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Abstract—Scientific workflows are a cornerstone of modern
scientific computing. They are used to describe complex computa-
tional applications that require efficient and robust management
of large volumes of data, which are typically stored/processed
on heterogeneous, distributed resources. The workflow research
and development community has employed a number of methods
for the quantitative evaluation of existing and novel workflow
algorithms and systems. In particular, a common approach is
to simulate workflow executions. In previous work, we have
presented a collection of tools that have been used for aiding
research and development activities in the Pegasus project, and
that have been adopted by others for conducting workflow
research. Despite their popularity, there are several shortcom-
ings that prevent easy adoption, maintenance, and consistency
with the evolving structures and computational requirements of
production workflows. In this work, we present WorkflowHub,
a community framework that provides a collection of tools
for analyzing workflow execution traces, producing realistic
synthetic workflow traces, and simulating workflow executions.
We demonstrate the realism of the generated synthetic traces
by comparing simulated executions of these traces with actual
workflow executions. We also contrast these results with those
obtained when using the previously available collection of tools.
We find that our framework not only can be used to generate
representative synthetic workflow traces (i.e., with workflow
structures and task characteristics distributions that resemble
those in traces obtained from real-world workflow executions),
but can also generate representative workflow traces at larger
scales than that of available workflow traces.

Index Terms—Scientific Workflows, Workflow Management
Systems, Simulation, Distributed Computing, Workflow Traces

I. INTRODUCTION

Scientific workflows are relied upon by thousands of re-
searchers [1] for managing data analyses, simulations, and
other computations in almost every scientific domain [2]. Sci-
entific workflows have underpinned some of the most signifi-
cant discoveries of the last decade [3], [4]. These discoveries
are in part a result of decades of workflow management system
(WMS) research, development, and community engagement
to support the sciences [5]. As workflows continue to be
adopted by scientific projects and user communities, they
are becoming more complex and require more sophisticated
workflow management capabilities. Workflows are being de-
signed that can analyze terabyte-scale datasets, be composed of
millions of individual tasks that execute for milliseconds up to
several hours, process data streams, and process static data in
object stores. Catering to these workflow features and demands

requires WMS research and development at several levels,
from algorithms and systems all the way to user interfaces.

A traditional approach for testing, evaluating, and evolving
WMS is to use full-fledged software stacks to execute appli-
cations on distributed platforms and testbeds. Although seem-
ingly natural, this approach has severe shortcomings including
lack of reproducible results, limited platform configurations,
and time and operational costs. An alternative that reduces
these shortcoming is to use simulation, i.e., implement and use
a software artifact that models the functional and performance
behaviors of software and hardware stacks of interest. Thus,
the scientific workflow community has leveraged simulation
for the development and evaluation of, for example, novel
algorithms for scheduling, resource provisioning, and energy-
efficiency, workflow data footprint constraints, exploration of
data placement strategies, among others [6], [7].

Studying the execution of workflows in simulation requires
sets of workflow applications to be used as benchmarks. This
is so that quantitative results are obtained for a range of repre-
sentative workflows. In [8], we have described a collection of
tools and data that together have enabled research and devel-
opment of the Pegasus [3] WMS. These community resources
have enabled over 30 research papers1 by providing synthetic
workflow traces for evaluation via simulation. Despite the
extensive usage of this pioneer effort, it lacks (i) a common
format for representing workflow execution traces in a way
that is agnostic to workflow systems; (ii) structured methods
for encoding the workflow design and structure; (iii) robust
techniques for generating synthetic workflows in which work-
flow characteristics conform to the original workflow features;
and (iv) a set of tools for analyzing workflow traces, which
would support the integration of traces from new application
domains.

In this paper, we present the WorkflowHub project [9], an
open source community framework that provides a collection
of structured methods and techniques, implemented as part
of usable tools, for analyzing workflow traces and produc-
ing synthetic, yet realistic, workflow traces. WorkflowHub
mitigates the shortcomings of our previous set of tools by
using a common JSON format for representing workflow
traces. Any workflow execution log can be captured into this
system-agnostic format. In addition, WorkflowHub provides an

1Based on records provided by Google Scholar.
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Fig. 1. The WorkflowHub conceptual architecture.

open source Python package to analyze traces and generate
representative synthetic traces in that same format. Work-
flow simulators that support this format can then take real-
world and synthetic workflow traces as input for driving the
simulation. Fig. 1 shows an overview of the WorkflowHub
conceptual architecture. Information in workflow execution
logs is extracted as workflow traces using the common JSON
format. Workflow “recipes” are obtained from the analysis
of such traces. More precisely, these recipes embody results
from statistical analysis and distribution fitting performed for
each workflow task type so as to characterize task runtime
and input/output data sizes. These recipes are then used for
informing a workflow generator, which produces synthetic
representative workflow traces. Finally, these traces can be
used by a workflow simulator for conducting experimental
workflow research and development. Specifically, this work
makes the following contributions:

1) A collection of workflow execution traces acquired from
actual executions of state-of-the-art compute- and data-
intensive workflows in a cloud environment;

2) A common format for representing both collected traces
and generated synthetic traces;

3) An open source Python package [10] that provides meth-
ods for analyzing traces, deriving recipes, and generating
representative synthetic traces;

4) A collection of open-source workflow management sys-
tems simulators and simulation frameworks that support
our common format;

5) An evaluation of the accuracy of WorkflowHub’s gener-
ated workflows at scale via a simulation case study, and
a comparison to our previous set of tools [8].

This paper is organized as follows. Section II discusses
related work. The WorkflowHub project and the associated
concepts and tools are explained in Section III. Section IV
assesses the accuracy of the proposed solution by perform-
ing a comparison study between traces obtained from ac-
tual workflow executions and synthetic traces generated with
WorkflowHub. We also compared results from WorkflowHub
to results obtained with our previous workflow generator.
Finally, Section V concludes with a summary of results and
perspectives on future work.

II. RELATED WORK

Workload archives are widely used for distributed comput-
ing research, to validate assumptions, to derive workload mod-

els, and to perform experiments by replaying workload execu-
tions, either in simulation or on real-world platforms. Available
repositories, such as the Parallel Workloads Archive [11],
the Grid Workloads Archive [12], and the Failure Trace
Archive [13], contain data acquired at the infrastructure level
at compute sites, or by monitoring or obtaining logs from
deployed compute services. The workloads in these archives
do include data generated by workflow executions. However,
the information captured is about individual job executions
and about resource utilization. As a result, there is at best little
information on the task dependency structure of workflows.

In the context of scientific workflows, the Common Work-
flow Language (CWL) [14] is an open standard for describing
workflows in a way that makes them portable and scalable
across a variety of software and hardware environments.
Our proposed common format (described below) is mostly
inspired by the CWL standard, though our format captures
performance metrics data (e.g., total amount of I/O bytes read
and written, power consumption, etc.) and compute resource
characteristics, which are key for generating realistic workflow
traces. The recently established Workflow Trace Archive [15]
is an open-access archive that provides a collection of execu-
tion traces from diverse computing infrastructures and tools
for parsing, validating, and analyzing traces. To date, the
archive has collected traces from 11 existing online reposito-
ries (including 10 traces obtained from a preliminary version
of WorkflowHub) and uses an object-oriented representation
(using the Parquet columnar storage format for Hadoop) for
documenting traces. Our format instead uses JSON, which
provides easier time mapping to domain objects, regardless of
the programming language used for processing traces. Also,
the format used in [15] captures workflow executions infor-
mation in terms of resource usage on the specific hardware
platform used to execute the workflow. As a result, it is
difficult to use this information to reconstruct a platform-
independent, abstract workflow structure. By contrast, while
WorkflowHub also records platform-specific behaviors in its
traces, in addition it ensures that the abstract workflow struc-
ture is directly available from these traces. This is crucial
for research purposes, as abstract workflow structures are
needed for, for instance, simulating workflow executions on
platform configurations that differ from that used to collect
the workflow execution trace.

Several studies have used synthetic workflows to explore
how different workflow features impact execution and inter-
play with each other (e.g., number of tasks, task dependency
structure, task execution times). Tools such as SDAG [16]
and DAGEN-A [17] generate random synthetic workflows,
but these are not necessarily representative of real-world
scientific workflows. In [18], application skeletons are used
to build synthetic workflows that represent real applications
for benchmarking. In our previous work [8], we developed a
tool for generating synthetic workflow configurations based on
real-world workflow instances. As a result, the overall struc-
ture of generated workflows was reasonably representative of
real-world workflows. But that tool uses only two types of



statistical distributions (uniform and normal), and as a result
workflow performance behavior may not be representative (see
results in Section IV).

III. THE WORKFLOWHUB

The WorkflowHub project (https://workflowhub.org) is a
community framework for enabling scientific workflow re-
search and development. It provides foundational tools for
analyzing workflow execution traces, and generating synthetic,
yet realistic, workflow traces. These traces can then be used for
experimental evaluation and development of novel algorithms
and systems for overcoming the challenge of efficient and
robust execution of ever-demanding workflows on increasingly
complex distributed infrastructures.

Fig. 1 shows an overview of the workflow research life cycle
process that integrates the three axes of the WorkflowHub
project: (i) workflow execution traces, (ii) workflow generator,
and (iii) workflow simulator.

A. Workflow Execution Traces

The first axis of the WorkflowHub project targets the
collection and curation of open access production workflow
execution traces from various scientific applications, all made
available using a common trace format. A workflow execution
trace is built based on logs of an actual execution of a
scientific workflow on a distributed platform (e.g., clouds,
grids, clusters). More specifically, the three main types of
information included in the trace are:

• workflow task execution metrics (runtime, input and
output data sizes, memory used, energy consumed, CPU
utilization, compute resource that was used to execute the
task, etc.);

• workflow structure information (inter-task control and
data dependencies); and

• compute resource characteristics (CPU speed, available
RAM, etc.).

The WorkflowHub JSON format. The WorkflowHub project
uses a common format for representing collected workflow
traces and generated synthetic workflows traces. Workflow
simulators and simulation frameworks that support this com-
mon format can then use both types of traces interchangeably.
This common format uses a JSON specification (publicly
available on GitHub [19]), which captures all relevant trace
information as listed above. The GitHub repository also pro-
vides a Python-based JSON schema validator for verifying
the syntax of JSON trace files, as well as their semantics,
e.g., whether all files and task dependencies are consistent.
Users are encouraged to contribute additional workflow traces
for any scientific domain, as long as they conform to the
WorkflowHub’s common format.

Collection of traces. An integral objective of the Work-
flowHub project is to collect and reference open access
workflow traces from production workflow systems. Table I
summarizes the set of workflow traces currently hosted on
WorkflowHub. These traces are from six representative science

domain applications, in which workflows are composed of
compute- and/or data-intensive tasks. (Note that although a
workflow may be categorized overall as, for example, data-
intensive, it may be composed of different kinds of tasks
including, e.g., CPU-intensive ones.) We argue that the 101
archived workflow traces form a representative set of small-
and large-scale workflow configurations. In addition to con-
suming/producing large volumes of data processed by thou-
sands of compute tasks, the structures of these workflows are
sufficiently complex and heterogeneous to encompass current
and emerging large-scale workflow execution models [20].

B. Workflow Trace Generator

Workflow execution traces are commonly used to drive
experiments for evaluating novel workflow algorithms and
systems. It is crucial to run large numbers of such exper-
iments for many different workflow configurations, so as
to ensure generality of obtained results. In addition, it is
useful to conduct experiments while varying one or more
characteristics of the workflow application, so as to study how
these characteristics impact workflow execution. For instance,
one may wish, for a particular overall workflow structure, to
study how the workflow execution scales as the number of
tasks increases. And yet, current archives only include traces
for limited workflow configurations. And even as efforts are
underway, including WorkflowHub, to increase the size of
these archives, it is not realistic to expect them to include all
relevant workflow configurations for all experimental endeav-
ors. Instead, tools must be provided to generate representative
synthetic workflow traces. These traces should be generated
based on real workflow traces, so as to be representative,
while conforming to user-specified characteristics, so as to be
useful. The second axis of the WorkflowHub project targets
the generation of such realistic synthetic workflow traces with
a variety of characteristics.

The WorkflowHub Python package. In order to allow users
to analyze existing workflow traces and to generate syn-
thetic workflow traces, the WorkflowHub framework provides
a collection of tools released as an open source Python
package [10], [21]. This package provides several tools for
analyzing workflow traces. More specifically, analyses can be
performed to produce statistical summaries of workflow per-
formance characteristics, per task type. The package leverages
the Python’s SciPy [22] package for performing probability
distributions fitting to a series of data to find the best (i.e.,
minimizes the mean square error) probability distribution that
represents the data. In contrast to our previous work [8],
which used only two probability distributions for generating
workflow performance metrics, the WorkflowHub’s Python
package attempts to fit data with 23 probability distributions
provided as part of SciPy’s statistics submodule. Fig. 2 shows
an example of probability distribution fitting of task runtimes
for two task types from different workflow traces, by plotting
the cumulative distribution function (CDF) of the data and
the best probability distribution found. The outcome of this

https://workflowhub.org


TABLE I
COLLECTION OF WORKFLOW EXECUTION TRACES HOSTED BY WORKFLOWHUB. ALL TRACES WERE OBTAINED USING THE PEGASUS WMS RUNNING

ON THE CHAMELEON CLOUD PLATFORM.

Application Science Domain Category # Traces # Tasks Runtime and Input/Output Data Sizes Distributions

1000Genome Bioinformatics Data-intensive 22 8,844 alpha, chi2, fisk, levy, skewnorm, trapz
Cycles Agroecosystem Compute-intensive 24 30,720 alpha, beta, chi, chi2, cosine, fisk, levy, pareto, rdist, skewnorm, triang
Epigenomics Bioinformatics Data-intensive 26 15,242 alpha, beta, chi2, fisk, levy, trapz, wald
Montage Astronomy Compute-intensive 8 32,606 alpha, beta, chi, chi2, cosine, fisk, levy, pareto, rdist, skewnorm, wald
Seismology Seismology Data-intensive 11 6,611 alpha, argus, fisk, levy
SoyKB Bioinformatics Data-intensive 10 3,360 argus, dweibull, fisk, gamma, levy, rayleigh, skewnorm, triang, trapz, uniform

6 applications 4 domains 2 categories 101 97,383 18 probability distributions

Fig. 2. Example of probability distribution fitting of runtime (in
seconds) for individuals tasks of the 1000Genome (top) and
alignment_to_reference tasks of the SoyKB (bottom) workflows.

analysis applied to an entire workflow trace is a summary that
includes, for each task type, the best probability distribution
fits for runtime, input data size, and output data size. For
instance, Table I lists (for each workflow application for
which WorkflowHub hosts traces) the probability distributions
used for these fits. Listing 1 shows the summary (which is
implemented as a Python object) for one particular task type in
the 1000Genome workflow application. These summaries can
then be used to develop workflow recipes, described hereafter.

Workflow Recipes. The WorkflowHub Python package also
provides a number of workflow “recipes” for generating real-
istic synthetic workflow traces. Each recipe provides different
methods for generating synthetic, yet realistic, workflow traces
depending on the properties that define the structure of the

1"individuals": {
2 "runtime": {
3 "min": 48.846,
4 "max": 192.232,
5 "distribution": {
6 "name": "skewnorm",
7 "params": [
8 11115267.652937062,
9 -2.9628504044929433e-05,

10 56.03957070238482
11 ]
12 }
13 },
14 ...
15}

Listing 1. Example of an analysis summary showing the best fit probability
distribution for runtime of the individuals tasks (1000Genome workflow).

actual workflow. A common method for generating synthetic
traces (regardless of the application) is to provide an upper
bound for the total number of tasks in the workflow. Although
this functionality provides flexibility and control for generating
an arbitrary number of synthetic workflows, we have imple-
mented mechanisms that define different lower bound values
(for each workflow recipe), so that the workflow structure is
guaranteed. The workflow recipe also includes the summaries
obtained in the previous steps, so as to generate representa-
tive workflow task instances (by sampling task runtimes and
input/output data sizes using the probability distribution in the
summaries). The current version of the WorkflowHub’s Python
package provides recipes for generating synthetic workflows
for all 6 applications shown in Table I. Detailed documentation
and examples can be found on the project’s website [9] and
the online open access package documentation [10].

C. Workflow Simulator

An alternative to conducting scientific workflow research
via real-world experiments is to use simulation. Simulation is
used in many computer science domains and can address the
limitations of real-world experiments. In particular, real-world
experiments are confined to those application and platform
configurations that are available to the researcher, and thus
typically can only cover a small subset of the relevant sce-
narios that may be encountered in practice. Furthermore, real-
world experiments can be time-, labor-, money-, and energy-
intensive, as well as not perfectly reproducible.

The third axis of the WorkflowHub project fosters the use
of simulation for scientific workflow research, e.g., the devel-



opment of workflow scheduling and resource provisioning al-
gorithms, the development of workflow management systems,
and the evaluation of current an emerging computing platforms
for workflow executions. We do not develop simulators as
part of the WorkflowHub project. Instead, we catalog open
source workflow management systems simulators (such as
those developed using the WRENCH framework [23], [24])
that support the WorkflowHub common trace format. In other
words, these simulators take as input workflow traces (either
from actual workflow executions, or synthetically generated).
In the next section, we use one of the simulators cataloged
in the WorkflowHub project to quantify the extent to which
synthetic traces generated using WorkflowHub tools are rep-
resentative of real-world traces.

IV. CASE STUDY: EVALUATING SYNTHETIC TRACES WITH
A SIMULATOR OF A PRODUCTION WMS

In this section, we use a simulator [24] of a state-of-the-
art WMS, Pegasus [3], as a case study for evaluation and
validation purposes. Pegasus is being used in production to
execute workflows for dozens of high-profile applications in
a wide range of scientific domains, and is the WMS we used
to execute workflows on a cloud environment for the purpose
of collecting the traces described in Section III-A.

The simulator is built using WRENCH [23], [24], a frame-
work for implementing simulators of WMSs that are accurate
and can run scalably on a single computer, while requir-
ing minimal software development effort. In [24], we have
demonstrated that WRENCH achieves these objectives, and
provides high simulation accuracy for workflow executions
using Pegasus.

A. Experimental Scenarios

We consider experimental scenarios defined by particular
workflow instances to be executed on particular platforms.
To assess the accuracy and scalability of generated synthetic
workflows, we have performed real workflow executions with
Pegasus and collected raw, time-stamped event traces from
these executions. These traces form the ground truth to which
we can compare simulated executions.

Actual workflow executions are conducted using the
Chameleon Cloud platform, an academic cloud testbed, on
which we use homogeneous standard cloud units to run an
HTCondor pool with shared file system, a submit node (which
runs Pegasus and DAGMan), and a data node placed in the
WAN. Each cloud unit consists of a 48-core 2.3GHz processor
with 128 GiB of RAM. The bandwidth between the submit
node and worker nodes on these instances is about 10Gbps.

Whenever possible, for the experiments conducted in this
section, we contrast experimental results obtained with syn-
thetic workflow traces generated with WorkflowHub to results
obtained using synthetic workflow traces generated using our
previous work [8]. In [24], we have already demonstrated
that the simulator framework used in our previous work
yields significant discrepancies from actual executions. These

TABLE II
PARAMETER VALUES USED FOR CALIBRATING THE WORKFLOW

GENERATOR FROM OUR PREVIOUS WORK [8].

Application # Tasks Runtime Factor Reference Size

Epigenomics [125, 263, 405, 559, 713, 803] 0.001 [0.1, 16384]
Montage [1738, 4846, 7117, 9805] 0.05 [0.1, 113774]

discrepancies mostly stem from the use of a simplistic net-
work simulation model, and from the simulator not capturing
relevant details of the system, and thus of the workflow
execution. Therefore, to reach fair conclusions regarding the
validity of synthetic workflow traces, in this paper we only use
the more accurate WRENCH simulator for all experiments.
Using this simulator we quantify the extent to which each
generated synthetic workflow trace (using our previous work
and using WorkflowHub) is representative of the original real-
world workflow trace.

The simulator code, details on the calibration procedure,
and experimental scenarios used in the rest of this section are
all publicly available online [25].

B. Evaluating the Accuracy of Synthetic Traces

To evaluate the accuracy of the generated synthetic work-
flow traces, we consider 2 workflow applications: Montage and
Epigenomics. We choose these two applications to allow for
comparison with our previous work – the popular generator
in [8] can produce synthetic workflow traces for both these
applications. For each real-world execution trace of each appli-
cation, as archived on WorkflowHub, we use WorkflowHub’s
Python package for generating a synthetic trace that is similar
to the actual execution trace (i.e., we bound the number of
tasks to the number of tasks in the actual workflow execution).
For comparison purposes, we also generate synthetic traces
using the generator from our previous work. To that end, we
have calibrated that generator with the parameter values shown
in Table II.

Epigenomics. Fig. 3 shows simulated empirical cumulative
distribution functions (ECDFs) of task submission dates (top)
and task completion dates (bottom), for sample runs of
real-world and synthetic workflow trace executions of the
Epigenomics workflow used on the ILMN dataset. We ob-
serve that WorkflowHub’s generated synthetic workflow traces
(“synthetic”) yields very similar simulated execution behavior
when compared to the real-world execution trace (“real”) –
the averaged root mean squared error (RMSE) is 49.02 for
task submission and 50.90 for task completion. Recall that
small discrepancies in the workflow execution behavior are
expected since the workflow task characteristics are sampled
from probability distributions. For the synthetic traces gen-
erated with the previous generator (“previous”), the averaged
RMSEs are 251.87 for task submission and 224.15 for task
completion. These substantial discrepancies in execution be-
havior are mostly due to lack of using accurate probability
distributions to model task runtimes, and input and output
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Fig. 3. Empirical cumulative distribution function of task submit times
(top) and task completion times (bottom) for sample real-world (“real”)
and synthetic (“synthetic” and “previous”) workflow trace executions of
Epigenomics using the WRENCH-Pegasus simulator.

file sizes. While WorkflowHub’s generator produces synthetic
traces using the best fitted distribution per workflow task type
(as described in Section III-A), the previous generator only
uses uniform and truncated normal distributions. Moreover, file
size generation in that generator uses a random process that
leads to inconsistent distribution of file sizes (i.e., the initial
reference size seed may shift the density of the distribution
toward a lower density area when compared to the empirical
distributions obtained from actual workflow executions).

Montage. Fig. 4 shows simulated ECDFs for sample runs of
real-world and synthetic workflow trace executions of Montage
for the 2MASS dataset. Similarly to the Epigenomics results
above, WorkflowHub’s generated synthetic workflow traces
(“synthetic”) produce workflow execution behaviors close to
that of the real-world execution trace (“real”) – average
RMSEs are 39.82 for task submission and 46.93 for task
completion. When contrasted to synthetic traces generated
with the preceding generator (“previous”), RMSEs are 2265.73
and 2253.54 for task submission and completion, respectively.
These wide discrepancies are due to the larger number of tasks
in the workflow, and Montage’s idiosyncratic workflow struc-
ture (extreme fan-in/out pattern). In our previous generator, the
generation of file sizes, in particular the larger ones, follows
a truncated normal distribution, in which the large variance
shortens and broadens the curve, thus generating unbalanced
data sizes. As a result, the effect is that tasks in the workflow’s
critical path are delayed by data movement operations, causing
the workflow makespan increases. This effect is an artifact of
the synthetic trace, an is not seen in real-world executions.

Overall, when using the generated synthetic traces in sim-
ulation, we observe large discrepancies when these traces
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Fig. 4. Empirical cumulative distribution function of task submit times
(top) and task completion times (bottom) for sample real-world (“real”) and
synthetic (“synthetic” and “previous”) workflow trace executions of Montage
using the WRENCH-Pegasus simulator.

were generated using our previous work. By contrast, using
WorkflowHub’s generation methods produces workflow traces
that closely match the real-world execution behaviors (even
though some discrepancies necessarily remain due to random
sampling effects).

C. Evaluating the Scaling of Synthetic Traces

In this section, we evaluate the accuracy of the structure
of synthetic workflow traces generated based on collected
traces at a lower scale, where the scale is the number of
workflow tasks. In other words, when generating synthetic
workflow traces at various scales, we want to see whether
the overall workflow structure is still representative of the
workflow application.

We perform experiments using the WRENCH-Pegasus sim-
ulator for each workflow application supported by the Work-
flowHub project. For each application, we run the simulator
for a reference workflow trace (from a real-world execution),
and for synthetic traces in which the upper bound limit for the
number of tasks are 1K, 5K, 10K, 25K, 50K, and 100K. The
goal is to determine whether the simulated execution pattern
using these synthetic traces are consistent with that observed
when using the reference trace.

Fig. 5 shows ECDFs for task submit times and task com-
pletion times for sample runs of these configurations. This
figure shows normalized makespan values on the horizontal
axis. This is to make it possible to use visual inspection
for assessing whether the structure of the generated work-
flows conform with the reference workflow, even though the
executions of these workflows have different makespans. In
addition, Table III shows the number of tasks that compose
the reference workflow trace for each application (“real”) and
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Fig. 5. Empirical cumulative distribution function of task submit
times for sample real-world (“real”) and synthetic (“synthetic-nK”,
n ∈ [1, 5, 10, 25, 50, 100]) workflow trace executions using the WRENCH-
Pegasus simulator. Workflow makespan has been normalized for comparison
purposes.

the RMSE values for the synthetic workflows (“synthetic-nK”)
when contrasted to the reference workflow execution trace.

Overall, generated synthetic traces lead to fairly similar
execution patterns when compared to the reference trace. Not
surprisingly, the Seismology workflow, due to its simple struc-
ture, shows ideal scalability behavior (RMSE values are nearly
zero as observed in Table III) – the workflow structure follows
a simple merge pattern, in which a set of tasks for computing
seismogram deconvolutions are followed by a single task that
combines all processed fits. Small, yet expected, discrepancies
are observed for the Cycles, Montage, and SoyKB workflows.
As discussed in Section IV-B, these discrepancies are due to
the random generation of workflow task characteristics, which
are drawn from various probability distributions.

Visual inspection of Fig. 5 indicates a significant divergence
in execution behaviors for the 1000Genome and Epigenomics
workflows. For the 1000Genome workflow, the difference
between execution behaviors of the reference and synthetic-
1K workflows is minimum, which is expected as the reference

TABLE III
ROOT MEAN SQUARE ERRORS (RMSE) FOR LARGE SCALE SYNTHETIC

WORKFLOWS. (RMSE VALUES ARE COMPUTED FROM NORMALIZED
WORKFLOW MAKESPAN.)

Application # Tasks RMSE
(real) 1K 5K 10K 25K 50K 100K

1000Genome 903 0.03 0.60 0.66 0.69 0.70 0.71
Cycles 331 0.05 0.18 0.26 0.27 0.34 0.36
Epigenomics 125 0.30 0.53 0.49 0.56 0.61 0.61

1095 0.05 0.06 0.06 0.06 0.07 0.07
Montage 1738 0.25 0.35 0.16 0.22 0.41 0.48
Seismology 101 0.05 0.04 0.05 0.05 0.05 0.05
SoyKB 383 0.07 0.22 0.28 0.37 0.37 0.38

workflow is composed of 903 tasks, which is close to the 1,000
tasks in the synthetic workflow (see Table III). However, for
synthetic workflows with 5K tasks and higher, the execution
pattern does not conform to that with the reference trace (and
RMSE values indicate large errors). After carefully inspecting
the ECDFs and the workflow structure representation, we
noticed that the structure of the 1000Genome workflow, at is
scales up, leads to an increase on the number of tasks in the
upper levels of the workflow (which are pipelines composed
of 6 tasks each), followed by a few tasks that combine the
results of these tasks (seen in Fig. 5 as the spike around 90%
of the workflow execution time). When increasing the number
of tasks for the 1000Genome workflow, this “spike” becomes
smoother and fades out in the distribution. A similar structural
characteristic is also observed for the Epigenomics workflow.
To evaluate this hypothesis, we have also performed runs with
an execution trace for the Epigenomics workflow composed
of 1095 tasks (also shown in Table III, but not shown in
Fig. 5), which produces very similar execution behaviors when
compared to the synthetic workflows. We were not able to
replicate this experiment for the 1000Genome workflow as
we are unable to run the actual application with more than
903 tasks.

Overall, our experiments results show that the tools provided
as part of the WorkflowHub framework not only can be used
to generate representative synthetic workflow traces (i.e., with
workflow structures and task characteristics distributions that
resembles those in traces obtained from real-world workflow
executions), but can also generate representative workflow
traces at larger scales that of available workflow traces. This is
crucial for supporting ongoing research that targets large-scale
executions of complex scientific applications on emerging
platforms.

V. CONCLUSION

In this paper, we have presented the WorkflowHub project,
a community framework for archiving workflow execution
traces, analyzing these traces, producing realistic synthetic
workflow traces, and simulating workflow executions using all
these traces. WorkflowHub provides a collection of resources
for developing workflow recipes based on traces collected
from the execution of real-world workflow applications. These
workflow recipes are then used to produce synthetic, yet



realistic, workflow traces that can enable a variety of novel
workflow systems research and development activities. Via
a case study using an accurate and scalable simulator of a
production WMS, we have demonstrated that WorkflowHub
achieves these objectives, and that it favorably compares to
a widely used previously developed workflow generator tool.
The main finding is that, with WorkflowHub, one can generate
representative synthetic workflow traces at various scales in
a way it preserves the workflow application’s key features.
WorkflowHub is open source and welcomes contributors. It
currently provides a collection of 101 traces from actual work-
flow executions, and can generate synthetic workflows from 6
applications from 4 science domains. Version 0.3 was released
in August 2020. We refer the reader to https://workflowhub.org
for software, documentation, and links to collections of traces
and simulators.

A short-term development direction is to use statistical
learning methods, such as regression analysis, for automating
the process of generating workflow recipes – specifically the
description of the workflow structure, i.e., relations between
tasks and dependencies. We also intend to provide continuous
supported development of novel workflow recipes to broaden
the number of science domains in which WorkflowHub can
potentially impact research and development efforts. Finally,
another future direction is to use synthetic workflows to
support the development of simulation-driven pedagogical
modules [26], which include targeted activities through which
students acquire knowledge by experimenting with various
application and platform scenarios in simulation.
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