
Contextualizing Rename Decisions using Refactorings,
Commit Messages, and Data Types

Anthony Perumaa,∗, Mohamed Wiem Mkaouera, Michael J. Deckerb, Christian
D. Newmana

aRochester Institute of Technology, Rochester, NY, USA
bBowling Green State University, Bowling Green, OH, USA

Abstract

Identifier names are the atoms of program comprehension. Weak identifier

names decrease developer productivity and degrade the performance of auto-

mated approaches that leverage identifier names in source code analysis; threat-

ening many of the advantages which stand to be gained from advances in arti-

ficial intelligence and machine learning. Therefore, it is vital to support devel-

opers in naming and renaming identifiers. In this paper, we extend our prior

work, which studies the primary method through which names evolve: rename

refactorings. In our prior work, we contextualize rename changes by examining

commit messages and other refactorings. In this extension, we further consider

data type changes which co-occur with these renames, with a goal of understand-

ing how data type changes influence the structure and semantics of renames. In

the long term, the outcomes of this study will be used to support research into:

1) recommending when a rename should be applied, 2) recommending how to

rename an identifier, and 3) developing a model that describes how developers

mentally synergize names using domain and project knowledge. We provide

insights into how our data can support rename recommendation and analysis in

the future, and reflect on the significant challenges, highlighted by our study,

for future research in recommending renames.

∗Corresponding author
Email addresses: axp6201@rit.edu (Anthony Peruma), mwmvse@rit.edu (Mohamed

Wiem Mkaouer), mdecke@bgsu.edu (Michael J. Decker), cnewman@se.rit.edu (Christian D.
Newman)

Preprint submitted to Journal of Systems and Software April 14, 2021



Keywords: Program Comprehension, Identifier Names, Refactoring, Rename

Refactoring, Data Types

1. Introduction

Program comprehension is the pillar of a developer’s everyday development

tasks; almost every programming task requires a certain degree of understanding

of the existing codebase. In this way, software maintenance and evolution criti-

cally rely on the degree to which developers comprehend their codebases. Many5

studies demonstrate the significance of the effort, in terms of time, undertaken

by developers when comprehending code [1, 2]. For instance, the time spent by

developers in reading and comprehending code is significantly longer than the

time spent in writing new instructions [2]. Therefore, developers’ productivity

can be optimized by decreasing the time needed for them to understand the10

existing code [3, 4, 5, 6].

One of the most atomic activities in source code development is the naming

of code elements (e.g., class names, function/method names, etc.) collectively

referred to as identifiers. Identifier names are the basic building blocks of pro-

gram comprehension. Choices made when constructing identifier names directly15

impacts productivity [4, 6, 5, 7]. For example, abbreviated terms may hinder

comprehension for both tools and humans. In response, studies search for ways

to standardize and normalize identifier names to support both developers and

tools [8, 9] and many research projects, both recent and otherwise, aim to en-

hance identifier naming using machine learning, static analysis, and by studying20

naming inconsistencies [10, 11, 12, 13, 14, 15].

One way to improve identifiers is to apply a rename refactoring [16]. Rename

refactorings are defined as refactorings which modify the name of an identifier

without modifying the intended behavior of the code for which the identifier is a

part. Many Integrated Developer Environments (IDEs) offer a built-in rename25

refactoring functionality. Most of these IDEs only support the mechanical act of

renaming; they allow a developer to choose what identifier they want to rename,

2



what new name should be used, and then perform checks to ensure that the new

name will not introduce name collisions and that the new name is applied in all

appropriate locations. There is little or no support to help inform developers30

of when to rename an identifier (e.g., when a name is of sub-optimal quality),

and how to rename them (i.e., what words to use within the name). Instead,

renames are typically performed when a developer notices that an identifier does

not accurately reflect the behavior it represents. This causes renaming to be

applied in a manner that is not always wholly systematic. Further, a developer35

is free to come up with whatever name they like (i.e., within the limits of naming

conventions defined for the project). This new name may be even worse than

the original, but there is no formal method to determine when this is the case.

Because naming heavily affects comprehension for both tools and humans,

it is important to fully support developers when they must modify identifier40

names. That is, research must support developers in applying rename refactor-

ings. Recent research on naming focuses heavily on suggesting identifier names

[13, 14, 10, 11], studying how names correlate with behavior [12, 17], and ana-

lyzing names to reveal interesting properties [18, 19, 20, 21, 22]. We focus this

work on investigating how names evolve [23, 24, 18, 25, 26] (i.e., are changed via45

rename) and how these changes affect/are affected by: 1) other changes made

to the code (i.e., behavior preserving or not) as part of 2) a larger development

plan/context. This information is critical if we are to support the evolution of

identifier names through recommending when and how to rename an identifier.

In this paper, we study renames in two ways. 1) This paper utilizes a tax-50

onomy of rename types published by Arnoudova et al. [18] to understand the

types of changes applied to identifier names within our dataset. That is, we

study how individual terms within an identifier are modified both syntactically

and semantically when a rename refactoring is applied. 2) The paper contextu-

alizes these rename types by analyzing changes to data types, commit log data,55

and refactorings which co-occur with renames. This allows us to understand

how changes, to the code surrounding an identifier, affects changes to the iden-

tifier’s name and, likewise, how development activities (i.e., written in a commit

3



log) affect changes to the identifier’s name.

This paper is an extension of two prior works. Our initial work on renames60

investigated how method, class, and package identifier names evolve and how

this evolution was described in commit messages. Our aim was to understand

how names evolve and how this evolution is documented. Our assumption was

that the choice of wording used during a rename is influenced by external fac-

tors which may appear in commit messages [23]. Through this work, we deter-65

mined some preliminary trends in how development activities, such as adding

features, influenced the terminology used during a rename. However, due to

the limitations of natural language analysis techniques, and the occasionally

information-light nature of commit messages, the results we found were not as

actionable as we wanted. The trends we detected were nevertheless instruc-70

tive and helped guide us toward ways to improve our approach. Thus, we

extended [23] by taking into account the types of refactorings which occur be-

fore, or after, a rename refactoring while performing commit message analysis

on these surrounding operations [24]. This allowed us to more clearly identify

how names are influenced by their surrounding changes (e.g., Extract Method75

and Move Attribute frequently occur before certain types of renames) and how

these influences are documented in commit messages. It also highlighted further

challenges, which we discussed as research directions for ourselves and the larger

software engineering research community.

In this paper, we extend our recent work [24] by additionally considering80

the situation where a rename is applied to an identifier, and that identifier’s

corresponding data type is changed. Data type changes are interesting because,

unlike refactorings, they may change the external behavior of their associated

identifier. Data types tell us what data and behavior an identifier represents

(i.e., the data type tells us what attributes and methods can be used with this85

identifier). Therefore, when an identifier and its data type both change, this

indicates a potential shift in behavior (e.g., added methods, new API), a shift

in the data represented by an identifier (e.g., added attribute), or shift in the

representation of data and behavior in a system (e.g., a change to improve

4



comprehension). By studying this situation, we can gain a more acute under-90

standing of name evolution using a type of code change (i.e., data type changes)

that has a stronger, direct influence on the behavior of a given identifier, and

provide means for previous rename recommendation techniques to consider type

migration as another dimension to learn a more suitable name.

The goal of this extension is to understand the influence that data type95

changes have on the structure and meaning of a rename. We emphasize data

type changes for three reasons: 1) Changes to an identifier’s type are relatively

easy to detect in many programming languages. Therefore, making suggestions

to developers on the fly when a type change is performed is already feasible in

modern IDEs. 2) Types have strong influence over the data and behavior rep-100

resented by an identifier, so changes to the type can have heavy significance on

their associated identifier. 3) Type changes are a simple way for us to explore

some non-refactoring code changes related to renames. These results will pro-

vide insight for our long term goals. In the long term, the outcomes of this study

will be used to support research into: 1) recommending when a rename should105

be applied (e.g., after specific types of refactorings), 2) recommending how to

rename an identifier (e.g., what words to use), and 3) developing a model that

describes how developers mentally synergize names using domain and project

knowledge. We provide insights into how our data can support future recom-

mendations. Additionally, we expand our reflection on the significant challenges110

for future research in recommending renames. Hence, we answer the following

research questions:

RQ1: What is the distribution of experience among developers

that apply renames? We want to know how much experience developers

who apply renames typically have. We use this question to understand the115

population from which our data has been obtained; contextualizing our data

with respect to the level of experience of the developers it was generated by.

This is important for future comparison with our dataset.

RQ2: What are the refactorings that occur more frequently with

identifier renames? With this question, we aim to understand which types of120

5



refactorings tend to occur before or after a rename. Our assumption is that the

changes made to code immediately before or after a rename have a relationship

with the rename itself.

RQ3: To what extent can we use refactoring occurrence and com-

mit message analysis to understand why different semantic changes125

were applied during a rename operation? Using our refactoring co-

occurrence data from RQ2, we add in commit message data in an effort to

see how effectively we can pinpoint the development reason for certain changes

(e.g., using more general words) to words in identifier names.

RQ4: What structural changes occur when an identifier and its130

corresponding type are changed together? When an identifier is renamed

in-tandem with its data type, it may indicate a behavioral or semantic change

since modifying the type ultimately may mean that the amount, or type, of

data represented by an identifier has changed. This question explores struc-

tural changes made to an identifier to understand how type names are included135

in/removed from identifier names and changes to types affect structural changes

made to identifier names.

RQ5: What semantic changes occur when an identifier and its

corresponding type are changed together? When an identifier is renamed

in-tandem with its data type, it may indicate a behavioral or semantic change140

since modifying the type ultimately may mean that the amount, or type, of data

represented by an identifier has changed. We explore how identifier and type

naming semantics evolve together in this question, including how the plurality

of identifier names correlate with collection types and whether there is a covari-

ant or contravariant relationship between semantic updates to type names and145

identifier names.

RQ6: What refactorings most frequently appear before and after

an identifier and its corresponding type are changed together? Are

there specific semantic changes which correlate with these refactor-

ings? This question helps us understand if there is a common set of refactoring150

operations applied before or after renames which involve an identifier name and

6



its corresponding data-type. Further, we explore if these refactorings imply

different semantic changes to the identifier name.

2. RELATED WORK

Since the choice of adequate naming for identifiers is critical for code under-155

standability, there have been many studies that analyze the quality of identi-

fiers and how identifier quality affects comprehension and developer efficiency.

Hence, we divide our discussion of related work into two areas - studies that

explore identifier renamings from a natural language perspective and studies

that investigate the quality attributes that an identifier should exhibit.160

2.1. Identifier Renaming

Arnoudova et al. [18] studies and proposes an approach to analyzing and

classifying identifier renamings by mining rename operations and contrasting

between the old and new forms of a given identifier. Their technique leverages

the lexical database WordNet to understand how words in the old and new165

versions of an identifier are related. They additionally conduct a survey showing

that 68% of developers want more support in naming identifiers and see name

recommendation as an important problem. As part of their work, the authors

introduce a taxonomy for identifier renames and report on the distribution of

each type of classification, that was part of the taxonomy, in a dataset. Our170

work looks at understanding the motivations that drive developers to perform

identifier renames and how these motivations affect the name’s evolution. Hence,

we utilize Arnoudova’s taxonomy as a mechanism to measure the evolution of

a name and contextualize this evolution using commit messages, refactorings,

and data types. Additionally, our study examines a larger number of rename175

operation types compared with [18].

Our previous work [23] is a study on how terms in an identifier change, and

we contextualize these changes by analyzing commit messages using a topic mod-

eler; looking for words that indicate what development activity had occurred

7



with the change. We extended [24] to attempt contextualization using not only180

commit messages, but also the refactorings which surround a given rename (i.e.,

a refactoring is applied before or after the application of a rename). We found

that certain refactorings, such as extract method, move attribute, move class,

and rename (method, variable) were the most likely to occur before a rename

and that these refactorings had motivations which could be obtained via the185

commit message, such as reverting the code (rename followed by rename) and

architectural changes (move class). In this study, we further extend this work

by considering rename operations which, in addition to changing an identifier’s

name, change the same identifier’s corresponding data type; an important rela-

tionship to consider due to how the type is how developers reason about both190

behavior (e.g., methods) and data (e.g., attributes) that an identifier represents.

NATURALIZE, a framework, based on statistical language models, to mine

natural source code naming conventions, was implemented by Allamanis et al.

[27]. NATURALIZE looks for potential variable renaming opportunities by

learning the coding conventions in the source code via syntactic restrictions,195

sub-grammars on existing identifier names. The authors extended this work

[28] to suggest the renaming of methods based on their bodies and renaming

classes based on their methods. Their work tries to find renaming opportunities,

whereas we analyze renames to understand identifier name evolution. Our work

focuses on analyzing how the words in a name evolve as a result of a rename and200

external factors, where external factors are obtained though commit message

analysis or implied by other, co-occurring refactorings/data type changes.

Liu et al. [25] propose an approach that monitors the rename activities per-

formed by developers and then recommends a batch of rename operations to all

closely related code elements whose names are similar to that of the renamed el-205

ement by the developer. They also study the relationship between argument and

parameter names and utilize the patterns they found to detect naming anoma-

lies and suggest renames to developers [26]. The authors determine what other

names a developer should pay attention to given that a rename has been applied

and regularity in the naming structure between parameters and arguments. The210

8



focus of our work is complementary to this as we are looking at the semantics

behind changes made to a name and the motivation for these changes, which

could assist Liu’s approach by helping determine how to rename an identifier

(e.g., narrow the meaning) and provide more information as to when to rename

(e.g., after a Move Attribute).215

2.2. Identifier Name Quality

There are several recent approaches to appraising identifier names for vari-

ables, methods, and classes. Liu et al. [11] propose an automated approach

based on deep learning to debug method names based on consistency between

the method’s name and its implementation. Kashiwabara et al. [14] use asso-220

ciation rule mining to identify verbs that might be good candidates for use in

method names; this work focuses on word co-occurrence to find any emergent

relationships. [13] uses an ontology that models the word relationships within

a piece of software. They then generate suggestions for new identifier names

using different schemes for how to choose sequences of words to put together225

to form the identifier. Allamanis et al. [10] use a novel language model called

the Subtoken Context Model, which is a neural network that has some sim-

ilarity to n-grams (in that it uses a previously seen set of tokens to predict

a new token). The difference is that the neural network is able to take into

account long-distance features (e.g., identifier names that occur very far away230

from the target location) and produce neologisms (essentially, new identifiers)

by concatenating words together (i.e., as is commonly done by developers).

Liblit et al. [29] discuss naming in several programming languages and make

observations about how natural language influences the use of words in these

languages. Schankin et al. [4] focus on investigating the impact of more infor-235

mative identifiers on code comprehension. Their findings show an advantage of

descriptive identifiers over non-descriptive ones. Hofmeister et al. [5] compare

comprehension of identifiers containing words against identifiers containing let-

ters and/or abbreviations. Their results show that when identifiers contained

only words instead of abbreviations or letters, developer comprehension speed240

9



increased by 19% on average. Lawrie et al. [6] study 100+ programmers, asking

them to describe twelve different functions. These functions used three different

“levels” of identifiers: single letters, abbreviations, and full words. The results

show that full word identifiers lead to the best comprehension, though there were

cases where there was no statistical difference between full words and abbrevi-245

ations. Butler et al. [7] extend their previous work on java class identifiers [30]

to show that flawed method identifiers are also (i.e., along with class identifiers)

associated with low-quality code according to static analysis-based metrics.

Høst and Østvold [12] designed automated naming rules using method signa-

ture elements, i.e., return type, parameter names, and types, and control flow.250

They call this technique method phrase refinement, which takes a sequence of

part of speech tags (i.e., phrases) and concretizes them by substituting real

words. (e.g., the phrase <verb>-<adjective> might refine to is-empty). Ad-

ditionally, they use static analysis to group method names (in phrase form)

together by behavior. Binkley et al. [21] presented empirically-derived rules255

that certain types of identifiers (e.g., class field identifiers) should follow. One

of these rules is that class fields should never be just an adjective.

Arnaoudova et al. [17] define a catalog of linguistic anti-patterns that are

found to deteriorate the quality of code understanding. The authors show

the negative impact of linguistic anti-patterns by conducting two studies with260

software developers and finding that the majority of programmers perceive

anti-patterns as poor naming practices. In their study of readability metrics,

Fakhoury et al. [31] show that current metrics may not be effective at capturing

readability improvements; highlighting the importance of further research into

the quality of naming and how names evolve over time.265

Previous studies consider the current state of the software to analyze identi-

fiers, without considering the history of their previous renames. We complement

these studies by examining how names evolve, the semantics behind this evolu-

tion, and correlated code change activities that motivate this evolution. While

existing studies focus on static names (i.e., identifiers in their current state270

rather than analyzing how they change), our approach focuses on how names

10



evolve over time. Thus, we add to the body of knowledge represented by these

related papers. The dataset we collected can be used to augment the accuracy

of rename recommender techniques, along with unlocking the possibility to per-

form empirical studies and understand to what extent developers follow naming275

conventions and best practices over a system’s lifetime.

3. ANALYSIS OF RENAMES

The hypothesis of this paper is as follows: Changes to the name of an identi-

fier are most likely related to other code changes made locally (i.e., in the same

class, function, or file) and/or the motivation behind those changes (e.g., using280

a new API, fixing a bug). Under this hypothesis, we should be able to corre-

late the types of changes made to a name with other local code changes and/or

change descriptions (e.g., in commit messages). We use a taxonomy created

by Arnaoudova et al. [18] to analyze rename refactorings and categorize them

into the different types prescribed by this taxonomy. In this section, we briefly285

discuss the taxonomy, but encourage the reader to read the original work for

a more thorough discussion of each category. We also take a look at examples

of renames and how they are influenced by surrounding changes found in our

dataset. We will start with the taxonomy.

3.1. Taxonomy for Rename Refactorings290

Entity Kind: Entity kind records the source code entity that a given iden-

tifier represents. For example, the identifier may be the name of a type, class,

getter, setter, etc.

Form of Renaming: This category reflects the lexical change made to

the identifier. It is broken down into a few subcategories: Simple, Complex,295

Reordering, and Formatting. Simple changes are those that only add, remove,

or change one term in the identifier. Complex changes add, remove or change

multiple terms. Reordering is where two or more terms in an identifier switch

positions (i.e., GetSetter becomes SetterGet), and Formatting changes are those

11



where there is no renaming but a letter in a term changes case or a separator300

(e.g., underscore) is added or removed.

Semantic Changes: These are changes due to adding/removing terms

or modifying terms (e.g., to another term that is a synonym of the original)

such that the meaning of the identifier may have been modified. The following

heuristics are used to figure out whether the idenifier’s semantics have been305

preserved or modified.

We consider the identifier’s meaning preserved if one of the following

holds: 1) the change added/removed a separator, 2) the change expanded an

abbreviation, 3) the change collapsed a term into an abbreviation, 4) the old

term was changed to a new term which is a synonym of the old term, 5) multiple310

old terms were changed to multiple new terms which are synonyms OR use or

removal of negation preserves meaning of the identifier (i.e., ItemNotVisible

becomes ItemHidden).

We consider the identifier’s meaning modified if one of the following holds:

1) Broaden meaning– the old term is renamed to a hypernym of itself OR315

a term (i.e., adjective or noun) was removed which generalizes the identifier

(e.g., GetFirstUnit becomes GetUnit). 2) Narrowing meaning– the old term

is renamed to a hyponym of itself OR a term was removed which narrows the

meaning of the identifier (e.g., GetUnit becomes GetFirstUnit). 3) We consider

meaning changed (i.e., not narrowed or broadened) when an old term is changed320

to a new term which is unrelated to the old; when a new term is the old term’s

meronym/holonym, or antonym; OR when multiple terms are changed AND a

negation reverses a synonym of the old term. 4) Add meaning– one or more new

terms were added to the identifier AND the addition does not fall into one of

the categories above (e.g., narrow meaning). 5) Remove meaning– one or more325

terms removed from the identifier AND the removal does not fall into one of the

categories above (e.g., broaden meaning).

12



3.2. Contextualizing Rename Refactorings

Developers rename identifiers for multiple reasons. Through careful analysis

of rename refactorings, one can gain insight into how developers choose their330

words, why they choose certain types of words over others, and how to mimic this

process automatically. In this subsection, we show examples of how developer

activity, recorded in commit messages and refactoring operations, is reflected in

their renaming choices.

By analyzing the following method rename: setDisableBinLogCache →335

setEnableReplicationCache, we observe that the meaning of the name has

changed; the developer has modified the name by changing disable to en-

able. This change is reflected in the commit message entered by the developer:

“Changes replication caching to be disabled by default” [32]. Similarly, the re-

naming of a class from Key → EntityKey demonstrates an act of narrowing the340

meaning of the identifier. Once again, the purpose of this rename is reflected in

the commit message: “Rename Key to EntityKey to prepare specialized caches”

[33].

Developers may also rename identifiers to: 1) better represent the existing

functionality and not when they are changing or narrowing it, or 2) adhere345

to naming standards or correcting a spelling/grammatical mistake. For exam-

ple, here the developer renamed the class TestProxyController → ProxyCon-

trollerTest by reordering the term names to “...fixed names that were not in

standards” [34]. In the next example, the developer preserves the meaning of

a method by renaming it from inactivate → deactivate, through the use of a350

synonym. This is, again, reflected in the commit message: “Renaming method

to proper English...” [35], where renaming to ‘proper English’ indicates that the

meaning has not been modified but should now be easier to comprehend.

Finally, commit messages are not the only way to contextualize rename refac-

torings. Changes to the code surrounding a name also help in understanding355

what the developer’s intention. Unfortunately, most types of changes to the

code are not part of a pre-defined taxonomy. That is, it is difficult to under-

stand the abstract, domain-level goal of individual changes. Luckily, some types

13



of code changes are taxonomized. Specifically, refactorings are a taxonomy of

changes made to the code for a specific goal; typically to optimize non-functional360

attributes of the code [16]. We can look at refactorings that happen just before

and right after a given rename to help us understand what the developer was

doing before and after they applied a rename refactoring.

For example, in commit [36] the developers applied an Extract Method refac-

toring with the following comment: “using the Jangaroo parsing infrastructure;365

all tests green; getters inherited”, before applying rename: getCompilationsUnit

→ getCompilationUnit. This preserves the meaning of the name but puts the

name more in-line with its type, as stated by the commit message for this change:

“Corrected type in internal method name” [37].

Another example comes from a move class refactoring, where a class was370

moved from one package to another [38]. This refactoring commit had the fol-

lowing comment: “Incremental changes, some package refactorings etc”. Fur-

ther, a rename was performed after this commit: JsonViewResult→JsonView

[39]. This rename broadens the meaning of the name by removing result, making

the identifier more general in meaning. The commit message associated with375

the rename is: “Cleaned up some file names for easier usage...”, meaning the

developer was likely going through and renaming things after the move class

refactoring.

In addition to surrounding code changes, a change in the data type associ-

ated with an identifier can also help contextualize a rename of an identifier. For380

example, in commit [40], the developer performs the following Rename Variable:

Date sqlDate → Timestamp timestamp with the commit message “fixes issue

#29. java.util.Date and jodatime.Datetime instances would loose time informa-

tion...” From this example, we see that reason for the rename is to fix a bug by

utilizing the Timestamp data structure instead of Date.385

The question we ask, in the context of these examples, is whether there are

overarching themes to the way names change given that a refactoring or data

type change has occurred in a commit surrounding it. If so, then it is possible to

study these trends and use them to support developers in their naming activities.

14



Engineered open-
source projects

800 random 
Java projects

Clone projects & 
extract commit data

Code refactoring 
mining

Da ta Collection Sta ge

Detect ion Stage

Rename     
co-occurrence 

detection

Rename 
developer 
experience

Rename data 
type change 

detection

Rename 
semantic 
detection

Commit details & 
refactoring details

Figure 1: Methodology overview

4. Methodology390

Our methodology consists of two stages - Data Collection and Detection. The

Data Collection stage consists of constructing our dataset while the Detection

stage consists of examining and querying the dataset for specific characteristics

to help answer our research questions. Figure 1 represents an overview of the

approach used to conduct our experiments. In the subsequent subsections, we395

explain in detail the approach for each activity. Furthermore, the dataset uti-

lized in this study is available on our project website [41]. Due to performance

requirements associated with this volume of data mining and data analysis, the

activities associated with both phases were performed on a dedicated virtual

machine with 16 GB of RAM, and a 3.40 GHz i7 CPU. With this configuration,400

the Data Collection Stage took approximately four weeks to complete, while the

Detection Stage was completed in around 1.5 weeks.

15



4.1. Data Collection Stage

Projects: A key element to an empirical research study is the relevance of

the dataset on which the study is based. To obtain a viable dataset, we select405

800 random, open-source Java projects hosted on GitHub. These projects are

part of a curated dataset of engineered software projects made available by

[42]. The authors of this dataset classified engineered software projects based

on the project’s use of software engineering practices such as documentation,

testing, and project management. For each of these 800 projects, after cloning410

the project repository, we enumerate over the commit log of each project to

extract metadata associated with each commit. The extracted data includes

the author (name and email) who was responsible for the original creation of

the commit, the creation timestamp of the commit, and the names of the files

that were part of the commit.415

Refactorings: To obtain the set of refactorings from each project, we utilize

RefactoringMiner [43]. At the time of our study, RefactoringMiner can detect

28 different refactoring operations. From this list of operations, seven are re-

name based operations. At a high-level, we utilize RefactoringMiner to iterate

over all commits of a repository in chronological order. During each iteration,420

RefactoringMiner compares the changes made to Java source code files in order

to detect refactorings in the code based on a pre-defined set of refactoring rules.

While there are a few other tools that can mine refactoring operations [44], we

selected RefactoringMiner since it represents state of the art in the field of refac-

toring detection [45], along with a precision of 98% and a recall of 87% [43, 46].425

Therefore, it is well suited for our large-scale mining study. We investigate the

renaming operations on five types of identifiers - classes, attributes (i.e., class-

level variables), methods (including getter and setters), method parameters,

and method variables. Furthermore, we conduct our experiments on the entire

commit history of the project (and not on a release-by-release comparison).430

16



4.2. Detection Stage

Rename Forms & Semantics: We utilize the tool from one of our prior

studies [23] for the detection of rename-based form and semantic updates made

to an identifier’s name. The tool follows the rules specified by Arnaoudova et

al. [18] to determine the type of form and semantic change an identifier name435

undergoes when renamed. Input for the tool is the pair of old and new names

associated with a renamed identifier.

First, from the output provided by RefactoringMiner, we extract all rename-

based refactoring operations. Next, from these operations, we extract: 1) each

pair of old and new names, 2) the name of the source code file containing the440

renamed identifier, 3) the name of the class containing the renamed identifier,

and 4) the unique ID of the commit associated with the refactoring.

Since most identifier names are composed of multiple terms, a pre-requisite

to performing the form and semantic analysis is the splitting of each name

into its constituent terms. Hence, the tool utilizes the Ronin splitter algorithm445

implemented in the Spiral package [47] to determine the terms that form a name.

The tool primarily relies on Python’s Natural Language Toolkit (NLTK) [48]

to compare the old and new identifier name to determine the type of semantic

change made by the developer. To determine the relationship between terms in

the names, the tool makes use of WordNet [49], to obtain the semantic and part450

of speech details about each term.

Renames With Data Type Changes: We built a custom tool to identify

data types associated with identifiers that undergo a rename. Based on Java

technical documentation [50], our experiments consider the following eight data

types as primitives: byte, short, int, long, float, double, boolean, and char.455

Additionally, we examine the distribution of data types that store a group of

values/references (i.e., arrays and collections) [51]. For methods, we consider

the return type of the method as the data type. As void is not considered a

type in Java [52], we exclude instances where the return type changed to/from

void. This exclusion allowed our analysis on methods to be consistent with460

17



the other identifiers that have types– attributes, method variables, and method

properties; these identifiers must be associated with a data type (either primitive

or non-primitive) and thus cannot have void as their type. However, for all other

instances, we apply the same processing we performed on the other identifiers

in our experiment.465

Our study of data type changes and their involvement in rename refactorings

is limited to attributes, methods, method parameters, and method variables

since classes do not have types. For each rename instance of these types of

identifiers, we extract the name of the data type associated with the old and

new name of the identifier. For example, the Rename Attribute refactoring470

long connTimeToLive → TimeValue timeToLive also contains a change in

data type. In this instance, the developer changes the type of the identifier

from long to TimeValue when renaming the attribute from connTimeToLive to

timeToLive.

Rename Co-occurrence With Refactorings: We built a custom tool to475

identify refactorings that occur before and after rename refactoring. The

tool functions by iterating over the commits which contain refactorings in our

dataset. This is done in chronological order (based on the author-date – the

date the commit was originally made). Since our rename refactorings are related

to classes, attributes, methods, method parameters, and method variables, we480

restrict our detection to refactorings that are applied to only these types of iden-

tifiers. For each renamed identifier type, we first extract all unique instances.

Next, we iterated through all refactorings searching for refactorings that in-

volved the specific instance. Our process does not take into account the time

duration between commits when looking for surrounding refactoring commits.485

To better highlight this process, consider the example where we de-

tect the class stormpot.CountingAllocatorWrapper as being renamed to

stormpot.CountingAllocator [53]. We first query our list of unique attributes,

methods, parameters, and variables for identifiers that were part of this class and

had also undergone a refactoring. Our search results in an attribute, counter,490

18



belonging to this class, which had undergone a rename refactoring (prior to

the class being renamed) [54]. We utilize the author-date attribute associated

with a commit to determine the order of the commits. Finally, we record this

pair of refactorings in our database. It should be noted that the version of

RefacotringMiner we utilize only supports rename refactoring operations for495

parameters. Hence, we did not obtain other types of refactoring operations that

developers might apply to parameters.

Rename Co-occurrence With Data Type: The purpose of this activity is

to detect and analyze the co-occurrence of rename refactorings that also contain

a data type change to the renamed identifier. Hence, we follow an approach sim-500

ilar to the general rename refactoring co-occurrences described above. However,

in this new approach, we limit the dataset to only rename instances with a data

type change; the general approach did not consider data type changes. For ex-

ample, the Rename Attribute refactoring HistoryMap historyMap → History

history contains a data type change from HistoryMap to History [55]. How-505

ever, before performing this rename, the developer performs a Pull Up Attribute

refactoring operation on the attribute [56]. In this instance, the refactoring op-

erations Rename Attribute and Pull Up Attribute co-occur when the data type

of the attribute changes during its rename.

Commit Log Analysis: To derive the developer’s rationale for performing a510

rename, we look at the commit log as a means of contextualizing the rename.

Hence, our experiment involves the performance of a topic modeling and n-gram

analysis of commit messages. For our topic modeling analysis, we utilize the

Latent Dirichlet Allocation (LDA) [57] algorithm. Additionally, we use a com-

bination of topic coherence [58] and manual empirical analysis as a means to515

determine the ideal number of topics; past research has shown that the num-

ber of topics can vary between studies and datasets [59]. A prerequisite to

these activities was a text preprocessing task where we cleansed and normalized

the commit messages. Normalization is a process of transforming non-standard

words into a standard and convenient format [60]. Some key steps in our pre-520

19



processing include: removal of stopwords, URLs, numeric and alphanumeric

characters/words, and non-dictionary words. Additionally, we also expand con-

tractions (e.g., ‘I'm’ → ‘I am’) and perform stemming and lemmatizing on

words.

Taxonomy: To support our discussion of the challenges involved in our study525

(refer Sections 6.3 and 6.2), and to better understand the rationale behind the

renaming of an identifier, we perform a qualitative analysis on the source code

changes that accompany rename refactorings. In this experiment, we manually

review the diff of the commit in order to understand if the rename was made

in conjunction with other changes to the code or by itself. As a setup for this530

experiment, we select 30 random rename instances from each of the five types

of identifiers. This results in a total of 150 source code files for our manual re-

view; where at least two authors review each file. When performing the review,

the reviewers first examine changes made by the developer to surrounding code

elements and the commit message. Next, the reviewers determine the rationale535

for the rename. Finally, the reviewers compare their individual taxonomy anno-

tations and agree on a final set. The reviewed source files were then annotated

using this finalized taxonomy.

Developer Experience: The purpose of this activity is to determine the ex-

perience of the developers that refactor the source code in a project. As our540

study is on renames, we derive the experience of developers where the develop-

ers refactoring operations are limited to only renames, developers who perform

all refactoring operations, and developers who perform only non-rename refac-

toring operations. As this is a large empirical study, obtaining the experience

of each developer, associated with a project, in our dataset is not feasible and545

can also be subjective. Hence, to overcome this challenge, we perform a more

objective-based experiment where we follow the approach utilized by [61]. In

their approach, the authors use project contribution as a proxy for developer

experience within a project. Hence, for each developer in each project, we calcu-

late the Developer’s Commit Ratio (DCR). This ratio measures the number of550

20



individual commits made by the developer against all project commits. In other

words, DCR = ( IndividualContributorCommits
TotalAppCommits ). We utilize the project’s commit

log along with the output of RefactoringMiner to determine the developers that

belong to each of the three groups. Using details in the commit log, we first

calculate the DCR for all developers in a project. Next, using the output of555

RefactoringMiner, we split the developers into their respective groups based on

the type of refactoring operations they had performed during the lifetime of the

project. To mitigate the threat of misattributing commits due to the use of

GitHub features such as pull requests, we only consider the author of a commit

as its developer.560

5. Experimental Results

In this section, we discuss the results of our experiments. The discussion

is broken down into six Research Questions (RQs). While RQs 1-3 focus on

all rename refactorings, RQs 4-6 focus specifically on rename refactorings in

which the renamed identifiers also had a change in data type. The RQs are565

designed to help us understand how data type changes affect the evolution of

identifier names when these changes are applied in tandem. In RQ1, we focus

on the experience of developers that perform rename refactorings versus other

types of refactoring operations. In RQ2, we discuss what types of refactorings

occur before or after a rename refactoring. Additionally, we look at how often570

rename refactorings are preceded or followed by another refactoring, and what

types of refactorings these preceding or following changes represent. In RQ3,

intending to contextualize identifier renames, we combine and discuss data from

RQ2 with commit message information and the semantic change types discussed

in Section 3.1. Our end goal is to utilize the commit message and refactoring575

information to contextualize the semantic change types we detected in our set

of renames. In RQ4, we examine the structural changes applied to an identifier

name when both it and its corresponding type are changed together. In RQ5,

we apply similar analysis as in RQ4 except we look at semantic, instead of

21



Table 1: Distribution of the top five refactorings

Refactoring Type Count Percentage

Rename Attribute 137,842 19.37%

Rename Variable 84,010 11.81%

Rename Method 82,206 11.55%

Move Class 76,265 10.72%

Extract Method 47,477 6.67%

Others 283,695 39.87%

structural, changes; identifying how the meaning of identifier names evolve when580

their type is changed in-tandem. Finally, RQ6 is similar to RQ2, but we focus

on refactorings surrounding identifier renames which include a change to the

corresponding type.

5.1. Data Summary

For context, we present a summary of our dataset before we discuss our585

results. First, with regards to project cloning, in total, we collected 748,001

commits with a project containing 732 commits and 19 developers on average.

In terms of recentness, the projects were cloned in early 2019, and approximately

74.6% of the projects had their most recent commit within the last four years.

Next, looking at the RefactoringMiner output, we identified 711,495 refactoring590

operations, with each project in our dataset exhibiting more than one refactoring

operation. After the removal of outliers (via the Tukey’s fences approach),

on average, each project had 450.8 refactoring operations performed by seven

developers. Approximately 53.51% of the refactoring operations in our dataset

were rename based. We present the top five refactoring operations, from our595

mined dataset, in Table 1.

Looking at the form type and semantic updates data, obtained during the

Detection stage (Section 4), we observed that developers more frequently per-

form a Simple form type rename compared to Complex, Formatting, and Re-

22



Table 2: Distribution of rename forms and semantic meaning updates made to identi-

fier names by developers

Type Count Percentage

Rename form types

Simple 259,754 68.31%

Complex 109,860 28.89%

Formatting 8,916 2.34%

Reordering 1,732 0.46%

Rename semantic meaning updates

Preserve 29,568 7.78%

Change 350,694 92.22%

Change – Narrow 44.21%

Change – Add 37.93%

Change – Broaden 15.09%

Change – Remove 2.58%

Change – Antonym 0.19%

ordering. In terms of semantic updates, most identifiers undergo a change in600

meaning, with a narrowing in meaning occurring the most. Shown in Table

2 is the distribution of rename form and semantic meaning types that were

performed by all developers in our dataset.

From our analysis of renames with data type changes, approximately 17.39%

(53,962) of renames were performed with a change in data type. From this set,605

developers frequently change the type of method variables followed by method

parameters. A breakdown into the individual identifier types is presented in Ta-

ble 3. Out of the 800 projects in our dataset, 769 (≈ 96.13%) of these projects

exhibited rename instances that had a change in data type. Looking at the indi-

23



Table 3: Distribution of rename-based type changes

Type Changed Type of Rename Count Percentage

No Rename Attribute 128,486 41.41%

No Rename Variable 61,665 19.87%

No Rename Method 37,923 12.22%

No Rename Parameter 28,086 9.05%

Yes Rename Variable 21,885 7.05%

Yes Rename Parameter 16,285 5.25%

Yes Rename Attribute 9,355 3.01%

Yes Rename Method 6,397 2.06%

No Move And Rename Attribute 187 0.06%

Yes Move And Rename Attribute 40 0.01%

vidual identifier types, approximately 80.25% of all projects in the dataset had610

an attribute rename with a change in data type, while approximately 73.65%,

92.25%, and 81% of projects had a rename of a method, variable, and parameter

occurring in tandem with a data type change respectively. Furthermore, approx-

imately 42.75% of the projects from our dataset of 800 contained a refactoring

occurring either before and/or after a rename refactoring that also contained a615

data type change.

Finally, we followed [18]’s approach to identify documented renamings in

our dataset. From the set of mined rename refactoring commits, approximately

6.9% (or 4,701 out of 68,121) of the commits documented the renaming, com-

pared to less than 1% in [18]’s dataset. This means that most commit messages620

do not explicitly discuss the rename operation. However, while renames are

not always documented, the motivation behind the rename may still be gleaned

from the commit message (e.g., the commit may discuss clean-up, bug fixing,

changing a method’s behavior). Not all commit messages which document re-

names specify why the rename is needed (e.g., “renaming some variables” [62])625

24



and, likewise, some rename motivations can be found in commit messages which

do not mention the rename itself (e.g., “extract method to convert db entity to

generic entity” [63]). This percentage does indicate a potential need for rename

documentation support.

We have made available, on our website [41], the dataset utilized in this630

study for replication and extension purposes.

5.2. RQ1: What is the distribution of experience among developers that apply

renames?

To compare the distributions of DCR for developers who had performed only

renames, only non-renames, and a mix of rename and non-rename refactorings,635

we follow the same approach as [61]. Since the number of developers in each

project differs, we calculate an adjusted DCR value for each developer by di-

viding the developer’s original DCR value by the number of developers in the

project. We also restrict our experiment to projects that had only two or more

developers. Figure 2 depicts the distribution of DCR values for developers based640

on the type of refactoring performed in their project.

Our observation of developers who perform all types of refactorings having

a higher DCR than those that perform only rename refactorings is in line with

the research indicating that rename operations are considered simpler, or more

accessible, compared to other refactoring operations. That is, developers who645

are less experienced feel more comfortable applying them [64, 65, 66]. However,

it is interesting that developers who perform only renames share a similar DCR

value as those that perform only non-rename refactorings. To further validate

these findings, we perform a nonparametric Mann-Whitney-Wilcoxon test on the

DCR values for developers that belonged to these categories. We obtained a650

statistically significant p-value (< 0.05) when the DCR values of developers who

performed only rename refactorings were compared to developers that perform

all types of refactorings. This value confirms that developers that contribute less

to a project are more likely to perform rename refactorings, which are generally

considered easier to apply due to wide IDE support despite developers also655

25



0.0

0.1

0.2

0.3

0.4

1e−05 1e−03 1e−01

Developer Commit Ratio (Log Scale)

D
en

si
ty

All Refactorings Only Non−Renames Only Renames

Figure 2: Distribution of DCR values for developers based on the type of refactoring

performed in their project

generally agreeing that renaming is a difficult problem [18].

Looking at the different types of identifier rename forms, we observe that

there is no significant difference in the distribution of renaming forms between

developers that perform only renames and those that perform all types of refac-

torings. Similarly, the types of semantic updates to an identifier name also660

showed no significant differences among these two groups of developers. Ta-

ble 4 provides a breakdown of the distribution of rename form and semantic

meaning updates based on developer type. Our experiment on developer expe-

rience shows that developers with more project experience (i.e., contributions)

are more accustomed to performing a multitude of different types of refactor-665

ing operations. This is not surprising as these developers have more experience

26



and knowledge of the codebase (and system) and would be more comfortable

in implementing design/structural changes to the project. Given that rename

refactorings have broad IDE support and are syntactically simple modifications,

inexperienced developers will naturally be drawn into making such refactorings670

in the project.

Summary for RQ1 : Developers with limited project experience are more

inclined to perform only rename refactorings than other types of refactorings

(which may alter the design of the system). This is an important context for

any future recommendation effort and particularly for our data. Given that675

many of the developers performing the renames we analyzed have less experience

on average, our results may reflect this lack of experience. Further research is

needed to confirm the connection between the quality, of renames and developer

experience.

5.3. RQ2: What are the refactorings that occur more frequently with identifier680

renames?

To derive the extent to which non-rename refactorings can either influence or

be influenced by a rename, we study the type of refactoring commits that occur

just before and after a rename refactoring commit. This is based on the idea that

renames are likely to occur with other refactorings; an assumption supported by685

Murphy-Hill et al. [67] who shows that developers perform renames in batches

more so than other refactorings and, most often, that refactorings occur on

multiple related code elements. This part of our study focuses on the renames

of classes, attributes, methods, method parameters, and method variables. For

each entity type, we extract the list of unique instances that underwent a rename690

and then search for the refactoring that directly precedes and directly follows

(i.e., there may be non-refactoring commits that we skip) the rename for either

the same entity or child entities (as in the case of classes and methods).

Interestingly, we observe that for all elements that are subject to renames,

developers frequently perform the rename in isolation with respect to other695

refactorings. In other words, approximately 91.97% (or 349,731) of rename

27



Table 4: Distribution of rename form and semantic meaning updates split by devel-

opers who performed all refactoring operations and those that performed only rename

refactoring operations.

Type
Only Renames All Refactorings

Percentage Percentage

Rename form types

Simple 64.65% 67.01%

Complex 30.55% 29.96%

Formatting 4.56% 2.52%

Reordering 0.24% 0.51%

Rename semantic meaning updates

Preserve 9.97% 8.50%

Change 90.03% 91.50%

Change – Narrow 48.99% 48.08%

Change – Add 29.93% 32.68%

Change – Broaden 18.33% 16.46%

Change – Remove 2.58% 2.56%

Change – Antonym 0.17% 0.21%

28



Table 5: Top 3 refactoring operations that occur before a class, attribute, method and

method variable are renamed

Refactoring

Operation
Count Percentage

Commit Message

Key Terms

Refactoring operations before a class rename

Move Class 3,069 26.96% package, structure, change

Rename Method 2,062 18.12% code, clean, change, fix

Rename Variable 1,376 12.09% add, code, test, support

Others 4,875 42.83% N/A

Refactoring operations before an attribute rename

Move Attribute 1,499 83.32% added, fix, support, test

Pull Up Attribute 220 12.23% added, simplification, extract

Push Down Attribute 73 4.06% separate, remove, added

Others 7 0.39% N/A

Refactoring operations before a method rename

Rename Method 1,760 19.58% revert, implementation, test

Extract Method 1,666 18.53% fix, added, modified, test

Rename Variable 1,364 15.17% added, test, fix, change

Others 4,201 46.72% N/A

Refactoring operations before a method variable rename

Rename Variable 3,067 90.66% revert, added, test, fix

Extract Variable 305 9.02% added, string, test, fix

Inline Variable 6 0.18% fix, working, change

Others 5 0.15% N/A

29



commits had no refactorings occur one commit before or one commit after.

However, this does not mean that rename is the only action applied to this

element during its lifetime. Upon the inspection of some cases, there were

changes, applied to the element, which are not considered refactoring (e.g.,700

adding lines of code to a method, adding a given identifier as a parameter to

another method). For scenarios where there are refactorings either before or

after a rename, we noticed that more operations occur before a rename (≈

6.27%) than after (≈ 1.73%).

In general, the majority of the refactorings that occur before a rename are re-705

lated to changes/updates to functionality. Additionally, we observe that some of

these commits are bug fix related or due to developers either adding or updating

unit test files. For example, in order to include new functionality, a developer

refactors the existing code by creating a new method called getClassURL by per-

forming an Extract Method operation [68]. Thereafter the developer renames710

the newly created method to getClassUrl to ensure that name follows “Google’s

style rules” [69].

Even though the number of refactorings occurring after a rename is much

smaller, we did notice that most of these refactorings are associated with some

form of code reversal/reverting. As an example, a developer initially renames715

a method from getIncludedPublishers to getEnabledSources when introducing

new functionality [70]. However, in a subsequent commit [71], the developer

removes this functionality from the method and also reverts back to the original

method name.

As the majority of refactoring operations occur before a rename, in the720

following subsections, we drill-down into each element type with the aim of

discovering the common types of refactorings that precede the renaming of the

element and also the extent to which the commit log can contextualize the

relationship between these refactorings. Table 5 highlights the distribution of

the top three refactoring operations that occur before a class, attribute, method,725

and method variable is renamed. Also provided in this table are the common

terms we extracted from our topic-modeling and n-gram analysis of the commit

30



messages that are associated with these refactoring operations. The complete

list of refactorings that proceed and follow a rename refactoring is available on

our project website.730

5.3.1. Class Rename

Our study of class renames involve identifying the refactorings performed

on the class and all elements within the class (i.e., attribute, methods, method

parameters, and method variables) immediately before and after the developer

renames the class. We observe that developers more frequently performed a735

Move Class refactoring before renaming the class. Results from our topic mod-

eling and n-gram analysis coupled with a manual analysis of random messages

showed that activities related to restructuring project structures and change of

package names cause developers to rename class names. For example, in [72] a

developer moves the class BasicAuthLoginCommand from com.heroku.api.command740

to com.heroku.api.command.login with the message “reorganized commands into

appropriate packages.” The next refactoring operation [73] performed on this

class is renaming the class to BasicAuthLogin. The reason for the rename is

“...to simplify some of the names.”

Looking at the number of non-refactoring commits that separate a Move745

Class from a Rename Class, we observe that the majority of renames (≈ 7.15%)

occur in the commit immediately following the move. We also observe that a

majority of these pairs of refactoring commits fell within one to five commits

of each other – approximately 27.73% of the time. This lends support to the

idea that they are related; Move Class refactorings are frequently done near750

the same time as Rename Class. While further investigation is required to

determine when it is appropriate to recommend a rename in this situation, our

data highlights this relationship as a good avenue for future, deeper research

into what indicates that the rename will be performed versus when it will not

be.755

31



5.3.2. Attribute Rename

Similar to classes, developers perform move operations on attributes be-

fore renaming them. Looking at the commit messages, change in functionality

(specifically adding of new features) is one of the most common reasons develop-

ers move an attribute. As an example, in commit [74], the developer moves the760

attribute String jobId with the message “added the jobId to a few more logs”.

The subsequent refactoring commit [75] for this attribute involves a renaming

operation in which the attribute is renamed to context as part of a “cleanup”

activity. We observe that around 71% of the renames occur in the commit im-

mediately after the developer moves the attribute. Additionally, around 82%765

of rename refactorings take place within five commits after the Move Attribute

operation.

5.3.3. Method Rename

For methods, we investigate the refactorings that are applied to the method

and its members (i.e., parameters and variables) just prior to and after the770

method is renamed. Interestingly, we observe that developers perform a rename

to the method before renaming it again more than any other type of refactoring.

Based on the terms in the commit log, we observe that the reason for the initial

rename is due to developers changing the behavior/purpose of the method.

Furthermore, we notice that the second occurrence of the method rename reverts775

the first rename operation. For example, in [76], the developer renames the

method showDelivery to showOwnDelivery as part of a functionality change, with

the commit message “Minor changes to access controls in instructor MVC”. In

the subsequent commit [77], the developer reverts the name change as part of

cleanup activities with the message “Final tidy of older instructor MVC”.780

Looking at the interval between commits, the majority (≈ 15.22%) of the

method-rename pairs of refactorings occur one after another. Further, a gap of

between 1 to 5 commits occurs around 37.68% of the time between two method

renames.

32



5.3.4. Method Variable Rename785

Like methods, method variables also undergo rename operations in succes-

sion. Once again, looking at the commit messages, we observe that the reason

for the initial rename tends to be due to either refactoring or change (including

reversals) in functionality. It is also interesting to note that the developers re-

vert the variable name of the initial commit in the next rename. For example, in790

[78] the developer renames the variable drop to assembledDrop with the message

“simplified drop assembly a bit”. The next commit [79] reverts the variable

name when the developer performs a “misc code cleanup” activity. Finally, a

gap of between 1 to 5 commits occurs around 33.94% of the time between two

variable renames.795

Summary for RQ2 : We show that in most scenarios, renaming of an

element does not generally seem to be influenced by, nor does itself influence

another type of refactoring on the same element. This indicates that an analysis

of non-refactoring operations will be required to understand how changes to

code around a rename affect or are affected by the rename. However, there is a800

subset of renames that occur directly before or after another refactoring. Most

commonly, the refactorings occurring before a rename are Extract Method, Move

Attribute, Move Class, and Rename. In particular, we observe that 71% of the

time, a rename occurs in the commit directly following a Move Attribute, and

82% of the time, this rename is within five commits after the Move Attribute805

operation. In other cases (Move Class, Rename Method), this percentage rests

between 15 and 27%. Finally, in situations where a rename follows another

rename, we observe that developers revert to the original name when performing

the second rename.

5.4. RQ3: To what extent can we use refactoring occurrence and commit mes-810

sage analysis to understand why different semantic changes were applied

during a rename operation?

To answer this question, we look at the types of semantic changes applied

to identifier names given that another refactoring was applied in the previous

33



Table 6: An overview of the types of semantic updates an identifier name undergoes

Identifier

Type

Refactoring

Before Rename

Top 3 Types of

Rename Forms

Type of

Semantic Update

Top 3 Semantic

Change Subtypes

Class

Move Class

(Total Count: 3,160)

Simple (57.82%)

Complex (34.68%)

Formatting (5.54%)

Change (84.14%)

Preserve (15.85%)

Narrow (63.56%)

Broaden (28.13%)

Add (3.65%)

Rename Method

(Total Count: 2,179)

Simple (65.26%)

Complex (30.29%)

Formatting (2.98%)

Change (90.0%)

Preserve (10.0%)

Narrow (57.42%)

Broaden (31.56%)

Add (6.78%)

Rename Variable

(Total Count: 1,479)

Simple (61.19%)

Complex (34.69%)

Formatting (2.64%)

Change (100.0%) Narrow (100%)

Attribute

Move Attribute

(Total Count: 1,499)

Simple (67.44%)

Complex (29.75%)

Formatting (2.54%)

Change (94.66%)

Preserve (5.34%)

Add (54.05%)

Narrow (24.59%)

Broaden (16.07%)

Pull Up Attribute

(Total Count: 220)

Simple (55.91%)

Complex (35%)

Formatting (8.18%)

Change (85.0%)

Preserve (15.0%)

Narrow (66.84%)

Broaden (25.67%)

Add (3.21%)

Push Down Attribute

(Total Count: 74)

Simple (62.16%)

Complex (28.57%)

Formatting (6.76%)

Change (63.51%)

Preserve (36.49%)

Narrow (70.21%)

Broaden (23.4%)

Add (2.13%)

Method

Rename Method

(Total Count: 2,158)

Simple (66.22%)

Complex (23.17%)

Formatting (9.87%)

Change (81.19%)

Preserve (18.81%)

Narrow (36.42%)

Broaden (31.16%)

Add (24.14%)

Extract Method

(Total Count: 1,694)

Simple (52.42%)

Complex (43.15%)

Formatting (3.96%)

Change (85.42%)

Preserve (14.58%)

Narrow (64.06%)

Broaden (26.12%)

Add (4.49%)

Rename Variable

(Total Count: 1,387)

Simple (51.62%)

Complex (43.98%)

Formatting (3.89%)

Change (87.41%)

Preserve (12.59%)

Narrow (49.28%)

Broaden (32.86%)

Remove (9.17%)

Variable

Rename Variable

(Total Count: 3,067)

Simple (87.41%)

Complex (12.36%)

Formatting (0.23%)

Change (98.89%)

Preserve (1.11%)

Add(77.35%)

Narrow (14.93%)

Broaden (6.17%)

Extract Variable

(Total Count: 305)

Simple (61.64%)

Complex (36.72%)

Formatting (1.31%)

Change (92.13%)

Preserve (7.87%)

Narrow (71.17%)

Broaden (19.57%)

Add(6.05%)

Inline Variable

(Total Count: 6)

Simple (83.33%)

Complex (16.67%)
Change (100%)

Add (66.67%)

Narrow(33.33%)

34



commit. We then analyze this data to understand whether the refactoring that815

happened before the rename had any effect on the semantic change applied

during the rename. Additionally, we perform an analysis of commit messages

using LDA and bi/trigrams in an effort to further contextualize the semantic

change; using information about why a given refactoring was applied before the

rename to help us understand the semantic changes observed during renames820

applied afterward.

The first observation we make is that renames applied after another refactor-

ing most frequently changed the target name’s meaning somehow; the meaning

was less frequently preserved. Therefore, we will first look at renames that

changed the meaning of the identifier they were applied to. Please refer to 3.1825

for a refresher on the semantic change categories. Table 6 highlights the distri-

bution of these change types for elements that undergo a rename after another

type of refactoring operation.

We observe that the majority of the name changes were related to a nar-

rowing in the meaning of the name. Generally, a narrowing in the meaning of830

an identifier name is related to a specialization of functionality. For example,

in commit [80], a developer created the method readImage(width int, height

int) by performing an Extract Method operation in order to add “missing func-

tionality”. In a subsequent refactoring operation on this method, the developer

renames the method to readZlibImage(width int, height int) with the mes-835

sage “Added read support for GM8 gmk files” [81]. As can be seen by the

message, the developer specializes the method and hence reflects this behavior

in the new method name by narrowing its meaning.

The next most common type of semantic change was the broadening of the

identifier’s name. Developers perform a broadening of the name when they840

generalize the behavior of the identifier. As an example, in commit [82], a

developer performs a Pull Up Attribute on idColumn as part of generalizing

change – “Create generic table class” . Thereafter, the developer renames the

attribute to id in order to make it consistent with the earlier generalizing task

– “Rename generic table column fields” [83]. Finally, adding to the identifier845

35



name was the third most frequent type of semantic change.

There are a few interesting things to point out in Table 6. The first is that a

Rename Variable followed by another Rename Variable tended to add meaning

instead of narrow or broaden. The same applies to renames occurring after a

Move Attribute refactoring and after an Inline Variable refactoring. However,850

these are the only examples of a break from the typical pattern of Narrow

being the most common semantic change type. If we only contextualize using

refactorings applied before renames, there are few significant differences in the

types of semantic changes applied after different types of refactorings. While

this data does indicate the popularity of narrowing, adding to, or broadening855

the meaning of a name, it does not completely help us understand what the

developers were trying to accomplish; an Extract Method refactoring occurring

before a rename does not serve as a strong indicator of what semantic change

will happen if a rename is applied afterward.

To help us further contextualize these refactorings and the renames occurring860

afterward, we perform LDA and n-gram analysis on commit messages associ-

ated with the rename refactorings occurring after a refactoring operation. Our

previous work also used LDA in a similar context [23], but it performed LDA

analysis on the commit message associated with the rename without taking

into account if the rename occurred in isolation or immediately after another865

refactoring. We extend the topic modeling approach in [23] by incorporating

additional text preprocessing and the use of topic coherence scores in order to

improve the quality of our text analysis compared to the original paper. The

results of this analysis are in Tables 7, 8, 9, and 10. In each table, we show the

two strongest topics from LDA along with either a bigram or trigram analysis.870

We present either the bigram or trigram that is the most relevant. Using the

data in these tables, we can see some indication of what development activity

caused different types of semantic changes when applying a rename.

Table 7 shows data for all method renames that are preceded by a variable

rename, and resulted in the name of the method broadening in meaning. These875

preceded a rename which resulted in a broaden meaning. The data here indicates

36



Table 7: Broadening of a method name after a variable rename

Analysis Output

LDA Topic 1

change (0.090), model (0.086), past (0.068),

discussed (0.068), allow (0.019), lambda(0.019),

route(0.019), work(0.015), early(0.014),

simplified(0.014)

LDA Topic 2

change (0.088), model (0.061), past (0.049),

discussed (0.049), fix (0.028), factory (0.026),

changed (0.023), loader (0.023), add (0.017),

set (0.013)

Trigram

(discussed, past, model), (change, discussed, past),

(model, change, discussed), (past, model, change),

(discussed, past, added), (changed, loader, factory),

(loader, factory, changed), (factory, changed, loader),

(location, model, change), (render, nicely, html)

Table 8: Narrowing of a variable name after its extraction

Analysis Output

LDA Topic 1

code (0.091), binding (0.083), data (0.081),

updated (0.074), fix (0.028), add (0.025),

support (0.017), cr (0.009), custom (0.009),

request (0.009)

LDA Topic 2

code (0.067), updated (0.060), binding (0.059),

data (0.058), record (0.013), id (0.010),

custom (0.010), introduced (0.010), remove (0.010),

cr (0.007)

Bigram

(data, binding), (binding, code), (updated, data),

(code, updated), (revamped, hibernate),(added, method),

(array, fix), (attribute, handle), (binding, warning)

37



Table 9: Narrowing of an attribute name after its pulled-up

Analysis Output

LDA Topic 1

work (0.094), introduce (0.043), security (0.034),

option (0.034), addition (0.034), start (0.018),

add (0.018), took (0.018), thread (0.018),

ongoing (0.018)

LDA Topic 2

symbol (0.077), table (0.077), work (0.061),

unit (0.031), option (0.031), property (0.024),

fixed (0.022), hierarchy (0.016), added (0.016),

implementation (0.016)

Trigram

(hierarchy, option, reduce),

(implemented, hierarchy, option),

(option, reduce, code), (reduce, code, duplication),

(code, duplication, implemented),

(duplication, implemented, hierarchy),

(gross, value, gross), (addition, security, addition),

(code, added, support), (entity, id, field)

38



Table 10: Adding meaning to a class name after moving it

Analysis Output

LDA Topic 1

method (0.189), added (0.083), adding (0.072),

increased (0.071), incremental (0.071), stub (0.071),

anonymous (0.071), truly (0.071), fix (0.013),

subset (0.013)

LDA Topic 2

test (0.198), validation (0.043), removing (0.030),

enable (0.029), mapping (0.029), upgrade (0.029),

failing (0.029), concept (0.029), collection (0.015),

contains (0.015)

Trigram

(added, method, adding), (adding, truly, anonymous),

(incremental, stub, method), (method, added, method),

(method, adding, truly), (stub, method, added),

(truly, anonymous, increased),

(anonymous, increased, incremental),

(cleaned, scorer, removing), (field, tree, context)

39



changes to a model and changes to a factory. An analysis of the commit messages

associated with these topics shows that the updates are due to bug fixes or code

optimizations. For example, in commit [84], the broadening of the name is

associated with the message “...Made the factory generic”, which a broaden880

meaning rename would logically follow. Table 8 has similar data but for a set

of Extract Variable refactorings which preceded a narrowing of the identifier

name meaning via rename. The topics and bigrams here indicate code related

to data binding, code updates, and code fixes. Again, we took a look at the

commit messages associated with this data and found that most of the data885

bindings were specific to a certain project in our corpus. In this instance [85],

the developer uses a generic message, “Updated data binding code...”. Ignoring

this set of commits, a majority of the remaining messages were associated with

bug fixes.

Table 9 shows the implementation of options and reduction in code dupli-890

cation which preceded a narrowing in meaning. An analysis of the commit

messages associated with this table shows that the removal of duplicate [86]

and legacy [87] code is a task associated with code cleanup activities. These

activities can also range from simple identifier renames [88] to more intensive

structural changes [89]. Finally, Table 10 indicates the addition of new meth-895

ods associated with moving a class to a different location, which preceded an

add meaning change. Examining these commit messages reveals that methods

are added in response to enhancing the existing design of the system after the

class is moved and hence contribute to the renaming of the class, such as in the

case of [90], where the developer performs a “...Method grouping” in the newly900

moved class.

Preserve meaning was the least occurring semantic type, and not surpris-

ingly, the frequently occurring terms in these commit messages were not change

related. These terms include ‘fix’, ‘test’ and ‘work’. Generally, such terms are

associated with behavior correction. Hence, developers feel that the update905

they make to the code does not necessarily deviate from the originally expected

behavior of the identifier. For example, in [91] as part of updates to the user

40



interface, the developer performs a Pull Up Method operation on the method

calcTotal. The next update [92] to this method is to address an issue, and

as part of this task, the developer renames the method to calculateTotal to910

better represent its intended behavior. A cursory glance at the method shows

no changes to the functional behavior exhibited by this method.

Summary for RQ3 : Developers frequently change the semantic meaning

of an identifier name when performing a rename after a refactoring, rather than

preserving it. Most frequently, a rename will change this meaning by narrowing915

(i.e., specializing) the identifier name it is applied to. While the rationale for

some semantic changes can be derived from the commit log in addition to the

actions that occurred just prior to the rename, classical ways of analyzing large

numbers of commit messages provide only a high-level understanding of this

rationale and require significant manual analysis to help us fully understand920

the rationale. The answer to this RQ is that refactorings, occurring before and

after a rename, and commit messages can give us some high-level insight into

how names semantically change and why. Still, our data shows that further re-

search using additional software artifacts, and new methods of natural language

text analysis for software engineering, are required to provide us with stronger925

insights.

5.5. RQ4: What structural changes occur when an identifier and its correspond-

ing type are changed together?

From our analysis of 310,309 identifier rename instances, we observe that

17.39% (or 53,962) of identifier renames involve a change to their corresponding930

type. We are interested in understanding how changes to the type name corre-

late with modifications to the structure of an identifier name. A breakdown of

renames which included a change in data type is shown in Table 3.

First, we look at rename forms (i.e., Simple, Complex, Reordering, and For-

matting). As mentioned in Section 3.1, a Simple rename involves a change935

of a single term between the old and new name of the identifier (e.g., char[]

password → byte[] encodedPassword). The Rename Variable refactoring op-

41



Table 11: Distribution of identifier form types when a change in data type occurs

Form Type

Change

Count

(Total: 53, 962)
Percentage

Simple 32,448 60.13%

Complex 21,169 39.23%

Formatting 314 0.58%

Reordering 31 0.06%

eration String moveCoords → Point point, on the other hand, falls under a

Complex rename as more than one term between the old and new identifier name

has changed. Reordering involves a change of position of terms (e.g., RecordId940

recordId → IdRecord idRecord), while Formatting is due to change of case or

the addition/removal of a special character (e.g., AbstractDropDown dropdown

→ DropDown dropDown). Looking at the types of rename forms, as shown in

Table 11, we observe that approximately 60.13% of data type changes are as-

sociated with Simple changes to the identifier’s name, while Complex changes945

account for approximately 39.23%. Formatting and Reordering changes each

account for less than 1%.

Additionally, we investigate the extent to which an identifier’s name contains

the name of its data type to see if the type is generally added or removed as

identifiers are changed. Prior work considers the inclusion of a type name in the950

associated identifier’s name as an impediment to software maintenance and code

comprehension activities [2]. As some insight into this, it could be argued that,

in strongly typed languages, including the name of a type in an identifier’s name

is redundant due to the type being explicitly present already, and modern IDEs

will generally inform the developer of an identifier’s type using annotations.955

Another drawback of this naming approach is that the developer will be forced

to rename the identifier when changing its data type (or risk the name becoming

out of date). This might be a substantial number of instances throughout the

42



codebase; not just the statement declaring the identifier. For example, when

naming the variable String tupleString, the developer appends the name of960

the data type, String, to the identifier’s name. For this specific example, we

observe that the developer, in a subsequent commit, renames the identifier to

List<String> tuple. As such, it can be seen that the developer had to adjust

the name of the identifier due to the old data type being present in the name.

For each instance of a rename refactoring in our dataset, we check if the old965

and new name contains its respected data type as part of its name (i.e., the iden-

tifier name either starts with, ends with, contains or is an exact case-insensitive

match of the name of the data type). First, looking at all rename instances (i.e.,

renames with and without a data type change), we observe that approximately

83.69% (out of 310,309) of the rename refactorings did not contain the name of970

the data type as part of the old or new identifier’s name. Within this 83.69% of

renames, approximately 10% of these renames had a change in data type, while

the remaining 90% retain the same data type.

Focusing on the remaining 16.31% (or 50,621) of renames on identifier names

which contain the name of their corresponding data-type, we have two groups975

which are summarized in Table 12: G1) identifiers whose corresponding data

type changed (top half of the table with 26,227 rename instances); and G2)

identifiers whose corresponding data type did not change (bottom half of the

table with 24,394 rename instances). Identifier names in G1 tended to exactly

match the name of their type even after being renamed (e.g., LocationStrategy980

locationStrategy → ElementLocator elementLocator) 34.86% of the time

and, when the name of the type was not originally present, they tended to

be changed to exactly match their type during a rename (e.g., BitRateType

bitRate → BitRateType bitRateType) 18.73% of the time. This indicates

that when a data type and identifier name are changed in-tandem, there is a985

tendency to include (or keep) the name of the type within the identifier name.

Identifier names in G2 are similar in that the majority of most frequent cases

involve adding (or keeping) the data type name to (in) the identifier name.

The primary difference between G1 and G2 is that G1 identifiers tend to be

43



exact matches; the identifier name and type name are exactly the same. In990

G2, the type names are most frequently appended to the end of the identifier

name; the type name is a substring of the identifier name. An explanation for

this difference may be that, since types in G1 were modified in-tandem with

identifier names, the identifier names are more intricately linked to the type

name. Either by already having included it (in the 34.86% case) or for some995

other reason (in the 18.73% case). Next, we look at the data in this set of 18.73%

to try and determine what these other reasons might be. While there was no

visibly generalizable trend, we notice that rename instances in this set contain a

mix of primitive and non-primitive data types associated with the original name

of the identifier and, as part of the rename process, all primitive data types were1000

converted to non-primitive data types (e.g., long timestamp → Clock clock).

This might indicate that one of the trends for the primitives in this data is that

these are a case of broaden-meaning changes, where identifiers with primitive

types are made into objects with more data and behavior. Our project webpage

[41] contains the rest of the combinations not present in Table 12.1005

Summary for RQ4 : Looking at the 53,962 instances of renames applied

to both an identifier and its given type, 60% of these changes are Simple, while

39% are Complex. This contrasts with the general population of renames in our

study (i.e., regardless of whether there was a change to the type), where 68%

are Simple and 29% Complex (Table 2). Of the 16.31% of identifiers involved in1010

this RQ, most added or preserved their type name during a rename refactoring.

A minority removed their type name. We observe that renames which involve

a change to the type name tended to also involve identifiers with names exactly

matching their type. Whereas, when there was not a data type change with

the rename, the type name was a substring and tended to be appended to the1015

end of the corresponding identifier name. Generally, developers tended to add

or keep type names during renames rather than remove them. More research

is required to ascertain the degree to which type names negatively impact the

identifier names that they are a part of, but it is possible to recommend devel-

opers reconsider whether there is a reason the type name should be part of the1020

44



Table 12: Distribution of occurrence for the different scenarios where the name of the

data type is present in the identifier’s name

Old Identifier Name New Identifier Name Count Percentage

Renames with data type changes that contain

the name of the data type in the identifier’s name (Total Count: 26,227)

Exact match Exact match 9,143 34.86%

Does not contain Exact match 4,913 18.73%

Exact match Does not contain 3,746 14.28%

...other combinations 8,425 32.12%

Renames without data type changes that contain

the name of the data type in the identifier’s name (Total Count: 24,394)

Does not contain Exact match 5,470 22.42%

Ends with type name Ends with type name 4,625 18.96%

Does not contain Ends with type name 3,447 14.13%

...other combinations 10,852 44.49%

identifier during a rename. The trends in Table 12 are reported more fully in

our openly available dataset.

5.6. RQ5: What semantic changes occur when an identifier and its correspond-

ing type are changed together?

To answer this research question, we focus our analysis only on rename1025

refactorings that included a change in data type (i.e., 53,962 or ≈ 17.39% of

rename instances) and analyze how modifications applied to these names are

reflected in their data type.

We examine how the semantic meaning of an identifier varies when there

is a change to the associated data type. The majority of semantic updates1030

involved a change in the meaning of the identifier. A drill-down into the change

in meaning types shows that developers change the data type when Narrowing

the meaning of the name approximately 67.91% of the time (e.g., Parse parse

→ ParseResult parseResult). A Broadening of the identifier names occurs

45



Table 13: Examples highlighting covariant and contravariant rename instances

Semantic Change Type Rename Instances

Covariant

Identifier Name: Narrow

Data Type Name: Narrow

Mongo mongo → MongoClient mongoClient

Client client → ClientEditor clientEditor

Identifier Name: Broaden

Data Type Name: Broaden

TabComponent childTabComponent → Tab childTab

DateTime availabilityEnd → Duration availability

Identifier Name: Preserve

Data Type Name: Preserve

CsvCreator csvCreator → CsvMaker csvMaker

Log log → Logger logger

Contravariant

Identifier Name: Narrow

Data Type Name: Broaden

SolrConfig solrConfig → String solrConfigFile

GraphRoute graphRoute → Object graphRouteObj

Identifier Name: Broaden

Data Type Name: Narrow

String fileName → File file

Executor workerPool → ExecutorService pool

Identifier Name: Preserve

Data Type Name: Narrow

String validationInformation → Message validationInfo

QueryOption reusable → QueryOptionReuse reuse

46



20.98% of the time (e.g., String jobName → Job job), followed by Preserve at1035

8.80% (e.g., FormulaContext formula → ExpressionContext expression),

Add and Remove at 1.62%, and 0.64%, respectively. This contrasts somewhat

with our findings on general renames (RQ3), because in RQ5 we find that these

renames tend to narrow meaning more often (+23% more often), add meaning

less often (-36% less often), and broaden meaning more often (+5%) compared1040

to general rename semantic changes examined in RQ3. If we look at semantic

updates made directly to the type name, approximately 69% (or 27,298) of the

data type changes show a narrow in meaning, while 24% broadened with the

remaining 7% belonging to add and remove.

We also look into how the semantic meaning of types and their correspond-1045

ing identifier names covary. 71.94% (or 28,341) of the identifier and data type

name changes show a covariant relationship; both the identifier and its asso-

ciated data type name underwent the same semantic update. From a more

granular view, we observe that the narrowing of an identifier and data type

name occur the most, approximately 56.28% (or 22,171). An example of this1050

type of occurrence is when the developer performs the following Rename At-

tribute operation: DateFormat defaultDateFormat → DateTimeFormatter

defaultDateTimeFormatter. In this example, both the identifier name and

data type undergo a narrowing of its respective original meaning. The next two

highest occurrences were contravariant: a narrowing of the identifier name and1055

broadening of the data type name at 12.64%; and covariant: a broadening of

both the names at 11.02%. In Table 13, we provide examples of covariant and

contravariant instances that occurred in our dataset.

Finally, we look at the relationship between identifier names being changed

to/from plural form and their data type changing to/from a collection. To1060

detect a change in plurality, we compare the matched terms in the old and

new identifier names looking for either a singular to plural or plural to singular

change between the matched terms. For example, when the developer renames

the attribute defaultValue to defaultValues, the part of speech for the term

‘Value’ changes from singular to plural. At a high level, as shown in Table 14,1065

47



Table 14: Mapping between identifier name change in plurality and change in data

type

Change in

Data Type?

Change in

Plurality?

Count

(Total: 310,309)
Percentage

No No 252,940 81.51%

Yes No 50,840 16.38%

No Yes 3,407 1.10%

Yes Yes 3,122 1.01%

the majority of renames did not undergo a data type change nor a change in the

plurality of their name. However, if we were to focus on only instances that show

a change in plurality, approximately 47.82% (3407/(3407 + 3122)) of plurality

changes also had a change in data type (e.g., List<String> contextNames →

String contextName), while the other 52.18% (3122/(3407+3122)) of plurality1070

renames did not have a change of data type (e.g., String hostName → String

hostNames).

We also detect when data types that were part of a rename were changed

to or from a collection type. Table 15 provides a breakdown of the various

combinations of single-reference and collection-based data types that underwent1075

a change in data type. Our analysis shows that the majority of type changes

(Table 15, ≈ 82.64%) were not group/collection based (i.e., neither the old or

new name utilized an array or collection-based data type). Identifiers that did

utilize collection based data types in either the new, old, or both names (e.g.,

List<String> contextNames → String contextName) accounted for around1080

17.36%.

We use the data about plurality and data-type above to study how iden-

tifier name plurality and data-type are connected. We observe that around

69.47% of renames that did not have a change in plurality (but did have a

type change; Table 16) also did not utilize collection-based data types in either1085

48



the old or new name (e.g., DateTime date → LocalDate day). Additionally,

around 3.74% (Table 16, (900 + 1120)/53962) of the instances whose data type

changed to a collection-based data type change did not show a change in plu-

rality. For example, even though the Rename Attribute refactoring: String

exportToolCommand → List<String> executableCommand does not show an1090

overall change in plurality, the developer performs a change in data type by mov-

ing from a non-collection to a collection based data type. When a data-type is

modified such that it becomes a collection, 64.29% (Table 16, 1621/(900+1621))

of the time there is a change in plurality for its corresponding identifier name

and 35.7% of the time, there is no change in the plurality of the name. When1095

a data-type is modified such that it ceases to be a collection, 53.02% (Table 16,

1264/(1264 + 1120)) of the time there is a change in plurality for the corre-

sponding name and 46.98% of the time, there is no change in plurality. One

other interesting note about this table is that 13.17% of the time, when there

was a change in type during a rename operation, the plurality of the identifier1100

changed but we did not detect a collection type. This indicates that the ob-

jects’ class may have internally changed to include some form of collection or

collection-like behavior, which we would not be able to detect since we only look

at type signatures without doing internal analysis on classes.

Summary for RQ5 : From a semantic perspective, consistent with RQ3,1105

we observe that developers generally narrow the name of the identifier in con-

junction with a change in data type as opposed to other types of semantic change

types. However, the data also shows that this frequency is more pronounced

(i.e., higher) for renames which involve type changes. We also note that there

was a decrease in add meaning changes and a slight increase in broaden meaning1110

changes compared to the general set of renames from RQ3. Additionally, when

a data-type is modified such that it becomes a collection, 64.29% of the time

there is a change in plurality for its corresponding identifier name, and 35.7%

of the time, there is no change in the plurality of the name. When a data-type

is modified such that it ceases to be a collection, 53.02% of the time, there is a1115

change in plurality for the corresponding name, and 46.98% of the time, there is

49



Table 15: Distribution of data type changes with primitive/non-primitive and sin-

gle/collection data types for rename instances that changed data type

Old Data Type New Data Type Count Percentage

Primitive vs. Non-Primitive (Total Count: 53,862)

Non-Primitive Non-Primitive 49,380 91.51%

Primitive Non-Primitive 2,532 4.69%

Non-Primitive Primitive 1,157 2.14%

Primitive Primitive 893 1.65%

Single vs. Collection (Total Count: 53,962)

Single Single 44,593 82.64%

Collection Collection 4,464 8.27%

Single Collection 2,521 4.67%

Collection Single 2,384 4.42%

Table 16: Mapping between identifier name change in plurality and use of collection-

based data type for rename instances that underwent a change in data type

Is Data Type a Collection? Change in

Plurality?

Count

(Total: 53,962)
%

Old Identifier New Identifier

No No No 37,487 69.47%

No No Yes 7,106 13.17%

No Yes No 900 1.67%

No Yes Yes 1,621 3.00%

Yes No No 1,120 2.08%

Yes No Yes 1,264 2.34%

Yes Yes No 3,556 6.59%

Yes Yes Yes 908 1.68%

50



no change in plurality. 1.68% of the time, the data type is already a collection

object, and the identifier is modified to be plural to reflect this. Finally, we

found that most identifier names covariantly evolve with their corresponding

type name, and a minority of the renames we examined showed a contravariant1120

relationship.

5.7. RQ6: What refactorings most frequently appear before and after an iden-

tifier and its corresponding type are changed together? Are there specific

semantic changes which correlate with these refactorings?

To answer this question, we look at the refactorings that surround attribute,1125

method, parameter, and variable rename refactorings that have a change in data

type. Hence, the input data for this research question is a subset of the dataset

used in RQ2; specifically the subset of renames which included a change in

type. Except for class, we extract the subset of rename instances for attributes

methods, and method variables that underwent a change in data type while1130

being renamed. In total, 283 (≈ 15.31%) attribute renames that underwent

a data type change also had a refactoring occurring either before or after the

rename. Similarly, we observe 564 (≈ 9.63%) variable, and 734 (≈ 6.78%)

method renames under the same criteria.

Similar to RQ2, the majority of the refactorings occurred before a rename1135

refactoring. Hence, we look at the refactorings that frequently occurred before a

rename with a data type change. For variables, we observe that the majority of

variable renames containing a data type change occurred approximately 42.73%

of the time after the same variable was previously renamed. Rename-based data

type changes for methods occurred 20.30% of the time after an Extract Method1140

operation, and 16.89% of the time after a Rename Variable within the same

method. This is nearly identical to RQ2 data (Table 5), where Extract Method

and Rename Variable occurred 18.53% and 15.17% of the time, respectively,

before a rename. Likewise, renames occurred after Move Attribute ≈ 66.08% of

the time. This relationship is weaker than in Table 5, where renames occurred1145

after Move Attribute 83.32% of the time.

51



Finally, we investigate the semantic updates made to the identifier’s name,

which follows a refactoring operation. Presented in Table 17, are the top three

refactoring operations that preceded a rename refactoring that also had a data

type change. This table also shows the distribution of semantic updates that the1150

name undergoes. The trends mirror what we discussed in RQ4 and RQ5, but

are broken down by refactoring which preceded the rename of an identifier name

and its type. Add-meaning changes were much less likely when an identifier and

its type are renamed together. If we compare Table 6 and Table 17, we can see

that general identifier renames with a preceding Move Attribute refactoring tend1155

to add meaning, but when we narrow to identifier renames which change the

type in-tandem, we see a sharp decline in the relative number of add-meaning

changes (a reduction from 54% to 1.07%) and instead see a majority of narrow

and broadening-meaning changes. A similar drop occurs for identifier renames

with a preceding Rename Variable (from 77% to <3%). This data breaks down1160

some of the trends we note in RQ5; showing us that, for example, the loss of

add-meaning changes has some context (i.e., Move Attribute when an identifier

and its type are renamed) which may be leveraged when understanding, or

recommending/suggesting, renames. The dataset for this study, available on

our project website [41], contains the entire list of before and after refactorings.1165

Summary for RQ6 : Comparing the refactoring co-occurrence data from

RQ2 with RQ6, our findings from RQ6 are similar to our RQ2 findings in that

the refactorings occurring before the rename are more or less the same (i.e.,

Rename Variable, Move Attribute, and Extract Method). However, we also find

that the relationships with these refactorings in RQ6 are generally weaker or1170

roughly the same as in RQ2. This indicates that a rename in which a data

type is changed may be less likely to have a co-occurring refactoring. In RQ5,

we found that narrow- and broaden-meaning changes are emphasized while add-

meaning is de-emphasized when an identifier and its type change together versus

general renames. In RQ6, we further broke this trend down and see that the1175

reduction, while pervasive, heavily affects refactoring contexts, as we can see if

we compare semantic changes made to renames correlated with Move Attribute

52



Table 17: An overview of the types of semantic updates an identifier name with a data

type change undergoes when preceded by another refactoring operation

Identifier

Type

Refactoring

Before Rename

Top 3 Types of

Rename Forms

Type of

Semantic Update

Top 3 Semantic

Change Subtypes

Attribute

Move Attribute

(Total Count: 187)

Simple (65.57%)

Complex (36.90)

Formatting (0.54%)

Change (90.37%)

Preserve (9.63%)

Narrow (77.01%)

Broaden (41.71%)

Add (1.07%)

Pull Up Attribute

(Total Count: 61)

Simple (54.1%)

Complex (44.26%)

Formatting (1.64%)

Change (91.80%)

Preserve (8.20%)

Narrow (54.46%)

Broaden (26.23%)

Remove(6.56%)

Push Down Attribute

(Total Count: 16)

Simple (56.25%)

Complex (43.75%)

Change (87.5%)

Preserve (12.5%)

Narrow (68.75%)

Broaden (18.75%)

Method

Extract Method

(Total Count: 149)

Simple (56.38%)

Complex (43%)

Formatting(0.67 %)

Change (91.28%)

Preserve (8.72%)

Narrow (62.42%)

Broaden (24.83)

Add( 0.67%)

Rename Variable

(Total Count: 124)

Complex (50.81%)

Simple (47.58%)

Formatting(0.81%)

Change (91.13%)

Preserve (8.87%)

Narrow (66.94%)

Broaden (21.77%)

Rename Method

(Total Count: 105)

Simple (67.62%)

Complex (32.38%)

Change (83.81%)

Preserve (16.19%)

Narrow (45.71%)

Broaden (34.29%)

Add( 2.86%)

Variable

Rename Variable

(Total Count: 241)

Simple (56.85%)

Complex (43.15%)

Change (97.1%)

Preserve (2.9%)

Narrow (59.75%)

Broaden (32.37%)

Remove (3.73%)

Extract Variable

(Total Count: 95)

Simple (64.2%1)

Complex (33.68%)

Formatting (2.11%)

Change (90.53%)

Preserve (9.47%)

Narrow (70.53%)

Broaden (19.95%)

Remove (1.05%)

Replace Variable

With Attribute

(Total Count: 3)

Complex (66.67%)

Simple (33.33%)
Change (100%)

Narrow (66.67%)

Broaden (33.33%)

53



in Table 6 with the same in Table 17 and note the significant drop in add-

meaning changes (a reduction from 54% to 1.07%). This data indicates that

renames which include type changes may need to be treated as special cases1180

in any future rename recommendation/analysis effort due to the relationship

between the identifier and its corresponding type.

6. Discussion

In this paper, we extend our prior work on contextualizing renames [24, 23]

by exploring renames which involve a change in data type. We focus on this1185

set of renames for three reasons: 1) changes to an identifier’s type are relatively

easy to detect in many programming languages. Therefore, making suggestions

to developers on the fly when a type change is performed is already feasible

in modern IDEs. 2) Types have strong influence over the data and behavior

represented by an identifier, so changes to the type can have heavy significance1190

on their associated identifier. 3) Type changes are a simple way for us to explore

some non-refactoring code changes related to renames. Type changes provide

another dimension with which to understand how names evolve and why. These

results will provide insight for our long term goals. Further, there are a sizeable

number of renames with data type changes; we observed 53,962 instances (or1195

≈ 17.39%) of the total set (minus class renames since class names have no type).

Analyzing these changes is more straightforward than studying renames that did

not undergo a data type change.

The data from our RQs reports some very interesting trends in the practice

of renaming identifiers as well as their corresponding data types. These results1200

have particular significance in the context of recommending when and how to

rename. Below, we discuss how our results can directly or indirectly impact

our understanding of renames and the eventual recommendation of when/how

to rename. We also discuss the significant challenges and work required to

augment, make our findings actionable, and integrate them into a development1205

environment. These problems fall into two categories: analyzing surrounding

54



code changes and analyzing commit messages and other natural language doc-

uments. We discuss these in Section 6.2 and 6.3.

6.1. Takeaways and Actionable Results

6.1.1. Takeaways from RQ11210

RQ1 shows us that developers with a relatively smaller amount of experience

than their peers have a higher likelihood of applying rename refactorings than

other types of refactorings. While it is known that developers refactor code

to remove smells [16], work by Palomba et al. [93] shows that the developer’s

experience and knowledge of the system plays a crucial role in the resolving of1215

smells. Further, work by Kim et al. [94] shows that developers perform more

non-rename refactorings manually than rename refactorings. Hence, our find-

ings that experienced developers are more favorable to performing non-rename

operations align with these prior studies. Furthermore, using tools to perform

automated renames, while productive, runs the risk of introducing linguistic1220

anti-patterns [95, 17] in the code. Our findings from RQ1 give us data on our

target audience. Renames are applied more frequently by developers with less

experience, potentially due to how simple it is to apply them. When a rename

is applied, suggestions about other names related to the current name should

be highlighted, as should linguistic anti-patterns and the reasoning behind the1225

suggestion. Developers with less experience may not be familiar with as much

of the system and, thus, may benefit more from increased, minimally-intrusive,

direction.

6.1.2. Takeaways from RQ2, RQ3, and RQ6

Data from RQ2, RQ3, and RQ6, while retrospective in nature (i.e., we ana-1230

lyze post-rename data such as commit messages), help us understand the struc-

ture and semantics behind a rename; why a given name changed in the ways

that it did. This retrospective data allow us to pinpoint directions for future re-

search by highlighting trends and data points that we do not understand. RQ2s

and RQ6s data on refactorings, which precede renames, can be directly used to1235

55



recommend renames after certain refactorings are applied. This highlights po-

tential future research directions focusing on the relationship between renames

and those specific refactorings (i.e., Move Class, Move Attribute, and Extract

Method). For example, in RQ2, we saw that Move Attribute often preceded

a rename by one commit (71% of the time) and five commits (83.32% of the1240

time); it would make sense to consider recommending a rename after a Move

Attribute. The relationships in the data we obtained were never 100%; mean-

ing that it would be inappropriate to always recommend a rename after these

refactorings. Given this, we believe that future studies should focus on how to

acutely determine when to recommend a rename after these refactoring opera-1245

tions and what type of rename to recommend. Such studies might help highlight

why these refactorings are more likely to co-occur with renames than other refac-

torings and uncover other potential related situations where a rename should be

recommended. Finally, data from these RQs also highlight that non-refactoring

changes are more common than refactoring changes before, and after, a rename.1250

This means that our future work must deal with code changes that are likely not

taxonomized in the same way refactorings are.

RQ3s data on commit messages highlights that we can obtain high-level

development motivations (e.g., add functionality, bug fix) for renaming an iden-

tifier, but also that there are significant challenges in obtaining project-specific1255

development actions via commit messages (e.g., adding request handler). Find-

ing ways to gather this more specific data can help recommendation systems by

giving researchers more insight into how developers mentally model changes to

the structure and semantics of a name during the rename process. For example,

we can understand more about how a developer decides what words to change1260

in an identifier when adding a specific type of functionality (i.e., as opposed

to just the general idea of adding functionality) or when extracting a method

for a project-specific reason (e.g., extracting a parse function from the request

handler). These insights can influence the design of recommendation tools by

tailoring them to granular, real-world situations. We discuss more about the1265

challenges that RQ2, RQ3, and RQ6 highlight in Sections 6.2 and 6.3. Addi-

56



tionally, our data indicate that renames frequently happen with other renames

and that the commits for these frequently contain the term revert. A deeper

dive into what these reverts are and if they are related to the name is required.

6.1.3. Takeaways from RQ4 and RQ51270

The results from RQ4 show us that an overwhelming majority of renames

that involve data types are not formatting or term-reorderings. Of the 16.31%

of identifiers which contained the name of their type either before or after a

rename, most added or preserved their type name during a rename refactoring.

A minority removed their type name after a rename was applied, meaning that1275

most renames involving identifiers containing a type name either preserve or

add the type name as opposed to removing. Additionally, identifier names that

end with the name of the data type will most likely contain the name of the

data type at the end of its name (rather than in the middle or at the beginning)

when the identifier is renamed. The inclusion of a type name in an identifier1280

is generally considered poor naming practice [2]. There is an opportunity here

to both further study the (dis)advantage of including type names in identifier

names, particularly in strongly-typed programming languages, and discourage (or

question) the inclusion of a type name when a developer performs a rename. Our

data indicate that it is less common to remove type names from identifier names1285

than to preserve or add them, meaning that it is not common practice to avoid

including types in identifier names. This recommendation can be readily made

in modern IDEs after being verified by researchers to determine when, if ever,

a type name should appear in an identifier name. If there are situations where

the type name should appear within its corresponding identifier’s name, our1290

data highlights where developers commonly include the type within the identifier

name.

The results in RQ5 contrast somewhat with RQ3 because in RQ5 we find

that renames on identifiers which were modified with their types tend to nar-

row meaning more often (+23% more often), add meaning less often (-36% less1295

often), and broaden meaning more often (+5%) compared to general rename se-

57



mantic changes examined in RQ3. RQ5 also explores the introduction/removal

of plurality in identifier names and collections in their corresponding data types.

We find that most of the time, when an identifier’s type becomes a collection, its

name is changed to plural 64.29% of the time. Additionally, when a data type1300

ceases to be a collection, the plurality of its corresponding identifier changes

53.02% of the time. This means that there is a potential linguistic anti-pattern

(as defined in [17]) being introduced. Specifically, the plurality of the identifier

name may no longer be an accurate reflection of the type. As an example, in

[37] the developer renames the public method getCompilationsUnit → getCom-1305

pilationUnit (a change in plurality rename). However, in another class that calls

this method, the developer does not update the name of the variable compila-

tionsUnit that holds the results of the method call. This is an easy mistake to

make. Leveraging plurality in the name of identifiers to clarify the use (or non-

usage) of collection types is a simple but effective method for conveying semantic1310

information, and current rename tools do not offer these types of suggestions.

Our data show that there is a strong opportunity here to introduce useful sug-

gestions to developers when plurality or collection changes are detected. This

would help developers avoid making simple mistakes and oversights which could

significantly degrade comprehension over time.1315

Finally, RQ5 finds that co-variance is the most common way for type names

an identifier names to evolve together (71.94% of cases), but that there are situ-

ations were type names and identifier names are contravariant (28.06% of cases).

Our study highlights the fact that more than half the time, the plurality of a name

is updated in response to its type changing to/from a collection. Similar to rec-1320

ommending against including type names in identifier names, recommending a

plurality change when a type is being updated to/from a collection is a simple

way to make this practice consistent or to ask developers to consider whether it

is appropriate. This is another recommendation that can be supported by IDEs

and further verified by researchers. In addition, the data on contravariance and1325

covariance supports RQ4 by specifying how type names should evolve within an

identifier’s name in potential cases where future research determines they should

58



appear.

6.2. Challenge 1: Analyzing Renames and General Code Changes

While refactorings [16] are some of the most well-known, taxonomized source1330

code changes, many other types of source code changes are not taxonomized

beyond low-level software differencing change-types (e.g., insert, remove, delete

operations). With refactorings, we can examine a cohesive, understood change

(i.e., the refactoring itself) and analyze how that change relates to a rename.

When a change is not a refactoring but involves multiple statements, it is more1335

difficult to: 1) understand whether those multiple changes are actually related;

they might be incidental. And, 2) understand the reasoning/motivation behind

those changes; it cannot be easily determined if they represent a bug fix or the

addition of new functionality, for example.

The results from RQ2 and RQ6 indicate that the vast majority of renames1340

have no refactoring before or after their application. This means that to under-

stand more about how changes surrounding these renames affect the renames

themselves; we must at least partially solve the two problems above such that

we are able to understand the code changes which are related to a given rename.

There are some potential paths toward remediating this problem. Change tax-1345

onomy studies by Fluri et al. [96, 97] discuss a taxonomy which they derive

using ChangeDistiller [98]; a technique for extracting changes using differences.

There are other taxonomies for code changes, typically more specific than Fluri’s

taxonomy. These taxonomize changes which indicate bugs [99, 100], others mine

code changes to detect emergent change patterns [101], or present methods for1350

clustering similar code changes or studying repetitiveness [102, 103]. These pa-

pers represent a strong start in the direction of a more acute understanding of

non-refactoring code changes.

6.3. Challenge 2: Analyzing Rename Commit Messages

Analyzing commit messages also posed a challenge. In particular, we faced1355

many issues in deriving rename motivations. Our automated analysis was able

59



to determine high-level motivations such as ‘modified functionality’ since this

occurs in all projects. However, to understand changes made to the name as

part of ‘modified functionality’, we also need to know project-specific details

about what functionality was added and why. For example, if we determine1360

that ‘modified functionality’ also involved ‘combining two functions’ into one,

we could draw better insights with respect to how the name evolved. We at-

tempted to automatically derive these motivations from commit messages with

only some success; other natural language software artifacts, and general source

code changes, might be more useful. The most significant problems we faced1365

with analyzing large numbers of commit messages is that: 1) the terms frequent

enough to be detected by LDA/Ngrams are high-level and not descriptive of

individual project efforts (e.g., we can determine that projects are performing

structure changes, but not what types of structural changes or why). Also, 2)

the commit messages sometimes do not contain enough information, potentially1370

indicating the need for more natural language software artifacts, some of which

will likely be more challenging to analyze automatically. Therefore, whether

analyzing commit messages or other natural language texts, an effective method

for performing natural language analysis on software documents that addresses

point # 1 above would improve our ability to understand how names semanti-1375

cally evolve (and how developers mentally model this evolution) by allowing us

to determine the causes behind certain semantic changes via analyzing natural

language text in commit messages. This would also help us address point # 2,

which requires the exploration and analysis of other types of natural language

text outside of commit messages. The work we present in this paper shows that1380

this context is obtainable, but there are still significant challenges to it.

To help support the intuition that commit messages can be used to de-

termine rename motivation, we manually looked at some of the data (150

commits). This helps us determine whether the information we need is con-

tained within commit data, and provide some direction for future work. The1385

results of this manual investigation are shown in Table 18. All categories in

this table were identified as causes for renames which involved type changes.

60



Table 18: Development actions which caused identifier renames.

Category Definition

Combine Behavior

Two classes collapsed into one class

or one class deleted and the other

class now does the deleted class’ job

Split class Two classes created from one super class

Add Interface
Interface or abstract class was added

during rename of type

Broaden Behavior
Behavior of renamed object has a larger

domain after the rename operation

Pure Rename Rename applied for non-functional purposes

Narrow Behavior
Behavior of renamed object has a smaller

domain after rename

Add Behavior Behavior was added via addition of new code

Modify Behavior
Behavior was updated by some combination

of narrow, broaden, and add behavior

61



In renames which did not involve type changes, only bolded categories were

identified as causing renames during the manual investigation. For instance,

in [104], we noticed that the developer renaming the attribute InvTweaks1390

instance → InvTweaksRunnable tickRunnable does so to utilize threads in

the code to cause delays as a means of working around a certain limitation.

This is considered part of the add behavior category. In [105], the devel-

oper renames the method variable MetadataProvider metadataProvider →

PersistenceExtensionFeatureResolver1395

persistenceExtensionFeatureResolver to better reflect its behavior; no

other changes to the code, associated with the identifier, were made by the de-

veloper. This is a pure rename. As one last example, the change in [106] renames

the method variable MembershipCreator membershipCreator → Membership

membership due to the behavior of the original data type (and some other types)1400

being incorporated into a new data type. We consider this a Combine Behavior.

These tables show the intention behind renames based on manually-examined

code changes and commit messages. One interesting, if logical, trend is that

renames that involve type changes have a larger number of factors which caused

the change (i.e., all eight categories in the table, whereas renames which did not1405

involve a type involved only the bolded categories in our investigation). Part of

this is due to some categories implying a change in type name (e.g., split class

implies the introduction of a new type and/or rename of old type).

While this data is interesting and further supports the fact that analyzing

code/commit messages can help us understand the intention behind identifier1410

and type name modifications, further study is required to create a more formal

and exhaustive set of the causes of renames. However, we highlight that, based

on the data in Table 18, a combination of commit messages and code change

taxonomy could be very useful. This is apparent in the fact that the categories in

this table, which were derived from data in commit messages, allude to types of1415

code change (e.g., splitting a class, adding an interface) and semantic changes

(e.g., narrowing an object’s behavior). Therefore, this analysis appears to sup-

port our assertions above.

62



Other work has similarly shown how specialized terminology indicates de-

veloper refactoring activities [107]; this also supports the idea that a non-trivial1420

number of commit messages contain enough data to perform this analysis and

motivates the need for future research in natural language techniques which are

more effective at analyzing commit messages, and other software artifacts, to

solve the two problems discussed above.

7. Threats to Validity1425

In terms of representativeness, the dataset for our study consists of open-

source Java systems. However, even though the projects are well-engineered

Java systems [42], the results may not generalize to systems written in other

languages. Additionally, the type and quantity of detected renaming refactor-

ings are limited to RefactoringMiner’s capabilities. However, RefactoringMiner1430

is currently the most accurate refactoring detection tool [44] and is extensively

utilized in research concerning refactorings.

We follow an approach from a similar study for our experiment on developer

experience by utilizing project contributions as a proxy for the developer’s ex-

perience. However, as with many software metrics, this metric is not perfect,1435

and may not always be a suitable experience measure.

This study also includes an analysis of commit messages. Hence, we use a

peer-review approach to mitigate bias in deciding the terms to present after our

commit message analysis. As part of this review process, the authors review the

entire list of generated terms; the decisions made during this process had to be1440

unanimous. Additionally, the authors referred to the entire commit message to

confirm the context around the terms of interest.

In terms of our experiments that use co-occurring refactorings (RQ2, RQ3,

RQ6), while there can be multiple refactoring operations that can occur in a

single source file, in a single commit, it is not possible to determine the order in1445

which the developer applied refactoring operations. The only way to obtain this

data is to interview the developer responsible for the commit. However, given

63



the large-scale nature of our study, such an approach is not feasible. Hence

we look at the refactoring operations present in commits that occur just before

and after a rename refactoring commit. Further, our study did not correlate1450

refactorings occurring in the same commit.

We utilize NLTK in our study to help detect the semantic updates occurring

on an identifier name when the identifier is renamed. This partial reliance on

NLTK introduces a threat that some of the conclusions drawn by the semantic

change detection algorithm may be inaccurate. We alleviate this threat by1455

thorough testing of the tool, but it is known that tools trained specifically on

software engineering data tend to generalize better than tools trained on general

natural language data and applied to source code [8, 108]. Unfortunately, there

are no platforms and models similar to NLTK that are specialized for software-

based lexica.1460

We detect when collection-semantics (e.g., a List data type) have been added

or removed by examining type names. This is a conservative estimation; we

never identify any type as being a collection when it is not. However, we may

miss the addition of collection-like behavior or attributes when it is added to

a class’ internals. That is, there may be situations where an identifier’s name1465

becomes plural because the class which its type represents has been changed to

internally include a collection as an attribute. We do no internal class analysis

when detecting identifier name plurality and determining if the identifier’s be-

havior has been changed to include/remove collection-semantics. Finally, our

data type change detection strategy excluded methods where the return type of1470

either or both instances was void. Hence, while we did capture a large quantity

of type change instances, the results may not necessarily be generalizable to all

methods.

8. Conclusions and Future Work

In this paper, we use refactorings, static analysis, data types, and commit1475

messages to understand characteristics of changes applied to identifier names

64



and to determine if these changes correlate to different developer activities (e.g.,

narrowing of a name after applying an Extract Method refactoring operation).

Our long term goal is to support recommendation of when/how to rename iden-

tifiers and to understand more about developer naming mental models. This1480

study brings us a step closer to achieving this goal by identifying opportunities

for rename recommendations which can already be supported (e.g., plurality of

names, inclusion of type names in identifier names), identifying trends which

should be further explored in future research (e.g., renames correlated with

certain refactorings), and highlighting challenges which future research should1485

overcome in order to provide stronger recommendation support.

In future work, we plan to perform a qualitative study on commits, code

changes, and documentation associated with renames. This will allow us to

expand and improve on the taxonomy discussed in Section 6 and gather data to

address the problems described in Sections 6.3 and 6.2. Specifically, we will use1490

data from this paper and a future qualitative study to investigate more effec-

tive means of analyzing commit messages and other natural language software

artifacts, and we will investigate the use of software differencing techniques

[109, 110] to allow us to analyze general software changes that occur around

a rename. Both of these directions are directly motivated by the experiences1495

and outcomes resulting from this work. Finally, based on our discussion of the

findings and takeaways of our study (Section 6), our next steps include the im-

plementation of IDE plugins that provide developers with rename candidates

based on changes to the identifier’s data types—- for example, recommending

that the developer should change the plurality of the identifier’s name when the1500

data type is changed to/from a collection type. These plugins will leverage some

of the stronger relationships from this paper to qualify these relationships using

human subjects. The dataset utilized in this study is available on our project

website [41].

65



9. Acknowledgements1505

This material is based upon work supported by the National Science Foun-

dation under Grant No. 1850412.

References

[1] T. A. Corbi, Program understanding: Challenge for the 1990s, IBM Sys-

tems Journal 28 (2) (1989) 294–306. doi:10.1147/sj.282.0294.1510

[2] R. Martin, Clean Code: A Handbook of Agile Software Craftsmanship,

Robert C. Martin series, Prentice Hall, 2009.

[3] A. A. Takang, P. A. Grubb, R. D. Macredie, The effects of comments and

identifier names on program comprehensibility: an experimental investi-

gation, J. Prog. Lang. 4 (1996) 143–167.1515

[4] A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, M. Beigl,

Descriptive compound identifier names improve source code comprehen-

sion, in: Proceedings of the 26th Conference on Program Comprehen-

sion, ICPC ’18, ACM, New York, NY, USA, 2018, pp. 31–40. doi:

10.1145/3196321.3196332.1520

URL http://doi.acm.org/10.1145/3196321.3196332

[5] J. Hofmeister, J. Siegmund, D. V. Holt, Shorter identifier names take

longer to comprehend, in: 2017 IEEE 24th International Conference on

Software Analysis, Evolution and Reengineering (SANER), 2017, pp. 217–

227. doi:10.1109/SANER.2017.7884623.1525

[6] D. Lawrie, C. Morrell, H. Feild, D. Binkley, What’s in a name? a study

of identifiers, in: 14th IEEE International Conference on Program Com-

prehension (ICPC’06), 2006, pp. 3–12. doi:10.1109/ICPC.2006.51.

[7] S. Butler, M. Wermelinger, Y. Yu, H. Sharp, Exploring the influence of

identifier names on code quality: An empirical study, in: Software Main-1530

66

http://dx.doi.org/10.1147/sj.282.0294
http://doi.acm.org/10.1145/3196321.3196332
http://doi.acm.org/10.1145/3196321.3196332
http://doi.acm.org/10.1145/3196321.3196332
http://dx.doi.org/10.1145/3196321.3196332
http://dx.doi.org/10.1145/3196321.3196332
http://dx.doi.org/10.1145/3196321.3196332
http://doi.acm.org/10.1145/3196321.3196332
http://dx.doi.org/10.1109/SANER.2017.7884623
http://dx.doi.org/10.1109/ICPC.2006.51


tenance and Reengineering (CSMR), 2010 14th European Conference on,

IEEE, 2010, pp. 156–165.

[8] D. Binkley, D. Lawrie, C. Morrell, The need for software specific natural

language techniques, Empirical Softw. Engg. 23 (4) (2018) 2398–2425.

doi:10.1007/s10664-017-9566-5.1535

URL https://doi.org/10.1007/s10664-017-9566-5

[9] C. D. Newman, M. J. Decker, R. S. AlSuhaibani, A. Peruma, D. Kaushik,

E. Hill, An empirical study of abbreviations and expansions in software

artifacts, in: Proceedings of the 35th IEEE International Conference on

Software Maintenance and Evolution (ICSME), IEEE, 2019.1540

[10] M. Allamanis, E. T. Barr, C. Bird, C. Sutton, Suggesting accurate method

and class names, in: Proceedings of the 2015 10th Joint Meeting on Foun-

dations of Software Engineering, ESEC/FSE 2015, ACM, New York, NY,

USA, 2015, pp. 38–49. doi:10.1145/2786805.2786849.

URL http://doi.acm.org/10.1145/2786805.27868491545

[11] K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A. Koyuncu, S. Kim,

Y. Le Traon, Learning to spot and refactor inconsistent method names, in:

Proceedings of the 40th International Conference on Software Engineering,

ICSE 2019, ACM, New York, NY, USA, 2019.

[12] E. W. Høst, B. M. Østvold, Debugging method names, in: Proceedings1550

of the 23rd European Conference on ECOOP 2009 — Object-Oriented

Programming, Genoa, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 294–

317. doi:10.1007/978-3-642-03013-0_14.

URL http://dx.doi.org/10.1007/978-3-642-03013-0_14

[13] S. L. Abebe, P. Tonella, Automated identifier completion and replace-1555

ment, in: 2013 17th European Conference on Software Maintenance and

Reengineering, 2013, pp. 263–272. doi:10.1109/CSMR.2013.35.

67

https://doi.org/10.1007/s10664-017-9566-5
https://doi.org/10.1007/s10664-017-9566-5
https://doi.org/10.1007/s10664-017-9566-5
http://dx.doi.org/10.1007/s10664-017-9566-5
https://doi.org/10.1007/s10664-017-9566-5
http://doi.acm.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
http://dx.doi.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
http://dx.doi.org/10.1007/978-3-642-03013-0_14
http://dx.doi.org/10.1007/978-3-642-03013-0_14
http://dx.doi.org/10.1007/978-3-642-03013-0_14
http://dx.doi.org/10.1109/CSMR.2013.35


[14] Y. Kashiwabara, Y. Onizuka, T. Ishio, Y. Hayase, T. Yamamoto, K. Inoue,

Recommending verbs for rename method using association rule mining,

in: 2014 Software Evolution Week - IEEE Conference on Software Main-1560

tenance, Reengineering, and Reverse Engineering (CSMR-WCRE), 2014,

pp. 323–327. doi:10.1109/CSMR-WCRE.2014.6747186.

[15] C. D. Newman, A. Peruma, R. AlSuhaibani, Modeling the relationship

between identifier name and behavior, in: Proceedings of the 35th IEEE

International Conference on Software Maintenance and Evolution (IC-1565

SME), IEEE, 2019.

[16] Refactoring: Improving the Design of Existing Code, Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[17] V. Arnaoudova, M. Di Penta, G. Antoniol, Y. Guéhéneuc, A new family of

software anti-patterns: Linguistic anti-patterns, in: 2013 17th European1570

Conference on Software Maintenance and Reengineering, 2013, pp. 187–

196. doi:10.1109/CSMR.2013.28.

[18] V. Arnaoudova, L. M. Eshkevari, M. D. Penta, R. Oliveto, G. Antoniol,

Y.-G. Gueheneuc, Repent: Analyzing the nature of identifier renamings,

IEEE Trans. Softw. Eng. 40 (5) (2014) 502–532. doi:10.1109/TSE.2014.1575

2312942.

URL https://doi.org/10.1109/TSE.2014.2312942

[19] C. D. Newman, R. S. AlSuhaibani, M. L. Collard, J. I. Maletic, Lexical

categories for source code identifiers, in: 2017 IEEE 24th International

Conference on Software Analysis, Evolution and Reengineering (SANER),1580

2017, pp. 228–239. doi:10.1109/SANER.2017.7884624.

[20] R. S. Alsuhaibani, C. D. Newman, M. L. Collard, J. I. Maletic, Heuristic-

based part-of-speech tagging of source code identifiers and comments, in:

2015 IEEE 5th Workshop on Mining Unstructured Data (MUD), 2015,

pp. 1–6. doi:10.1109/MUD.2015.7327960.1585

68

http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747186
http://dx.doi.org/10.1109/CSMR.2013.28
https://doi.org/10.1109/TSE.2014.2312942
http://dx.doi.org/10.1109/TSE.2014.2312942
http://dx.doi.org/10.1109/TSE.2014.2312942
http://dx.doi.org/10.1109/TSE.2014.2312942
https://doi.org/10.1109/TSE.2014.2312942
http://dx.doi.org/10.1109/SANER.2017.7884624
http://dx.doi.org/10.1109/MUD.2015.7327960


[21] D. Binkley, M. Hearn, D. Lawrie, Improving identifier informativeness

using part of speech information, in: Proceedings of the 8th Working

Conference on Mining Software Repositories, MSR ’11, ACM, New York,

NY, USA, 2011, pp. 203–206. doi:10.1145/1985441.1985471.

URL http://doi.acm.org/10.1145/1985441.19854711590

[22] S. Gupta, S. Malik, L. Pollock, K. Vijay-Shanker, Part-of-speech tag-

ging of program identifiers for improved text-based software engineering

tools, in: 2013 21st International Conference on Program Comprehension

(ICPC), 2013, pp. 3–12. doi:10.1109/ICPC.2013.6613828.

[23] A. Peruma, M. W. Mkaouer, M. J. Decker, C. D. Newman, An empirical1595

investigation of how and why developers rename identifiers, in: Inter-

national Workshop on Refactoring 2018, 2018. doi:10.1145/3242163.

3242169.

URL http://doi.acm.org/10.1145/3242163.3242169

[24] A. Peruma, M. W. Mkaouer, M. J. Decker, C. D. Newman, Contextual-1600

izing rename decisions using refactorings and commit messages, in: Pro-

ceedings of the 19th IEEE International Working Conference on Source

Code Analysis and Manipulation, IEEE, 2019.

[25] H. Liu, Q. Liu, Y. Liu, Z. Wang, Identifying renaming opportunities by

expanding conducted rename refactorings, IEEE Transactions on Software1605

Engineering 41 (9) (2015) 887–900.

[26] H. Liu, Q. Liu, C.-A. Staicu, M. Pradel, Y. Luo, Nomen est omen: Explor-

ing and exploiting similarities between argument and parameter names,

in: Software Engineering (ICSE), 2016 IEEE/ACM 38th International

Conference on, IEEE, 2016, pp. 1063–1073.1610

[27] M. Allamanis, E. T. Barr, C. Bird, C. Sutton, Learning natural coding

conventions, in: Proceedings of the 22Nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering, 2014. doi:10.1145/

69

http://doi.acm.org/10.1145/1985441.1985471
http://doi.acm.org/10.1145/1985441.1985471
http://doi.acm.org/10.1145/1985441.1985471
http://dx.doi.org/10.1145/1985441.1985471
http://doi.acm.org/10.1145/1985441.1985471
http://dx.doi.org/10.1109/ICPC.2013.6613828
http://doi.acm.org/10.1145/3242163.3242169
http://doi.acm.org/10.1145/3242163.3242169
http://doi.acm.org/10.1145/3242163.3242169
http://dx.doi.org/10.1145/3242163.3242169
http://dx.doi.org/10.1145/3242163.3242169
http://dx.doi.org/10.1145/3242163.3242169
http://doi.acm.org/10.1145/3242163.3242169
http://doi.acm.org/10.1145/2635868.2635883
http://doi.acm.org/10.1145/2635868.2635883
http://doi.acm.org/10.1145/2635868.2635883
http://dx.doi.org/10.1145/2635868.2635883
http://dx.doi.org/10.1145/2635868.2635883
http://dx.doi.org/10.1145/2635868.2635883


2635868.2635883.

URL http://doi.acm.org/10.1145/2635868.26358831615

[28] M. Allamanis, E. T. Barr, C. Bird, C. Sutton, Suggesting accurate method

and class names, in: Proceedings of the 2015 10th Joint Meeting on Foun-

dations of Software Engineering, ESEC/FSE 2015, ACM, New York, NY,

USA, 2015, pp. 38–49. doi:10.1145/2786805.2786849.

URL http://doi.acm.org/10.1145/2786805.27868491620

[29] B. Liblit, A. Begel, E. Sweetser, Cognitive perspectives on the role of

naming in computer programs, in: In Proc. of the 18th Annual Psychology

of Programming Workshop, 2006.

[30] S. Butler, M. Wermelinger, Y. Yu, H. Sharp, Relating identifier naming

flaws and code quality: An empirical study, in: 2009 16th Working Con-1625

ference on Reverse Engineering, 2009, pp. 31–35. doi:10.1109/WCRE.

2009.50.

[31] S. Fakhoury, D. Roy, S. A. Hassan, V. Arnaoudova, Improving source

code readability: Theory and practice, in: Proceedings of the 27th Inter-

national Conference on Program Comprehension, ICPC ’19, IEEE Press,1630

Piscataway, NJ, USA, 2019, pp. 2–12. doi:10.1109/ICPC.2019.00014.

URL https://doi.org/10.1109/ICPC.2019.00014

[32] db/src/main/java/com/psddev/dari/db/sqldatabase.java, https:

//github.com/perfectsense/dari/commit/88e6556.

[33] hibernate-ogm-core/src/main/java/org/hibernate/ogm/grid/entitykey.java,1635

https://github.com/hibernate/hibernate-ogm/commit/7dcfaed.

[34] Choreoswebserviceproxy/src/test/java/ime/usp/br/proxy/proxycontrollertest.java,

https://github.com/choreos/choreos_middleware/commit/f2da1f8.

[35] api/src/main/java/org/openmrs/personaddress.java, https://github.

com/openmrs/openmrs-core/commit/fd5ed0d.1640

70

http://dx.doi.org/10.1145/2635868.2635883
http://dx.doi.org/10.1145/2635868.2635883
http://doi.acm.org/10.1145/2635868.2635883
http://doi.acm.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
http://dx.doi.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
http://dx.doi.org/10.1109/WCRE.2009.50
http://dx.doi.org/10.1109/WCRE.2009.50
http://dx.doi.org/10.1109/WCRE.2009.50
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/ICPC.2019.00014
http://dx.doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/ICPC.2019.00014
https://github.com/perfectsense/dari/commit/88e6556
https://github.com/perfectsense/dari/commit/88e6556
https://github.com/perfectsense/dari/commit/88e6556
https://github.com/hibernate/hibernate-ogm/commit/7dcfaed
https://github.com/choreos/choreos_middleware/commit/f2da1f8
https://github.com/openmrs/openmrs-core/commit/fd5ed0d
https://github.com/openmrs/openmrs-core/commit/fd5ed0d
https://github.com/openmrs/openmrs-core/commit/fd5ed0d


[36] jangaroo/jangaroo-compiler/src/main/java/net/jangaroo/jooc/jangarooparser.java,

https://github.com/coremedia/jangaroo-tools/commit/7a494f1.

[37] jangaroo/jangaroo-compiler/src/main/java/net/jangaroo/jooc/jangarooparser.java,

https://github.com/coremedia/jangaroo-tools/commit/fc54b3f.

[38] src/main/java/com/atomicleopard/webframework/view/json/jsonviewresult.java,1645

https://github.com/3wks/thundr/commit/53aaf15.

[39] src/main/java/com/atomicleopard/webframework/view/json/jsonview.java,

https://github.com/3wks/thundr/commit/9b02920.

[40] src/main/java/org/sql2o/query.java, https://github.com/aaberg/

sql2o/commit/2f23b11.1650

[41] Project website, https://scanl.org/.

[42] N. Munaiah, S. Kroh, C. Cabrey, M. Nagappan, Curating github for en-

gineered software projects, Empirical Software Engineering 22 (6) (2017)

3219–3253. doi:10.1007/s10664-017-9512-6.

URL https://doi.org/10.1007/s10664-017-9512-61655

[43] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, D. Dig,

Accurate and efficient refactoring detection in commit history, in: Pro-

ceedings of the 40th International Conference on Software Engineer-

ing, ICSE ’18, ACM, New York, NY, USA, 2018, pp. 483–494. doi:

10.1145/3180155.3180206.1660

URL http://doi.acm.org/10.1145/3180155.3180206

[44] L. Tan, C. Bockisch, A survey of refactoring detection tools, in: Software

Engineering, 2019.

[45] C. Vassallo, G. Grano, F. Palomba, H. C. Gall, A. Bacchelli, A large-

scale empirical exploration on refactoring activities in open source software1665

projects, Science of Computer Programming 180.

71

https://github.com/coremedia/jangaroo-tools/commit/7a494f1
https://github.com/coremedia/jangaroo-tools/commit/fc54b3f
https://github.com/3wks/thundr/commit/53aaf15
https://github.com/3wks/thundr/commit/9b02920
https://github.com/aaberg/sql2o/commit/2f23b11
https://github.com/aaberg/sql2o/commit/2f23b11
https://github.com/aaberg/sql2o/commit/2f23b11
https://scanl.org/
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6
http://dx.doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6
http://doi.acm.org/10.1145/3180155.3180206
http://dx.doi.org/10.1145/3180155.3180206
http://dx.doi.org/10.1145/3180155.3180206
http://dx.doi.org/10.1145/3180155.3180206
http://doi.acm.org/10.1145/3180155.3180206


[46] D. Silva, N. Tsantalis, M. T. Valente, Why we refactor? confessions of

github contributors, in: Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, FSE

2016, Association for Computing Machinery, 2016.1670

[47] M. Hucka, Spiral: splitters for identifiers in source code filesdoi:10.

21105/joss.00653.

URL https://doi.org/10.21105/joss.00653

[48] S. Bird, E. Klein, E. Loper, Natural language processing with Python:

analyzing text with the natural language toolkit, ”O’Reilly Media, Inc.”,1675

2009.

[49] G. A. Miller, Wordnet: a lexical database for english, Communications of

the ACM 38 (11) (1995) 39–41.

[50] Primitive data types, https://docs.oracle.com/javase/tutorial/

java/nutsandbolts/datatypes.html, (Accessed on 11/11/2019).1680

[51] Collections framework overview, https://docs.oracle.com/javase/

8/docs/technotes/guides/collections/overview.html, (Accessed on

11/11/2019).

[52] Chapter 14. blocks and statements, https://docs.oracle.com/

javase/specs/jls/se13/html/jls-14.html#jls-14.8, (Accessed on1685

11/11/2019).

[53] src/test/java/stormpot/countingallocator.java, https://github.com/

chrisvest/stormpot/commit/459d423.

[54] src/test/java/stormpot/countingallocatorwrapper.java, https:

//github.com/chrisvest/stormpot/commit/d2931d3.1690

[55] apvs/src/main/java/ch/cern/atlas/apvs/client/ui/abstractmeasurementview.java,

https://github.com/cern/apvs/commit/c1e5792.

72

https://doi.org/10.21105/joss.00653
http://dx.doi.org/10.21105/joss.00653
http://dx.doi.org/10.21105/joss.00653
http://dx.doi.org/10.21105/joss.00653
https://doi.org/10.21105/joss.00653
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://docs.oracle.com/javase/specs/jls/se13/html/jls-14.html#jls-14.8
https://docs.oracle.com/javase/specs/jls/se13/html/jls-14.html#jls-14.8
https://docs.oracle.com/javase/specs/jls/se13/html/jls-14.html#jls-14.8
https://github.com/chrisvest/stormpot/commit/459d423
https://github.com/chrisvest/stormpot/commit/459d423
https://github.com/chrisvest/stormpot/commit/459d423
https://github.com/chrisvest/stormpot/commit/d2931d3
https://github.com/chrisvest/stormpot/commit/d2931d3
https://github.com/chrisvest/stormpot/commit/d2931d3
https://github.com/cern/apvs/commit/c1e5792


[56] apvs/src/main/java/ch/cern/atlas/apvs/client/ui/measurementview.java,

https://github.com/cern/apvs/commit/71fc572.

[57] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, Journal of1695

machine Learning research 3 (Jan) (2003) 993–1022.

[58] M. Röder, A. Both, A. Hinneburg, Exploring the space of topic coherence

measures, in: Proceedings of the Eighth ACM International Conference

on Web Search and Data Mining, WSDM ’15, ACM, New York, NY,

USA, 2015, pp. 399–408. doi:10.1145/2684822.2685324.1700

URL http://doi.acm.org.ezproxy.rit.edu/10.1145/2684822.

2685324

[59] A. Barua, S. W. Thomas, A. E. Hassan, What are developers talk-

ing about? an analysis of topics and trends in stack overflow, Em-

pirical Software Engineering 19 (3) (2014) 619–654. doi:10.1007/1705

s10664-012-9231-y.

URL https://doi.org/10.1007/s10664-012-9231-y

[60] D. Jurafsky, J. H. Martin, Speech and language processing: An introduc-

tion to natural language processing, computational linguistics, and speech

recognition, Prentic e Hall.1710

[61] D. E. Krutz, N. Munaiah, A. Peruma, M. Wiem Mkaouer, Who added

that permission to my app? an analysis of developer permission changes in

open source android apps, in: 2017 IEEE/ACM 4th International Confer-

ence on Mobile Software Engineering and Systems (MOBILESoft), 2017,

pp. 165–169. doi:10.1109/MOBILESoft.2017.5.1715

[62] de.prob.units/src/de/prob/units/sc/contextattributeprocessor.java,

https://github.com/hhu-stups/prob-rodinplugin/commit/32601b5.

[63] mes-core/mes-core-data/src/main/java/com/qcadoo/mes/core/data/internal/dataaccessserviceimpl.java,

https://github.com/qcadoo/mes/commit/15a2615.

73

https://github.com/cern/apvs/commit/71fc572
http://doi.acm.org.ezproxy.rit.edu/10.1145/2684822.2685324
http://doi.acm.org.ezproxy.rit.edu/10.1145/2684822.2685324
http://doi.acm.org.ezproxy.rit.edu/10.1145/2684822.2685324
http://dx.doi.org/10.1145/2684822.2685324
http://doi.acm.org.ezproxy.rit.edu/10.1145/2684822.2685324
http://doi.acm.org.ezproxy.rit.edu/10.1145/2684822.2685324
http://doi.acm.org.ezproxy.rit.edu/10.1145/2684822.2685324
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/s10664-012-9231-y
http://dx.doi.org/10.1007/s10664-012-9231-y
http://dx.doi.org/10.1007/s10664-012-9231-y
http://dx.doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/s10664-012-9231-y
http://dx.doi.org/10.1109/MOBILESoft.2017.5
https://github.com/hhu-stups/prob-rodinplugin/commit/32601b5
https://github.com/qcadoo/mes/commit/15a2615


[64] Z. Xing, E. Stroulia, Refactoring detection based on umldiff change-facts1720

queries, in: 2006 13th Working Conference on Reverse Engineering, 2006,

pp. 263–274. doi:10.1109/WCRE.2006.48.

[65] H. Li, S. Thompson, Let’s make refactoring tools user-extensible!, in: Pro-

ceedings of the Fifth Workshop on Refactoring Tools, WRT ’12, Associ-

ation for Computing Machinery, New York, NY, USA, 2012, p. 32–39.1725

doi:10.1145/2328876.2328881.

URL https://doi.org/10.1145/2328876.2328881

[66] M. Mohamed, M. Romdhani, K. Ghédira, Classification of model refac-

toring approaches, Journal of Object Technology 8 (6) (2009) 121–126.

[67] E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we1730

know it, IEEE Transactions on Software Engineering 38 (1) (2012) 5–18.

doi:10.1109/TSE.2011.41.

[68] src/main/java/com/stripe/model/threedsecure.java, https://github.

com/stripe/stripe-java/commit/4fdadaf.

[69] src/main/java/com/stripe/model/applepaydomain.java, https:1735

//github.com/stripe/stripe-java/commit/19d4d5a.

[70] src/main/java/org/atlasapi/application/applicationconfiguration.java,

https://github.com/atlasapi/atlas-model/commit/4da9fc2.

[71] src/main/java/org/atlasapi/application/applicationconfiguration.java,

https://github.com/atlasapi/atlas-model/commit/fc19c98.1740

[72] heroku-api/src/main/java/com/heroku/api/command/login/basicauthlogincommand.java,

https://github.com/heroku/heroku.jar/commit/008dbc2.

[73] heroku-api/src/main/java/com/heroku/api/command/login/basicauthlogin.java,

https://github.com/heroku/heroku.jar/commit/0c1c18d.

[74] core/src/main/java/org/mapfish/print/processor/map/createmapprocessor.java,1745

https://github.com/mapfish/mapfish-print/commit/bc1f422.

74

http://dx.doi.org/10.1109/WCRE.2006.48
https://doi.org/10.1145/2328876.2328881
http://dx.doi.org/10.1145/2328876.2328881
https://doi.org/10.1145/2328876.2328881
http://dx.doi.org/10.1109/TSE.2011.41
https://github.com/stripe/stripe-java/commit/4fdadaf
https://github.com/stripe/stripe-java/commit/4fdadaf
https://github.com/stripe/stripe-java/commit/4fdadaf
https://github.com/stripe/stripe-java/commit/19d4d5a
https://github.com/stripe/stripe-java/commit/19d4d5a
https://github.com/stripe/stripe-java/commit/19d4d5a
https://github.com/atlasapi/atlas-model/commit/4da9fc2
https://github.com/atlasapi/atlas-model/commit/fc19c98
https://github.com/heroku/heroku.jar/commit/008dbc2
https://github.com/heroku/heroku.jar/commit/0c1c18d
https://github.com/mapfish/mapfish-print/commit/bc1f422


[75] core/src/main/java/org/mapfish/print/http/httprequestcache.java,

https://github.com/mapfish/mapfish-print/commit/fe44bd1.

[76] qtiworks/web/controller/instructor/instructorassessmentmanagementcontroller.java,

https://github.com/davemckain/qtiworks/commit/2a1f9df.1750

[77] qtiworks/web/controller/instructor/instructorassessmentmanagementcontroller.java,

https://github.com/davemckain/qtiworks/commit/9cb51b2.

[78] src/main/java/se/crafted/chrisb/ecocreature/drops/sources/abstractdropsource.java,

https://github.com/mung3r/ecocreature/commit/42e5d9f.

[79] src/main/java/se/crafted/chrisb/ecocreature/drops/sources/abstractdropsource.java,1755

https://github.com/mung3r/ecocreature/commit/3e2f216.

[80] Lateralgm/org/lateralgm/file/gmstreamdecoder.java, https://github.

com/ismavatar/lateralgm/commit/2d1bdaf.

[81] org/lateralgm/file/gmstreamdecoder.java, https://github.com/

ismavatar/lateralgm/commit/e41c4c5.1760

[82] jack-store/src/com/rapleaf/jack/store/jstable.java, https://github.

com/liveramp/jack/commit/762b540.

[83] jack-core/src/com/rapleaf/jack/queries/generictable.java, https:

//github.com/liveramp/jack/commit/b331247.

[84] src/test/java/org/motechproject/ananya/kilkari/handlers/obdrequesthandlertest.java,1765

https://github.com/motech/ananya-kilkari/commit/b3b95f4.

[85] name.abuchen.portfolio.ui/src/name/abuchen/portfolio/ui/util/bindinghelper.java,

https://github.com/buchen/portfolio/commit/1bdeccb.

[86] vertx-core/src/main/java/io/vertx/core/http/httpclientoptions.java,

https://github.com/eclipse-vertx/vert.x/commit/921c69e.1770

75

https://github.com/mapfish/mapfish-print/commit/fe44bd1
https://github.com/davemckain/qtiworks/commit/2a1f9df
https://github.com/davemckain/qtiworks/commit/9cb51b2
https://github.com/mung3r/ecocreature/commit/42e5d9f
https://github.com/mung3r/ecocreature/commit/3e2f216
https://github.com/ismavatar/lateralgm/commit/2d1bdaf
https://github.com/ismavatar/lateralgm/commit/2d1bdaf
https://github.com/ismavatar/lateralgm/commit/2d1bdaf
https://github.com/ismavatar/lateralgm/commit/e41c4c5
https://github.com/ismavatar/lateralgm/commit/e41c4c5
https://github.com/ismavatar/lateralgm/commit/e41c4c5
https://github.com/liveramp/jack/commit/762b540
https://github.com/liveramp/jack/commit/762b540
https://github.com/liveramp/jack/commit/762b540
https://github.com/liveramp/jack/commit/b331247
https://github.com/liveramp/jack/commit/b331247
https://github.com/liveramp/jack/commit/b331247
https://github.com/motech/ananya-kilkari/commit/b3b95f4
https://github.com/buchen/portfolio/commit/1bdeccb
https://github.com/eclipse-vertx/vert.x/commit/921c69e


[87] nuget-tests/src/jetbrains/buildserver/nuget/tests/server/trigger/packagecheckertestbase.java,

https://github.com/jetbrains/teamcity-nuget-support/commit/

da10d2c.

[88] qtiworks-engine/src/main/java/uk/ac/ed/ph/qtiworks/domain/entities/candidateevent.java,

https://github.com/davemckain/qtiworks/commit/0c924ab.1775

[89] org.jrebirth.af/core/src/main/java/org/jrebirth/af/core/component/basic/innercomponentbase.java,

https://github.com/jrebirth/jrebirth/commit/d82fb1b.

[90] https://github.com/unquietcode/flapi/commit/4586325.

[91] abuchen/portfolio/ui/dialogs/transactions/buysellmodel.java, https://

github.com/buchen/portfolio/commit/9fc2fad.1780

[92] /abuchen/portfolio/ui/dialogs/transactions/abstractsecuritytransactionmodel.java,

https://github.com/buchen/portfolio/commit/e1d7472.

[93] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, A. D. Lucia, Do they

really smell bad? a study on developers’ perception of bad code smells,

in: 2014 IEEE International Conference on Software Maintenance and1785

Evolution, 2014, pp. 101–110. doi:10.1109/ICSME.2014.32.

[94] M. Kim, T. Zimmermann, N. Nagappan, An empirical study of refactor-

ingchallenges and benefits at microsoft, IEEE Transactions on Software

Engineering 40 (7) (2014) 633–649. doi:10.1109/TSE.2014.2318734.

[95] V. Arnaoudova, M. Di Penta, G. Antoniol, Y. Guéhéneuc, A new family of1790

software anti-patterns: Linguistic anti-patterns, in: 2013 17th European

Conference on Software Maintenance and Reengineering, 2013, pp. 187–

196. doi:10.1109/CSMR.2013.28.

[96] B. Fluri, H. C. Gall, Classifying change types for qualifying change cou-

plings, in: 14th IEEE International Conference on Program Comprehen-1795

sion (ICPC’06), 2006, pp. 35–45. doi:10.1109/ICPC.2006.16.

76

https://github.com/jetbrains/teamcity-nuget-support/commit/da10d2c
https://github.com/jetbrains/teamcity-nuget-support/commit/da10d2c
https://github.com/jetbrains/teamcity-nuget-support/commit/da10d2c
https://github.com/davemckain/qtiworks/commit/0c924ab
https://github.com/jrebirth/jrebirth/commit/d82fb1b
https://github.com/unquietcode/flapi/commit/4586325
https://github.com/buchen/portfolio/commit/9fc2fad
https://github.com/buchen/portfolio/commit/9fc2fad
https://github.com/buchen/portfolio/commit/9fc2fad
https://github.com/buchen/portfolio/commit/e1d7472
http://dx.doi.org/10.1109/ICSME.2014.32
http://dx.doi.org/10.1109/TSE.2014.2318734
http://dx.doi.org/10.1109/CSMR.2013.28
http://dx.doi.org/10.1109/ICPC.2006.16


[97] H. C. Gall, M. Pinzger, B. Fluri, Change analysis with evolizer and

changedistiller, IEEE Software 26 (01) (2009) 26–33. doi:10.1109/MS.

2009.6.

[98] B. Fluri, M. Wuersch, M. PInzger, H. Gall, Change distilling:tree differenc-1800

ing for fine-grained source code change extraction, IEEE Transactions on

Software Engineering 33 (11) (2007) 725–743. doi:10.1109/TSE.2007.

70731.

[99] M. Martinez, L. Duchien, M. Monperrus, Automatically extracting in-

stances of code change patterns with ast analysis, in: Proceedings of1805

the 2013 IEEE International Conference on Software Maintenance, ICSM

’13, IEEE Computer Society, Washington, DC, USA, 2013, pp. 388–391.

doi:10.1109/ICSM.2013.54.

URL https://doi.org/10.1109/ICSM.2013.54

[100] M. Martinez, M. Monperrus, Coming: A tool for mining change pat-1810

tern instances from git commits, in: Proceedings of the 41st Inter-

national Conference on Software Engineering: Companion Proceedings,

ICSE ’19, IEEE Press, Piscataway, NJ, USA, 2019, pp. 79–82. doi:

10.1109/ICSE-Companion.2019.00043.

URL https://doi.org/10.1109/ICSE-Companion.2019.000431815

[101] S. Negara, M. Codoban, D. Dig, R. E. Johnson, Mining fine-grained code

changes to detect unknown change patterns, in: Proceedings of the 36th

International Conference on Software Engineering, ICSE 2014, ACM, New

York, NY, USA, 2014, pp. 803–813. doi:10.1145/2568225.2568317.

URL http://doi.acm.org/10.1145/2568225.25683171820

[102] P. Kreutzer, G. Dotzler, M. Ring, B. M. Eskofier, M. Philippsen, Auto-

matic clustering of code changes, in: Proceedings of the 13th International

Conference on Mining Software Repositories, MSR ’16, ACM, New York,

NY, USA, 2016, pp. 61–72. doi:10.1145/2901739.2901749.

URL http://doi.acm.org/10.1145/2901739.29017491825

77

http://dx.doi.org/10.1109/MS.2009.6
http://dx.doi.org/10.1109/MS.2009.6
http://dx.doi.org/10.1109/MS.2009.6
http://dx.doi.org/10.1109/TSE.2007.70731
http://dx.doi.org/10.1109/TSE.2007.70731
http://dx.doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1109/ICSM.2013.54
https://doi.org/10.1109/ICSM.2013.54
https://doi.org/10.1109/ICSM.2013.54
http://dx.doi.org/10.1109/ICSM.2013.54
https://doi.org/10.1109/ICSM.2013.54
https://doi.org/10.1109/ICSE-Companion.2019.00043
https://doi.org/10.1109/ICSE-Companion.2019.00043
https://doi.org/10.1109/ICSE-Companion.2019.00043
http://dx.doi.org/10.1109/ICSE-Companion.2019.00043
http://dx.doi.org/10.1109/ICSE-Companion.2019.00043
http://dx.doi.org/10.1109/ICSE-Companion.2019.00043
https://doi.org/10.1109/ICSE-Companion.2019.00043
http://doi.acm.org/10.1145/2568225.2568317
http://doi.acm.org/10.1145/2568225.2568317
http://doi.acm.org/10.1145/2568225.2568317
http://dx.doi.org/10.1145/2568225.2568317
http://doi.acm.org/10.1145/2568225.2568317
http://doi.acm.org/10.1145/2901739.2901749
http://doi.acm.org/10.1145/2901739.2901749
http://doi.acm.org/10.1145/2901739.2901749
http://dx.doi.org/10.1145/2901739.2901749
http://doi.acm.org/10.1145/2901739.2901749


[103] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, H. Rajan,

A study of repetitiveness of code changes in software evolution, in: Pro-

ceedings of the 28th IEEE/ACM International Conference on Automated

Software Engineering, ASE’13, IEEE Press, Piscataway, NJ, USA, 2013,

pp. 180–190. doi:10.1109/ASE.2013.6693078.1830

URL https://doi.org/10.1109/ASE.2013.6693078

[104] src/mod invtweaks.java, https://github.com/mkalam-alami/

inventory-tweaks/commit/1dfd242.

[105] java/org/jboss/arquillian/persistence/metadata/metadataprovidertransactionaltest.java,

https://github.com/arquillian/arquillian-extension-persistence/1835

commit/1a06974.

[106] jdeeco-core/src/cz/cuni/mff/d3s/deeco/processor/ensembleparser.java,

https://github.com/d3scomp/jdeeco/commit/0bc8911.

[107] E. A. Alomar, M. W. Mkaouer, A. Ouni, Can refactoring be self-affirmed?

an exploratory study on how developers document their refactoring activi-1840

ties in commit changes, in: Proceedings of the 3rd International Workshop

on Refactoring, ACM, New York, NY, USA, 2019.

[108] R. Jongeling, P. Sarkar, S. Datta, A. Serebrenik, On negative results when

using sentiment analysis tools for software engineering research, Empirical

Software Engineeringdoi:10.1007/s10664-016-9493-x.1845

[109] M. J. Decker, M. L. Collard, L. G. Volkert, J. I. Maletic, srcdiff: A syn-

tactic differencing approach to improve the understandability of deltas,

Journal of Software: Evolution and Process n/a (n/a) e2226, e2226 JSME-

19-0050.R1. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.

1002/smr.2226, doi:10.1002/smr.2226.1850

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2226

[110] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, M. Monperrus, Fine-

grained and accurate source code differencing, in: Proceedings of the

78

https://doi.org/10.1109/ASE.2013.6693078
http://dx.doi.org/10.1109/ASE.2013.6693078
https://doi.org/10.1109/ASE.2013.6693078
https://github.com/mkalam-alami/inventory-tweaks/commit/1dfd242
https://github.com/mkalam-alami/inventory-tweaks/commit/1dfd242
https://github.com/mkalam-alami/inventory-tweaks/commit/1dfd242
https://github.com/arquillian/arquillian-extension-persistence/commit/1a06974
https://github.com/arquillian/arquillian-extension-persistence/commit/1a06974
https://github.com/arquillian/arquillian-extension-persistence/commit/1a06974
https://github.com/d3scomp/jdeeco/commit/0bc8911
http://dx.doi.org/10.1007/s10664-016-9493-x
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2226
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2226
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2226
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2226
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2226
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2226
http://dx.doi.org/10.1002/smr.2226
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2226
http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982


29th ACM/IEEE International Conference on Automated Software En-

gineering, ASE ’14, ACM, New York, NY, USA, 2014, pp. 313–324.1855

doi:10.1145/2642937.2642982.

URL http://doi.acm.org/10.1145/2642937.2642982

79

http://dx.doi.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982

	1 Introduction
	2 RELATED WORK
	2.1 Identifier Renaming
	2.2 Identifier Name Quality

	3 ANALYSIS OF RENAMES
	3.1 Taxonomy for Rename Refactorings
	3.2 Contextualizing Rename Refactorings

	4 Methodology
	4.1 Data Collection Stage
	4.2 Detection Stage

	5 Experimental Results
	5.1 Data Summary
	5.2 RQ1: What is the distribution of experience among developers that apply renames?
	5.3 RQ2: What are the refactorings that occur more frequently with identifier renames?
	5.3.1 Class Rename
	5.3.2 Attribute Rename
	5.3.3 Method Rename
	5.3.4 Method Variable Rename

	5.4 RQ3: To what extent can we use refactoring occurrence and commit message analysis to understand why different semantic changes were applied during a rename operation?
	5.5 RQ4: What structural changes occur when an identifier and its corresponding type are changed together?
	5.6 RQ5: What semantic changes occur when an identifier and its corresponding type are changed together?
	5.7 RQ6: What refactorings most frequently appear before and after an identifier and its corresponding type are changed together? Are there specific semantic changes which correlate with these refactorings?

	6 Discussion
	6.1 Takeaways and Actionable Results
	6.1.1 Takeaways from RQ1
	6.1.2 Takeaways from RQ2, RQ3, and RQ6
	6.1.3 Takeaways from RQ4 and RQ5

	6.2 Challenge 1: Analyzing Renames and General Code Changes
	6.3 Challenge 2: Analyzing Rename Commit Messages

	7 Threats to Validity
	8 Conclusions and Future Work
	9 Acknowledgements

