
[41] contains the rest of the combinations not present in Table 12.

Summary for RQ4: Looking at the 53,962 instances of renames applied
to both an identifier and its given type, 60% of these changes are Simple, while
39% are Complex. This contrasts with the general population of renames in our
study (i.e., regardless of whether there was a change to the type), where 68%
are Simple and 29% Complex (Table 2). Of the 16.31% of identifiers involved in
this RQ, most added or preserved their type name during a rename refactoring.
A minority removed their type name. We observe that renames which involve
a change to the type name tended to also involve identifiers with names exactly
matching their type. Whereas, when there was not a data type change with
the rename, the type name was a substring and tended to be appended to the
end of the corresponding identifier name. Generally, developers tended to add
or keep type names during renames rather than remove them. More research
is required to ascertain the degree to which type names negatively impact the
identifier names that they are a part of, but it is possible to recommend devel-

opers reconsider whether there is a reason the type name should be part of the

44



1025

1030

Table 12: Distribution of occurrence for the different scenarios where the name of the

data type is present in the identifier’s name

Old Identifier Name New Identifier Name Count Percentage

Renames with data type changes that contain

the name of the data type in the identifier’s name (Total Count: 26,227)

Exact match Exact match 9,143 34.86%
Does not contain Exact match 4,913 18.73%
Exact match Does not contain 3,746 14.28%

...other combinations 8,425 32.12%

Renames without data type changes that contain

the name of the data type in the identifier’s name (Total Count: 24,394)

Does not contain Exact match 5,470 22.42%
Ends with type name Ends with type name 4,625 18.96%
Does not contain Ends with type name 3,447 14.13%

...other combinations 10,852 44.49%

identifier during a rename. The trends in Table 12 are reported more fully in

our openly available dataset.

5.6. RQ5: What semantic changes occur when an identifier and its correspond-

ing type are changed together?

To answer this research question, we focus our analysis only on rename
refactorings that included a change in data type (i.e., 53,962 or ~ 17.39% of
rename instances) and analyze how modifications applied to these names are
reflected in their data type.

We examine how the semantic meaning of an identifier varies when there
is a change to the associated data type. The majority of semantic updates
involved a change in the meaning of the identifier. A drill-down into the change
in meaning types shows that developers change the data type when Narrowing
the meaning of the name approximately 67.91% of the time (e.g., Parse parse

— ParseResult parseResult). A Broadening of the identifier names occurs

45



Table 13: Examples highlighting covariant and contravariant rename instances

Semantic Change Type

Rename Instances

Covariant

Identifier Name: Narrow

Data Type Name: Narrow

Mongo mongo — MongoClient mongoClient

Client client — ClientEditor clientEditor

Identifier Name: Broaden

Data Type Name: Broaden

TabComponent childTabComponent — Tab childTab

DateTime availabilityEnd — Duration availability

Identifier Name: Preserve

Data Type Name: Preserve

CsvCreator csvCreator — CsvMaker csvMaker

Log log — Logger logger

Contravariant

Identifier Name: Narrow

Data Type Name: Broaden

SolrConfig solrConfig — String solrConfigFile
GraphRoute graphRoute — Object graphRouteObj

Identifier Name: Broaden

Data Type Name: Narrow

String fileName — File file

Executor workerPool — ExecutorService pool

Identifier Name: Preserve

Data Type Name: Narrow

String validationInformation — Message validationInfo

QueryOption reusable — QueryOptionReuse reuse

46



1035

1040

1045

1050

1055

1060

1065

20.98% of the time (e.g., String jobName — Job job), followed by Preserve at
8.80% (e.g., FormulaContext formula — ExpressionContext expression),
Add and Remove at 1.62%, and 0.64%, respectively. This contrasts somewhat
with our findings on general renames (RQ3), because in RQ5 we find that these
renames tend to narrow meaning more often (+23% more often), add meaning
less often (-36% less often), and broaden meaning more often (+5%) compared
to general rename semantic changes examined in RQ3. If we look at semantic
updates made directly to the type name, approximately 69% (or 27,298) of the
data type changes show a narrow in meaning, while 24% broadened with the
remaining 7% belonging to add and remove.

We also look into how the semantic meaning of types and their correspond-
ing identifier names covary. 71.94% (or 28,341) of the identifier and data type
name changes show a covariant relationship; both the identifier and its asso-
ciated data type name underwent the same semantic update. From a more
granular view, we observe that the narrowing of an identifier and data type
name occur the most, approximately 56.28% (or 22,171). An example of this
type of occurrence is when the developer performs the following Rename At-
tribute operation: DateFormat defaultDateFormat — DateTimeFormatter
defaultDateTimeFormatter. In this example, both the identifier name and
data type undergo a narrowing of its respective original meaning. The next two
highest occurrences were contravariant: a narrowing of the identifier name and
broadening of the data type name at 12.64%; and covariant: a broadening of
both the names at 11.02%. In Table 13, we provide examples of covariant and
contravariant instances that occurred in our dataset.

Finally, we look at the relationship between identifier names being changed
to/from plural form and their data type changing to/from a collection. To
detect a change in plurality, we compare the matched terms in the old and
new identifier names looking for either a singular to plural or plural to singular
change between the matched terms. For example, when the developer renames
the attribute defaultValue to defaultValues, the part of speech for the term

‘Value’ changes from singular to plural. At a high level, as shown in Table 14,

47



1070

1075

1080

1085

Table 14: Mapping between identifier name change in plurality and change in data

type
Change in Change in Count
Percentage

Data Type? Plurality? (Total: 310,309)
No No 252,940 81.51%
Yes No 50,840 16.38%
No Yes 3,407 1.10%
Yes Yes 3,122 1.01%

the majority of renames did not undergo a data type change nor a change in the
plurality of their name. However, if we were to focus on only instances that show
a change in plurality, approximately 47.82% (3407/(3407 4+ 3122)) of plurality
changes also had a change in data type (e.g., List<String> contextNames —
String contextName), while the other 52.18% (3122/(340743122)) of plurality
renames did not have a change of data type (e.g., String hostName — String
hostNames).

We also detect when data types that were part of a rename were changed
to or from a collection type. Table 15 provides a breakdown of the various
combinations of single-reference and collection-based data types that underwent
a change in data type. Our analysis shows that the majority of type changes
(Table 15, ~z 82.64%) were not group/collection based (i.e., neither the old or
new name utilized an array or collection-based data type). Identifiers that did
utilize collection based data types in either the new, old, or both names (e.g.,
List<String> contextNames — String contextName) accounted for around
17.36%.

We use the data about plurality and data-type above to study how iden-
tifier name plurality and data-type are connected. We observe that around
69.47% of renames that did not have a change in plurality (but did have a
type change; Table 16) also did not utilize collection-based data types in either

48



1090

1095

1100

1105

1110

1115

the old or new name (e.g., DateTime date — LocalDate day). Additionally,
around 3.74% (Table 16, (900 + 1120)/53962) of the instances whose data type
changed to a collection-based data type change did not show a change in plu-
rality. For example, even though the Rename Attribute refactoring: String
exportToolCommand — List<String> executableCommand does not show an
overall change in plurality, the developer performs a change in data type by mov-
ing from a non-collection to a collection based data type. When a data-type is
modified such that it becomes a collection, 64.29% (Table 16, 1621/(900+1621))
of the time there is a change in plurality for its corresponding identifier name
and 35.7% of the time, there is no change in the plurality of the name. When
a data-type is modified such that it ceases to be a collection, 53.02% (Table 16,
1264/(1264 + 1120)) of the time there is a change in plurality for the corre-
sponding name and 46.98% of the time, there is no change in plurality. One
other interesting note about this table is that 13.17% of the time, when there
was a change in type during a rename operation, the plurality of the identifier
changed but we did not detect a collection type. This indicates that the ob-
jects’ class may have internally changed to include some form of collection or
collection-like behavior, which we would not be able to detect since we only look
at type signatures without doing internal analysis on classes.

Summary for RQ5: From a semantic perspective, consistent with RQ3,
we observe that developers generally narrow the name of the identifier in con-
junction with a change in data type as opposed to other types of semantic change
types. However, the data also shows that this frequency is more pronounced
(i-e., higher) for renames which involve type changes. We also note that there
was a decrease in add meaning changes and a slight increase in broaden meaning
changes compared to the general set of renames from RQ3. Additionally, when
a data-type is modified such that it becomes a collection, 64.29% of the time
there is a change in plurality for its corresponding identifier name, and 35.7%
of the time, there is no change in the plurality of the name. When a data-type
is modified such that it ceases to be a collection, 53.02% of the time, there is a

change in plurality for the corresponding name, and 46.98% of the time, there is

49



Table 15: Distribution of data type changes with primitive/non-primitive and sin-

gle/collection data types for rename instances that changed data type

Old Data Type New Data Type Count Percentage

Primitive vs. Non-Primitive (Total Count: 53,862)

Non-Primitive Non-Primitive 49,380 91.51%
Primitive Non-Primitive 2,532 4.69%
Non-Primitive Primitive 1,157 2.14%
Primitive Primitive 893 1.65%
Single vs. Collection (Total Count: 53,962)
Single Single 44,593 82.64%
Collection Collection 4,464 8.27T%
Single Collection 2,521 4.67%
Collection Single 2,384 4.42%

Table 16: Mapping between identifier name change in plurality and use of collection-

based data type for rename instances that underwent a change in data type

Is Data Type a Collection? Change in Count
Old Identifier New Identifier Plurality? (Total: 53,962) %
No No No 37,487  69.47%
No No Yes 7,106  13.17%
No Yes No 900 1.67%
No Yes Yes 1,621  3.00%
Yes No No 1,120 2.08%
Yes No Yes 1,264  2.34%
Yes Yes No 3,556  6.59%
Yes Yes Yes 908  1.68%

50



1120

1125

1130

1135

1140

1145

no change in plurality. 1.68% of the time, the data type is already a collection
object, and the identifier is modified to be plural to reflect this. Finally, we
found that most identifier names covariantly evolve with their corresponding
type name, and a minority of the renames we examined showed a contravariant

relationship.

5.7. RQ6: What refactorings most frequently appear before and after an iden-
tifier and its corresponding type are changed together? Are there specific

semantic changes which correlate with these refactorings?

To answer this question, we look at the refactorings that surround attribute,
method, parameter, and variable rename refactorings that have a change in data
type. Hence, the input data for this research question is a subset of the dataset
used in RQ2; specifically the subset of renames which included a change in
type. Except for class, we extract the subset of rename instances for attributes
methods, and method variables that underwent a change in data type while
being renamed. In total, 283 (=~ 15.31%) attribute renames that underwent
a data type change also had a refactoring occurring either before or after the
rename. Similarly, we observe 564 (=~ 9.63%) variable, and 734 (~ 6.78%)
method renames under the same criteria.

Similar to RQ2, the majority of the refactorings occurred before a rename
refactoring. Hence, we look at the refactorings that frequently occurred before a
rename with a data type change. For variables, we observe that the majority of
variable renames containing a data type change occurred approximately 42.73%
of the time after the same variable was previously renamed. Rename-based data
type changes for methods occurred 20.30% of the time after an Eztract Method
operation, and 16.89% of the time after a Rename Variable within the same
method. This is nearly identical to RQ2 data (Table 5), where Eztract Method
and Rename Variable occurred 18.53% and 15.17% of the time, respectively,
before a rename. Likewise, renames occurred after Move Attribute ~ 66.08% of
the time. This relationship is weaker than in Table 5, where renames occurred

after Move Attribute 83.32% of the time.

o1



1150

1155

1160

1165

1170

1175

Finally, we investigate the semantic updates made to the identifier’s name,
which follows a refactoring operation. Presented in Table 17, are the top three
refactoring operations that preceded a rename refactoring that also had a data
type change. This table also shows the distribution of semantic updates that the
name undergoes. The trends mirror what we discussed in RQ4 and RQ5, but
are broken down by refactoring which preceded the rename of an identifier name
and its type. Add-meaning changes were much less likely when an identifier and
its type are renamed together. If we compare Table 6 and Table 17, we can see
that general identifier renames with a preceding Move Attribute refactoring tend
to add meaning, but when we narrow to identifier renames which change the
type in-tandem, we see a sharp decline in the relative number of add-meaning
changes (a reduction from 54% to 1.07%) and instead see a majority of narrow
and broadening-meaning changes. A similar drop occurs for identifier renames
with a preceding Rename Variable (from 77% to <3%). This data breaks down
some of the trends we note in RQ5; showing us that, for example, the loss of
add-meaning changes has some context (i.e., Move Attribute when an identifier
and its type are renamed) which may be leveraged when understanding, or
recommending/suggesting, renames. The dataset for this study, available on
our project website [41], contains the entire list of before and after refactorings.

Summary for RQ6: Comparing the refactoring co-occurrence data from
RQ2 with RQ6, our findings from RQ6 are similar to our RQ2 findings in that
the refactorings occurring before the rename are more or less the same (i.e.,
Rename Variable, Move Attribute, and Extract Method). However, we also find
that the relationships with these refactorings in RQ6 are generally weaker or
roughly the same as in RQ2. This indicates that a rename in which a data
type is changed may be less likely to have a co-occurring refactoring. In RQ5,
we found that narrow- and broaden-meaning changes are emphasized while add-
meaning is de-emphasized when an identifier and its type change together versus
general renames. In RQ6, we further broke this trend down and see that the
reduction, while pervasive, heavily affects refactoring contexts, as we can see if

we compare semantic changes made to renames correlated with Move Attribute

92



Table 17: An overview of the types of semantic updates an identifier name with a data

type change undergoes when preceded by another refactoring operation

Identifier
Type

Refactoring

Before Rename

Top 3 Types of

Rename Forms

Type of

Semantic Update

Top 3 Semantic
Change Subtypes

Attribute

Move Attribute
(Total Count: 187)

Simple (65.57%)
Complex (36.90)
Formatting (0.54%)

Change (90.37%)
Preserve (9.63%)

Narrow (77.01%)
Broaden (41.71%)
Add (1.07%)

Pull Up Attribute
(Total Count: 61)

Simple (54.1%)
Complex (44.26%)
Formatting (1.64%)

Change (91.80%)
Preserve (8.20%)

Narrow (54.46%)
Broaden (26.23%)
Remove(6.56%)

Push Down Attribute

(Total Count: 16)

Simple (56.25%)
Complex (43.75%)

Change (87.5%)
Preserve (12.5%)

Narrow (68.75%)
Broaden (18.75%)

Method

Extract Method
(Total Count: 149)

Simple (56.38%)
Complex (43%)
Formatting(0.67 %)

Change (91.28%)
Preserve (8.72%)

Narrow (62.42%)
Broaden (24.83)
Add( 0.67%)

Rename Variable
(Total Count: 124)

Complex (50.81%)
Simple (47.58%)
Formatting(0.81%)

Change (91.13%)
Preserve (8.87%)

Narrow (66.94%)
Broaden (21.77%)

Rename Method
(Total Count: 105)

Simple (67.62%)
Complex (32.38%)

Change (83.81%)
Preserve (16.19%)

Narrow (45.71%)
Broaden (34.29%)
Add( 2.86%)

Variable

Rename Variable
(Total Count: 241)

Simple (56.85%)
Complex (43.15%)

Change (97.1%)
Preserve (2.9%)

Narrow (59.75%)
Broaden (32.37%)
Remove (3.73%)

Extract Variable
(Total Count: 95)

Simple (64.2%1)
Complex (33.68%)
Formatting (2.11%)

Change (90.53%)
Preserve (9.47%)

Narrow (70.53%)
Broaden (19.95%)
Remove (1.05%)

Replace Variable
With Attribute
(Total Count: 3)

Complex (66.67%)
Simple (33.33%)

Change (100%)

Narrow (66.67%)
Broaden (33.33%)

]



1180

1185

1190

1195

1200

1205

in Table 6 with the same in Table 17 and note the significant drop in add-
meaning changes (a reduction from 54% to 1.07%). This data indicates that
renames which include type changes may need to be treated as special cases
in any future rename recommendation/analysis effort due to the relationship

between the identifier and its corresponding type.

6. Discussion

In this paper, we extend our prior work on contextualizing renames [24, 23]
by exploring renames which involve a change in data type. We focus on this
set of renames for three reasons: 1) changes to an identifier’s type are relatively
easy to detect in many programming languages. Therefore, making suggestions
to developers on the fly when a type change is performed is already feasible
in modern IDEs. 2) Types have strong influence over the data and behavior
represented by an identifier, so changes to the type can have heavy significance
on their associated identifier. 3) Type changes are a simple way for us to explore
some non-refactoring code changes related to renames. Type changes provide
another dimension with which to understand how names evolve and why. These
results will provide insight for our long term goals. Further, there are a sizeable
number of renames with data type changes; we observed 53,962 instances (or
~ 17.39%) of the total set (minus class renames since class names have no type).
Analyzing these changes is more straightforward than studying renames that did
not undergo a data type change.

The data from our RQs reports some very interesting trends in the practice
of renaming identifiers as well as their corresponding data types. These results
have particular significance in the context of recommending when and how to
rename. Below, we discuss how our results can directly or indirectly impact
our understanding of renames and the eventual recommendation of when/how
to rename. We also discuss the significant challenges and work required to
augment, make our findings actionable, and integrate them into a development

environment. These problems fall into two categories: analyzing surrounding

o4



1210

1215

1220

1225

1230

1235

code changes and analyzing commit messages and other natural language doc-

uments. We discuss these in Section 6.2 and 6.3.

6.1. Takeaways and Actionable Results

6.1.1. Takeaways from RQ1

RQ1 shows us that developers with a relatively smaller amount of experience
than their peers have a higher likelihood of applying rename refactorings than
other types of refactorings. While it is known that developers refactor code
to remove smells [16], work by Palomba et al. [93] shows that the developer’s
experience and knowledge of the system plays a crucial role in the resolving of
smells. Further, work by Kim et al. [94] shows that developers perform more
non-rename refactorings manually than rename refactorings. Hence, our find-
ings that experienced developers are more favorable to performing non-rename
operations align with these prior studies. Furthermore, using tools to perform
automated renames, while productive, runs the risk of introducing linguistic
anti-patterns [95, 17] in the code. Our findings from RQ1 give us data on our
target audience. Renames are applied more frequently by developers with less
experience, potentially due to how simple it is to apply them. When a rename
1s applied, suggestions about other mames related to the current name should
be highlighted, as should linguistic anti-patterns and the reasoning behind the
suggestion. Developers with less experience may not be familiar with as much
of the system and, thus, may benefit more from increased, minimally-intrusive,

direction.

6.1.2. Takeaways from RQ2, RQ3, and RQ6

Data from RQ2, RQ3, and RQ6, while retrospective in nature (i.e., we ana-
lyze post-rename data such as commit messages), help us understand the struc-
ture and semantics behind a rename; why a given name changed in the ways
that it did. This retrospective data allow us to pinpoint directions for future re-
search by highlighting trends and data points that we do not understand. RQ2s

and RQG6s data on refactorings, which precede renames, can be directly used to

99



1240

1245

1250

1255

1260

1265

recommend renames after certain refactorings are applied. This highlights po-
tential future research directions focusing on the relationship between renames
and those specific refactorings (i.e., Move Class, Move Attribute, and Extract
Method). For example, in RQ2, we saw that Move Attribute often preceded
a rename by one commit (71% of the time) and five commits (83.32% of the
time); it would make sense to consider recommending a rename after a Move
Attribute. The relationships in the data we obtained were never 100%; mean-
ing that it would be inappropriate to always recommend a rename after these
refactorings. Given this, we believe that future studies should focus on how to
acutely determine when to recommend a rename after these refactoring opera-
tions and what type of rename to recommend. Such studies might help highlight
why these refactorings are more likely to co-occur with renames than other refac-
torings and uncover other potential related situations where a rename should be
recommended. Finally, data from these RQs also highlight that non-refactoring
changes are more common than refactoring changes before, and after, a rename.
This means that our future work must deal with code changes that are likely not
taxonomized in the same way refactorings are.

RQ3s data on commit messages highlights that we can obtain high-level
development motivations (e.g., add functionality, bug fix) for renaming an iden-
tifier, but also that there are significant challenges in obtaining project-specific
development actions via commit messages (e.g., adding request handler). Find-
ing ways to gather this more specific data can help recommendation systems by
giving researchers more insight into how developers mentally model changes to
the structure and semantics of a name during the rename process. For example,
we can understand more about how a developer decides what words to change
in an identifier when adding a specific type of functionality (i.e., as opposed
to just the general idea of adding functionality) or when extracting a method
for a project-specific reason (e.g., extracting a parse function from the request
handler). These insights can influence the design of recommendation tools by
tailoring them to granular, real-world situations. We discuss more about the

challenges that RQ2, RQ3, and RQ6 highlight in Sections 6.2 and 6.3. Addi-

96



1270

1275

1280

1285

1290

1295

tionally, our data indicate that renames frequently happen with other renames
and that the commits for these frequently contain the term revert. A deeper

dive into what these reverts are and if they are related to the name is required.

6.1.3. Takeaways from RQ4 and RQS5

The results from RQ4 show us that an overwhelming majority of renames
that involve data types are not formatting or term-reorderings. Of the 16.31%
of identifiers which contained the name of their type either before or after a
rename, most added or preserved their type name during a rename refactoring.
A minority removed their type name after a rename was applied, meaning that
most renames involving identifiers containing a type name either preserve or
add the type name as opposed to removing. Additionally, identifier names that
end with the name of the data type will most likely contain the name of the
data type at the end of its name (rather than in the middle or at the beginning)
when the identifier is renamed. The inclusion of a type name in an identifier
is generally considered poor naming practice [2]. There is an opportunity here
to both further study the (dis)advantage of including type names in identifier
names, particularly in strongly-typed programming languages, and discourage (or
question) the inclusion of a type name when a developer performs a rename. Our
data indicate that it is less common to remove type names from identifier names
than to preserve or add them, meaning that it is not common practice to avoid
including types in identifier names. This recommendation can be readily made
in modern IDEs after being verified by researchers to determine when, if ever,
a type name should appear in an identifier name. If there are situations where
the type name should appear within its corresponding identifier’s name, our
data highlights where developers commonly include the type within the identifier
name.

The results in RQ5 contrast somewhat with RQ3 because in RQ5 we find
that renames on identifiers which were modified with their types tend to nar-
row meaning more often (+23% more often), add meaning less often (-36% less

often), and broaden meaning more often (+5%) compared to general rename se-

o7



1300

1305

1310

1315

1320

1325

mantic changes examined in RQ3. RQ5 also explores the introduction/removal
of plurality in identifier names and collections in their corresponding data types.
We find that most of the time, when an identifier’s type becomes a collection, its
name is changed to plural 64.29% of the time. Additionally, when a data type
ceases to be a collection, the plurality of its corresponding identifier changes
53.02% of the time. This means that there is a potential linguistic anti-pattern
(as defined in [17]) being introduced. Specifically, the plurality of the identifier
name may no longer be an accurate reflection of the type. As an example, in
[37] the developer renames the public method getCompilationsUnit — getCom-
pilationUnit (a change in plurality rename). However, in another class that calls
this method, the developer does not update the name of the variable compila-
tionsUnit that holds the results of the method call. This is an easy mistake to
make. Leveraging plurality in the name of identifiers to clarify the use (or non-
usage) of collection types is a simple but effective method for conveying semantic
information, and current rename tools do not offer these types of suggestions.
Our data show that there is a strong opportunity here to introduce useful sug-
gestions to developers when plurality or collection changes are detected. This
would help developers avoid making simple mistakes and oversights which could
significantly degrade comprehension over time.

Finally, RQ5 finds that co-variance is the most common way for type names
an identifier names to evolve together (71.94% of cases), but that there are situ-
ations were type names and identifier names are contravariant (28.06% of cases).
Our study highlights the fact that more than half the time, the plurality of a name
is updated in response to its type changing to/from a collection. Similar to rec-
ommending against including type names in identifier names, recommending a
plurality change when a type is being updated to/from a collection is a simple
way to make this practice consistent or to ask developers to consider whether it
is appropriate. This is another recommendation that can be supported by IDEs
and further verified by researchers. In addition, the data on contravariance and
covariance supports RQ4 by specifying how type names should evolve within an

identifier’s name in potential cases where future research determines they should

98



1330

1335

1340

1345

1350

1355

appear.

6.2. Challenge 1: Analyzing Renames and General Code Changes

While refactorings [16] are some of the most well-known, taxonomized source
code changes, many other types of source code changes are not taxonomized
beyond low-level software differencing change-types (e.g., insert, remove, delete
operations). With refactorings, we can examine a cohesive, understood change
(i.e., the refactoring itself) and analyze how that change relates to a rename.
When a change is not a refactoring but involves multiple statements, it is more
difficult to: 1) understand whether those multiple changes are actually related;
they might be incidental. And, 2) understand the reasoning/motivation behind
those changes; it cannot be easily determined if they represent a bug fix or the
addition of new functionality, for example.

The results from RQ2 and RQ6 indicate that the vast majority of renames
have no refactoring before or after their application. This means that to under-
stand more about how changes surrounding these renames affect the renames
themselves; we must at least partially solve the two problems above such that
we are able to understand the code changes which are related to a given rename.
There are some potential paths toward remediating this problem. Change tax-
onomy studies by Fluri et al. [96, 97] discuss a taxonomy which they derive
using ChangeDistiller [98]; a technique for extracting changes using differences.
There are other taxonomies for code changes, typically more specific than Fluri’s
taxonomy. These taxonomize changes which indicate bugs [99, 100], others mine
code changes to detect emergent change patterns [101], or present methods for
clustering similar code changes or studying repetitiveness [102, 103]. These pa-
pers represent a strong start in the direction of a more acute understanding of

non-refactoring code changes.

6.3. Challenge 2: Analyzing Rename Commit Messages

Analyzing commit messages also posed a challenge. In particular, we faced

many issues in deriving rename motivations. Our automated analysis was able

99



1360

1365

1370

1375

1380

1385

to determine high-level motivations such as ‘modified functionality’ since this
occurs in all projects. However, to understand changes made to the name as
part of ‘modified functionality’, we also need to know project-specific details
about what functionality was added and why. For example, if we determine
that ‘modified functionality’ also involved ‘combining two functions’ into one,
we could draw better insights with respect to how the name evolved. We at-
tempted to automatically derive these motivations from commit messages with
only some success; other natural language software artifacts, and general source
code changes, might be more useful. The most significant problems we faced
with analyzing large numbers of commit messages is that: 1) the terms frequent
enough to be detected by LDA/Ngrams are high-level and not descriptive of
individual project efforts (e.g., we can determine that projects are performing
structure changes, but not what types of structural changes or why). Also, 2)
the commit messages sometimes do not contain enough information, potentially
indicating the need for more natural language software artifacts, some of which
will likely be more challenging to analyze automatically. Therefore, whether
analyzing commit messages or other natural language texts, an effective method
for performing natural language analysis on software documents that addresses
point # 1 above would improve our ability to understand how names semanti-
cally evolve (and how developers mentally model this evolution) by allowing us
to determine the causes behind certain semantic changes via analyzing natural
language text in commit messages. This would also help us address point # 2,
which requires the exploration and analysis of other types of natural language
text outside of commit messages. The work we present in this paper shows that
this context is obtainable, but there are still significant challenges to it.

To help support the intuition that commit messages can be used to de-
termine rename motivation, we manually looked at some of the data (150
commits). This helps us determine whether the information we need is con-
tained within commit data, and provide some direction for future work. The
results of this manual investigation are shown in Table 18. All categories in

this table were identified as causes for renames which involved type changes.

60



Table 18: Development actions which caused identifier renames.

Category

Definition

Combine Behavior

Two classes collapsed into one class
or one class deleted and the other

class now does the deleted class’ job

Split class

Two classes created from one super class

Add Interface

Interface or abstract class was added

during rename of type

Broaden Behavior

Behavior of renamed object has a larger

domain after the rename operation

Pure Rename

Rename applied for non-functional purposes

Narrow Behavior

Behavior of renamed object has a smaller

domain after rename

Add Behavior

Behavior was added via addition of new code

Modify Behavior

Behavior was updated by some combination

of narrow, broaden, and add behavior

61



1390

1395

1400

1405

1410

1415

In renames which did not involve type changes, only bolded categories were
identified as causing renames during the manual investigation. For instance,
in [104], we noticed that the developer renaming the attribute InvTweaks
instance — InvTweaksRunnable tickRunnable does so to utilize threads in
the code to cause delays as a means of working around a certain limitation.
This is considered part of the add behavior category. In [105], the devel-
oper renames the method variable MetadataProvider metadataProvider —
PersistenceExtensionFeatureResolver
persistenceExtensionFeatureResolver to better reflect its behavior; no
other changes to the code, associated with the identifier, were made by the de-
veloper. This is a pure rename. As one last example, the change in [106] renames
the method variable MembershipCreator membershipCreator — Membership
membership due to the behavior of the original data type (and some other types)
being incorporated into a new data type. We consider this a Combine Behavior.
These tables show the intention behind renames based on manually-examined
code changes and commit messages. One interesting, if logical, trend is that
renames that involve type changes have a larger number of factors which caused
the change (i.e., all eight categories in the table, whereas renames which did not
involve a type involved only the bolded categories in our investigation). Part of
this is due to some categories implying a change in type name (e.g., split class
implies the introduction of a new type and/or rename of old type).

While this data is interesting and further supports the fact that analyzing
code/commit messages can help us understand the intention behind identifier
and type name modifications, further study is required to create a more formal
and exhaustive set of the causes of renames. However, we highlight that, based
on the data in Table 18, a combination of commit messages and code change
taxonomy could be very useful. This is apparent in the fact that the categories in
this table, which were derived from data in commit messages, allude to types of
code change (e.g., splitting a class, adding an interface) and semantic changes
(e.g., narrowing an object’s behavior). Therefore, this analysis appears to sup-

port our assertions above.

62



1420

1425

1430

1435

1440

1445

Other work has similarly shown how specialized terminology indicates de-
veloper refactoring activities [107]; this also supports the idea that a non-trivial
number of commit messages contain enough data to perform this analysis and
motivates the need for future research in natural language techniques which are
more effective at analyzing commit messages, and other software artifacts, to

solve the two problems discussed above.

7. Threats to Validity

In terms of representativeness, the dataset for our study consists of open-
source Java systems. However, even though the projects are well-engineered
Java systems [42], the results may not generalize to systems written in other
languages. Additionally, the type and quantity of detected renaming refactor-
ings are limited to RefactoringMiner’s capabilities. However, RefactoringMiner
is currently the most accurate refactoring detection tool [44] and is extensively
utilized in research concerning refactorings.

We follow an approach from a similar study for our experiment on developer
experience by utilizing project contributions as a proxy for the developer’s ex-
perience. However, as with many software metrics, this metric is not perfect,
and may not always be a suitable experience measure.

This study also includes an analysis of commit messages. Hence, we use a
peer-review approach to mitigate bias in deciding the terms to present after our
commit message analysis. As part of this review process, the authors review the
entire list of generated terms; the decisions made during this process had to be
unanimous. Additionally, the authors referred to the entire commit message to
confirm the context around the terms of interest.

In terms of our experiments that use co-occurring refactorings (RQ2, RQ3,
RQ6), while there can be multiple refactoring operations that can occur in a
single source file, in a single commit, it is not possible to determine the order in
which the developer applied refactoring operations. The only way to obtain this

data is to interview the developer responsible for the commit. However, given

63



1450

1455

1460

1465

1470

1475

the large-scale nature of our study, such an approach is not feasible. Hence
we look at the refactoring operations present in commits that occur just before
and after a rename refactoring commit. Further, our study did not correlate
refactorings occurring in the same commit.

We utilize NLTK in our study to help detect the semantic updates occurring
on an identifier name when the identifier is renamed. This partial reliance on
NLTK introduces a threat that some of the conclusions drawn by the semantic
change detection algorithm may be inaccurate. We alleviate this threat by
thorough testing of the tool, but it is known that tools trained specifically on
software engineering data tend to generalize better than tools trained on general
natural language data and applied to source code [8, 108]. Unfortunately, there
are no platforms and models similar to NLTK that are specialized for software-
based lexica.

We detect when collection-semantics (e.g., a List data type) have been added
or removed by examining type names. This is a conservative estimation; we
never identify any type as being a collection when it is not. However, we may
miss the addition of collection-like behavior or attributes when it is added to
a class’ internals. That is, there may be situations where an identifier’s name
becomes plural because the class which its type represents has been changed to
internally include a collection as an attribute. We do no internal class analysis
when detecting identifier name plurality and determining if the identifier’s be-
havior has been changed to include/remove collection-semantics. Finally, our
data type change detection strategy excluded methods where the return type of
either or both instances was void. Hence, while we did capture a large quantity
of type change instances, the results may not necessarily be generalizable to all

methods.

8. Conclusions and Future Work

In this paper, we use refactorings, static analysis, data types, and commit

messages to understand characteristics of changes applied to identifier names

64



1480

1485

1490

1495

1500

and to determine if these changes correlate to different developer activities (e.g.,
narrowing of a name after applying an Extract Method refactoring operation).
Our long term goal is to support recommendation of when/how to rename iden-
tifiers and to understand more about developer naming mental models. This
study brings us a step closer to achieving this goal by identifying opportunities
for rename recommendations which can already be supported (e.g., plurality of
names, inclusion of type names in identifier names), identifying trends which
should be further explored in future research (e.g., renames correlated with
certain refactorings), and highlighting challenges which future research should
overcome in order to provide stronger recommendation support.

In future work, we plan to perform a qualitative study on commits, code
changes, and documentation associated with renames. This will allow us to
expand and improve on the taxonomy discussed in Section 6 and gather data to
address the problems described in Sections 6.3 and 6.2. Specifically, we will use
data from this paper and a future qualitative study to investigate more effec-
tive means of analyzing commit messages and other natural language software
artifacts, and we will investigate the use of software differencing techniques
[109, 110] to allow us to analyze general software changes that occur around
a rename. Both of these directions are directly motivated by the experiences
and outcomes resulting from this work. Finally, based on our discussion of the
findings and takeaways of our study (Section 6), our next steps include the im-
plementation of IDE plugins that provide developers with rename candidates
based on changes to the identifier’s data types—- for example, recommending
that the developer should change the plurality of the identifier’s name when the
data type is changed to/from a collection type. These plugins will leverage some
of the stronger relationships from this paper to qualify these relationships using
human subjects. The dataset utilized in this study is available on our project

website [41].

65



1505

1510

1515

1520

1525

1530

9. Acknowledgements

This material is based upon work supported by the National Science Foun-

dation under Grant No. 1850412.

References

[1]

T. A. Corbi, Program understanding: Challenge for the 1990s, IBM Sys-
tems Journal 28 (2) (1989) 294-306. doi:10.1147/sj.282.0294.

R. Martin, Clean Code: A Handbook of Agile Software Craftsmanship,
Robert C. Martin series, Prentice Hall, 2009.

A. A. Takang, P. A. Grubb, R. D. Macredie, The effects of comments and
identifier names on program comprehensibility: an experimental investi-

gation, J. Prog. Lang. 4 (1996) 143-167.

A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, M. Beigl,
Descriptive compound identifier names improve source code comprehen-
sion, in: Proceedings of the 26th Conference on Program Comprehen-
sion, ICPC ’18, ACM, New York, NY, USA, 2018, pp. 31-40. doi:
10.1145/3196321.3196332.

URL http://doi.acm.org/10.1145/3196321.3196332

J. Hofmeister, J. Siegmund, D. V. Holt, Shorter identifier names take
longer to comprehend, in: 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2017, pp. 217—
227. doi:10.1109/SANER.2017.7884623.

D. Lawrie, C. Morrell, H. Feild, D. Binkley, What’s in a name? a study
of identifiers, in: 14th IEEE International Conference on Program Com-

prehension (ICPC’06), 2006, pp. 3-12. doi:10.1109/ICPC.2006.51.

S. Butler, M. Wermelinger, Y. Yu, H. Sharp, Exploring the influence of

identifier names on code quality: An empirical study, in: Software Main-

66


http://dx.doi.org/10.1147/sj.282.0294
http://doi.acm.org/10.1145/3196321.3196332
http://doi.acm.org/10.1145/3196321.3196332
http://doi.acm.org/10.1145/3196321.3196332
http://dx.doi.org/10.1145/3196321.3196332
http://dx.doi.org/10.1145/3196321.3196332
http://dx.doi.org/10.1145/3196321.3196332
http://doi.acm.org/10.1145/3196321.3196332
http://dx.doi.org/10.1109/SANER.2017.7884623
http://dx.doi.org/10.1109/ICPC.2006.51

1535

1540

1545

1550

1555

[10]

[11]

tenance and Reengineering (CSMR), 2010 14th European Conference on,
IEEE, 2010, pp. 156-165.

D. Binkley, D. Lawrie, C. Morrell, The need for software specific natural
language techniques, Empirical Softw. Engg. 23 (4) (2018) 2398-2425.
doi:10.1007/s10664-017-9566-5.

URL https://doi.org/10.1007/s10664-017-9566-5

C. D. Newman, M. J. Decker, R. S. AlSuhaibani, A. Peruma, D. Kaushik,
E. Hill, An empirical study of abbreviations and expansions in software
artifacts, in: Proceedings of the 35th IEEE International Conference on

Software Maintenance and Evolution (ICSME), IEEE, 2019.

M. Allamanis, E. T. Barr, C. Bird, C. Sutton, Suggesting accurate method
and class names, in: Proceedings of the 2015 10th Joint Meeting on Foun-
dations of Software Engineering, ESEC/FSE 2015, ACM, New York, NY,
USA, 2015, pp. 38-49. doi:10.1145/2786805.2786849.
URL http://doi.acm.org/10.1145/2786805.2786849

K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A. Koyuncu, S. Kim,
Y. Le Traon, Learning to spot and refactor inconsistent method names, in:

Proceedings of the 40th International Conference on Software Engineering,

ICSE 2019, ACM, New York, NY, USA, 2019.

E. W. Hgst, B. M. @stvold, Debugging method names, in: Proceedings
of the 23rd European Conference on ECOOP 2009 — Object-Oriented
Programming, Genoa, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 294—
317. doi:10.1007/978-3-642-03013-0_14.

URL http://dx.doi.org/10.1007/978-3-642-03013-0_14

S. L. Abebe, P. Tonella, Automated identifier completion and replace-
ment, in: 2013 17th European Conference on Software Maintenance and

Reengineering, 2013, pp. 263-272. doi:10.1109/CSMR.2013. 35.

67


https://doi.org/10.1007/s10664-017-9566-5
https://doi.org/10.1007/s10664-017-9566-5
https://doi.org/10.1007/s10664-017-9566-5
http://dx.doi.org/10.1007/s10664-017-9566-5
https://doi.org/10.1007/s10664-017-9566-5
http://doi.acm.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
http://dx.doi.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
http://dx.doi.org/10.1007/978-3-642-03013-0_14
http://dx.doi.org/10.1007/978-3-642-03013-0_14
http://dx.doi.org/10.1007/978-3-642-03013-0_14
http://dx.doi.org/10.1109/CSMR.2013.35

1560

1565

1570

1575

1580

1585

[14]

[15]

[19]

Y. Kashiwabara, Y. Onizuka, T. Ishio, Y. Hayase, T. Yamamoto, K. Inoue,
Recommending verbs for rename method using association rule mining,
in: 2014 Software Evolution Week - IEEE Conference on Software Main-
tenance, Reengineering, and Reverse Engineering (CSMR-WCRE), 2014,
pp- 323-327. doi:10.1109/CSMR-WCRE.2014.6747186.

C. D. Newman, A. Peruma, R. AlSuhaibani, Modeling the relationship
between identifier name and behavior, in: Proceedings of the 35th IEEE

International Conference on Software Maintenance and Evolution (IC-

SME), IEEE, 2019.

Refactoring: Improving the Design of Existing Code, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

V. Arnaoudova, M. Di Penta, G. Antoniol, Y. Guéhéneuc, A new family of
software anti-patterns: Linguistic anti-patterns, in: 2013 17th European
Conference on Software Maintenance and Reengineering, 2013, pp. 187—

196. doi:10.1109/CSMR.2013.28.

V. Arnaoudova, L. M. Eshkevari, M. D. Penta, R. Oliveto, G. Antoniol,
Y .-G. Gueheneuc, Repent: Analyzing the nature of identifier renamings,
IEEE Trans. Softw. Eng. 40 (5) (2014) 502-532. doi:10.1109/TSE.2014.
2312942.

URL https://doi.org/10.1109/TSE.2014.2312942

C. D. Newman, R. S. AlSuhaibani, M. L. Collard, J. I. Maletic, Lexical
categories for source code identifiers, in: 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER),
2017, pp. 228-239. doi:10.1109/SANER.2017.7884624.

R. S. Alsuhaibani, C. D. Newman, M. L. Collard, J. I. Maletic, Heuristic-
based part-of-speech tagging of source code identifiers and comments, in:
2015 IEEE 5th Workshop on Mining Unstructured Data (MUD), 2015,
pp- 1-6. doi:10.1109/MUD.2015.7327960.

68


http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747186
http://dx.doi.org/10.1109/CSMR.2013.28
https://doi.org/10.1109/TSE.2014.2312942
http://dx.doi.org/10.1109/TSE.2014.2312942
http://dx.doi.org/10.1109/TSE.2014.2312942
http://dx.doi.org/10.1109/TSE.2014.2312942
https://doi.org/10.1109/TSE.2014.2312942
http://dx.doi.org/10.1109/SANER.2017.7884624
http://dx.doi.org/10.1109/MUD.2015.7327960

1590

1595

1600

1605

1610

[21]

[23]

[25]

[26]

[27]

D. Binkley, M. Hearn, D. Lawrie, Improving identifier informativeness
using part of speech information, in: Proceedings of the 8th Working
Conference on Mining Software Repositories, MSR ’11, ACM, New York,
NY, USA, 2011, pp. 203-206. doi:10.1145/1985441.1985471.

URL http://doi.acm.org/10.1145/1985441.1985471

S. Gupta, S. Malik, L. Pollock, K. Vijay-Shanker, Part-of-speech tag-
ging of program identifiers for improved text-based software engineering
tools, in: 2013 21st International Conference on Program Comprehension

(ICPC), 2013, pp. 3-12. doi:10.1109/ICPC.2013.6613828.

A. Peruma, M. W. Mkaouer, M. J. Decker, C. D. Newman, An empirical
investigation of how and why developers rename identifiers, in: Inter-
national Workshop on Refactoring 2018, 2018. doi:10.1145/3242163.
3242169.

URL http://doi.acm.org/10.1145/3242163.3242169

A. Peruma, M. W. Mkaouer, M. J. Decker, C. D. Newman, Contextual-
izing rename decisions using refactorings and commit messages, in: Pro-
ceedings of the 19th IEEE International Working Conference on Source
Code Analysis and Manipulation, IEEE, 2019.

H. Liu, Q. Liu, Y. Liu, Z. Wang, Identifying renaming opportunities by
expanding conducted rename refactorings, IEEE Transactions on Software

Engineering 41 (9) (2015) 887-900.

H. Liu, Q. Liu, C.-A. Staicu, M. Pradel, Y. Luo, Nomen est omen: Explor-
ing and exploiting similarities between argument and parameter names,
in: Software Engineering (ICSE), 2016 IEEE/ACM 38th International
Conference on, IEEE, 2016, pp. 1063-1073.

M. Allamanis, E. T. Barr, C. Bird, C. Sutton, Learning natural coding
conventions, in: Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2014. doi:10.1145/

69


http://doi.acm.org/10.1145/1985441.1985471
http://doi.acm.org/10.1145/1985441.1985471
http://doi.acm.org/10.1145/1985441.1985471
http://dx.doi.org/10.1145/1985441.1985471
http://doi.acm.org/10.1145/1985441.1985471
http://dx.doi.org/10.1109/ICPC.2013.6613828
http://doi.acm.org/10.1145/3242163.3242169
http://doi.acm.org/10.1145/3242163.3242169
http://doi.acm.org/10.1145/3242163.3242169
http://dx.doi.org/10.1145/3242163.3242169
http://dx.doi.org/10.1145/3242163.3242169
http://dx.doi.org/10.1145/3242163.3242169
http://doi.acm.org/10.1145/3242163.3242169
http://doi.acm.org/10.1145/2635868.2635883
http://doi.acm.org/10.1145/2635868.2635883
http://doi.acm.org/10.1145/2635868.2635883
http://dx.doi.org/10.1145/2635868.2635883
http://dx.doi.org/10.1145/2635868.2635883
http://dx.doi.org/10.1145/2635868.2635883

1615

1620

1625

1630

1635

1640

[29]

[30]

[31]

2635868.2635883.
URL http://doi.acm.org/10.1145/2635868.2635883

M. Allamanis, E. T. Barr, C. Bird, C. Sutton, Suggesting accurate method
and class names, in: Proceedings of the 2015 10th Joint Meeting on Foun-
dations of Software Engineering, ESEC/FSE 2015, ACM, New York, NY,
USA, 2015, pp. 38-49. doi:10.1145/2786805.2786849
URL http://doi.acm.org/10.1145/2786805.2786849

B. Liblit, A. Begel, E. Sweetser, Cognitive perspectives on the role of
naming in computer programs, in: In Proc. of the 18th Annual Psychology

of Programming Workshop, 2006.

S. Butler, M. Wermelinger, Y. Yu, H. Sharp, Relating identifier naming
flaws and code quality: An empirical study, in: 2009 16th Working Con-
ference on Reverse Engineering, 2009, pp. 31-35. doi:10.1109/WCRE.
2009.50.

S. Fakhoury, D. Roy, S. A. Hassan, V. Arnaoudova, Improving source
code readability: Theory and practice, in: Proceedings of the 27th Inter-
national Conference on Program Comprehension, ICPC ’19, IEEE Press,
Piscataway, NJ, USA, 2019, pp. 2-12. doi:10.1109/ICPC.2019.00014.
URL https://doi.org/10.1109/ICPC.2019.00014

db/src/main/java/com/psddev/dari/db/sqldatabase.java, https:
//github.com/perfectsense/dari/commit/88e6556.

hibernate-ogm-core/src/main/java/org/hibernate/ogm/grid /entitykey.java,

https://github.com/hibernate/hibernate-ogm/commit/7dcfaed.

Choreoswebserviceproxy /src/test /java/ime /usp/br/proxy /proxycontrollertest.java,

https://github.com/choreos/choreos_middleware/commit/f2dalf8.

api/src/main/java/org/openmrs/personaddress.java, https://github.

com/openmrs/openmrs-core/commit/fd5ed0d.

70


http://dx.doi.org/10.1145/2635868.2635883
http://dx.doi.org/10.1145/2635868.2635883
http://doi.acm.org/10.1145/2635868.2635883
http://doi.acm.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
http://dx.doi.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
http://dx.doi.org/10.1109/WCRE.2009.50
http://dx.doi.org/10.1109/WCRE.2009.50
http://dx.doi.org/10.1109/WCRE.2009.50
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/ICPC.2019.00014
http://dx.doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/ICPC.2019.00014
https://github.com/perfectsense/dari/commit/88e6556
https://github.com/perfectsense/dari/commit/88e6556
https://github.com/perfectsense/dari/commit/88e6556
https://github.com/hibernate/hibernate-ogm/commit/7dcfaed
https://github.com/choreos/choreos_middleware/commit/f2da1f8
https://github.com/openmrs/openmrs-core/commit/fd5ed0d
https://github.com/openmrs/openmrs-core/commit/fd5ed0d
https://github.com/openmrs/openmrs-core/commit/fd5ed0d

[36] jangaroo/jangaroo-compiler/src/main/java/net/jangaroo/jooc/jangarooparser.java,

https://github.com/coremedia/jangaroo-tools/commit/7a494f1.

[37] jangaroo/jangaroo-compiler/src/main/java/net/jangaroo/jooc/jangarooparser.java,

https://github.com/coremedia/jangaroo-tools/commit/fc54b3f.

s [38] src/main/java/com/atomicleopard/webframework/view /json/jsonviewresult.java,

https://github.com/3wks/thundr/commit/53aaf15.

[39] src/main/java/com/atomicleopard/webframework/view/json/jsonview.java,

https://github.com/3wks/thundr/commit/9b02920.

[40] src/main/java/org/sql2o/query.java, https://github.com/aaberg/
1650 sql2o/commit/2£23b11.

[41] Project website, https://scanl.org/.

[42] N. Munaiah, S. Kroh, C. Cabrey, M. Nagappan, Curating github for en-
gineered software projects, Empirical Software Engineering 22 (6) (2017)
3219-3253. doi:10.1007/s10664-017-9512-6.

1655 URL https://doi.org/10.1007/s10664-017-9512-6

[43] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, D. Dig,
Accurate and efficient refactoring detection in commit history, in: Pro-
ceedings of the 40th International Conference on Software Engineer-
ing, ICSE 18, ACM, New York, NY, USA, 2018, pp. 483-494. doi:

1660 10.1145/3180155.3180206.
URL http://doi.acm.org/10.1145/3180155.3180206

[44] L. Tan, C. Bockisch, A survey of refactoring detection tools, in: Software

Engineering, 2019.

[45] C. Vassallo, G. Grano, F. Palomba, H. C. Gall, A. Bacchelli, A large-
1665 scale empirical exploration on refactoring activities in open source software

projects, Science of Computer Programming 180.

71


https://github.com/coremedia/jangaroo-tools/commit/7a494f1
https://github.com/coremedia/jangaroo-tools/commit/fc54b3f
https://github.com/3wks/thundr/commit/53aaf15
https://github.com/3wks/thundr/commit/9b02920
https://github.com/aaberg/sql2o/commit/2f23b11
https://github.com/aaberg/sql2o/commit/2f23b11
https://github.com/aaberg/sql2o/commit/2f23b11
https://scanl.org/
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6
http://dx.doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6
http://doi.acm.org/10.1145/3180155.3180206
http://dx.doi.org/10.1145/3180155.3180206
http://dx.doi.org/10.1145/3180155.3180206
http://dx.doi.org/10.1145/3180155.3180206
http://doi.acm.org/10.1145/3180155.3180206

[46] D. Silva, N. Tsantalis, M. T. Valente, Why we refactor? confessions of
github contributors, in: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE

1670 2016, Association for Computing Machinery, 2016.

[47) M. Hucka, Spiral: splitters for identifiers in source code filesdoi:10.
21105/joss.00653.
URL https://doi.org/10.21105/joss.00653

[48] S. Bird, E. Klein, E. Loper, Natural language processing with Python:
1675 analyzing text with the natural language toolkit, ”O’Reilly Media, Inc.”,
20009.

[49] G. A. Miller, Wordnet: a lexical database for english, Communications of

the ACM 38 (11) (1995) 39-41.

[50] Primitive data types, https://docs.oracle.com/javase/tutorial/

1680 java/nutsandbolts/datatypes.html, (Accessed on 11/11/2019).

[51] Collections framework overview, https://docs.oracle.com/javase/
8/docs/technotes/guides/collections/overview.html, (Accessed on

11/11/2019).

[62] Chapter 14. blocks and statements, https://docs.oracle.com/
1685 javase/specs/jls/sel3/html/jls-14 . html#jls-14.8, (Accessed on
11/11/2019).

[63] src/test/java/stormpot/countingallocator.java,  https://github.com/

chrisvest/stormpot/commit/459d423.

[64] src/test/java/stormpot/countingallocatorwrapper.java, https:

1690 //github.com/chrisvest/stormpot/commit/d2931d3.

[55] apvs/src/main/java/ch/cern/atlas/apvs/client/ui/abstractmeasurementview.java,

https://github.com/cern/apvs/commit/c1e5792.

72


https://doi.org/10.21105/joss.00653
http://dx.doi.org/10.21105/joss.00653
http://dx.doi.org/10.21105/joss.00653
http://dx.doi.org/10.21105/joss.00653
https://doi.org/10.21105/joss.00653
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://docs.oracle.com/javase/specs/jls/se13/html/jls-14.html#jls-14.8
https://docs.oracle.com/javase/specs/jls/se13/html/jls-14.html#jls-14.8
https://docs.oracle.com/javase/specs/jls/se13/html/jls-14.html#jls-14.8
https://github.com/chrisvest/stormpot/commit/459d423
https://github.com/chrisvest/stormpot/commit/459d423
https://github.com/chrisvest/stormpot/commit/459d423
https://github.com/chrisvest/stormpot/commit/d2931d3
https://github.com/chrisvest/stormpot/commit/d2931d3
https://github.com/chrisvest/stormpot/commit/d2931d3
https://github.com/cern/apvs/commit/c1e5792

[56] apvs/src/main/java/ch/cern/atlas/apvs/client/ui/measurementview.java,

https://github.com/cern/apvs/commit/71fc572.

ws  [57] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, Journal of
machine Learning research 3 (Jan) (2003) 993-1022.

[58] M. Réder, A. Both, A. Hinneburg, Exploring the space of topic coherence
measures, in: Proceedings of the Eighth ACM International Conference

on Web Search and Data Mining, WSDM ’15, ACM, New York, NY,

1700 USA, 2015, pp. 399-408. doi:10.1145/2684822.2685324.
URL http://doi.acm.org.ezproxy.rit.edu/10.1145/2684822.
2685324

[59] A. Barua, S. W. Thomas, A. E. Hassan, What are developers talk-
ing about? an analysis of topics and trends in stack overflow, Em-
1705 pirical Software Engineering 19 (3) (2014) 619-654. doi:10.1007/
510664-012-9231-y.
URL https://doi.org/10.1007/510664-012-9231-y

[60] D. Jurafsky, J. H. Martin, Speech and language processing: An introduc-
tion to natural language processing, computational linguistics, and speech

1710 recognition, Prentic e Hall.

[61] D. E. Krutz, N. Munaiah, A. Peruma, M. Wiem Mkaouer, Who added
that permission to my app? an analysis of developer permission changes in
open source android apps, in: 2017 IEEE/ACM 4th International Confer-
ence on Mobile Software Engineering and Systems (MOBILESoft), 2017,

1715 pp- 165—169. doi:10.1109/MOBILESoft.2017.5.

[62] de.prob.units/src/de/prob/units/sc/contextattributeprocessor.java,
https://github.com/hhu-stups/prob-rodinplugin/commit/32601b5.

[63] mes-core/mes-core-data/src/main/java/com/qcadoo/mes/core/data/internal /dataaccessserviceimpl.java

https://github.com/qcadoo/mes/commit/15a2615.

73


https://github.com/cern/apvs/commit/71fc572
http://doi.acm.org.ezproxy.rit.edu/10.1145/2684822.2685324
http://doi.acm.org.ezproxy.rit.edu/10.1145/2684822.2685324
http://doi.acm.org.ezproxy.rit.edu/10.1145/2684822.2685324
http://dx.doi.org/10.1145/2684822.2685324
http://doi.acm.org.ezproxy.rit.edu/10.1145/2684822.2685324
http://doi.acm.org.ezproxy.rit.edu/10.1145/2684822.2685324
http://doi.acm.org.ezproxy.rit.edu/10.1145/2684822.2685324
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/s10664-012-9231-y
http://dx.doi.org/10.1007/s10664-012-9231-y
http://dx.doi.org/10.1007/s10664-012-9231-y
http://dx.doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/s10664-012-9231-y
http://dx.doi.org/10.1109/MOBILESoft.2017.5
https://github.com/hhu-stups/prob-rodinplugin/commit/32601b5
https://github.com/qcadoo/mes/commit/15a2615

o [64] Z. Xing, E. Stroulia, Refactoring detection based on umldiff change-facts
queries, in: 2006 13th Working Conference on Reverse Engineering, 2006,
pp. 263-274. doi:10.1109/WCRE.2006.48.

[65] H. Li, S. Thompson, Let’s make refactoring tools user-extensible!, in: Pro-
ceedings of the Fifth Workshop on Refactoring Tools, WRT ’12, Associ-
1725 ation for Computing Machinery, New York, NY, USA, 2012, p. 32-39.
doi:10.1145/2328876.2328881.
URL https://doi.org/10.1145/2328876.2328881

[66] M. Mohamed, M. Romdhani, K. Ghédira, Classification of model refac-
toring approaches, Journal of Object Technology 8 (6) (2009) 121-126.

o [67] E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we
know it, IEEE Transactions on Software Engineering 38 (1) (2012) 5-18.
doi:10.1109/TSE.2011.41.

[68] src/main/java/com/stripe/model/threedsecure.java, https://github.

com/stripe/stripe-java/commit/4fdadaf.

ws  [69] src/main/java/com/stripe/model/applepaydomain.java, https:

//github.com/stripe/stripe-java/commit/19d4d5a.

[70] src/main/java/org/atlasapi/application/applicationconfiguration.java,

https://github.com/atlasapi/atlas-model/commit/4da9fc2.

[71] src/main/java/org/atlasapi/application/applicationconfiguration.java,

1740 https://github.com/atlasapi/atlas-model/commit/fc19¢c98.

[72] heroku-api/src/main/java/com/heroku/api/command/login/basicauthlogincommand.java,

https://github.com/heroku/heroku. jar/commit/008dbc2.

[73] heroku-api/src/main/java/com/heroku/api/command/login/basicauthlogin.java,

https://github.com/heroku/heroku. jar/commit/0Oclc18d.

1745 74| core/src/main/java/org/mapfish/print /processor/map/createmapprocessor.java
[ ] g/mapfish/print/p D pp java,

https://github.com/mapfish/mapfish-print/commit/bc1f422.

74


http://dx.doi.org/10.1109/WCRE.2006.48
https://doi.org/10.1145/2328876.2328881
http://dx.doi.org/10.1145/2328876.2328881
https://doi.org/10.1145/2328876.2328881
http://dx.doi.org/10.1109/TSE.2011.41
https://github.com/stripe/stripe-java/commit/4fdadaf
https://github.com/stripe/stripe-java/commit/4fdadaf
https://github.com/stripe/stripe-java/commit/4fdadaf
https://github.com/stripe/stripe-java/commit/19d4d5a
https://github.com/stripe/stripe-java/commit/19d4d5a
https://github.com/stripe/stripe-java/commit/19d4d5a
https://github.com/atlasapi/atlas-model/commit/4da9fc2
https://github.com/atlasapi/atlas-model/commit/fc19c98
https://github.com/heroku/heroku.jar/commit/008dbc2
https://github.com/heroku/heroku.jar/commit/0c1c18d
https://github.com/mapfish/mapfish-print/commit/bc1f422

1750

1755

1760

1765

1770

[75]

[76]

[81]

core/src/main/java/org/mapfish /print /http/httprequestcache.java,
https://github.com/mapfish/mapfish-print/commit/fe44bd1.

qtiworks/web/controller/instructor /instructorassessmentmanagementcontroller.java,

https://github.com/davemckain/qtiworks/commit/2a1f9df.

qtiworks/web/controller /instructor/instructorassessmentmanagementcontroller.java,

https://github.com/davemckain/qtiworks/commit/9cb51b2.

src/main/java/se/crafted /chrisb /ecocreature/drops/sources/abstractdropsource.java,

https://github.com/mung3r/ecocreature/commit/42e5d9f.

src/main/java/se/crafted /chrisb /ecocreature/drops/sources/abstractdropsource.java,

https://github.com/mung3r/ecocreature/commit/3e2£216.

Lateralgm/org/lateralgm /file/gmstreamdecoder.java, https://github.

com/ismavatar/lateralgm/commit/2d1bdaf.

org/lateralgm/file/gmstreamdecoder.java, https://github.com/

ismavatar/lateralgm/commit/e41c4ch.

[82] jack-store/src/com/rapleaf/jack/store/jstable.java,  https://github.

[83]

[84]

com/liveramp/jack/commit/762b540.

jack-core/src/com /rapleaf/jack /queries/generictable.java, https:

//github.com/liveramp/jack/commit/b331247.

src/test/java/org/motechproject/ananya/kilkari/handlers/obdrequesthandlertest.java,
https://github.com/motech/ananya-kilkari/commit/b3b95£4.

name.abuchen.portfolio.ui/src/name/abuchen/portfolio/ui/util/bindinghelper.java,

https://github.com/buchen/portfolio/commit/1bdecchb.

vertx-core/src/main/java/io/vertx/core/http/httpclientoptions.java,

https://github.com/eclipse-vertx/vert.x/commit/921c69e.

()


https://github.com/mapfish/mapfish-print/commit/fe44bd1
https://github.com/davemckain/qtiworks/commit/2a1f9df
https://github.com/davemckain/qtiworks/commit/9cb51b2
https://github.com/mung3r/ecocreature/commit/42e5d9f
https://github.com/mung3r/ecocreature/commit/3e2f216
https://github.com/ismavatar/lateralgm/commit/2d1bdaf
https://github.com/ismavatar/lateralgm/commit/2d1bdaf
https://github.com/ismavatar/lateralgm/commit/2d1bdaf
https://github.com/ismavatar/lateralgm/commit/e41c4c5
https://github.com/ismavatar/lateralgm/commit/e41c4c5
https://github.com/ismavatar/lateralgm/commit/e41c4c5
https://github.com/liveramp/jack/commit/762b540
https://github.com/liveramp/jack/commit/762b540
https://github.com/liveramp/jack/commit/762b540
https://github.com/liveramp/jack/commit/b331247
https://github.com/liveramp/jack/commit/b331247
https://github.com/liveramp/jack/commit/b331247
https://github.com/motech/ananya-kilkari/commit/b3b95f4
https://github.com/buchen/portfolio/commit/1bdeccb
https://github.com/eclipse-vertx/vert.x/commit/921c69e

1775

1780

1785

1790

1795

[87]

[94]

[95]

nuget-tests/src/jetbrains /buildserver /nuget /tests/server /trigger /packagecheckertestbase.java,
https://github.com/jetbrains/teamcity-nuget-support/commit/
da10d2c.

qtiworks-engine/src/main/java/uk/ac/ed /ph/qtiworks/domain/entities/candidateevent.java,

https://github.com/davemckain/qtiworks/commit/0c924ab.

org.jrebirth.af/core/src/main/java/org/jrebirth/af/core/component/basic/innercomponentbase.java,

https://github.com/jrebirth/jrebirth/commit/d82fb1b.
https://github.com/unquietcode/flapi/commit/4586325.

abuchen /portfolio/ui/dialogs/transactions/buysellmodel.java, https://
github.com/buchen/portfolio/commit/9fc2fad.

/abuchen/portfolio/ui/dialogs/transactions/abstractsecuritytransactionmodel.java,

https://github.com/buchen/portfolio/commit/eld7472.

F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, A. D. Lucia, Do they
really smell bad? a study on developers’ perception of bad code smells,
in: 2014 IEEE International Conference on Software Maintenance and

Evolution, 2014, pp. 101-110. doi:10.1109/ICSME.2014.32.

M. Kim, T. Zimmermann, N. Nagappan, An empirical study of refactor-
ingchallenges and benefits at microsoft, IEEE Transactions on Software

Engineering 40 (7) (2014) 633-649. doi:10.1109/TSE.2014.2318734.

V. Arnaoudova, M. Di Penta, G. Antoniol, Y. Guéhéneuc, A new family of
software anti-patterns: Linguistic anti-patterns, in: 2013 17th European
Conference on Software Maintenance and Reengineering, 2013, pp. 187—

196. doi:10.1109/CSMR.2013.28.

B. Fluri, H. C. Gall, Classifying change types for qualifying change cou-
plings, in: 14th IEEE International Conference on Program Comprehen-

sion (ICPC’06), 2006, pp. 35-45. doi:10.1109/ICPC.2006.16.

76


https://github.com/jetbrains/teamcity-nuget-support/commit/da10d2c
https://github.com/jetbrains/teamcity-nuget-support/commit/da10d2c
https://github.com/jetbrains/teamcity-nuget-support/commit/da10d2c
https://github.com/davemckain/qtiworks/commit/0c924ab
https://github.com/jrebirth/jrebirth/commit/d82fb1b
https://github.com/unquietcode/flapi/commit/4586325
https://github.com/buchen/portfolio/commit/9fc2fad
https://github.com/buchen/portfolio/commit/9fc2fad
https://github.com/buchen/portfolio/commit/9fc2fad
https://github.com/buchen/portfolio/commit/e1d7472
http://dx.doi.org/10.1109/ICSME.2014.32
http://dx.doi.org/10.1109/TSE.2014.2318734
http://dx.doi.org/10.1109/CSMR.2013.28
http://dx.doi.org/10.1109/ICPC.2006.16

1800

1805

1810

1815

1820

1825

[97]

[100]

[101]

[102]

H. C. Gall, M. Pinzger, B. Fluri, Change analysis with evolizer and
changedistiller, IEEE Software 26 (01) (2009) 26-33. doi:10.1109/MS.
2009.6.

B. Fluri, M. Wuersch, M. PInzger, H. Gall, Change distilling:tree differenc-
ing for fine-grained source code change extraction, IEEE Transactions on
Software Engineering 33 (11) (2007) 725-743. doi:10.1109/TSE.2007.
70731.

M. Martinez, L. Duchien, M. Monperrus, Automatically extracting in-
stances of code change patterns with ast analysis, in: Proceedings of
the 2013 IEEE International Conference on Software Maintenance, ICSM
13, IEEE Computer Society, Washington, DC, USA, 2013, pp. 388-391.
doi:10.1109/ICSM.2013.54.

URL https://doi.org/10.1109/ICSM.2013.54

M. Martinez, M. Monperrus, Coming: A tool for mining change pat-
tern instances from git commits, in: Proceedings of the 41st Inter-
national Conference on Software Engineering: Companion Proceedings,
ICSE ’19, IEEE Press, Piscataway, NJ, USA, 2019, pp. 79-82. doi:
10.1109/ICSE-Companion.2019.00043.

URL https://doi.org/10.1109/ICSE-Companion.2019.00043

S. Negara, M. Codoban, D. Dig, R. E. Johnson, Mining fine-grained code
changes to detect unknown change patterns, in: Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, ACM, New
York, NY, USA, 2014, pp. 803-813. doi:10.1145/2568225.2568317.
URL http://doi.acm.org/10.1145/2568225.2568317

P. Kreutzer, G. Dotzler, M. Ring, B. M. Eskofier, M. Philippsen, Auto-
matic clustering of code changes, in: Proceedings of the 13th International
Conference on Mining Software Repositories, MSR ’16, ACM, New York,
NY, USA, 2016, pp. 61-72. doi:10.1145/2901739.2901749.

URL http://doi.acm.org/10.1145/2901739.2901749

(s


http://dx.doi.org/10.1109/MS.2009.6
http://dx.doi.org/10.1109/MS.2009.6
http://dx.doi.org/10.1109/MS.2009.6
http://dx.doi.org/10.1109/TSE.2007.70731
http://dx.doi.org/10.1109/TSE.2007.70731
http://dx.doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1109/ICSM.2013.54
https://doi.org/10.1109/ICSM.2013.54
https://doi.org/10.1109/ICSM.2013.54
http://dx.doi.org/10.1109/ICSM.2013.54
https://doi.org/10.1109/ICSM.2013.54
https://doi.org/10.1109/ICSE-Companion.2019.00043
https://doi.org/10.1109/ICSE-Companion.2019.00043
https://doi.org/10.1109/ICSE-Companion.2019.00043
http://dx.doi.org/10.1109/ICSE-Companion.2019.00043
http://dx.doi.org/10.1109/ICSE-Companion.2019.00043
http://dx.doi.org/10.1109/ICSE-Companion.2019.00043
https://doi.org/10.1109/ICSE-Companion.2019.00043
http://doi.acm.org/10.1145/2568225.2568317
http://doi.acm.org/10.1145/2568225.2568317
http://doi.acm.org/10.1145/2568225.2568317
http://dx.doi.org/10.1145/2568225.2568317
http://doi.acm.org/10.1145/2568225.2568317
http://doi.acm.org/10.1145/2901739.2901749
http://doi.acm.org/10.1145/2901739.2901749
http://doi.acm.org/10.1145/2901739.2901749
http://dx.doi.org/10.1145/2901739.2901749
http://doi.acm.org/10.1145/2901739.2901749

[103] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, H. Rajan,
A study of repetitiveness of code changes in software evolution, in: Pro-
ceedings of the 28th IEEE/ACM International Conference on Automated
Software Engineering, ASE’13, IEEE Press, Piscataway, NJ, USA, 2013,
1830 pp- 180-190. doi:10.1109/ASE.2013.6693078.
URL https://doi.org/10.1109/ASE.2013.6693078

[104] src/mod_invtweaks.java, https://github.com/mkalam-alami/

inventory-tweaks/commit/1dfd242.

[105] java/org/jboss/arquillian/persistence/metadata/metadataprovidertransactionaltest.java,
1835 https://github.com/arquillian/arquillian-extension-persistence/

commit/1a06974.

[106] jdeeco-core/src/cz/cuni/mff/d3s/deeco/processor/ensembleparser.java,

https://github.com/d3scomp/jdeeco/commit/0Obc8911.

[107] E. A. Alomar, M. W. Mkaouer, A. Ouni, Can refactoring be self-affirmed?
1840 an exploratory study on how developers document their refactoring activi-
ties in commit changes, in: Proceedings of the 3rd International Workshop

on Refactoring, ACM, New York, NY, USA, 2019.

[108] R. Jongeling, P. Sarkar, S. Datta, A. Serebrenik, On negative results when
using sentiment analysis tools for software engineering research, Empirical

1845 Software Engineeringdoi:10.1007/s10664-016-9493-x.

[109] M. J. Decker, M. L. Collard, L. G. Volkert, J. I. Maletic, srcdiff: A syn-
tactic differencing approach to improve the understandability of deltas,
Journal of Software: Evolution and Process n/a (n/a) 2226, 2226 JSME-
19-0050.R1. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.

1850 1002/smr . 2226, doi:10.1002/smr.2226.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2226

[110] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, M. Monperrus, Fine-

grained and accurate source code differencing, in: Proceedings of the

8


https://doi.org/10.1109/ASE.2013.6693078
http://dx.doi.org/10.1109/ASE.2013.6693078
https://doi.org/10.1109/ASE.2013.6693078
https://github.com/mkalam-alami/inventory-tweaks/commit/1dfd242
https://github.com/mkalam-alami/inventory-tweaks/commit/1dfd242
https://github.com/mkalam-alami/inventory-tweaks/commit/1dfd242
https://github.com/arquillian/arquillian-extension-persistence/commit/1a06974
https://github.com/arquillian/arquillian-extension-persistence/commit/1a06974
https://github.com/arquillian/arquillian-extension-persistence/commit/1a06974
https://github.com/d3scomp/jdeeco/commit/0bc8911
http://dx.doi.org/10.1007/s10664-016-9493-x
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2226
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2226
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2226
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2226
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2226
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2226
http://dx.doi.org/10.1002/smr.2226
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2226
http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982

29th ACM/IEEE International Conference on Automated Software En-
1855 gineering, ASE ’14, ACM, New York, NY, USA, 2014, pp. 313-324.

doi:10.1145/2642937.2642982.

URL http://doi.acm.org/10.1145/2642937.2642982

79


http://dx.doi.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982

	1 Introduction
	2 RELATED WORK
	2.1 Identifier Renaming
	2.2 Identifier Name Quality

	3 ANALYSIS OF RENAMES
	3.1 Taxonomy for Rename Refactorings
	3.2 Contextualizing Rename Refactorings

	4 Methodology
	4.1 Data Collection Stage
	4.2 Detection Stage

	5 Experimental Results
	5.1 Data Summary
	5.2 RQ1: What is the distribution of experience among developers that apply renames?
	5.3 RQ2: What are the refactorings that occur more frequently with identifier renames?
	5.3.1 Class Rename
	5.3.2 Attribute Rename
	5.3.3 Method Rename
	5.3.4 Method Variable Rename

	5.4 RQ3: To what extent can we use refactoring occurrence and commit message analysis to understand why different semantic changes were applied during a rename operation?
	5.5 RQ4: What structural changes occur when an identifier and its corresponding type are changed together?
	5.6 RQ5: What semantic changes occur when an identifier and its corresponding type are changed together?
	5.7 RQ6: What refactorings most frequently appear before and after an identifier and its corresponding type are changed together? Are there specific semantic changes which correlate with these refactorings?

	6 Discussion
	6.1 Takeaways and Actionable Results
	6.1.1 Takeaways from RQ1
	6.1.2 Takeaways from RQ2, RQ3, and RQ6
	6.1.3 Takeaways from RQ4 and RQ5

	6.2 Challenge 1: Analyzing Renames and General Code Changes
	6.3 Challenge 2: Analyzing Rename Commit Messages

	7 Threats to Validity
	8 Conclusions and Future Work
	9 Acknowledgements

