The Pegasus Workflow Management System: Translational Computer Science in Practice

Ewa Deelman®*, Rafael Ferreira da Silva®*, Karan Vahi®, Mats Rynge?, Rajiv Mayani®, Ryan Tanaka?, Wendy Whitcup?®, Miron
Livny®

“University of Southern California, Information Sciences Institute, Marina del Rey, CA, USA
b University of Wisconsin at Madison, Madison, WI, USA

Abstract

Translational research (TR) has been extensively used in the health science domain, where results from laboratory research are
translated to human studies and where evidence-based practices are adopted in real-world settings to reach broad communities. In
computer science, much research stops at the result publication and dissemination stage without moving to the evaluation in real
settings at scale and feeding the gained knowledge back to research. Additionally, there is a lack of steady funding and incentives
to broadly promote translational computer science (TCS) in practice. In this paper, we present how, throughout its lifespan, the
Pegasus workflow management system project has incorporated the principles of translational computer science. We report on our
experience on building a strong, long-term engagement with a broad range of science communities to establish mutually beneficial
relationships between the core R&D team and these communities.

Keywords: Translational Research, Translational Computer Science, Scientific Workflows, Workflow Management Systems,

Large-scale Distributed Computing

1. Introduction

The success of modern biomedicine can often be attributed
to the workflow adopted by researchers to develop new pharma-
ceutical compounds via computations and in a laboratory envi-
ronment, test them within clinical settings, and develop proto-
cols and guidelines for broader community usage of best ther-
apies. The success of this translational approach has brought
focus to the need of progressive testing of solutions in real
settings, and the need to feed the insights gained (both neg-
ative and positive) back to the basic research effort in order
to improve research outcomes [1, 2]. Over the past decade,
several institutions and funding bodies have supported transla-
tional research (TR) as the foundation for transferring research
outcomes into practice. For instance, the National Institute of
Health (NIH) has made translational research a priority, form-
ing centers of translational research at its institutes and launch-
ing specific, TR-focused programs [3]. Institutions of higher-
education have also conducted internal surveys to understand
the impact of TR practices adopted by their faculty and research
staff [4].

Although the benefits of TR have been well-acknowledged
in the health sciences domain (both by scientists and funding
bodies), the traditional research workflow in computer science

*Corresponding address: USC Information Sciences Institute, 4676 Admi-
ralty Way Suite 1001, Marina del Rey, CA, USA, 90292
Email addresses: deelman@isi.edu (Ewa Deelman),
rafsilva@isi.edu (Rafael Ferreira da Silva), vahi@isi.edu (Karan Vahi),
rynge@isi.edu (Mats Rynge), mayani@isi.edu (Rajiv Mayani),
tanaka@isi.edu (Ryan Tanaka), wwhitcup@isi.edu (Wendy Whitcup),
miron@cs.wisc.edu (Miron Livny)

Preprint submitted to Journal of Computational Science

(CS) still does not have well-defined best practices. Addition-
ally, there is a lack of support in CS for embracing TR as part
of the critical path of the research development process [5]. On
the other hand, as CS permeates not only traditional physical
sciences, but also social sciences, humanities, and in fact every
aspect of our lives, some CS researchers see the value of ex-
amining the entire innovation cycle from conceptualization and
initial research to testing at scale in real environments to broad
community adoption. In this context, this paper examines trans-
lational computer science (TCS) as defined by Abramson and
Parashar in [5], and describes how this process of innovation
has driven the development and adoption of the Pegasus work-
flow management system [6, 7], and what were the challenges
that the project faced over the years. Pegasus came out of an
NSF-funded project that aimed to explore the concept of virtual
data in science [8]. That grant specifically funded interdisci-
plinary research in CS and astronomy/physics. As a result, Pe-
gasus was born out of our belief that the value of our work lay
not only in the novel computer science algorithms but also in
the software that leveraged these algorithms to advance domain
science. Thus, the translational aspects of CS grew organically
to some degree.

In this paper, we examine the various facets of TCS with the
lens of the Pegasus experience, and discuss the challenges we
faced for over twenty years of the project’s lifespan. Specifi-
cally, we delineate how TCS principles have been incorporated
into the research and development process of the Pegasus soft-
ware, and how we have leveraged community engagement and
feedback for driving novel software requirements and future re-
search directions. We also discuss the challenges we have faced
along these years regarding translational research, and we rec-

August 13, 2020

ommend potential solutions for incorporating TCS into the crit-
ical path of development and research processes.

This paper is organized as follows. Section 2 presents an
overview of Pegasus and its user communities. In Section 3,
we briefly describe the concepts of TCS as used in this paper.
Section 4 presents our experience in designing Pegasus, and
how TCS has been applied during the lifespan of the project.
Section 5 discusses the challenges in performing TCS and how
we have overcome them. Section 6 concludes the paper with a
summary of discussions and perspectives on future directions.

2. Pegasus Workflow Management System

Scientific workflows have been almost universally used
across scientific domains and have underpinned some of the
most significant discoveries of the past several decades [6, 9].
Workflow management systems support abstractions and pro-
vide automation, which enable a broad range of researchers to
easily define sophisticated computational processes and to then
execute them efficiently on parallel and distributed computing
systems. Pegasus [6] is an open source framework that is being
used in production to execute scientific workflows for dozens of
high-profile applications in a number of different disciplines in-
cluding astronomy, gravitational-wave physics, bioinformatics,
earthquake engineering, helioseismology, and limnology.

Since 2001, Pegasus has evolved into a robust and scalable
system in response to the needs of scientists to conduct com-
plex computations on heterogeneous and distributed cyberin-
frastructures (CI) [7]. From the beginning, Pegasus’ philosophy
was to rely on established research in graph theory, databases,
and compilers, and to augment and adapt that knowledge to the
concept of workflows and the target CI. Today, Pegasus is built
on the foundation of abstractions of directed acyclic graphs,
fundamental programming constructs, and scalable algorithms.
Workflow execution with Pegasus includes data management,
monitoring, and failure handling, and is managed by HTCon-
dor DAGMan [10]. Individual workflow tasks are managed by
a workload management framework, HTCondor [11], which su-
pervises task executions on local and remote resources. During
execution, Pegasus translates an abstract resource-independent
workflow into an executable workflow, determining the exe-
cutables, data, and computational resources required for the ex-
ecution.

Over the past two decades, an interdisciplinary community
of users in a broad spectrum of the sciences has grown around
Pegasus. Notably, Pegasus was used by the Laser Interfer-
ometer Gravitational-Wave Observatory (LIGO) collaboration
for the analysis that confirmed the existence of gravitational
waves [12]; and by the Southern California Earthquake Cen-
ter (SCEC) to generate the first ever physics-based probabilis-
tic seismic hazard map of Southern California [13], which es-
timates the probability that earthquake ground motions at a ge-
ographic location of interest will exceed some intensity mea-
sure, such as peak ground velocity or ground acceleration, over
a given time period. Such estimates are useful for civic plan-
ners, building engineers, and insurance agencies, and forms

the basis for building codes that can influence billions of dol-
lars of construction each year. The engagement with (and the
continuous feedback from) these communities has been funda-
mental for the development of a robust and efficient software
framework tailored to specific community needs, all without
diminishing its general applicability. For instance, with the
introduction of peta-scale high-performance computing (HPC)
systems, SCEC and other Pegasus users requested a more na-
tive way of executing workflows on such specialized HPC re-
sources. The result of the feedback was the introduction of a
specialized workflow execution engine, which is dynamically
deployed within an HPC system and enables efficient execu-
tion of high-throughput workflows on HPC architectures via a
master-worker paradigm [14]. Another example of the com-
munity driven development model is the dynamic data cleanup
feature, which is a data management algorithm that schedules
the removal of intermediate data from the execution site as soon
as it is no longer needed by the workflow. This feature was ini-
tially requested by LIGO, but it is now a standard capability.
It is enabled by default and used by the majority of Pegasus
users [15].

3. Translational Computer Science

In [5], translational research in computer science is defined
in an analogous way to translational research (TR) in the field
of biomedical research. The authors argue that there is a par-
allel between the translational cycle in biomedical research
that feeds back real world findings to research and that of
translational computer science, where at-scale evaluation pro-
vides feedback to research. TR fosters the multidirectional
integration of basic research, patient-oriented research, and
population-based research [16]. TR is generally composed of
the following components: (i) bench, which is defined as basic
research, often in a laboratory setting; (ii) bedside, which tests
the results of the research in clinical settings, often via trials
with groups of patients; and (iii) community, where the knowl-
edge gained can be implemented as part of protocols for patient
care. The authors in [5] further argue that the findings from
the trials and community practice are able to influence the basic
research that is being conducted. This feedback loop distin-
guishes the translational process from basic research that stops
at the publication of research outcomes and from commercial-
ization efforts, which may result from successful clinical trials.

The authors of [5] consider the concept of translational re-
search and define translational computer science (TCS) to have
analogous components, namely: laboratory, locale, and com-
munity. The laboratory, which encompasses both hardware
and software, is where CS research and development takes
place. The locale is where the results of the research are evalu-
ated and may result in changes to the research being conducted.
The community is thought to be the users and early adopters
who can help more broadly with the evaluation process.

Pegasus Users

Community
broader testing and adoption .
general requirements,
bugs, contributions
Friendly Users
Locale LIGO and SCEC
testing at scale features drivers,
bugs, at scale results
Pegasus Team
Laboratory

research and development continuous feedback

Figure 1: Mapping TCS into Pegasus R&D team and user communities.

4. Pegasus as Translational CS

Applying the principles of TCS has been key for the devel-
opment of technologies that lead to important scientific discov-
eries. A natural, and yet often undervalued decision process for
designing and realizing such technologies entails incorporating
TCS throughout the projects’ lifespan. This is the case for most
of the long-lasting research projects that supported innovative
research that has had demonstrated impact in practice.

In this section, we report on our experience gained over two
decades of designing and implementing Pegasus, and how the
software has supported an interdisciplinary community from a
multitude of fields of science to effectively achieve their com-
putational needs by managing the execution of computational
tasks and data processing utilizing distributed, heterogeneous
resources. We leverage the definition of TCS presented in [5]
to describe how our processes and decisions map to the three
components of the TCS model: laboratory, locale, and com-
munity (Figure 1).

4.1. Laboratory

The laboratory is the most common component among ap-
plied and experimental computer science projects [5]. It in-
cludes technical aspects of CS such as software and hardware,
as well as broader infrastructure (e.g., distributed computing
and storage services). In the context of Pegasus, we model
the laboratory component as the Pegasus software framework
and its core research and development conducted by the project
team. Here, software requirements are driven by pressing com-
munity needs, while exploratory and innovative concepts are
first assessed and verified within a research context. Promising
solutions are then translated into software requirement specifi-
cations and eventually software capabilities are released as part
of the Pegasus software.

In order to develop a robust and sustainable software product
that meets the needs of the scientific community, and enables
external contribution, we have adhered to proven software en-
gineering processes. Specifically, we have developed Pegasus
using Agile software development methods, where software is
delivered in short, iterative, and incremental releases [7]. The
Pegasus software development cycle follows a rigorous soft-
ware testing process via unit tests and continuous integration.
We use the latter for automated building and testing suites of
workflow benchmarks when new capabilities or bug fixes are

added to Pegasus. This process ensures that our code can be
easily adopted and extended by the community.

Elementary software requirements can be directly imple-
mented and incorporated into Pegasus releases by the profes-
sional software development staff (although significant devel-
opment effort may be required). However, novel architectures
and emerging applications may raise challenging research ques-
tions that require in-depth analysis and the development and
evaluation of new techniques — e.g., optimization algorithms
for managing large volumes of data, resource provisioning al-
gorithms for dynamic scaling computing resources, among oth-
ers [17, 18, 19]. Research within the Pegasus project is typi-
cally conducted alongside software development, and may in-
volve: (i) collecting performance data from experimental (or
new) computing platforms for developing performance profiles
of applications and systems; (ii) development of prototypes or
simulators for evaluation and verification of novel approaches;
and (iii) development of a plan for incorporating research out-
comes into software products. The research is often conducted
by graduate students under the guidance of research staff. By
fostering interactions between graduate students and the com-
munity, students gain firsthand experience in conducting re-
search that could subsequently result in transformative software
products for the community, and therefore TCS. Such interac-
tions may require additional efforts (e.g., communication, re-
quirements gathering, and research question refinement) than
typical intra-lab research. However, we can point to a num-
ber of cases in which graduate students have benefited from
external collaborations and from receiving “real-world” feed-
back [20, 21, 22].

Figure 2 illustrates how research and software development
for Pegasus have been interleaved throughout the project’s lifes-
pan. We note that translating research outcomes into software
products is a long and laborious process and typically requires
several iterations between researchers and software developers
(a discussion regarding this aspect is presented in Section 5).
In the next sub-sections, we discuss how different types of en-
gagement with the community have informed the design and
development of the Pegasus software framework.

4.2. Locale

TCS defines locale as the local or virtual environment where
research outcomes are evaluated in practice. In contrast to
unit and integration tests commonly used as best practices in
software development (e.g., in Pegasus we perform end-to-end
workflow tests [7]), the goal here is to assess the behavior of the
software, or its specific capabilities, under non-deterministic
scenarios — e.g., at scale, subject to external load, failures, un-
foreseen configurations, etc. — but still obtain trustworthy re-
sponses that may lead to improvements of software compo-
nents, or even the discovery of new requirements. Here, the
term “at scale” targets the evaluation of the Pegasus system with
large-scale applications (workflows that have hundreds of thou-
sands jobs, processing terabytes of data) running on leadership-
class HPC systems or distributed resources that have on the or-
der of two hundred thousands cores available at any one time,

(10X 11112813)

@ ODDOD

2013 2015
(3031400411420 43744T45)

20
OO @

support | task supportfor | hierarchical pegasus-lite| monitoring ensemble supportfor | redesign
Development for GT4 | clustering AWS workflows engine dashboard manager containers ' of APIs
Research data data cloud MPI-based workflow | Realtime performance | metadata data

LIGO, SCEC, and others | cleanup algorithms | footprint ! computing evaluation

engine design

data capture capture integrity assurance

Figure 2: Pegasus development and releases over time. The bottom rows indicate interleaving research and software development. (The second row indicates

software release versions.)

such as the Open Science Grid (OSG) [23]. In these evalua-
tions, we actively monitor the performance of Pegasus to iden-
tify anomalous or unexpected patterns of operation.

In the context of Pegasus, we map the locale component to
a subset of users, named “friendly users” (Figure 1), which are
willing to, and are able to, conduct tests at scale in their own
environments and have sufficient familiarity with the software
to explore a range of functionalities under different constraints.
Building trust within such relationships requires long-standing
partnerships and commitment from both sides of the collabora-
tion — incentives are key for establishing a mutually beneficial
collaboration as discussed in Section 5. In the context of the Pe-
gasus project, such relationships were initially established via
collaborative funded projects in which Pegasus was the center-
piece to enable efficient distributed execution of the partners’
applications. As Pegasus evolved into a mature and reliable
software framework, novel partnerships were formed via en-
gagements with the community (as described in Section 4.3).

During the Pegasus project lifespan, we have developed
close collaborations with several classes of users, from indi-
vidual researchers to large collaborations and centers. Specif-
ically, astrophysicists (LIGO) [12] and earthquake scientists
(SCEC) [13, 19], and more recently bioinformaticians, have
been the main drivers of new features and research challenges
in data management, resource management, data integrity, and
fault tolerance, among others (Figure 2). As these projects have
large-scale computing and storage demands and utilize national
cyberinfrastructure resources, they are ideal use cases for test-
ing Pegasus at scale. For instance, the development of solu-
tions for handling large data footprint and an online monitor-
ing dashboard were mainly steered by LIGO; approaches for
managing large numbers of short running tasks and co-locating
data-intensive single core workflow tasks with large-scale par-
allel computations were driven by SCEC (Figure 2) — additional
details on how these collaborators have steered the evolution of
the Pegasus software can be found in [7]. Although “friendly
users” may guide the specification of new requirements, we en-
sure that our solutions are general as possible so that they can
benefit the community at large.

Our involvement in large scale distributed computing infras-
tructure projects such as OSG [23] and XSEDE [24], has also
contributed to Pegasus evolution. Some of our research staff
are part of the operations and science support teams in these
projects. As a result, these engagements have given us insights
into the upcoming infrastructure developments, and allowed us
to leverage community-developed technologies for better data
management. Involvement with the Extended Collaborative

Support Services team at XSEDE, gave us insight on the chal-
lenges of setting up workflow systems on large supercomputers
and pushed us to explore third party provisioning tools and al-
ternative job submission mechanisms.

4.3. Community

The community constitutes the third pillar of TR, which in
applied or experimental computer science projects is very lim-
ited [5]. Most projects limit their research outcomes to peer-
reviewed publications, to the release of software via an open-
source license, or as a conduit to creating a startup. In the con-
text of the Pegasus project, the community represents the var-
ious users and early adopters of the software framework (Fig-
ure 1).

Pegasus’ approach for translating research to the community
is manifold. In addition to providing an open-source code base
for Pegasus, which is accompanied by comprehensive docu-
mentation of features, APIs, tutorials, and example workflows;
we have continually engaged with the community on a num-
ber of fronts. Research outcomes are primarily documented
and made available via publication in peer-reviewed confer-
ences and journals. We conduct in-person and online training
in conferences/meetings as well as dedicated sessions targeting
particular user communities (e.g., climate modelers, bioinfor-
matitians), and bi-monthly virtual “office hours”. Mailing lists
and interactions with individual users are also key for achieving
successful TCS.

In terms of the software development aspect, the community
has a key role in testing and identifying issues and limitations
of functionalities the software provides. In order to obtain such
feedback from the community, it is crucial that the develop-
ment and research team provides timely responses to commu-
nity queries with objective expectations of when and how is-
sues (or new requirements) will be fixed (or made available), or
clear explanations of the reasons why the request would not be
fulfilled. We note that community feedback may take a number
of different formats, including comments/assessments via tradi-
tional communication channels (mailing lists, emails, chats, in-
person conversations), or more recently by leveraging the open
source model in which issues tracking and direct contributions
(e.g., pull requests) are attributed to community members. In
summary, it is important to acknowledge that the quality of code
and dissemination is not sufficient for achieving TCS, but also
a strong engagement with the community and an understanding
of their needs are vital to make the software relevant.

5. Challenges in Translational Computer Science

In the above section, we have described how the Pegasus
project has attained TCS along these past two decades. Al-
though we have successfully implemented a model in which
TCS is in the critical path of our research and development pro-
cesses, we have encountered several challenges that have been
addressed over these years — yet several of them remain. In this
section, we present these challenges, how we have approached
them, and discuss potential solutions for improving the support
for TCS in applied or experimental computer science projects
(Figure 3).

Personnel. In TR, there are often different teams conducting
the research and the translation processes; in TCS, it is often the
same team that performs these operations. Although there are
benefits to that approach, in the sense that the insights gained
from trials or dissemination can be quickly integrated into the
research, the drawback is that the personnel have to fulfill both
roles. In Pegasus, research is mostly performed by graduate re-
search assistants (GRAs), the research staff, and faculty, while
the development and translation is performed primarily by pro-
fessional software developers — they all work closely together
and translation is often done by both. Our strategy of having
professional developers focusing on development and transla-
tion ensures continuity over time, while at the same time it al-
lows the GRAs to focus on their research and progressing to-
wards their degrees. Although we strive to also engage students
in TCS, such participation is carefully scoped and managed so
that the progress towards their degrees is not hindered. For in-
stance, research publications in collaboration with the commu-
nity typically involve elements of the TCS process. Therefore,
we argue that there is a prevailing need for a balance in the
team. However, building such a team within an academic en-
vironment is challenging. Unlike GRAs, who are relatively in-
expensive and require short term (semester long) funding com-
mitments, permanent staff is expensive and requires long term
financial commitments on the part of the principal investigator.
Additionally, the costs of maintaining research staff and profes-
sional developers needed to perform TCS increase over time,
unlike the GRA costs, which stay relatively constant. When
funding gaps within a group occur, the GRAs can be moved to
teaching assistant positions, but maintaining staff during these
periods can be challenging and sometimes impossible.

Funding. In CS, research projects are traditionally funded by
governmental agencies that typically sponsor projects within
an average time frame of 2-3 years. Although this allows re-
search teams to produce reasonable outcomes that may enrich
the state-of-the-art in the researched field or produce software
elements to fulfill community pressing needs, there is no room
for translating research outcomes to practice (if it is even con-
sidered at all). To overcome this challenge, the Pegasus project
has been supported by a mixture of awards that target specific
software development (NSF CI-focused programs), and funda-
mental and applied research (including NSF, DOE, NIH, and
DARPA). While fundamental CS research is mostly focused on
elemental aspects of novel algorithms and emerging technolo-
gies, applied research targets the distributed and heterogeneous

(VET-TE

broader testing
and adoption

Community Community at large ﬁ

Steady
Funding

Friendly Users
testing at scale

Selected user

Locale o
communities

including
TCSs

Team GRAs and
Laboratory research and professional M
development software developers

Figure 3: Envisaged TCS with continuous feedback and steady funding support.
Activities related to the three pillars of TCS are performed by: the research
team in the laboratory, by the friendly users in the locale, and by a broader set
of users in the community. Continuous feedback from friendly users and the
community inform the activities of the project team. Sustained funding is key
for accomplishing TCS in the long term.

aspect of Pegasus’ applications, which drives new requirements
— note that in these awards Pegasus is partly supported as a tool
for enabling efficient distributed processing. Despite our abil-
ity to secure funding from different sources for Pegasus R&D
along these nearly two decades, we argue that continued, steady
funding (preferably from fewer sources, as expectations may
significantly shift from different agencies) is vital to have the
time to bring back the real world experiences to the research
and the software. For instance, often times, meaningful “field
results” and scientific breakthroughs take time to come about
(e.g., confirmation of the existence of gravitational waves [12]
occurred 15 years after the initial collaboration between Pega-
sus and LIGO was established), and as a result the value of TCS
is not evident in the near term or within typical funding cycles.

Evaluation. 1In order to support TCS, the CS community
also need to value and advocate for TCS by fostering discus-
sions around the topic, organizing workshops, and recogniz-
ing the value of TCS when participating in the proposal review
and project evaluation processes. Additionally, the community
needs to develop methods for evaluating the success or failure
of TCS. In biomedical TR, evaluation of the translation can be
measured by the ability of a drug to treat a particular condition
and be compared to a control scenario. In CS the evaluation
metrics are not clear and have been debated over the last few
years. Are we evaluating software based on downloads, the
number of users, the number of publications that used the soft-
ware, the quality of the science that the software enabled? The
metrics are many and not all metrics fit all TCS efforts.

Incentives. In spite of our successful model for performing
TCS, we underline that early project funding awards lacked in-
centive for pursuing translation. In biomedicine trials, for ex-
ample, subjects are sometimes incentivized with monetary re-
wards or the promise of a cure; in CS there is a promise of a
better solution but there is also a cost of evaluating new solu-
tions that is not necessarily compensated. Although early sys-
tem (hardware) users often get the benefit of additional comput-
ing resources while providing feedback to the system providers,
early software adopters often have to do significant work to uti-
lize the software, deal with bugs, and conduct tests. They do
get better user support and attention to their specific require-
ments, but they have to have trust in the software team and be

assured that their input will be heard and that the software they
are investing their time in will be ”around” and supported. We
argue then that there is a need for more attention to incentives
for the early adopters, which could be defined as part of the
research plan, which is typically developed when seeking fund-
ing. There also needs to be mechanisms to support that soft-
ware that is needed by the science community, independent of
its commercial viability.

Sustainability. Traditionally, sustainability plans for research
outcomes often target commercialization or open-source com-
munities, however not all teams want to commercialize their
software, or there may not be a clear path to commercialization.
For example, although there are examples of commercial work-
flow systems, the Pegasus team, which is primarily focused on
research and its translation to other scientific domains, has not
been interested in pursuing commercialization. We believe that
this would be a distraction to the main RD effort. In practice,
most of the projects sunset at the end of the grant’s period of
performance when no subsequent funding is found. In [5], the
authors argue that commercialization and open-source models
to distributed research artifacts are not sufficient to characterize
translation, and that typically funding bodies do not intrinsi-
cally support translation. Therefore, we argue that there is a
need for an effort to balance sustainability and translation, and
to produce a plan for supporting TCS and sustainability efforts
as distinct, yet necessary, campaigns.

6. Conclusion

In this paper, we presented how the Pegasus workflow man-
agement system has incorporated translational computer sci-
ence in practice along the project’s lifespan. We reported on our
experience on building a strong, long-term engagement with
the community to establish mutually beneficial relationships
between the core R&D team and the user community, so that
the latter can provide valuable feedback and testing capabilities
at scale for the Pegasus software framework, while benefiting
from better support and attention to their specific needs. Along
this process, we recognized that understanding the community
needs is key for driving features development, and therefore
achieving TCS. We have also discussed our approach over the
past two decades to address numerous challenges in performing
TCS in practice. These include lack of targeted, steady fund-
ing; lack of incentives for early adopters; balancing TCS and
sustainability; and maintaining a heterogeneous research and
development team, e.g., GRAs and research staff and faculty
focused on research and professional software developers sup-
porting translation. Last, we have provided recommendations
on how TCS could be better incorporated by funding bodies and
become part of the research project’s critical path. Future di-
rections for Pegasus include continuous engagement with user
community and funding bodies, and broadening the scope of
our friendly users to experiment at scale with emerging appli-
cations such as artificial intelligence and particularly machine
learning.

Acknowledgments. This work is funded by NSF contract

#1664162, “SI2-SSI: Pegasus: Automating Compute and Data
Intensive Science”.

References

[1] E. Zerhouni, Translational research: moving discovery to practice, Clin-
ical Pharmacology & Therapeutics 81 (1) (2007) 126-128. doi:10.
1038/sj.clpt.6100029.

[2] J. Zoellner, L. Van Horn, P. M. Gleason, C. J. Boushey, What is transla-

tional research? concepts and applications in nutrition and dietetics, Jour-

nal of the Academy of Nutrition and Dietetics 115 (7) (2015) 1057-1071.

doi:10.1016/j.jand.2015.03.010.

S. H. Woolf, The meaning of translational research and why it matters,

Jama 299 (2) (2008) 211-213. doi:10.1001/jama.2007.26.

Umichigan translational research survey, https://research.

umich.edu/sites/default/files/resource-download/

translational_research_survey_2017.pdf (2017).

[S] D. Abramson, M. Parashar, Translational research in computer science,

Computer 52 (9) (2019) 16-23. doi:10.1109/MC.2019.2925650.

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,

R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, K. Wenger, Pegasus,

a workflow management system for science automation, Future Genera-

tion Computer Systems 46 (0) (2015) 17-35. doi:10.1016/j.future.

2014.10.008.

[7]1 E. Deelman, K. Vahi, M. Rynge, R. Mayani, R. Ferreira da Silva, G. Pa-
padimitriou, M. Livny, The evolution of the pegasus workflow manage-
ment software, Computing in Science Engineering 21 (4) (2019) 22-36.
doi:10.1109/MCSE.2019.2919690.

[8] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman,

K. Blackburn, P. Ehrens, A. Lazzarini, R. Williams, S. Koranda, Griphyn

and ligo, building a virtual data grid for gravitational wave scientists, in:

11th IEEE International Symposium on High Performance Distributed

Computing, 2002, pp. 225-234. doi:10.1109/HPDC.2002.1029922.

X. Collaboration, Observation of two-neutrino double electron capture in

124 xe with xenonl1t, Nature 568 (7753) (2019) 532-535. doi:10.1038/

s41586-019-1124-4.

[10] P. Couvares, T. Kosar, A. Roy, J. Weber, K. Wenger, Workflow manage-
ment in condor, in: Workflows for e-Science, Springer, 2007, pp. 357-
375. d0i:10.1007/978-1-84628-757-2_22.

[11] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice:
the condor experience, Concurrency and computation: practice and expe-
rience 17 (2-4) (2005) 323-356. doi:10.1002/cpe.938.

[12] B. P. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams,
T. Adams, P. Addesso, R. Adhikari, V. Adya, et al., Search for gravita-
tional waves from scorpius x-1 in the first advanced ligo observing run
with a hidden markov model, Physical Review D 95 (12) (2017) 122003.
doi:10.1103/PhysRevD.95.122003.

[13] T. H. Jordan, S. Callaghan, R. W. Graves, F. Wang, K. R. Milner, C. A.
Goulet, P. J. Maechling, et al., Cybershake models of seismic hazards in
southern and central california, Seismological Research Letters 89 (2B)
(2018) 875-876.

[14] M. Rynge, S. Callaghan, E. Deelman, G. Juve, G. Mehta, K. Vahi, P. J.
Maechling, Enabling large-scale scientific workflows on petascale re-
sources using mpi master/worker, in: Proceedings of the 1st Confer-
ence of the Extreme Science and Engineering Discovery Environment:
Bridging from the eXtreme to the campus and beyond, 2012, pp. 1-8.
doi:10.1145/2335755.2335846.

[15] G. Singh, K. Vahi, A. Ramakrishnan, G. Mehta, E. Deelman, H. Zhao,
R. Sakellariou, K. Blackburn, D. Brown, S. Fairhurst, D. Meyers, G. B.
Berriman, Optimizing workflow data footprint, Special issue of the Sci-
entific Programming Journal dedicated to Dynamic Computational Work-
flows: Discovery, Optimisation and Scheduling (2007). doi:10.1155/
2007/701609.

[16] D. M. Rubio, E. E. Schoenbaum, L. S. Lee, D. E. Schteingart, P. R.
Marantz, K. E. Anderson, L. D. Platt, A. Baez, K. Esposito, Defin-
ing translational research: implications for training, Academic medicine:
journal of the Association of American Medical Colleges 85 (3) (2010)
470. doi:10.1097/ACM.0b013e3181ccd618.

[17] M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, Algorithms for cost-and
deadline-constrained provisioning for scientific workflow ensembles in

3

—_

[4

[inar

[6

=

[9

—

https://doi.org/10.1038/sj.clpt.6100029
https://doi.org/10.1038/sj.clpt.6100029
https://doi.org/10.1016/j.jand.2015.03.010
https://doi.org/10.1001/jama.2007.26
https://research.umich.edu/sites/default/files/resource-download/translational_research_survey_2017.pdf
https://research.umich.edu/sites/default/files/resource-download/translational_research_survey_2017.pdf
https://research.umich.edu/sites/default/files/resource-download/translational_research_survey_2017.pdf
https://doi.org/10.1109/MC.2019.2925650
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1109/MCSE.2019.2919690
https://doi.org/10.1109/HPDC.2002.1029922
https://doi.org/10.1038/s41586-019-1124-4
https://doi.org/10.1038/s41586-019-1124-4
https://doi.org/10.1007/978-1-84628-757-2_22
https://doi.org/10.1002/cpe.938
https://doi.org/10.1103/PhysRevD.95.122003
https://doi.org/10.1145/2335755.2335846
https://doi.org/10.1155/2007/701609
https://doi.org/10.1155/2007/701609
https://doi.org/10.1097/ACM.0b013e3181ccd618

[18]

[19]

[20]

(21]

iaas clouds, Future Generation Computer Systems 48 (2015) 1-18. doi:
10.1016/j.future.2015.01.004.

M. Rynge, K. Vahi, E. Deelman, A. Mandal, 1. Baldin, O. Bhide, R. Hei-
land, V. Welch, R. Hill, W. L. Poehlman, et al., Integrity protection for
scientific workflow data: Motivation and initial experiences, in: Practice
and Experience in Advanced Research Computing on Rise of the Ma-
chines (learning), 2019, pp. 1-8. doi:10.1145/3332186.3332222.

R. Ferreira da Silva, S. Callaghan, T. M. A. Do, G. Papadimitriou,
E. Deelman, Measuring the impact of burst buffers on data-intensive sci-
entific workflows, Future Generation Computer Systems 101 (2019) 208—
220. doi:10.1016/j.future.2019.06.016.

W. Chen, R. Ferreira da Silva, E. Deelman, T. Fahringer, Dynamic
and fault-tolerant clustering for scientific workflows, IEEE Transactions
on Cloud Computing 4 (1) (2016) 49-62. doi:10.1109/TCC.2015.
2427200.

G. Papadimitriou, M. Kiran, C. Wang, A. Mandal, E. Deelman, Train-
ing classifiers to identify tcp signatures inscientific workflows, in: 2019

[22]

[23]

[24]

IEEE/ACM Innovating the Network for Data-Intensive Science (INDIS),
2019, pp. 61-68. doi:10.1109/INDIS49552.2019.00012.

T. M. A. Do, L. Pottier, S. Thomas, R. Ferreira da Silva, M. A.
Cuendet, H. Weinstein, T. Estrada, M. Taufer, E. Deelman, A novel
metric to evaluate in situ workflows, in: International Conference on
Computational Science (ICCS), 2020, pp. 538-553. doi:10.1007/
978-3-030-50371-0_40.

R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Av-
ery, K. Blackburn, T. Wenaus, F. Wiirthwein, 1. Foster, R. Gardner,
M. Wilde, A. Blatecky, J. McGee, R. Quick, The Open Science Grid,
Journal of Physics: Conference Series 78 (1) (2007) 012057. doi:
10.1088/1742-6596/78/1/012057.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, et al., Xsede: accel-
erating scientific discovery, Computing in science & engineering 16 (5)
(2014) 62-74. doi:10.1109/MCSE.2014.80.

https://doi.org/10.1016/j.future.2015.01.004
https://doi.org/10.1016/j.future.2015.01.004
https://doi.org/10.1145/3332186.3332222
https://doi.org/10.1016/j.future.2019.06.016
https://doi.org/10.1109/TCC.2015.2427200
https://doi.org/10.1109/TCC.2015.2427200
https://doi.org/10.1109/INDIS49552.2019.00012
https://doi.org/10.1007/978-3-030-50371-0_40
https://doi.org/10.1007/978-3-030-50371-0_40
https://doi.org/10.1088/1742-6596/78/1/012057
https://doi.org/10.1088/1742-6596/78/1/012057
https://doi.org/10.1109/MCSE.2014.80

	Introduction
	Pegasus Workflow Management System
	Translational Computer Science
	Pegasus as Translational CS
	Laboratory
	Locale
	Community

	Challenges in Translational Computer Science
	Conclusion

