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ABSTRACT

Biomass burning emits large amounts of phenols, which can partition into cloud/fog drops and aerosol
liquid water (ALW) and react to form aqueous secondary organic aerosol (agSOA). Triplet excited states
of organic compounds (*C*) are a likely oxidant, but there are no rate constants with highly substituted
phenols that have high Henry’s law constants (Ku) and are likely important in ALW. To address this gap,
we investigated the kinetics of six highly substituted phenols with the triplet excited state of 3,4-
dimethoxybenzaldehyde. Second-order rate constants at pH 2 are all fast, (2.6 - 4.6) x10° M''s!, while
values at pH 5 are 2 to 5 times smaller. Rate constants are reasonably described by a quantitative
structure-activity relationship with phenol oxidation potentials, allowing rate constants of other phenols to
be predicted. Triplet-phenol kinetics are unaffected by ammonium sulfate, sodium chloride, galactose (a
biomass-burning sugar), or Fe(IIl). In contrast, ammonium nitrate increases the rate of phenol loss by
making hydroxyl radical, while Cu(II) inhibits phenol decay. Mass yields of aqueous SOA from triplet
reactions are large and range from 59 to 99%. Calculations using our data along with previous oxidant
measurements indicate that phenols with high Ky can be an important source of aqgSOA in ALW, with

3C* typically the dominant oxidant.

INTRODUCTION

Airborne particulate matter (PM) impacts human health, visibility and climate.!” One of the major
components of PM is secondary organic aerosol (SOA), which is formed by oxidation of volatile organic
compounds in the gas phase followed with condensation, as well as in cloud/fog drops and possibly aerosol
liquid water (ALW).* Biomass burning (BB) is a major source of PM’ and releases large amounts of
soluble, reactive gases that can form SOA.® One major class of these gases is phenols, which are emitted
from the combustion of lignin, with an estimated global source strength of 4.7 Tg yr'!.>!2 Three of the most

abundant phenols emitted from BB are phenol (CsHsOH or PhOH), guaiacol (2-methoxyphenol), and
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syringol (2,6-dimethoxyphenol), which represent the base structures of BB phenols.!®!! Besides being
oxidized in the gas phase, these three species have moderate Henry’s Law constants (Ku = 10° — 10* M
atm™ at 278 K),'*>"15 enabling them to partition into cloud/fog drops where they can react with a number of

aqueous oxidants to form agSOA.%!¢1?

Triplet excited states of organic compounds (°C*) are a class of aqueous oxidants that are formed when
light-absorbing organics (i.e., brown carbon) absorb sunlight.?’ Triplets can react with gas-phase alkenes to

make additional PM mass at the surface of particles,??

convert glyoxal into highly oxygenated
compounds,??* and oxidize SO, to sulfate.”®> While hydroxyl radical (*OH) is often considered the
dominant oxidant for agSOA formation,? triplets can be an important oxidant in fog and cloud water, in
part because their concentrations are typically 10 — 100 times higher than *OH.>” Moreover, triplet

8

concentrations appear to be enhanced by a few orders of magnitude in aerosol water,”® indicating a

potentially major role in agSOA formation in ALW.

Simple phenols react with triplets with rate constants near diffusion-controlled, and also react rapidly with
*OH,'1*? giving aqueous lifetimes of a few hours, comparable to gas-phase lifetimes.'*!* These phenol-
triplet reactions also efficiently form agSOA, with mass yields in the range of 70 — 120%.!%1%3° Compared
with *OH oxidation in the gas phase, aqueous reactions in cloud/fog drops can dominate the formation of

phenolic SOA. '

While a number of studies have investigated agSOA formation under cloud and fog water conditions, less
is known about SOA formation in ALW.*>'33 ALW is ubiquitous, with a mass often equivalent to (or greater
than) the dry particle mass,* but the amount of particle water (typically 1 — 100 ug m™) is orders of
magnitude lower than that of fog/cloud drops.>* Because of this, ALW contains very high concentrations

of organic and inorganic species, which might affect reaction kinetics, including for agSOA formation.3!-¢-

38
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The low water content of ALW leads to very limited partitioning of simple phenols to particle water; e.g.,
less than 0.001% of syringol will partition into the water phase for an ALW content of 100 ug m™, an
approximate upper bound for a wintertime aerosol in California’s Central Valley.*® In contrast, highly
substituted phenols have much higher Ku values and might be significant sources of agSOA in ALW. For
example, for the six BB phenols in Figure 1,°'*°*! Henry’s law constants range from 10° to 10° M atm!
at 278 K,'5 corresponding to aqueous fractions of 2 to 58% for an ALW content of 100 ug m™. In addition,
the highly substituted phenols measured by Schauer ef al. are abundant, together accounting for roughly 30
— 45% of total phenols emitted from wood burning.'” Thus highly substituted phenols should be the
dominant phenols in ALW, present at much higher levels than simple phenols. Despite this, the reactions
of highly substituted phenols with triplet excited states to make aqSOA have not been examined and it is

unclear whether the high solute concentrations in ALW affect these kinetics.

To assess the potential significance of these six highly substituted phenols as sources of agSOA in ALW,
we measure their rate constants with the triplet state of 3,4-dimethoxybenzaldehyde (DMB), which is
present in biomass burning particles*” and has a reactivity similar to ambient triplets in fog and PM in
regions of significant wood combustion.?’*® We also examine the impacts of molar concentrations of salts
and a cellulose-derived sugar, and trace amounts of transition metal ions, on the triplet kinetics. We then
determine SOA mass yields from these reactions and develop a quantitative structure-activity relationship
between phenol oxidation potentials and second-order rate constants with the DMB triplet state. Finally,
we calculate the gas- and aqueous-SOA formation rates for three model phenols to investigate their

significance as sources of agSOA and the dependence of this chemistry on liquid water content.

MATERIALS AND METHODS

Chemicals and Solutions
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Chemicals were used as received. 3,4-dimethoxybenzaldehyde (DMB) (99%), 4-hydroxy-3-
methoxyphenylacetone (GA) (96%), 2-(4-hydroxyphenyl)ethanol (TYR) (98%), vanillyl alcohol (VAL)
(= 98%), trans-ferulic acid (FA) (99%), syringic acid (SyrAcid) (= 95%), 2-nitrobenzaldehyde (2-NB)
(98%), galactose (= 98%), ammonium sulfate (> 99%), ammonium nitrate (= 99%), Copper(Il) sulfate
pentahydrate (> 98%), Iron(III) chloride (> 97%), and sodium chloride (> 99%) were from Sigma-
Aldrich. (3,5-Dimethoxy-4-hydroxyphenyl)acetone (syringyl acetone, SA) (82%) was synthesized by
Carbosynth LLC. Sodium borate (ACS grade) and sulfuric acid (trace metal grade) were from Fisher
Scientific. All chemical solutions were prepared using air-saturated ultrapure water (Milli-Q water) from
a Milli-Q Advantage A10 system (Millipore; >18.2 MQ cm) with an upstream Barnstead activated carbon

cartridge.

Kinetic solutions contained 5 — 100 M of one phenol (ArOH), 10 xM DMB, and either sulfuric acid or
sodium borate to adjust pH to 2 or 5, respectively. In this work, we use the abbreviation “PhOH” to
represent the compound phenol (CsHsOH), and the terms “phenol(s)” and “ArOH” to represent phenols

more generally.

Solution Illumination and Chemical Analysis

Air-saturated solutions were illuminated in a stirred, airtight quartz cell (2-cm path length) (Spectrocell)
at 20 °C. Samples were illuminated with a 1000 W Xenon arc lamp with a water filter, an AM1.0 air mass
filter (AM1D-3L, Sciencetech), and a 295-nm long-pass filter (20CGA-295, Thorlabs) to simulate
tropospheric sunlight. Dark control samples were wrapped in aluminum foil and kept in the same

photoreactor chamber at 20 °C.

During illumination, aliquots were periodically removed from the illuminated and dark cells to measure

concentrations of ArOH and DMB with HPLC (Supporting Information Table S1). Each experiment day



97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

the photon flux was determined by measuring the photolysis rate constant (jangexp) 0f a 10 uM 2-

nitrobenzaldehyde (2NB) solution in a quartz cell identical to that used to illuminate the phenol solution.
Kinetic Analysis

The full description of the kinetic analysis is in Smith et al.'® and only an abbreviated version is given here.
The measured pseudo-first-order rate constant for phenol loss (k "Ligny) Was determined as the negative of the
slope from a linear fitting of In([ArOHJ/[ArOH]o) versus illumination time, where [ArOH] is the
concentration of phenol (at time zero or time f). Values of & Ligne were normalized to sunlight conditions at
midday on the winter solstice at Davis (solar zenith = 62°; jong.win = 0.0070 s1)** and corrected for internal

light screening:

!
k' Light

k' aron = [ ] X J2NB,win (1)

S/l X jZNB,exp

where k’aron is the normalized first-order rate constant, Sy is the internal light screening factor, and jong exp
is the measured rate constant of 2NB loss. Protonated *DMB* (HT) has a pK, of 3.3 and a higher reactivity
than its neutral form (T)." Therefore, we performed kinetic experiments at pH 2 (where 95% of *DMB¥* is
in the protonated form and the apparent first-order rate constant for phenol loss (k’aron) is essentially & 'ur)

and pH 5 (where the neutral form represents 98% of *DMB* and karon is equal to & '1).

As described in Smith ez al.,' the rate constant of phenol loss is a function of the triplet source and sinks:

(2)

k' gron =
Arott ( ko2+3pmB+[02] + k'3pmBs n Karor+3pms- + ko [ArOH])

Jrv,abs®Pisc[DMB] X Karon+spmps — Jnv,absPiscIDMB] X karon+3pmp«

Here, kox+spmp+ is the bimolecular rate constant for reaction of *DMB* with dissolved Oz, & spmp+ is the
first-order rate constant for relaxation of *DMB* to the ground state, jn.abs is the rate constant for light
absorption by DMB under Davis winter solstice conditions, ®isc is the intersystem crossing quantum yield,

[DMB] is the concentration of DMB, kason+3pms* 18 the second-order rate constant for ArOH reacting with
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SDMB¥*, and kq is the second-order rate constant for quenching of *DMB* by ArOH without loss of ArOH.

Equation 2 can be simplified and inverted to:

o = a+b[Ar0H] (3)
ArOH

To determine karou+3pms+, we fitted our data of & 'aron versus [ArOH] to this equation to obtain values of a
and b, and then used measured or estimated values for the other parameters in Eq. 2 (see Table S2) to

calculate karon+3pmp*.

To test if phenols undergo significant direct photodegradation, solutions containing 5 — 100 uM of one
phenol were illuminated in the absence of DMB. For the three phenols with direct photodegradation (FA,
SyrAcid, SA), we corrected their first-order rate constants with *DMB* by determining the rate constants

for photodecay and subtracting these contributions from the triplet results (Section S1).

SOA Mass Yields (Ysoa)

aqSOA mass yields were determined by illuminating a solution containing 100 xM phenol and 10 4M DMB
at pH 5 until approximately 88% of the phenol had reacted (i.e., until three half-lives was reached). For
phenols with direct photodegradation, we instead used 50 uM phenol and 10 xM DMB. Aliquots were taken
at time zero and at one, two, and three phenol half-lives (i.e. ti2, 2ti2, and 3t;2) and were analyzed by HPLC
and High Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS).!73%% Prior to AMS
analysis, samples were spiked with known amounts of ammonium sulfate as an internal standard and were
atomized using a constant output atomizer (TSI, Model 3076) with argon as the carrier gas. The resulting
aerosol was then dried in a diffusion drier before being sampled in the AMS. The evaporation of semi-
volatile compounds during the aerosolization and drying process will not introduce significant biases in
aqSOA mass yield analysis based on previous studies.'”** Mass spectra up to m/z 400 were acquired. Each
sample was run twice on AMS and data were analyzed using the standard analysis software (SQUIRREL

v1.62F and PIKA v1.22F).'”° The SOA mass concentration was calculated from the measured organic
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mass after subtracting the contribution from the unevaporated phenol precursor. The agSOA mass yield in

each sample was calculated by:

SOA mass formed
mass of phenol reacted

4)

S0A =

More details are provided in the Supporting Information Section S2.

Oxidation Potentials

We determined oxidation potentials for the loss of one electron for the six phenols studied here (Figure 1)
as well as for PhOH, guaiacol, syringol, catechol, hydroquinone, and resorcinol. Values were both measured
by cyclic voltammetry (CV) and computed using Gaussian; details are in Supporting Information Section

S3.

RESULTS AND DISCUSSION

Oxidation Kinetics of Phenols by the Triplet Excited State of DMB

To determine the second-order rate constant for a phenol with SDMB*, we measure the first-order phenol
decay rate constant (k’aron) as a function of initial phenol concentration at pH 2 and 5. In illuminated
samples, all phenols follow pseudo-first-order decay (e.g., Figure S2) and the loss of DMB is insignificant
(less than 5%). In dark controls there is no significant loss of phenol or DMB. GA, TYR, and VAL show
negligible direct photodegradation over our illumination periods, while direct photodegradation of FA, SA,
and SyrAcid contributes 3% — 34% of the phenol loss measured in the presence of DMB; we correct for
this loss in our calculations of the triplet rate constants (Section S1). In addition, trans-FA undergoes
photoisomerization to form cis-FA, reaching a photostationary state of the two isomers within 10 min of

illumination (see Section S4 of the Supporting Information). As shown in Figure S2, GA decay at 5 °C is
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not statistically different from that at 20 °C, indicating no significant temperature dependence of the triplet-

phenol reactions, consistent with past work."”

The apparent first-order decay rate constant of phenols with *DMB* (k’a:on), which is the product of the
second-order rate constant for phenol with *DMB* (karon+3pms+) and [’DMB*], decreases with increasing
initial phenol concentration (Figure S5). This is because a higher phenol concentration increases the sink
for *DMB*, reducing the triplet steady-state concentration. Thus 1/k’a.on increases with increasing phenol
concentration. Equation 3 is used to fit these data (Figure S5) to obtain the regression parameters (Table

S3), and then karon+3pms* 1s derived from Equation 2 with parameters shown in Table S2.

Measured second-order rate constants for reactions of phenols with *DMB* are shown in Figure 2 and Table
S4. The rate constants are all rapid, especially at pH 2 where values of karon+nr are in the range of (2.6 —
4.6) x 10° M s!. At pH 5, corresponding values of karon+r are 1.6 to 5.4 times lower and more variable
among phenols, with a range of (0.29 —2.7) x10° M s”!, showing that the protonated form of °DMB* (pK,
3.3) is more reactive than its neutral form.!*?° TYR (a derivative of PhOH) has the slowest rate constant
with °DMB¥*, while SA (a derivative of syringol, i.e., 2,6-dimethoxyphenol) has the highest rate constant
among our six phenols. These results are consistent with previous findings that methoxy substitution

enhances rate constants by donating electron density to the aromatic ring, activating the phenol.!*43

Phenolic hydroxyl groups typically have pK, values around 10.* Therefore, for the phenols we studied
(Figure 1), there is no significant deprotonation of the phenolic hydrogen and the compounds are in the
neutral form at both pH 2 and pH 5. However, FA and SyrAcid also have carboxylic acid groups, which
have pK, values of 4.6 and 4.2, respectively.*’ At pH 2, the mole fractions for the neutral forms of FA (HFA)
and SyrAcid (SyrCOOH) are greater than 99%. However, at pH 5, FA and SyrAcid will mostly dissociate
so that the neutral forms are minor and more than 70% of each species is present as the conjugate base (FA™
or SyrCOQ"). Therefore, the apparent first-order reaction rate constants of FA and SyrAcid with *DMB* at
pH 5 represent the reactivity of a mixture of the neutral and ion (carboxylate) forms of the phenols. Through

these first-order rate constants, we calculate the second-order rate constants for the neutral and ion forms
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(Section S5). At pH 5, the rate constants of the FA™ isomers are statistically indistinguishable from zero
(0.31 (£ 0.36) x 10° M"!s™! for trans-FA and 0.29 (£ 0.36) x 10° M's™! for cis-FA), while the rate constant
for HFA is rapid, 2.1 (+ 0.54) x 10° M's”! for both isomers. For syringic acid the reactivities of the neutral
and carboxylate forms at pH 5 are statistically indistinguishable: 2.2 (+ 0.64) x 10° M!'s! for SyrCOO™

and 1.8 (£ 0.44) x 10° M's”! for SyrCOOH.

We also use the fitted regression parameter ‘6’ in Equation 3 to determine the fraction of phenol interacting
with *DMB* that leads to reaction (i.e., oxidation of phenol to form products) rather than quenching *DMB*

without phenol loss:

karon+3pme« 1
freaction - (6)

karon+3pmes + Kq b X jhy pupPrsc[DMB]

Values of kq are calculated from parameters ‘@’ and ‘b’ and are shown in Table S4. For most of our six
phenols, kg has the same order of magnitude as kaon+spms+, Which is consistent with past work on

1648 The range oOf freaction values for our phenols is

methylphenols and methoxyphenols with other triplets.
0.20 — 0.88 at pH 2 and 0.09 — 0.98 at pH 5 (Table S4). For all of the phenols except for SA, freaction at pH
2 is higher than that at pH 5, by an average factor of 2.9. For TYR at pH 5, which has a slow rate constant
of oxidation by SDMB#*, the reaction fraction is only 0.09, i.e., 91% of the TYR - *DMB* interaction leads
to *DMB* quenching but not TYR loss. This result is similar to other research, which observed that PhOH
(CsHsOH) at pH 8 has an oxidation rate about ten times lower than the quenching rate with triplet.*® There
are at least two mechanisms by which the *DMB*-phenol interaction could lead to no phenol loss. One
possibility is that the triplet oxidizes the phenol to make a phenoxyl radical, but then this radical is reduced
(e.g., by superoxide or hydroperoxyl radical) to regenerate the parent phenol, resulting in no apparent
reaction.”®* In the case of FA, where freaction is low (< 0.20) we suspect that another mechanism is important:
energy transfer from *DMB* resulting in reversible isomerization of FA. This is what occurs between
triplets and sorbic acid,® with the resulting isomerization used as a probe to quantify triplet

concentrations.> %!



211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

aqSOA Mass Yields

Aqueous triplet reactions of simple phenols (e.g., PhOH, guaiacol, and syringol) efficiently form low-
volatility products, with significant aqgSOA yields.!®'*3° Here we investigate whether triplet reactions with
highly-substituted phenols (Figure 1) also produce significant amounts of agSOA, by illuminating solutions

containing a phenol and DMB and measuring the agSOA mass with AMS.

Figure S6 shows the SOA mass yields at one, two, and three half-lives for each phenol, i.e., after 50%, 75%,
and 88% of the initial phenol has reacted. For a given compound, the yields are typically very similar at all
three time points and between duplicates, so for each phenol we calculated the average mass yield from all
six data points, except for FA, where an outlier was removed. As shown in Figure 3, agSOA mass yields
are generally high, in the range of 59% — 99%, and with an overall average (£ 1 ¢) of 83 (£ 14)%. This
result is comparable to the results in Smith et al., where agSOA mass yields from PhOH, guaiacol and
syringol reacting with *DMB* are near 100%.'° These aqueous yields are significantly higher than Ysoa
values from gaseous phenol reactions with *OH, which are in the range of 10 — 50%.°%> An early step in
the aqueous triplet oxidation of a phenol forms phenoxyl radicals, which couple to produce low volatility

oligomers,%*43 in contrast to gas-phase reactions with *OH, which favor fragmentation of aromatic rings

to form more volatile products.*3

Effect of Solutes

Unlike relatively dilute cloud or fog drops, particle water typically contains very high concentrations of
inorganic and organic solutes, with ionic strengths typically of several molar.3®3*3° The high ionic strength
in ALW might affect triplet kinetics, based on past work showing that seawater concentrations of halides
inhibit electron transfer of triplet excited states of natural organic matter.’®3” However, the effect of ALW-
relevant solutes on triplet kinetics has been largely overlooked. Ammonium nitrate, ammonium sulfate, and

sodium chloride are common salts in atmospheric aerosols, as are cellulose-derived sugars from biomass
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burning such as levoglucosan and galactose (a hydrolyzed isomer of levoglucosan).’® Also, transition metal
ions, Fe(Ill) and Cu(Il), can be important drivers of atmospheric aqueous chemistry through redox
cycling.®® Dissolved Fe concentrations vary from 10° to 10* uM in cloud/fog water, while copper
concentrations are generally 10 times lower.®® Their concentrations are enhanced in aerosol water but little
is known of their effects on triplet kinetics. To study the impacts of these solutes and metals on triplet
kinetics, we illuminated solutions containing 10 4uM GA (the model phenol), 10 uM DMB, and varying
concentrations of one solute or metal, and determined the pseudo-first-order rate constant of GA decay
(k’ca). The ratio of the GA decay rate constant with solute addition to the rate constant without solute (i.e.,

the ratio & ’ca solute’k ‘Ga.0) Was then calculated.

As shown in Figure 4, 0.5 M ammonium nitrate increases the rate constant for GA loss significantly, by a
factor of over 20 compared with no NH4sNO; (after correction for light screening by ammonium nitrate).
The DMB loss rate also increases with higher concentrations of NH4sNOs (Figure S7). These impacts are
because NO;~ photolysis forms *OH,%!%> which reacts with GA and DMB. To determine if ionic strength
makes any contribution to the enhanced decay rate constant in the presence of salts, we next used

ammonium sulfate and sodium chloride, which don’t undergo photolysis to form reactive species.

As shown in Figure 4, a high concentration of ammonium sulfate or sodium chloride has only a small, and
statistically insignificant, impact on triplet kinetics. There is a tendency that 2 M of these salts increases the
rate constant for GA loss, which might be due to the high salt concentration decreasing the solubility of
dissolved oxygen.® Since oxygen is the dominant scavenger for DMB* in these solutions, decreasing the
dissolved O, concentration will increase the steady-state concentration of *DMB*, resulting in a higher GA
decay rate. For example, 2 M NaCl decreases O solubility by around 40%,% which is roughly consistent
with the increased & ’ga at pH 2. Zhou ef al. found that acetosyringone direct photodegradation increased by
a factor of roughly six in the presence of 2 M NaClO4.> If GA direct photodegradation was enhanced by a
similar factor in our (NH4)>SO4 and NaCl solutions, it would still be a minor sink, contributing less than 5%

of total GA decay in the presence of °DMB*, indicating that GA direct photodegradation does not affect
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our results significantly. Addition of 0.9 M galactose also causes no significant change to the rate constant
for GA decay. Figure S8 shows the dependence of £’ca on the concentration of galactose. The consistency
of these rate constants indicates that galactose reacts, at most, only very slowly with *DMB*; otherwise,
high concentrations of galactose would suppress the DMB* concentration, leading to a slower GA decay.
From our kinetic data in Figure 4 we can estimate an upper-bound for the rate constant of galactose with
SDMB*, by assuming that we cannot discern a 2 decrease in the average k' at the highest galactose
concentration (0.9 M). Applying this assumption to our data gives a value for kgaiactose+3pmp* 0f < 1 10> M-
'shat pH 2 and 5 and suggests that cellulose-derived sugars are insignificant sinks for triplets in the ALW

of biomass-burning particles.

Adding Fe(III) increases the overall decay rate of GA because photolysis of iron complexes Fe(OH)** and
FeCl** forms *OH and CI*, which react with GA.®*%7 Figure S9 shows GA decay in the presence of Fe(III)
during illumination and the contribution of Fe chemistry. After subtracting the contribution of photolysis
of Fe(I1I), the GA decay rate by *DMB* is not statistically different in the presence of Fe(III) (Figure 4). In
contrast, Cu(Il) strongly inhibits the decay of GA (Figure 4). Pan et al. observed the same inhibition by

68,69

Cu(Il) on the decay of phenolic compounds by triplets.°®* They proposed that Cu(Il) is photochemically
reduced to Cu(I),”® which reacts with phenoxyl radicals to regenerate the parent phenol, slowing phenol
decay.®® As shown in Figure 4, inhibition of GA loss by Cu(Il) is more significant at pH 5 than at pH 2,
likely because of the acid-base speciation of HO»*® and its conjugate base *O,". HO,* has a pKa of 4.8,”! so
at pH 2 HO>® is the dominant form, but at pH 5 *O, dominates. Both of these O(-1) species reduce Cu(Il)

to Cu(I), but the reaction with *O,~ is around 80 times faster,’? so we expect a higher Cu(I) concentration at

pH 5 compared to pH 2, leading to stronger inhibition of phenol decay.

Quantitative Structure-Activity Relationships
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Since biomass burning emits over 50 phenolic compounds,’!%"3

we would like to develop a quantitative
structure-activity relationship (QSAR) to predict rate constants for phenols reacting with triplets. Following
promising research on QSARs between reactant oxidation potentials (Eox) and their rate constants with

triplets,’+ 7

we pursued a similar approach for phenols with the triplet state of DMB. While there are some
measurements of phenol oxidation potentials,””~” there are no values for the six phenols we studied here
(Figure 1). Therefore we both measured and computed Eox values for our six phenols as well as for the six

phenols whose rate constants with ‘DMB* were measured by Smith et al.'"

Oxidation potentials of phenols determined in this work are shown in Table S5. Eox values measured by
cyclic voltammetry at pH 5 are lower than that at pH 2, as expected,” while computed Eox values are higher
than measured values, consistent with the finding of other groups.’®* The correlation between our measured
and computed Eox values is modest (#* = 0.34; Figure S10), but our measured values are well correlated

with values from the literature (2 = 0.99; Figure S10).

As seen in Figure 5, oxidation potentials correlate well with the log of the second-order rate constants with
the DMB triplet: as the oxidation potential increases (i.e., the phenol is more difficult to oxidize), the rate
constant generally decreases. Based on R? values, modeled oxidation potentials perform better than
measured values in the QSAR. For the QSAR based on measured Eox values at pH 2, most of the phenols
are close to the regression line (Figure 5B), but there are two notable outliners, hydroquinone and catechol.
The data in the corresponding QSAR at pH 5 are much more scattered. While all of our QSARs are
approximately linear in this log-linear space, at lower Eox values karon+3pms+ will plateau as it approaches

the diffusion-controlled limit.*

ATMOSPHERIC IMPLICATIONS

Our research group recently showed that concentrations of triplets and singlet molecular oxygen increase

by orders of magnitude moving from cloud/fog drops to the more concentrated conditions in aerosol liquid
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water, while aqueous hydroxyl radical concentrations decrease.”® To understand how these changing
condensed-phase oxidant conditions alter the formation of SOA from biomass-burning phenols, here we
estimate initial rates of SOA formation from three model phenols - syringol (SYR), guaiacyl acetone (GA)
and syringyl acetone (SA) - across a range of liquid water contents. In our calculations we assume Henry’s

law partitioning of the phenols, with Ky values at 278 K of 2.5 x 10* M atm™ (SYR), 9.1 x 10° M atm’!

(GA), and 6.1 x 108 M atm™ (SA)."*!> We consider reactions with gas-phase *OH (at a constant 1 x 10°
molecules cm™) and aqueous-phase *C*, '0,*, and *OH, using oxidant concentrations as a function of

liquid water content from Figure 5 of Kaur et al.?® For oxidizing triplet concentrations we use the geometric
mean of the two estimates in Kaur et a/. Rate constants and SOA mass yields applied in the SOA formation
rate calculation are listed in Table S8. We assume an initial particulate matter concentration of 10 ug m-
air and that each phenol has an initial total (gas + aqueous) concentration of 5 ug m-air. Details of the

calculations are in SI Section S6.

The top row of Figure 6 shows initial SOA formation rates from SYR, GA and SA reacting with each
oxidant as a function of LWC from cloud/fog condition (0.33 g m™) to aerosol liquid water (10 ug m?),
while the bottom row shows the contribution of each oxidant to agSOA formation. We start by considering
syringol, which has the lowest Henry’s law constant of the three phenols here. Under the cloud/fog

condition, only about 20% of SYR is present in the aqueous phase (Figure 6A), but the SOA formation rate
from aqueous reactions is comparable to that from the gas-phase reaction, and *OH is the dominant oxidant
in both phases (Figure 6D). When moving to the drier ALW conditions, the fraction of SYR in the aqueous
phase decreases rapidly, causing the aqueous *OH-mediated agSOA formation rate to drop quickly.
Formation of agSOA by *C* and 'O,* are initially less sensitive to the decrease in LWC — a result of
increasing oxidant concentrations — but they cannot compete with gas-phase *OH since so little SYR is in

the aqueous phase.
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The picture is quite different for GA, which has a Henry’s law constant that is nearly 400 times higher than
SYR. Most GA is in the aqueous phase under cloud/fog conditions, while a negligible amount is aqueous
under ALW conditions (Figure 6B). Initially, the decrease in LWC from cloud/fog conditions increases the
agSOA formation rate - even though the aqueous fraction of GA is decreasing - because of the increase in

3C* and '0»* concentrations. But the aqueous formation of SOA peaks at an LWC of approximately 1 mg
m >, and under particle water conditions (100 g m™ and less) gas-phase *OH becomes the major source

of SOA from GA.

The final phenol we consider is syringyl acetone, whose Henry’s law constant is roughly 70 times higher
than that of GA. Because of this, SA is essentially completely partitioned to the aqueous phase under
cloud/fog conditions and even significantly partitioned to the aqueous phase (~ 10%) at an ALW content
of 10 ug m~ (Figure 6C). Coupled with the high *C* and '0,* concentrations under ALW conditions, the
result is that aqueous reactions dominate SOA formation throughout the entire range of liquid water
contents (Figure 6F). Furthermore, the increase in aqueous oxidant concentrations with decreasing LWC
causes the agSOA formation rate from SA to increase by approximately a factor of 30 as liquid water

content drops by a factor of roughly 3000 from cloud/fog conditions to 100 ug m > (Figure 6C). While the
rate of aqgSOA formation then falls as LWC continues to drop, the rate at an ALW of 10 ug m™ s still

around 10 times higher than under cloud conditions.

For all three phenols, the contributions of the aqueous oxidants shift as liquid water content decreases from
cloud/fog to ALW conditions (Figure 6, bottom row). In the dilute aqueous phase for all three phenols,
aqueous *OH accounts for roughly 90% of agSOA formation, *C* contributes roughly 10%, and 'O,* is
negligible. Moving toward more concentrated ALW conditions, the aqueous *OH concentration decreases
by a factor of around 6, while 'O>* and *C* concentrations initially increase nearly proportionally with
particle mass/water ratio and then plateau.?® Thus the *OH contribution to agSOA formation rate decreases
as LWC drops, while '0,* and *C* become more significant, dominating phenolic agSOA formation under

ALW conditions. As described above, aqueous 'O,* and *C* compete with the rising influence of gas-phase
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*OH as LWC decreases, with the relative importance of aqueous and gaseous reactions depending on the
Henry’s law constant of the phenol. Our simple calculations suggest that for phenols with low to moderate
Ky values, gas-phase oxidation dominates across all LWC values at a fairly constant rate. In contrast, for
phenols with high Ky (above approximately 10’ M atm™"), aqueous-phase reactions generally dominate SOA
formation and the rate is sensitive to LWC. Overall, our calculations indicate that reactions of phenols with
high Ky values can be important pathways of SOA formation in aerosol liquid water, with this chemistry

largely driven by *C* and 'O,*.
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365  Figure 1. Chemical structures of phenols used in this study. The structure of the triplet precursor DMB is
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yellow bars represent kinetics for the neutral form while the green bars are for the carboxylate form. Error

bars represent + 1 standard error propagated from linear regression. Data are listed in Table S4.
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402  Figure 6. The top row (panels A-C) shows initial SOA formation rates from gas and aqueous reactions of
403 syringol (K = 2.5 x10* M atm™! at 278 K), guaiacyl acetone (Ki = 9.1 x10° M atm™), and syringyl

404  acetone (Ky = 6.1 x10% M atm™) as a function of liquid water content (top axis; assuming a PM

405  concentration of 10 ug m ) and particle mass/water mass ratio (bottom axis). The dotted line is the rate of
406  SOA formation from gas-phase *OH with each phenol, while solid lines represent agSOA formation rates
407 for a given phenol with 3C*, '0,*, and *OH; see SI Section S6 for calculations. Aqueous oxidant

408  concentrations vary with LWC: [*OH] = (0.8 — 5) x 10" M'!s!, [3C*] = (0.008 — 2) x 102 M5!, [10,*]
409  =(0.0007 — 1) x 10" M!s"!, The blue dashed line is the fraction of phenol in the aqueous phase, F(aq).
410  The bottom row (panels D-F) shows the corresponding contribution of each oxidant to SOA formation

411  from that phenol.
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Supporting Information

Direct photodegradation of phenols; methods for agSOA mass yields determination; methods for phenol
oxidation potential measurements and calculations; additional kinetic figures of phenol degradation by
SDMB*; photoisomerization of ferulic acid; tabulated 2™-order rate constants of phenols with *DMB*;
determination of karon+3pma+ for the neutral and ion forms of FA and SyrAcid; time series of SOA mass
yields; additional figures about solute effects; tabulated values of phenol oxidation potentials; calculation
of SOA formation rates from syringol, GA, and SA; and determination of *DMB* intersystem crossing

quantum yield. This information is available free of charge via the Internet at http://pubs.acs.org.
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Table S1: HPLC methods used to quantify ArOH concentrations. All methods had a flow rate of 0.6 mL

min™'.

Compound Eluent * Detection
(Vol:Vol) wavelength
(nm)
TYR 20%:80% ACN °: H,O 280
VAL 20%:80% ACN: H.O 280
GA 20%:80% ACN: H>O 280

FA 20%:80% ACN: 2% acetic acid in HO 320
SyrAcid  20%:80% ACN: 2% acetic acid in H,O 280
SA 15%:85% ACN: H,O 280

* HPLC instrumentation: Shimadzu LC-10AT pump, ThermoScientific BetaBasic-18 Cis
column (250 x 3mm, 5 um bead), and Shimadzu-10AT UV-Vis detector

5 ACN = acetonitrile

Table S2: Measured or estimated values of parameters in Equation 2. Uncertainties represent & 1 standard

crror.

Parameters Values Reference

This work (Section S7)

Disc 0.095 (£ 0.017) _
Smith et al. (2015)"

Rate of >DMB* formation ?

 49(£0.98) Smith et al. (2015)!
(jiv.oMB@isc[DMB], uM min™")
koz+spms (M s7) 2.8 (£0.4) x 10° Kaur ef al. (2018)*
[02] (uM) ® 284 Rounds et al. (2006)*

4 Rate of SDMB* formation in a 10 xM DMB solution illuminated with the equivalent of
midday, winter solstice sunlight at Davis (i.e. joxg = 0.007 s'). The rate was
calculated with the new value of ®isc.

b Value at 298 K
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Section S1: Direct photodegradation of phenols

Some phenols with carbonyl or other chromophoric substituents absorb sunlight and undergo rapid direct
photodecay.*> To test if this occurs for the phenols employed in this study over the time of our
experiments with *DMB*, we illuminated a solution containing 5-100 uM of one phenol at pH 2 and 5

without addition of DMB, and measured the direct photodegradation rate constant (jaron).

We found no significant direct photodegradation of TYR, VAL, and GA, consistent with their very low
rates of sunlight absorption. However, FA, SA and SyrAcid do absorb sunlight significantly and undergo
photodegradation; as described in the main text, we correct our triplet results for the direct photodecay of
these three phenols. Figure S1 shows their direct photodegradation rate constants as a function of initial
phenol concentrations. For FA, the rate constant of photodegradation doesn’t change with FA
concentration (after correction for internal light screening) and has an average value of 2.4 (£ 0.6) x 10
min” at pH 2 and 4.3 (+ 1.1) x 10 min™' at pH 5. Based on these values, direct photodegradation of FA is

minor in our *DMB* experiments, accounting for 6% or less of total FA decay in the presence of DMB.

For SyrAcid, photodegradation is initially very slow but then accelerates with illumination time, not
following first-order decay. These kinetics suggest SyrAcid photodecay forms compounds that initiate the
decay of SyrAcid via pathways other than direct photodecay (e.g. by producing an efficient
photosensitizer). The jsyracia values shown here are for the initial stage of the photodegradation. Rate
constants are independent of concentration, with average j values of 0.36 (£ 0.19) x 10 min™! at pH 2 and
2.7 (£ 0.7) x 10 min! at pH 5. Over the illumination duration of our >DMB* experiments, SyrAcid
photodegradation is slow at pH 2, contributing less than 5% of total SyrAcid decay in the illuminated
solution containing DMB. At pH 5, direct photodecay of SyrAcid accounts for about 15 to 30 % of decay
in the triplet experiments. In the case of SA, the photolysis rate constant generally increases with SA
concentration (Figure S1). At pH 2, jsa ranges from 2.0 x10 min™ to 12.5 x10” min™! and from 0.5 x10
min to 3.9 X107 min at pH 5. Direct photodecay of SA contributes 3%~34% of total SA loss measured
in the presence of *DMB*,
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Figure S1: Summary of the normalized first-order direct photodegradation rate constants for trans-FA
(green triangle), SA (blue circle), and SyrAcid (orange square) at different initial phenol concentrations at
pH 2 (Panel A) and pH 5 (Panel B). cis-FA has the same degradation rate constant as trans-FA. Error bars
represent + 1 standard error propagated from standard errors in linear fitting to obtain the slope and jang.

Dotted line represents fitted regression to the jsa data at pH 5.
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Section S2: Phenolic aqSOA mass yields determination

Ammonium sulfate (AS) is used as an internal standard for agSOA quantification,? under the
assumption that sulfate is quantitatively extracted and measured by the AMS (a reasonable assumption
given that the ammonium sulfate used is water soluble and non-refractory).'” Thus, knowing the solution
concentration of sulfate, we can use the AMS-measured concentration of ammonium sulfate in aerosols
(ASawms; ug m?) to convert the AMS-measured agSOA mass concentration (Orgams; ug m™) to solution
concentration (mg L). The aqSOA yield is then given by:

AS AS
[orgl, —[0rgly [0rgams]e X —[A[SAN]I;]t — [0rgamslo % —[A[SAI\/};)]O

[phenol], — [phenol], [phenol]; — [phenol],

SOA yield = S

where [Org], [AS], and [phenol] refer to the solution concentrations (mg L) of agSOA, sulfate, and the
phenol under consideration, respectively. The subscripts t and 0 denote the irradiation time. As each
sample was spiked to the same concentration of AS, [AS]; = [AS]o. The phenol concentrations were

determined by HPLC.

A collection efficiency (CE) of 1 was used in this study for AMS data processing. By using sulfate as an
internal standard, the reported liquid agSOA mass concentration is independent of CE and no correction is
required. The reasons are 1) sulfate is expected to be quantitatively measured by the AMS! and 2) the
aqSOA and sulfate are expected to be internally mixed in the aerosol generated from the reaction

solutions.

S6



120

121
122
123
124
125
126
127
128
129
130

131
132
133
134

135
136

137

138
139

140

Section S3: Phenol oxidation potentials determination

Cyclic voltammetry (CV) was performed using a three-clectrode BASi EC Epsilon potentiostat consisting
of a 3-mm glassy carbon working electrode, an Ag/AgCl 3 M KCI reference electrode, and a 0.5 mm
diameter platinum wire (BASi) counter electrode. Before each set of measurements, the working electrode
was polished with 0.05 ym alumina polish. Cyclic voltammograms were recorded between -500 to 1200mV,
with scan speeds of 50, 100, and 200 mV/s. Measurements were performed in deoxygenated pH 2 (0.2 M
NaCl+ 0.01 M HCI) and pH 5 (0.1 M potassium hydrogen phthalate + 0.04 M NaOH) buffer solutions with
0.25 mM of phenol. Since all phenols presented irreversible voltammograms, we report values of anodic
peak potentials (E,) obtained directly from the voltammograms from the first scan (scan rate of 50 mV/s).!!
Potentials were corrected from the Ag/AgCl reference electrode to standard hydrogen electrode (SHE) by
adding 209 mV.!?

Phenol oxidation potentials (for ArOH — ArOH*" + ¢") were also calculated using Gaussian 09 software
with procedures described previously.!*!* Geometry optimization of phenols and phenoxyl radical cations
were performed using uB3LYP functionals and 6-31+G(d,p) basis set.'*!® Solvation energies were

approximated with solvent mode density (SMD) continuum model for water."”

The free energy of the reaction (AG°.x) was calculated by the difference in Gibbs free energy of the reactant

and products, and was converted to one-electron oxidation potential (Eox) using:

—AG°px

Eox = — ( + SHE) (52)

where 7 is the number of electrons (1 here), F is Faraday’s constant (96485.3365 C mol ™), and SHE is the
potential of the standard hydrogen electrode (4.28 V).2°
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Figure S2: Representative plots of the aqueous oxidation of six phenols by the triplet excited state of
DMB at pH 2 (Panel A) and pH 5 (Panel B) at 20 °C. Results shown here are for solutions containing 10
4M ArOH and 10 M DMB. Solid lines represent the illuminated samples; dashed lines represent dark
controls. The grey circles and corresponding line in the Panel B are data from the pH 5 oxidation of GA
by DMB* at 5 °C. These data are not statistically different from the 20 °C data (p < 0.05), indicating no
significant impact of temperature on triplet kinetics, as seen previously for phenol (CsHsOH) with triplet

DMB.
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Section S4: Photoisomerization of ferulic acid

Ferulic acid isolated from plants usually exists as the trans isomer,* but during illumination it undergoes
cis-trans isomerization to form a mixture of both isomers,”*** which can be separated by HPLC. The rate
of FA photoisomerization is more rapid than that of reaction with DMB*: under our illumination
conditions, 10 #M FA reaches an isomeric photostationary state within 3 min (Figure S3). In experiments
of FA reacting with DMB¥*, we removed aliquots for FA analysis at intervals greater than 10 min, thus
photoisomerization should be at steady state. In our triplet experiments with FA, we first prepared a pH-
adjusted solution containing frans-FA and illuminated it for 10 minutes to achieve photoisomerization
steady state. Next, we added DMB and illuminated to determine the decay rate constant of FA by *DMB*.
At a given pH value, trans-FA and cis-FA show essentially the same first-order decay rate, as shown in

Figure S4.

The cis/trans ratio in the photostationary state varies with pH. At pH 2, [cis]/[trans] is about 0.5, while at
pH 5, [cis]/[trans] is around 6, which is similar to results from Kahnt ef al..”> We found that the presence
of DMB did not affect the [cis]/[trans] ratio in illuminated solution at either pH. The rate constant for 10
UM trans-FA isomerization can be determined by illuminating ¢rans-FA solution, and then determining

how the trans-FA and cis-FA concentrations change with time. The rate constant of a reversible reaction

can be calculated using:*

[cis],
, |t *
. Jtrans—cis, _ Keq [ rans]t _ Ct
_(]trans—>cis + K )t =In ([CiS] ) = ln(F (S3)
eq b [trans] 0
eq

Where jirans—cis 1S the first-order rate constant of photoisomerization from trans-FA to cis-FA; Keq is the
equilibrium constant of photoisomerization, i.e., the [cis]/[trans] ratio at the photostationary state; ¢ is
illumination time; and [cis] and [¢trans] are concentrations of the two isomers at a given time. The first-
order rate constant of photoisomerization from cis-FA to trans-FA can be calculated using:*
Jeisstrans = ]tralzlﬂ ($4)

eq

[cis]e
Keq

Using the data in the Figure S3, we calculated C{ (i.e., — [trans];) at each time point and then

obtained jrgns—cis from the slope of a linear fitting between ln(c—i) and time. j values were normalized
0

to the sunlight condition of the midday on winter solstice at Davis (i.e. joxg = 0.007 s). At pH 2,
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Figure S3: Changes in the concentrations of trans-FA (blue circles), cis-FA (orange squares), and total

FA (trans-FA + cis-FA, green triangles) with illumination time during photoisomerization. The results

shown here are for pH-adjusted solutions containing 10 uM FA and no DMB.
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Table S3: Regression parameters derived from plots of k’aron™! versus ArOH initial concentration

pH 2 pH 5
y-intercept Slope * y-intercept * Slope *
(min) (min xM™) R (min) (min xM™") R?

TYR 62.48 (£ 2.56) 0.38 (= 0.05) 0.91 339.2 (£ 14.5) 2.25 (£ 0.28) 0.92

VAL 54.53 (£ 1.75) 0.33 (= 0.03) 0.93 86.16 (£ 3.96) 0.61 (£0.07) 0.91

GA 48.70 (£ 1.12) 0.24 (£ 0.02) 0.92 89.99 (+2.58) 0.33 (£ 0.05) 0.82

trans-FA  48.40 (+ 1.94) 1.03 (= 0.08) 0.95 195.9 (= 7.59) 1.35 (£ 0.30) 0.78

cis-FA 48.63(+ 2.14) 1.17 (= 0.09) 0.95 200.1 (= 11.7) 2.44 (£ 0.44) 0.83

SyrAcid  51.63 (+2.39) 0.23 (= 0.07) 0.71 75.89 (£ 5.08) 0.95 (£ 0.18) 0.85

SA 35.82 (£ 1.27) 0.36 (+ 0.05) 0.85 59.92 (£ 0.94) 0.21 (£ 0.04) 0.83
2Regression parameters were determined by fitting the data in Figure S5 using Equation 3
Table S4: Second-order rate constants of phenols with *DMB* at pH 2 and pH 5

pH 2 pH 5
karor+pmB® kq® karor+DMB kq
(10°M'sh (10°M'sh Jreaction® (10°M'sh 0P M'sh Jreaction

TYR 26(x0.66) 22(x1.8) 0.54(+0.13) 048 (+0.12) 4.8(=1.8) 0.09 (+0.02)
VAL 30(x0.75) 19(=1.8) 0.62(=0.14) 1.9 (£ 0.48) 3.7(x2.0) 0.34(=0.08)
GA 33(+0.83) 0.58(+1.6) 0.85(+0.19) 1.8 (£0.45) I.1(x1.1) 0.61(*0.16)
trans-FA 34085 1457 0.20(=0.04) 0.83(x0.21)¢ 4.6(x2.1) 0.16 (£0.05)
cis-FA 34(£0.84) 16(+6.4) 0.18(+0.04) 0.82(x0.21)9 89(x£3.6) 0.08(£0.02)
SyrAcid 3.2 0.80) 041 (1.7) 0.88(*=0.31) 21(*055¢ 7.8(x3.8) 0.22(£0.06)
SA 45 1.1) 34(*3.0) 0.57(0.14) 27(*0.68) 0.07(*1.2) 0.98(+0.26)

Rate constant for reaction, calculated using Equation 2 and y-intercept values in Table S3. Listed
uncertainties (in parentheses) are + 1 standard error propagated from the standard errors in regression
fittings, intersystem crossing quantum yield, and light absorption rate of DMB.

. . . k .
®Rate constant for non-reactive triplet quenching, calculated using k, = —AL2H32ME

freaction

- kATOH+3DMB*'

Uncertainties in parentheses are + 1 standard error propagated from standard errors of karon+3pms* and

ﬁeaction .

¢ Fraction of ArOH->DMB* interactions that result in chemical reaction (i.e., loss of ArOH), calculated
using Equation 7 and the value of the slope in Table S3. Errors represents 1 standard error, propagated
from the standard errors in regression fittings, intersystem crossing quantum yield, and light absorption

rate of DMB.

4 Apparent second-order rate constant at pH 5, i.e. the rate constant of the mixture of the ion (carboxylate)
and neutral forms of the phenol. The calculation details on the rate constants of neutral and ion forms
with DMB* at pH 5 are shown in Section S5. The resulting rate constants are: knra+3pmp = 2.2 (+
0.45) x 10° M !, kpa-tspmpr = 0.31 (£ 0.36) x 10° M! 57!, ksyrcoonspmp = 1.8 (£ 0.44) x 10° M 57!,
and ksyrcoon+3pmps = 2.2 (£ 0.64) % 10° M1 s
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Section S5: Determination of karon+3pms+ for the neutral and ion (carboxylate) forms of FA and SyrAcid at

pHS

FA and SyrAcid have carboxylic acid groups (with pK, values of 4.6 and 4.2, respectively)? that at pH 5
will partially deprotonate to form carboxylate ions. Therefore, the apparent reaction rate constants of FA
and SyrAcid with *DMB* at pH 5 represent the reactivity of a mixture of the neutral and carboxylate forms

of the phenols:

karow+r = @pncoon X Kpncoon+t + @prcoo- X kpncoo-+1 (S5)

where PhCOOH represents the neutral form, PhCOO™ is the carboxylate (i.e., ion) form, kpncoom+t and
kencoo-+t values are the second-order rate constants for each form with the neutral DMB triplet state (T),
and o represents the mole fraction of each phenol species. For our other phenols with the base structure of
guaiacol (2-methoxyphenol), the ratios of the second-order rate constants at pH 5 to those at pH 2, where
the DMB triplet is protonated, (i.e. karon+t/karon+ur) have an average (£ 1 o) value of 0.63 (+ 0.11).
Therefore, we assume that FA, which also has the base structure of guaiacol, has the same ratio for its
neutral form in order to estimate the value of kurast. We can then use this value, along with the mole
fractions, in Equation S5 to determine the rate constant for the carboxylate form of FA, kga-+1. For syringic
acid, which has a base structure of syringol (2,6-dimethoxyphenol), we use a similar assumption and the
average (£ 1 o) ratio of karon+1/karon+ur for phenols based on syringol of 0.57 (+ 0.07). Using this method,
we calculated rate constants for the neutral and ion forms of FA and SyrAcid with °DMB¥*; values are

shown in the footnote of Table S4.
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Figure S6: Time series of SOA mass yields during illumination, plotted at one, two, three half-lives of
each phenol. Error bars are standard deviations of Ysoa at each half-life from duplicate samples (except
for FA at 3t,2, where an outlier was removed and only one sample was available). In the calculation of

the mean Ysoa value for a given phenol shown in Figure 3, Ysoa values at one, two, and three half-lives

are used.
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Figure S7: The dependence of the first-order rate constant of DMB decay on the concentration of
ammonium nitrate at pH 5 and 2 after correcting for light screening due to nitrate. Since a zero value
cannot be plotted on the logarithmic x-axis, we plot results for no added solutes (i.e., 0 mM ammonium
nitrate) at a concentration of 0.01 mM. Error bars represent + 1 standard error in & ’pvp determined from

the linear regression fits. Data are not corrected for light screening by nitrate.
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Figure S8: Dependence of the first-order rate constant of GA decay on the concentration of ammonium
nitrate (orange circles), ammonium sulfate (blue squares), and galactose (green triangles) after correcting
for light screening by nitrate. Since a zero value cannot be plotted on the logarithmic x-axis, we plot
results for no added solutes at a solute concentration of 0.01 mM. Error bars represent = 1 standard error
in k’ca from linear regression fits. The light screening factors for solutions containing 0, 1, 10, 100, and
500 mM nitrate are 0.85 (due to DMB light absorption), 0.84, 0.79, 0.45, and 0.15, respectively. A

screening factor of 1 represents no screening, while smaller values indicate increasingly larger screenings.
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Figure S9. Decay of GA by *DMB* in the presence of Fe(IlI). The whole bars represent the total decay
rates of GA in illuminated solutions containing both 20 uM FeCl; and 10 4uM DMB. The yellow portion
of the pH 2 bar is the dark decay of GA by Fe(IIl) in a solution with no DMB; the dark loss of GA in the
presence of iron at pH 5 is negligible. The blue bars represent the decay rates of GA measured in
illuminated solution containing 20 uM FeCls; but no DMB. The green bars are the decay rates of GA by
SDMB* after subtraction of its decay by Fe(II) under illumination and in the dark. Error bars represent +
1 standard error in & 'ga from linear regression fits.
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Table S5: Oxidation potentials (Eox) computed by Gaussian 09 and measured using cyclic voltammetry

(CV). All data in Volts vs. SHE.

Cyclic voltammetry  Syuatoni et al.”” Pavitt et al.’’

Compounds  Gaussian 09
P pH2  pHS pH 5.6 pH 5.6
Phenol 1.65 1.28 1.08 0.874 0.997
Guaiacol 0.99 1.03 0.89 0.697 0.774
Syringol 1.16 0.88 0.77 0.620 0.635
Catechol 1.36 0.81 0.73 0.582
Resorcinol 1.47 1.17 1.04 0.945
Hydroquinone 1.17 0.73 0.63 0.509
TYR 1.35 1.17 1.01
VAL 1.16 1.01 0.83
GA 1.07 1.00 0.84
FA 1.26 1.02 0.78
SyrAcid 1.39 1.06 0.78
SA 0.99 0.86 0.72
.20

g O Suatoni et al. (1961) pid

> @ Pavitt et al. (2017) -7

> < Gaussian this work Pl

5 16 T e
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€ y =0.8874x + 0.202 s
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Figure S10: Comparison of our oxidation potentials measured using cyclic voltammetry with our

computed values obtained from Gaussian and measured values from the literature. Since the oxidation

potentials from Suatoni et al. and Pavitt et al. were measured at pH 5.6,'"*” our CV values measured at

pH 5 were used here for comparison. The solid green line represents the linear regression between our

values of Eox from CV and from Gaussian, with regression function next to it. The dashed line is the 1:1

line.
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Section S6: Calculation of SOA formation rates from syringol, guaiacyl acetone, and syringyl acetone

To examine how gas- and aqueous-phase formation of SOA from phenols depends on liquid water
content (LWC), we calculated SOA formation rates for syringol (SYR), guaiacyl acetone (GA) and
syringyl acetone (SA) in a simple steady-state box model. We varied the LWC from 0.3 g m™®
(representing a thick fog or cloud) to 1 ug m™ (representing a particle water condition) and assumed a
temperature of 278 K, Henry’s law partitioning for the phenols, a particulate matter concentration of 10
ug m, an initial concentration of an individual phenol of 5 ug m?, and an aqueous pH of 5. At each LWC
value we calculated the corresponding particle mass/water mass ratio and then used the corresponding
measured/estimated steady-state aqueous oxidant concentrations (*OH, *C*, '0,*) from Kaur et al.?; for
the triplet concentration at a given LWC we used the geometric mean value of the two estimates of Kaur
et al. In the gas phase we considered ozone (30 ppbv) and *OH (1 x 10° molecule cm™). Because rate
constants of 0zone with phenols are quite slow,”® O3 was a negligible sink and we do not show its results.
As shown in Table S6, bimolecular rate constants of phenols with each oxidant (kaom+ox) at pH 5, and the
corresponding SOA mass yields (Ysoa), were obtained from literature when available. When there were
no data available, we used data from phenols with a similar structure. Since no Ysoa data are available for
phenols reacting with '0,*q), we assume this value to be 1, consistent with the high yields from other
aqueous reactions (Table S6). For each oxidant we would expect higher SOA mass yields at 5 °C
compared to 20 °C, because there would be less evaporation of semi-volatile organics. However,
we cannot experimentally assess the temperature effect on agSOA mass yields, we use the value
of Ysoa at 20 °C in these calculations. We do not include the impact of copper on phenol oxidation

kinetics or agSOA formation since this effect is poorly understood and requires more study.

To calculate the initial SOA formation rate, first we calculated the concentrations of phenols in the gas
and aqueous phases as a function of liquid water content. The Henry’s law constants (Ky) of SYR (2.5 x
10* M/atm), GA (9.1 x 10° M/atm), and SA (6.1 x 10® M/atm) at 278 K were calculated from measured
Ku at 298 K and the enthalpy of dissolution (AH ;):*=!

My 1 1
R < Gogx 278K

) (56)

Kp 278k = Kp 208k X €xp(

Since there is no available AH,,; value for SA, we assume it has the same value as SYR. We calculate

F(aq), the fraction of each phenol present in the aqueous phase, using:*!

1
F(aq) = - (s7)

Lt S rxIwe <K,
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where LWC is in dimensionless units (L-aq / L-air), T'is the temperature (278 K) and R is the gas constant
(0.08206 L-air atm mol™' K™).

The concentration of the phenol in each phase was calculated with:
[ArOH]aq = [ArOH]¢o: X F(aq) (58)
[ArOH] gas = [ArOH]¢or X (1 — F (aq)) (89)
The initial rate of SOA formation from one phenol reacting with an oxidant was then calculated with:
Rsoacaq),ox = karon+ox X [ArOH]aq X [0x]aq X Ysoa(ag),0x (510)

The gas-phase SOA formation rate was calculated with an analogous form of this equation.

Table S6: Gas- and aqueous-phase reaction rate constants and SOA mass yields for SYR, GA, and SA

with the major oxidants

Compounds Syringol Syringyl acetone Guaiacyl acetone
Gas-phase rate constants, |-OH® 9.66E-11 9.66E-11" _ 7.5%E-1 e t
Kavort-oxe) (cm’” molec™ s™) | Ref. (Lauraguais ef al., 2012) ( °Z‘§r 2811151)1;ur ‘
Gaseous reaction SOA *OH(y,) 0.32 ‘ 0.32° 0.47°¢
mass yield, Ysoa Ref. (Yee et al., 2013)*
*OHqg) 2.0E+10 | 20E+10° | 1.6E+10 ¢
Ref. (Smith et al., 2015)!
Aqueous-phaserate |15 5 3.6E+07 3.6E+07 6.0E+06 ¢
constants,
karott-oxaq) (M s Ref. (Tratnyek and Hoigne, 1991)3°
3C¥ ! 3.5E+09 2.7E+09 1 8E-+09
Ref. (Smith ez al., 2015)! This work This work
*OHgg 1.14 1.14° 1.09°¢
Ref. Smith et al., 2014)*!
Ysoa (aq) Ref. - - -
3C¥ ! 0.83 0.99 0.85
Ref. (Smith et al., 2014)*! This work This work

2 For triplet excited states we use *DMB* as the model triplet.

®Since literature data is not available for SA, we used the values from syringol.

¢ Since literature data is not available for GA, we used values from guaiacol.

4No literature data is available for the SOA mass yield from phenols with !Ox*, so we assumed a value
of 1, consistent with the high yields for the other two aqueous oxidants.
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Section S7: Determination of intersystem crossing quantum yield

Smith et al.” determined the intersystem crossing (ISC) quantum yield for DMB (®isc), and explained the
method in their supplemental information. Because their quantum yield has a relatively large uncertainty
(with a relative standard deviation of 30%), which contributes to a large uncertainty in the derived
second-order rate constants, we used their method to make additional measurements of ®sc and reduce its
uncertainty. Briefly, we illuminated solutions containing 5 — 200 4M SYR and 10 uM DMB at pH 5in a
monochromatic illumination system using light of 313 nm to measure the SYR loss rate. Next, we did a
linear fitting of the inverse of the rate of SYR loss (Rsyr Lexp ') versus the inverse of the initial SYR
concentration to obtain the rate of SYR loss at infinite concentration (Rarom,L«), Which is the inverse of
the y-intercept from the linear fitting. This rate is equal to the rate of triplet excited state formation (Rsc+r)
times the fraction of triplet interacting with phenols that leads to the decay of phenols (freaction). We use
SYR as the model phenol because its value of freaciion 1S €ssentially 1. Therefore, Raron,.» essentially
equals the formation rate of the triplet excited state, allowing us to determine the ISC quantum yield
using:

RArOH,L,oo
2.303 X €313 pyp X | X I'313 X [DMB]

Pr5c = (511)
where €313 pyp is the molar absorptivity of DMB at 313 nm, [ is the cell pathlength, and I'33 is the
actinic flux at 313 nm. This actinic flux was determined from jons, the decay rate constant of the
actinometer 2-nitrobenzaldehyde (2-NB), which was measured on each experiment day. Results of our
two new sets of experiments for the determination of Rarom,r. are shown in Figure S11. With Equation
S11, we calculated ®isc values of 0.087 £ 0.007 and 0.092 + 0.011. As shown in Table S7, we combined
these data with results from Smith ef al. to determine an average (= 1o) value of ®isc of 0.095 + 0.017.

This new average is very similar to the previously used value (0.10 = 0.03) but has a smaller uncertainty.
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Figure S11: Experimental results of the decay of SYR reacting with *DMB* at 313 nm: the inverse of
SYR loss rate versus the inverse of SYR initial concentration for two sets of independent experiments.
The y-intercept is the inverse of the SYR loss rate at infinite SYR concentration. Error bars (which are
smaller than the symbols) represent & 1 standard error, propagated from standard errors in the linear

fittings used to obtain Rsyr L exp-
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350  Table S7: Summary of the quantum yield of *DMB* intersystem crossing

Drsc

Sonith o g1 12 00D
etal" 0,08 (+0.01)°

0.087 (£ 0.007) *
0.092 (£ 0.011) ®

This work

Mean (£c6)  0.095 (£0.017)°
351  *Standard error propagated from errors in Rsyr L, €313 pyp. and I'3q3

352  ®Standard deviation of ®isc determined as the average of all four experiments
353
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