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Abstract. A system of partial differential equations for a diffusion interface model is con-
sidered for the stationary motion of two macroscopically immiscible, viscous Newtonian fluids
in a three-dimensional bounded domain. The governing equations consist of the stationary
Navier-Stokes equations for compressible fluids and a stationary Cahn-Hilliard type equa-
tion for the mass concentration difference. Approximate solutions are constructed through a
two-level approximation procedure, and the limit of the sequence of approximate solutions is
obtained by a weak convergence method. New ideas and estimates are developed to establish
the existence of weak solutions with a wide range of adiabatic exponent.

1. Introduction

We are concerned with a diffuse interface model for a mixture of two viscous fluids. The
interface is usually caused by continuous but steep change of flow properties of immiscible
or partially miscible fluids, which has been studied largely in literature (see [9, 34]). An
important analytical and numerical method to model such two-phase flows is the diffuse
interface modeling (see [45]). The hydrodynamical system of the mixture of two fluids is
naturally the Navier-Stokes equations in each fluid domain with the kinematic and other
conditions on the interface. On the other hand, the Allen-Cahn type or Cahn-Hilliard type
of mixing models is commonly used based on the choice of the flux and production rate,
see [19, 33] and the reference cited therein. In this paper, we study the following stationary
Cahn-Hilliard-Navier-Stokes equations of the compressible mixture of fluid flows in a bounded
domain Ω ⊂ R3: 

div(ρu) = 0,

div(ρu⊗ u) = div (Sns + Sc − pI) + ρg1 + g2,

div(ρuc) = div(m∇µ),

ρµ = ρ
∂f(ρ, c)

∂c
−4c,

(1.1)

where ρ, u, c, µ denote the total density, the mean velocity field, the mass concentration
difference of the two components, and the chemical potential, respectively; m is the mobility
that is assumed to be one for simplicity, and g1 and g2 are given force terms. We denote the
Navier-Stokes stress tensor by

Sns = λ1

(
∇u+ (∇u)>

)
+ λ2divuI, (1.2)

where (∇u)> denotes the transpose of ∇u, I is the identity matrix, and λ1, λ2 are constants
satisfying λ1 > 0, 2λ1 + 3λ2 ≥ 0. In comparison with a single fluid, there is an additional
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capillary stress tensor

Sc = −∇c⊗∇c+
1

2
|∇c|2I, (1.3)

which describes the capillary effect related to the surface energy. In this paper we assume the
following form of pressure

p = ρ2∂f(ρ, c)

∂ρ
, (1.4)

and the free energy density

f(ρ, c) = ργ−1 + fmix(ρ, c) = ργ−1 +H1(c) ln ρ+H2(c), (1.5)

with the adiabatic exponent γ > 1 and two given functions Hi (i = 1, 2) of one variable. We
remark that the mixed free energy density fmix(ρ, c) is mainly motivated by the well-known
logarithmic form (cf. [5, 34]). We shall study the stationary equations (1.1) with the following
boundary conditions:

u = 0,
∂c

∂n
= 0,

∂µ

∂n
= 0, on ∂Ω (1.6)

and the additional conditions:∫
ρ(x)dx = m1 > 0 and

∫
ρ(x)c(x)dx = m2, (1.7)

with two given constants m1 > 0 and m2.
System (1.1) describes the equilibrium state for the compressible mixture of two macro-

scopically immiscible, viscous Newtonian fluids (cf. [19, 34, 44]). The goal of this paper is
to investigate the existence of solutions to the problem (1.1)-(1.7), and give a rigorous math-
ematical justification of the existence of an equilibrium state for the mixture of fluids. We
recall that the corresponding evolutionary system:

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) = div

(
Sns + Sc − ρ2∂f(ρ, c)

∂ρ
I
)
,

∂t(ρc) + div(ρuc) = 4µ,

ρµ = ρ
∂f(ρ, c)

∂c
−4c,

(1.8)

was derived in Abels-Feireisl [5, Section 2.2], and can be regarded as a variant of the model
suggested by Lowengrub-Truskinovsky [34]. For the evolutionary system (1.8), the existence
of multi-dimensional renormalized weak solution of finite energy was obtained in [5] for γ > 3

2 ,
and the one-dimensional weak and strong solutions were studied in [15, 18]. For the results
on the stationary compressible Navier-Stokes equations, we refer the readers to the books
[32, 37], the papers [27, 35, 36, 38] and references therein. For the models of the Cahn-
Hilliard-Navier-Stokes type of multi-component viscous fluids with phase transitions, in the
case of incompressible fluids with matched or non-matched densities, there are several different
approaches to describe the evolutionary diffusion processes (cf. [6, 10, 20, 21, 30, 43]), and
there is a large literature on the existence and long-time behavior of solutions; see, e.g., [1–
4, 12, 13, 17, 25, 26, 29, 33, 43] and the references therein; and we also mention the existence
results in [11, 40, 41] for weak solutions to the stationary non-Newtonian flows in two and
three dimensions. As far as the compressible flow is concerned, Lowengrub-Truskinovsky [34]
developed a thermodynamically and mechanically consistent model that extends the Euler
and Navier-Stokes models to the case of compressible binary Cahn-Hilliard mixtures; see also
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[8, 9, 16] for other different approaches. For general interface dynamics of the mixture of
different fluids, solids or gas, including the Allen-Cahn type and Cahn-Hilliard type, see [5, 8–
10, 14, 16, 17, 19, 20, 33, 34, 39, 43, 44] and the references therein for the discussions and
mathematical results.

We now introduce the notation and state our main result. For two given matrices A =
(aij)3×3 and B = (bij)3×3, we denote their scalar product by A : B =

∑3
i,j=1 aijbij . For two

vectors a, b ∈ R3, a ⊗ b = (aibj)3×3. The characteristic function of a set A is denoted by
1A. Let C∞0 (Ω, R3) be the set of all smooth and compactly supported functions f : Ω 7→ R3,
and C∞0 (Ω) = C∞0 (Ω, R). Similarly we denote by C∞(Ω) = C∞(Ω, R) the set of uniformly
smooth functions on Ω. We use

∫
f =

∫
Ω f(x)dx to denote the integral of f on Ω. For any

p ∈ [1,∞] and integer k ≥ 0, W k,p(Ω, R3) and W k,p(Ω) are the standard Sobolev spaces (cf.
[7]) valued in R3 or R, and Lp = W 0,p and Hk = W k,2. We denote by f the weak limit of
function f.

The definition of weak solutions is as follows.

Definition 1.1. The function (ρ, u, µ, c) is a weak solution to the problem (1.1)-(1.7) if for
some p > 6

5 and θ > 0 with θ + γ > 3
2 ,

ρ ∈ Lγ+θ(Ω), ρ ≥ 0 a.e. in Ω,

u ∈ H1
0 (Ω,R3), µ ∈ H1

n(Ω), c ∈W 2,p
n (Ω),

where W k,p
n (Ω) = {f ∈W k,p(Ω) : ∂f

∂n |∂Ω = 0} for any positive integer k and H1
n = W 1,2

n , such
that,

(i) The system (1.1) is satisfied in the distribution sense in Ω, i.e., for any Φ ∈ C∞0 (Ω, R3),∫ (
ρu⊗ u+ ρ2∂f(ρ, c)

∂ρ
I− Sns − Sc

)
: ∇Φ =

∫
(ρg1 + g2) · Φ,

and for any φ ∈ C∞(Ω),∫
ρu · ∇φ = 0,

∫
ρcu · ∇φ =

∫
∇µ · ∇φ,

∫
ρµφ− ρ∂f(ρ, c)

∂c
φ =

∫
∇c · ∇φ;

and (1.7) holds for some m1 > 0 and m2 ∈ R.
(ii) If (ρ, u) is prolonged by zero outside Ω, then both the equation (1.1)1 and

div(b(ρ)u) +
(
b′(ρ)ρ− b(ρ)

)
divu = 0

are satisfied in the distribution sense in R3, where b ∈ C1([0,∞)) with b′(z) = 0 if z is large
enough.

(iii) The energy inequality is valid∫ (
λ1|∇u|2 + (λ1 + λ2)(divu)2 + |∇µ|2

)
dx ≤

∫
(ρg1 + g2) · u.

We are ready to state our main result.

Theorem 1.1. Assume that Ω ⊂ R3 is a bounded and simply connected domain with C2

smooth boundary,
g1, g2 ∈ L∞(Ω,R3), (1.9)

the functions in (1.5) satisfy

|Hi(c)|+ |H ′i(c)| ≤ H <∞, ∀ c ∈ R, i = 1, 2, (1.10)
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for some constant H, and in addition, γ >
5

3
, if ∇× g1 ≡ 0 in Ω,

γ > 2, otherwise.
(1.11)

Then, for any given constants m1 > 0 and m2 ∈ R, the problem (1.1)-(1.7) admits a weak
solution (ρ, u, µ, c) in the sense of Definition 1.1.

We shall prove Theorem 1.1 via two levels of approximations and weak convergence meth-
ods, which rely on the heuristic approaches in [5, 24, 27, 31, 32, 35–38]. We remark that our
stationary problem seems worse than the time-evolutionary one because the energy inequal-
ity by itself gives less useful information about the sequence of approximate solutions, and
it is much more complicated than the Navier-Stokes equations of the single fluid due to the
coupling with the Cahn-Hilliard equations. Our construction of weak solution in Theorem
1.1 of this paper follows the spirit of [27, 32, 35–38] for the stationary compressible Navier-
Stokes equations, but we also need to overcome extra barriers from the coupled Cahn-Hilliard
equations. The main difficulties and our strategies are described below.

We first construct the approximate system (2.2), which is inspired by the time-discretization
of equations (1.8). The main ideas for this approximation are the following: (1) To guarantee
the sufficient regularity on density ρ, we add the diffusion term ε44ρ in the transport equa-
tion and an artificial pressure in the momentum equation. Our choice of ε4 as the diffusion
coefficient makes it possible to avoid the appearance of new parameters and thus simplify the
approximation procedures. (2) In the proof, the total mass and difference of volume fraction
should be preserved, namely, both

∫
Ω ρ(x)dx and

∫
Ω ρ(x)c(x)dx are constant. This is nec-

essary from both the physical and mathematical point of view, and can be derived by the
Hardy-Poincaré type inequality as well as the well-posedness of solutions. For this purpose,
we use ε2(ρ − ρ0) and ε(ρc − ρ0c0) in the approximation, which can be regarded as time
discretization of ∂tρ and ∂t(ρc) respectively. (3) For fixed ε and δ, we solve (2.2) by the
Schaefer fixed point theorem. Some new ideas are needed in the proof. Firstly, the solution is
not self-contained due to the Neumann boundary conditions imposed on µ and c. To fix the
constants, we add compatible integral conditions in the system (2.11). Secondly, we use the
conservative quantities (1.7) and interpolation techniques to obtain the required estimates so
that the uniform a priori bounds can be closed. Next, notice that the pressure p relies not
only on ρ but also on c, and hence is not monotone in ρ for all range of c. In this connection,
we adopt some idea in [5] and decompose

p = ρ2∂f

∂ρ
= ρ2∂f̃

∂ρ
− 2Hρ1{ρ≤k} = p̃− 2Hρ1{ρ≤k}, (1.12)

where Hρ1{ρ≤k} is bounded for some large but finite constant k. See Remark 2.3 for the detail.
Finally, to avoid the appearance of higher order derivatives of c, we replace the capillary stress

div
(
−∇c⊗∇c+ 1

2 |∇c|
2I
)

in (2.2) by the equivalent expression
(
ρµ− ρ∂f(ρ,c)

∂c

)
∇c.

Then we shall establish the a priori estimates uniform in ε to guarantee the ε-limit proce-
dure to obtain the approximation sequence (3.1) by using the compactness theories developed
in [24, 31, 32]. In the proof, we need strong convergence of ∇c for taking limit in the mo-
mentum equation. For this purpose, we shall make full use of the properties obtained from
the higher order diffusion in the Cahn-Hilliard equation; see for example the proof of (3.19).
Another difficulty is the non-monotonicity of the pressure with respect to ρ. Thanks to the
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decomposition technique (see Remark 2.3) H1(c) is always positive, which leads to our desired
estimates.

Finally we need to show the δ-limit in the vanishing artificial pressure term. The proof shall
be based on the compactness theories in [24, 31]. The difficulty is that the approximation
sequence does not provide any good estimate on the density but ‖ρ‖L1 , which is different from
the evolutionary equations for which the density ρ is bounded in Lγ with γ > 1. To overcome
the difficulty, we borrow some ideas developed in [27, 36] and derive the higher regularities
by means of weighted pressure estimates. However, we need to handle the difficulties caused
by the Newmann boundary conditions and the appearance of the strongly nonlinear stress
tensor div

(
−∇c⊗∇c+ 1

2 |∇c|
2I
)
. See Lemma 4.1 for the detail.

The rest of the paper is organized as follows. In Section 2, we construct the two-level
approximation system, find the solution by the fixed point theorem, and derive some energy
estimates. In Section 3, we derive the uniform estimates in ε and pass the limit as ε goes to
zero. In Section 4, we derive the uniform estimates in δ and pass the limit as δ goes to zero
to finally obtain the weak solution in Theorem 1.1.

2. Construction of approximation solutions

We first set the following fixed constants:

ε ∈ (0, 1), δ ∈ (0, 1); ρ0 =
m1

|Ω|
, c0 =

m2

m1
, (2.1)

where m1, m2 are taken from (1.7), and |Ω| denotes the Lebesgue measure of Ω. Then we
consider the following approximate system:

ε2ρ+ div(ρu) = ε44ρ+ ε2ρ0,

ε2ρu+ div(ρu⊗ u) +∇
(
δρ4 + ρ2∂f(ρ, c)

∂ρ

)
+ ε4∇ρ · ∇u

= divSns + ρµ∇c− ρ∂f(ρ, c)

∂c
∇c+ ρg1 + g2,

ερc+ ρu · ∇c = 4µ+ ερ0c0,

ρµ = ρ
∂f(ρ, c)

∂c
−4c,

(2.2)

with the boundary conditions

u = 0,
∂ρ

∂n
= 0,

∂c

∂n
= 0,

∂µ

∂n
= 0, on ∂Ω. (2.3)

Remark 2.1. A direct computation shows, at least formally,

ρµ∇c− ρ∂f(ρ, c)

∂c
∇c = −4c∇c = div

(
−∇c⊗∇c+

1

2
|∇c|2I

)
= divSc.

The following lemma is concerned with the solvability of (2.2)1, and its proof can be found
in [37, Prop. 4.29].

Lemma 2.1 ([37], Proposition 4.29). Suppose

v ∈W 1,∞
0 (Ω,R3) := {v ∈W 1,∞(Ω,R3), v|∂Ω = 0}. (2.4)
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Then there exists a function ρ = ρ(v) ∈W 2,p(Ω) (1 < p <∞) such that for any η ∈ C∞(Ω),

ε4

∫
∇ρ · ∇η −

∫
ρv · ∇η + ε2

∫
(ρ− ρ0)η = 0, (2.5)

where ε > 0 is a fixed constant. Moreover,

ρ ≥ 0 a.e. in Ω, ‖ρ‖L1 = m1, ‖ρ‖W 2,p ≤ C(ε, p, ‖v‖W 1,∞). (2.6)

Next, we consider the Neumann boundary problem

4ρ = divb with
∂ρ

∂n

∣∣∣
∂Ω

= 0. (2.7)

Lemma 2.2 ([37], Lemma 4.27). Let p ∈ (1,∞) and b ∈ Lp(Ω,R3) be given. Then the
problem (2.7) admits a solution ρ ∈W 1,p(Ω), satisfying∫

∇ρ · ∇φ =

∫
b · ∇φ, ∀ φ ∈ C∞(Ω),

and the estimates

‖∇ρ‖Lp ≤ C(p,Ω)‖b‖Lp and ‖∇ρ‖W 1,p ≤ C(p,Ω)(‖b‖Lp + ‖divb‖Lp).

Our main task in this section is to prove the following theorem.

Theorem 2.1. Under the conditions (1.9), (1.10) and (2.1), for any fixed ε > 0 the problem
(2.2)-(2.3) has a solution (ρε, uε, µε, cε), such that for all p ∈ (1,∞),

0 ≤ ρε ∈W 2,p(Ω), ‖ρε‖L1(Ω) = m1, (2.8)

uε ∈W 1,p
0 (Ω,R3) ∩W 2,p(Ω,R3), (µε, cε) ∈W 2,p(Ω)×W 2,p(Ω). (2.9)

Proof. We will prove Theorem 2.1 by the fixed point theorem. Setting

(v, µ̃, c̃) ∈ W := W 1,∞
0 (Ω,R3)×W 1,p

n (Ω)×W 1,p
n (Ω), (2.10)

where W 1,p
n (Ω) = {f ∈ W 1,p(Ω) : ∂f

∂n |∂Ω = 0} and W 1,∞
0 is from (2.4). Let us consider the

elliptic system of (u, µ, c):

divSns = F 1(v, µ̃, c̃)

:= ε2ρv + div(ρv ⊗ v) +∇(δρ4 + ρ2∂f(ρ, c̃)

∂ρ
) + ε4∇ρ · ∇v

+ ρ
∂f(ρ, c̃)

∂c̃
∇c̃− ρµ̃∇c̃− ρg1 − g2,

4µ = F 2(v, µ̃, c̃) := ερc̃+ ρv · ∇c̃− ερ0c0,

4c = F 3(v, µ̃, c̃) := ρ
∂f(ρ, c̃)

∂c̃
− ρµ̃,∫

ρc̃ = m2 + ε

∫
(ρ0 − ρ)c̃− ε3

∫
∇ρ · ∇c̃,

∫
ρµ̃ =

∫
ρ
∂f(ρ, c̃)

∂c̃
,∫

ρc = m2 + ε

∫
(ρ0 − ρ)c− ε3

∫
∇ρ · ∇c,

∫
ρµ =

∫
ρ
∂f(ρ, c)

∂c
,

u = 0,
∂µ

∂n
= 0,

∂c

∂n
= 0, on ∂Ω,

(2.11)
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where ρ = ρ(v) is determined in Lemma 2.1. For any given (v, µ̃, c̃) satisfying (2.11)4, the
system (2.11) has a solution

(u, µ, c) := A[(v, µ̃, c̃)]. (2.12)

Applying the Lp regularity estimates (cf.[28]), we have

‖(u, µ, c)‖W 2,p ≤ C‖(F 1, F 2, F 3)‖Lp <∞.

Remark 2.2. The condition (2.11)4 guarantees
∫
F 2 =

∫
F 3 = 0 which is compatible with the

Neumann boundary conditions in (2.11). In fact, by this condition together with (2.1) and
Lemma 2.1, one has∫

F 2 =

∫
(ερc̃+ ρv · ∇c̃− ερ0c0) =

∫
(ερc̃+ ρv · ∇c̃)− εm2

= ε

∫
ρc̃+ ε4

∫
∇ρ · ∇c̃+ ε2

∫
(ρ− ρ0)c̃− εm2 = 0.

The second equality of the condition (2.11)4 yields
∫
F 3 = 0 immediately. Finally, we note

that the condition (2.11)5 is for the uniqueness of µ and c. The two conditions (2.11)4 and
(2.11)5 coincide after the fixed point argument.

Proposition 2.1. Suppose that (u, µ, c) is a solution to (2.11) and the operator A :W 7→ W
is defined in (2.12). Then, the set of possible fixed points{

(u, µ, c) ∈ W

∣∣∣∣∣ (u, µ, c) := σA[(u, µ, c)]

for some σ ∈ (0, 1] and ρ = ρ(u)

}
(2.13)

is bounded, where W is defined in (2.10).

A standard argument shows that A is compact and continuous in W. Therefore, using
Proposition 2.1, we conclude from the Schaefer Fixed Point Theorem (Chap. 9, Th. 4 in [22])
that (u, µ, c) := A[(u, µ, c)] with ρ = ρ(u). This and Lemma 2.1 guarantee the existence of
solution (ρε, uε, µε, cε) to (2.2)-(2.3). Consequently, (2.8) follows directly from (2.6).

It remains to prove Proposition 2.1 as well as (2.9).

Proof of Proposition 2.1. It suffices to show that there is a constant M <∞ independent
of σ such that

‖(u, µ, c)‖W < M, (2.14)

where (ρ, u, µ, c) solves

ε2ρ+ div(ρu) = ε44ρ+ ε2ρ0,

divS = σF 1(u, µ, c),

4µ = σF 2(u, µ, c),

4c = σF 3(u, µ, c),∫
ρc = m2 + ε

∫
(ρ0 − ρ)c− ε3

∫
∇ρ · ∇c,

∫
ρµ =

∫
ρ
∂f(ρ, c)

∂c
,

u = 0,
∂ρ

∂n
= 0,

∂µ

∂n
= 0,

∂c

∂n
= 0, on ∂Ω.

(2.15)

We divide the proof into several steps.
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Step 1. It follows directly from (2.15)1 that ‖ρ‖L1 = m1. Multiplying (2.15)1 by 1
2 |u|

2 and
(2.15)2 by u respectively, we get

ε2σ

2

∫
(ρ+ ρ0)|u|2 + σ

∫
u · ∇

(
δρ4 + ρ2∂f

∂ρ

)
+

∫
Sns : ∇u+ σ

∫
ρ
∂f

∂c
(u · ∇)c− σ

∫
ρµ(u · ∇)c = σ

∫
(ρg1 + g2) · u.

(2.16)

Using (2.15)1, one has∫
u · ∇

(
δρ4 + ρ2∂f

∂ρ

)
=

∫
ρu · ∇

(
4δ

3
ρ3 +

∂(ρf)

∂ρ

)
+

∫
u ·
(
∇ρ∂(ρf)

∂ρ
−∇(ρf)

)
= −

∫
div(ρu)

(
4δ

3
ρ3 +

∂(ρf)

∂ρ

)
−
∫
ρ
∂f

∂c
(u · ∇)c

= ε2

∫ (
4δ

3
ρ3 +

∂(ρf)

∂ρ

)
(ρ− ρ0) + ε4

∫ (
4δρ2 +

∂2(ρf)

∂ρ2

)
|∇ρ|2

+ ε4

∫
∂2(ρf)

∂ρ∂c
∇ρ · ∇c−

∫
ρ
∂f

∂c
(u · ∇)c.

Substitute the above into (2.16) to obtain

ε2σ

2

∫
(ρ+ ρ0)|u|2 + ε2σ

∫ (
4δ

3
ρ3 +

∂(ρf)

∂ρ

)
(ρ− ρ0)

+

∫
Sns : ∇u− σ

∫
ρµ(u · ∇)c+ ε4σ

∫ (
4δρ2 +

∂2(ρf)

∂ρ2

)
|∇ρ|2

= σ

∫
(ρg1 + g2) · u− ε4σ

∫
∂2(ρf)

∂ρ∂c
∇ρ · ∇c.

(2.17)

Next, multiplying (2.15)3 by µ and (2.15)4 by c gives rise to∫
|∇µ|2 + σ

∫
ρµ(u · ∇)c+ ε

∫
|∇c|2 = εσ

∫
ρ0c0µ− εσ

∫
ρ
∂f

∂c
c. (2.18)

Combining (2.17) with (2.18) leads to

ε2σ

2

∫
(ρ+ ρ0)|u|2 + ε2σ

∫ (
4δ

3
ρ3 +

∂(ρf)

∂ρ

)
(ρ− ρ0)

+ ε

∫
|∇c|2 +

∫
|∇µ|2 +

∫
Sns : ∇u+ ε4σ

∫ (
4δρ2 +

∂2(ρf)

∂ρ2

)
|∇ρ|2

= σ

∫
(ρg1 + g2) · u− ε4σ

∫
∂2(ρf)

∂ρ∂c
∇ρ · ∇c+ εσ

∫
ρ0c0µ− εσ

∫
ρ
∂f

∂c
c.

(2.19)

We first assume that

H1(c) ≥ 1 for all c ∈ R. (2.20)

(See Remark 2.3 for the opposite case). Then, from (1.5) we compute

4δρ2 +
∂2(ρf)

∂ρ2
≥ 4δρ2 + γ(γ − 1)ργ−2 + ρ−1 ≥ 0. (2.21)
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Therefore,∫ (
4δρ2 +

∂2(ρf)

∂ρ2

)
|∇ρ|2 ≥

∫ (
δ|∇ρ2|2 + 4(γ − 1)γ−1|∇ρ

γ
2 |2 + 4|∇√ρ|2

)
and ∫ (

4δ

3
ρ3 +

∂(ρf)

∂ρ

)
(ρ− ρ0) ≥

∫ (
δ

3
ρ4 + ρf(ρ, c)

)
−
∫ (

δ

3
ρ4

0 + ρ0f(ρ0, c)

)
.

Taking the last two inequalities into accounts, we estimate (2.19) as

ε2

∫
(ρ+ ρ0)|u|2 + ε2σ

∫
δ

3
ρ4 + ε2σ

∫
ρf(ρ, c)

+ ε

∫
|∇c|2 +

∫
|∇µ|2 +

∫
S : ∇u

+ ε4σ

∫ (
δ
∣∣∇ρ2

∣∣2 + 4(γ − 1)γ−1|∇ρ
γ
2 |2 + 4|∇√ρ|2

)
≤ σ

∫
(ρg1 + g2) · u+ ε2σ

∫
δ

3
ρ4

0 − ε2σ

∫
ρ0f(ρ0, c)

− ε4σ

∫
∂2(ρf)

∂ρ∂c
∇ρ · ∇c+ εσ

∫
ρ0c0µ− εσ

∫
ρ
∂f

∂c
c.

(2.22)

Remark 2.3. If (2.20) fails, we follow the idea in [5] and express the f(ρ, c) in (1.5) as

f(ρ, c) = ργ−1 +
(
H1(c) + 2H1{ρ≤k}

)
ln ρ+H2(c)︸ ︷︷ ︸

f̃(ρ,c)

−2 ln ρH1{ρ≤k},

where H is taken from (1.10), and the constant k is large but fixed. Let us decompose the
pressure function as

p = ρ2∂f

∂ρ
= ρ2∂f̃

∂ρ
− 2Hρ1{ρ≤k} = p̃− 2Hρ1{ρ≤k} (2.23)

and replace p = ρ2 ∂f
∂ρ with p̃ = ρ2 ∂f̃

∂ρ in (2.16). We claim that (2.21) is also valid. To see this,

if ρ ≤ k, we have

4δρ2 +
∂2(ρf̃)

∂ρ2
= 4δρ2 + γ(γ − 1)ργ−2 + (H1 + 2H)ρ−1

≥ 4δρ2 + γ(γ − 1)ργ−2 +Hρ−1 > 0,

owing to H1(c) + 2H > H; while if ρ > k,

4δρ2 +
∂2(ρf̃)

∂ρ2
= 4δρ2 +

∂2(ρf)

∂ρ2

≥ 4δρ2 + γ(γ − 1)ργ−2 +H1(c)ρ−1 ≥ 4δρ2 −Hρ−1 > 2δρ2 > 0,

as long as k = k(δ,H) is taken to be large enough. However, the following extra term will be
induced by the decomposition (2.23),∫

2Hρ1{ρ≤k}divu.



10 Z. LIANG AND D. WANG

Fortunately, it can be bounded by ‖∇u‖L2 because ρ1{ρ≤k} is bounded. Without loss of
generality, in what follows, we always assume that, for all c ∈ R, H1(c) is positive and
bounded from below.

Step 2. Let us deal with the terms on the right-hand side of (2.22). Thanks to (1.5), (1.10),
(1.9), (2.1), and the Hölder inequality, the first three terms satisfy

σ

∫
(ρg1 + g2) · u+ ε2σ

∫
δ

3
ρ4

0 + ε2σ

∫
ρ0f(ρ0, c)

≤ C‖u‖L6‖ρ‖
L

6
5
‖g1‖L∞ + C‖u‖L6‖g2‖L∞ + C

≤ C
(

1 + ‖ρ‖2
L

6
5

)
+
λ1

2
‖∇u‖2L2 .

(2.24)

Throughout this section, the positive constants C,Ci (i = 1, 2, · · ·) may depend on g1, g2, λ1,
m1, m2, δ, γ, H, |Ω|, but not on ε or σ.

Using (1.5) and (1.10) again, one has

ε4σ

∫
∂2(ρf)

∂ρ∂c
∇ρ · ∇c ≤ Cε4σ‖∇c‖L2‖(1 + ln ρ)∇ρ‖L2

≤ ε

4
‖∇c‖2L2 + C1ε

7σ

∫ (
δ
∣∣∇ρ2

∣∣2 + 4|∇√ρ|2
)
.

(2.25)

It follows from (2.15)4 that∫
ρµ =

∫ (
ρ
∂f

∂c
+ σ−14c

)
=

∫
ρ
∂f

∂c
≤ C (‖ρ ln ρ‖L1 + 1) . (2.26)

Then we have, from (2.26) together with (2.1) and the Poincaré inequality,∫
µ =

1

ρ0

∫
ρ

(
1

|Ω|

∫
µ

)
=

1

ρ0

∫
ρµ− 1

ρ0

∫
ρ

(
µ− 1

|Ω|

∫
µ

)
≤ C (‖ρ ln ρ‖L1 + 1) + C‖ρ‖

L
6
5
‖∇µ‖L2 ,

(2.27)

which implies

‖µ‖L1 ≤ C‖∇µ‖L2 + C (‖ρ ln ρ‖L1 + 1) + C‖ρ‖
L

6
5
‖∇µ‖L2

≤ C(1 + ‖∇µ‖L2)(1 + ‖ρ‖
L

6
5
),

where we have used ‖ρ ln ρ‖L1 ≤ C + ‖ρ‖
L

6
5
, owing to the interpolation and ‖ρ‖L1 = m1.

Thus,

‖µ‖Lp ≤ C
(

1 + ‖∇µ‖L2)(1 + ‖ρ‖
L

6
5

)
, ∀ p ∈ [1, 6]. (2.28)

Thanks to (2.1) and (2.15), one has∫
ρc = m2 + ε

∫
(ρ0 − ρ)c+ ε3

∫
c4ρ

= m2 + ε

∫
(ρ0 − ρ)c+ ε3

∫
ρ4c

≤ C + Cε‖ρ‖
L

6
5
‖∇c‖L2 + Cε3(‖ρ‖2

L
12
5
‖µ‖L6 + ‖ρ2 ln ρ‖L1),

(2.29)
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where we have used the estimate:∫
(ρ− ρ0)c =

∫
ρc− 1

|Ω|

∫
m1c =

∫
ρ

(
c− 1

|Ω|

∫
c

)
≤ C‖ρ‖

L
6
5
‖∇c‖L2 .

With the aid of (2.29), the same method as (2.27) yields,∫
c =

1

ρ0

∫
ρc− 1

ρ0

∫
ρ

(
c− 1

|Ω|

∫
c

)
≤ C + C‖ρ‖

L
6
5
‖∇c‖L2 + Cε3(‖ρ‖2

L
12
5
‖µ‖L6 + ‖ρ2 ln ρ‖L1).

(2.30)

Thus, for p ∈ [1, 6],

‖c‖Lp ≤ C(1 + ‖ρ‖
L

6
5
)(1 + ‖∇c‖L2) + Cε3(‖ρ‖2

L
12
5
‖µ‖L6 + ‖ρ2 ln ρ‖L1). (2.31)

Having (2.28) and (2.31) in hand, we can make the following computation and estimate,

εσ

∫
ρ0c0µ− εσ

∫
ρ
∂f

∂c
c

≤ Cσε
(
‖µ‖L1 + ‖ρ(ln ρ+ 1)‖

L
6
5
‖c‖L6

)
≤ Cσε (1 + ‖∇µ‖L2)

(
1 + ‖ρ‖

L
6
5

)
+ Cσε

(
1 + ‖ρ ln ρ‖2

L
6
5

)
(1 + ‖∇c‖L2)

+ Cσε4
(

1 + ‖ρ ln ρ‖
L

6
5

)
(‖ρ‖2

L
12
5
‖µ‖L6 + ‖ρ2 ln ρ‖L1)

≤ C +
1

2
‖∇µ‖2L2 +

ε

4
‖∇c‖2L2

+ Cσ
(
ε‖ρ ln ρ‖4

L
6
5

+ ε4‖ρ ln ρ‖
L

6
5
‖ρ2 ln ρ‖L1 + ε8‖ρ ln ρ‖4

L
6
5
‖ρ‖4

L
12
5

)
.

(2.32)

Then, we compute

σ
(
ε‖ρ ln ρ‖4

L
6
5

+ ε4‖ρ ln ρ‖
L

6
5
‖ρ2 ln ρ‖L1 + ε8‖ρ ln ρ‖4

L
6
5
‖ρ‖4

L
12
5

)
≤ C +

ε2σ

8
‖ρ ln ρ‖8

L
6
5

+
ε2σ

8
‖ρ‖4L4 + σε8‖ρ ln ρ‖4

L
6
5
‖ρ‖4

L
12
5

≤ C +
ε2σ

4
‖ρ‖4L4 + σε8‖ρ ln ρ‖4

L
6
5
‖ρ‖4

L
12
5

≤ C +
ε2σ

4
‖ρ‖4L4 + σε8‖ρ2‖

20
11

L6

≤ C(δ) +
ε2σ

2
‖ρ‖4L4 +

σε4δ

2
‖∇(ρ2)‖2L2 ,

where in the third inequality sign we have used

‖ρ ln ρ‖4
L

6
5
‖ρ‖4

L
12
5
≤ C‖ρ‖

38
11

L12 ≤ C + ‖ρ2‖
20
11

L6 ,

owing to interpolation and the fact ‖ρ‖L1 = m1. By the above estimates, substituting (2.24)-
(2.25) and (2.32) into (2.22) concludes

ε2σ‖ρ‖4L4 + ‖∇u‖2L2 + ‖∇µ‖2L2 + ε‖∇c‖2L2 + ε4σ

∫ (
δ
∣∣∇ρ2

∣∣2 + 4|∇√ρ|2
)

≤ C + C‖ρ‖2
L

6
5
,
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which, along with (2.28) and (2.31), implies

ε2‖ρ‖4L4 + ‖u‖2H1
0

+ ε‖c‖2H1 + ‖µ‖2H1 + ε4‖
∣∣∇ρ2

∣∣+ |∇√ρ|‖2L2 ≤ C + C‖ρ‖2
L

6
5
. (2.33)

Step 3. By (2.33), it is clear that

‖ρ‖4L4 + ‖u‖2H1
0

+ ‖µ‖2H1 + ‖c‖2H1 + ‖
∣∣∇ρ2

∣∣+ |∇√ρ|‖2L2 ≤ C(ε). (2.34)

From [37, Lemma 3.17] we take the Bogovskii operator

B = [B1,B2,B3] :

{
f ∈ Lp |

∫
f = 0

}
7→W 1,p

0 (Ω), p ∈ (1,∞). (2.35)

Then, divB(f) = f a.e. in Ω, and moreover,

‖∇B(f)‖Lp ≤ C‖f‖Lp , ‖B(f)‖Lp ≤ C‖g‖Lp , (2.36)

where f = divg and g ∈ Lp with g ·n|∂Ω = 0. Furthermore, we write (2.15)1 as the equivalent
form

ε44ρ = div(ρu+ ε2B(ρ− ρ0)). (2.37)

Applying Lemma 2.2 to (2.37), using (2.34) and (2.36), we find

‖∇ρ‖L4 ≤ ‖ρu+ ε2B(ρ− ρ0)‖L4

≤ ‖ρu‖L4 + ‖∇B(ρ− ρ0)‖L4

≤ ‖u‖L6‖ρ2‖
1
2

L6 + ‖ρ− ρ0‖L4 ≤ C(ε),

(2.38)

and hence,

‖ρ‖H2 ≤ C‖div(ρu+ ε2B(ρ− ρ0))‖L2

≤ ‖u · ∇ρ+ ρdivu‖L2 + ‖divB(ρ− ρ0)‖L2 ≤ C(ε).
(2.39)

Combining (2.34) with (2.39) gives

‖σF 1(u, µ, c)‖
L

3
2

+ ‖σF 2(u, µ, c)‖L6 + ‖σF 3(u, µ, c)‖L6 ≤ C(ε).

By Lp regularity estimates, we obtain

‖u‖
W 2, 32

+ ‖µ‖W 2,6 + ‖c‖W 2,6 ≤ C(ε). (2.40)

From (2.40) we have ‖σF 1(u, µ, c)‖L6 ≤ C(ε), and thus ‖u‖W 2,6 ≤ C(ε). By a bootstrap
procedure,

‖(u, µ, c)‖W 2,p ≤ C(ε), ∀ p ∈ (1,∞).

This completes the proof of Proposition 2.1 and (2.9). �
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3. ε-Limit procedure for the approximation solutions

In this section, we shall take the ε-limit procedure and prove the following result.

Theorem 3.1. Under the same assumptions as in Theorem 2.1, the system

div(ρu) = 0,

div(ρu⊗ u) +∇
(
δρ4 + ρ2∂f

∂ρ

)
= divSns + ρµ∇c− ρ∂f

∂c
∇c+ ρg1 + g2,

ρu · ∇c = 4µ,

ρµ = ρ
∂f

∂c
−4c,

(3.1)

with the boundary conditions (1.6) admits a weak solution (ρ, u, µ, c) such that∫
ρ = m1,

∫
ρc = m2, (3.2)

0 ≤ ρ ∈ L5(Ω), u ∈ H1
0 (Ω,R3), (µ, c) ∈ H1(Ω)×H1(Ω). (3.3)

Moreover, ∀ Φ ∈ C∞0 (Ω,R3) and φ ∈ C∞(Ω),∫ (
δρ4 + ρ2∂f

∂ρ

)
divΦ

=

∫
(Sns − ρu⊗ u) : ∇Φ +

∫ (
ρ
∂f

∂c
∇c− ρµ∇c− ρg1 − g2

)
· Φ,

(3.4)

and ∫
ρu · ∇cφ+

∫
∇µ · ∇φ = 0,

∫
ρµφ− ρ∂f

∂c
φ =

∫
∇c · ∇φ; (3.5)

when (ρ, u) is prolonged by zero outside Ω,∫
R3

b(ρ)u · ∇φ =

∫
R3

φ
(
b′(ρ)ρ− b(ρ)

)
divu, (3.6)

where b(z) = z, or b(z) ∈ C1([0,∞)) with b′(z) = 0 if z is large; and the following energy
inequality holds: ∫ (

λ1|∇u|2 + (λ1 + λ2)(divu)2 + |∇µ|2
)
≤
∫

(ρg1 + g2) · u. (3.7)

Theorem 3.1 is indeed a result of ε-limit of the solutions (ρε, uε, µε, cε) obtained in Theorem
2.1, as shown below. First the following lemma derives some uniform in ε estimates on
(ρε, uε, µε, cε).

Lemma 3.1. Let (ρε, uε, µε, cε) be a solution in Theorem 2.1. Then there exists a constant
C which is independent of ε, such that

‖ρ5
ε‖L1 + ‖ρ3

ε

∂f

∂ρε
‖L1 + ‖cε‖H1 ≤ C. (3.8)
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Proof. Let B be the Bogovskii operator as defined in (2.35). If we test (2.2)2 by B(ρε − ρ0),
we infer ∫ (

δρ4
ε + ρ2

ε

∂f

∂ρε

)
ρε

=

∫ (
δρ4
ε + ρ2

ε

∂f

∂ρε

)
ρ0 −

∫
(ρεg1 + g2) · B(ρε − ρ0)

+ ε2

∫
ρεuε · B(ρε − ρ0) + ε4

∫
∇ρε · ∇uεB(ρε − ρ0)

−
∫
ρεuε ⊗ uε : ∇B(ρε − ρ0)

+

∫
λ1(∇uε + (∇uε)>) : ∇B(ρε − ρ0) + λ2divuεdivB(ρε − ρ0)

+

∫ (
ρε
∂f

∂cε
− ρεµε

)
B(ρε − ρ0) · ∇cε

=
7∑
i=1

Ii.

(3.9)

Owing to (1.5), (1.10), (2.8), (2.36), and the simple fact ρ2 ∂f
∂ρ = (γ − 1)ργ +H1ρ, we get

I1 + I2 ≤
∣∣∣∣∫ (δρ4

ε + ρ2
ε

∂f

∂ρε

)
ρ0

∣∣∣∣+

∣∣∣∣∫ (ρεg1 + g2)B(ρε − ρ0)

∣∣∣∣
≤ C

∫ (
δρ4
ε + ρ2

ε

∂f

∂ρε

)
+ C(1 + ‖ρε‖

L
6
5
)‖∇B(ρε − ρ0)‖L2

≤ 1

8

∫ (
δρ5
ε + ρ3

ε

∂f

∂ρε

)
+ C.

Next, by (2.33) we have

I3 + I4 + I5

≤
(
ε2‖ρε‖L2 + ε4‖∇ρε‖L2

)
‖uε‖H1‖B(ρε − ρ0)‖L∞

+ ‖ρε‖
L

12
5
‖uε‖2L6‖∇B(ρε − ρ0)‖L4

≤ C
(

1 + ‖ρε‖2
L

6
5

)
‖ρε‖

L
12
5
‖B(ρε − ρ0)‖W 1,4

≤ δ

8
‖ρε‖5L5 + C.

Similarly,

I6 ≤
∣∣∣∣∫ λ1(∇uε + (∇uε)>) : ∇B(ρε − ρ0) + λ2divuεdivB(ρε − ρ0)

∣∣∣∣
≤ C‖∇uε‖L2‖ρε − ρ0‖L2 ≤

δ

8
‖ρε‖5L5 + C.
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To deal with the last term, we multiply (2.2)4 by cε, then use (1.5), (1.10), (2.31), (2.33) and
the interpolation inequality to deduce

‖∇cε‖2L2 =

∫ (
ρεµε − ρε

∂f

∂cε

)
cε

≤ ‖cε‖L2

(∫
|ρεµε − ρε

∂f

∂cε
|2
) 1

2

≤ C‖cε‖L2 (‖ρε‖L3‖µε‖L6 + ‖ρε ln ρε‖L2 + 1)

≤ 1

2
‖∇cε‖2L2 + C

(
‖ρε‖

5
2

L5 + 1

)
,

(3.10)

whence,

I7 ≤
∣∣∣∣∫ (ρε ∂f∂cε − ρεµε

)
B(ρε − ρ0) · ∇cε

∣∣∣∣
≤ C‖B(ρε − ρ0)‖L∞‖∇cε‖L2

(∫
|ρεµε − ρε

∂f

∂cε
|2
) 1

2

≤ C‖ρε‖4L5 + C.

In summary, substituting the estimates above back into (3.9), using (3.10), we conclude

‖∇cε‖L2 +

∫ (
δρ5
ε + ρ3

ε

∂f

∂ρε

)
≤ C.

This, along with (2.33) and (2.31), gives rise to (3.8). The proof of Lemma 3.1 is completed.
Having (1.5), (1.10), (2.33) and (3.8) in hand, we can take the limit as ε→ 0 of (ρε, uε, µε, cε),

subject to some subsequence, so that,

ρε ⇀ ρ in L5 ∩ Lγ+1, ρ4
ε ⇀ ρ4 in L

5
4 , (3.11)

(∇uε, ∇µε,∇cε) ⇀ (∇u, ∇µ, ∇cε) in L2, (3.12)

(uε, µε, cε)→ (u, µ, c) in Lp1 (1 ≤ p1 < 6), (3.13)

ε4∇ρε → 0 in L2, (3.14)

ε2ρε → 0, ε2ρεuε → 0, ερεcε → 0, ε4∇ρε∇uε → 0 in L1. (3.15)

Moreover, it follows from (3.11) and (3.13) that

(ρεuε, ρεµε) ⇀ (ρu, ρµ) in L2, ρεuε ⊗ uε ⇀ ρu⊗ u in Lp (for some p > 1), (3.16)

and

ρε
∂f

∂cε
= ρε ln ρεH

′
1(cε) + ρεH

′
2(cε) ⇀ ρ ln ρH ′1(c) + ρH ′2(c) = ρ

∂f

∂c
in L2, (3.17)

ρ2
ε

∂f

∂ρε
= (γ − 1)ργε + ρεH1(cε) ⇀ (γ − 1)ργ + ρH1(c) = ρ2

∂f

∂ρ
in L

γ+1
γ . (3.18)

It remains to verify the strong convergence of ∇cε, i.e.,

∇cε → ∇c in L2. (3.19)

In fact, as in [5], we use equality (2.2)4 to obtain∫
∇cε∇φ =

∫
ρεµεφ−

∫
ρε
∂f

∂cε
φ, (3.20)
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which, together with (3.13), (3.16)-(3.17), provides us

lim
ε→0

∫
|∇cε|2 = lim

ε→0

∫
ρεµεcε − lim

ε→0

∫
ρε
∂f

∂cε
cε =

∫
ρµc−

∫
ρ
∂f

∂c
c.

On the other hand, if we select φ = c in (3.20), we obtain∫
|∇c|2 = lim

ε→0

∫
∇cε · ∇c = lim

ε→0

∫
ρεµεc− lim

ε→0

∫
ρε
∂f

∂cε
c =

∫
ρµc−

∫
ρ
∂f

∂c
c.

Thus

lim
ε→0

∫
|∇cε|2 =

∫
|∇c|2,

which, together with (3.12), guarantees (3.19).
From (3.11)-(3.19), we are able to pass limit and get the integral equalities (3.4)-(3.5) with

ρ4, ρ∂f∂c , ρ
2 ∂f
∂ρ replaced by ρ4, ρ∂f∂c , ρ

2 ∂f
∂ρ , respectively. In addition, we obtain (3.2) and (3.7)

from (2.1), (2.2)1, (2.29), and (3.8).
Finally, (3.6) is guaranteed by the following lemma, whose proof is available in [38, Lemma

2.1] and [37, Lemma 3.3].

Lemma 3.2. Let (ρ, u) be a solution to (3.1)1. Assume that ρ ∈ L2(Ω) and u ∈ H1
0 (Ω,R3).

If we extend (ρ, u) by zero outside Ω, we have

div(b(ρ)u) + (b′(ρ)ρ− b(ρ))divu = 0 in D′(R3), (3.21)

where b(z) = z, or b ∈ C1([0,∞)) with b′(z) = 0 for large z.

In order to complete the proof of Theorem 3.1, we need to verify

ρ4 = ρ4, ρ
∂f

∂c
= ρ

∂f

∂c
, ρ2

∂f

∂ρ
= ρ2∂f

∂ρ
. (3.22)

For that purpose, let us define

C2([0,∞)) 3 bn(ρ) =


ρ ln(ρ+

1

n
), ρ ≤ n;

(n+ 1) ln(n+ 1 +
1

n
), ρ ≥ n+ 1.

First we see that bn(ρ)→ ρ ln ρ a.e. because of the fact: ρ ∈ L1. Select bn in (3.21) and send
n→∞ to obtain

div(uρ ln ρ) + ρdivu = 0 in D′(R3).

This implies ∫
ρdivu = 0. (3.23)

On the other hand, multiplying (2.2)1 by b′n(ρε) gives∫
(b′n(ρε)ρε − bn(ρε))divuε

= ε2

∫
ρ0b
′
n(ρε)− ε2

∫
ρεb
′
n(ρε)− ε4

∫
b′′n(ρε)|∇ρε|2

≤ ε2

∫
ρ0b
′
n(ρε)− ε2

∫
ρεb
′
n(ρε)−ε4

∫
{x: b′′n(ρε)≤0}

b′′n(ρε)|∇ρε|2.

(3.24)
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It follows from (2.34) that ‖∇ρε‖L2 ≤ C
(
‖∇ρ2

ε‖L2 + ‖∇√ρε‖L2

)
≤ C(ε). Then, for fixed

ε > 0, ∣∣∣∣∣−ε4

∫
{x: b′′n(ρε)≤0}

b′′n(ρε)|∇ρε|2
∣∣∣∣∣ ≤ C(ε)

∫
{x: b′′n(ρε)≤0}

|∇ρε|2

≤ C(ε)

∫
{x:n≤ρε≤n+1}

|∇ρε|2 → 0 (n→∞),

where in the second inequality we have used the fact b′′n(ρε) ≥ 0 if ρε ≤ n or ρε ≥ n+ 1.
Recalling (3.8) and the definition of bn, one deduces

lim
n→∞

∫
ρ0b
′
n(ρε)

= lim
n→∞

(∫
{ρε≤n}

ρ0b
′
n(ρε) +

∫
{ρε>n}

ρ0b
′
n(ρε)

)

≤ lim
n→∞

∫
{ρε≤n}

ρ0

(
ln(ρε +

1

n
) +

ρε

ρε + 1
n

)
+ C lim

n→∞
meas |{x; ρε ≥ n}|

≤ lim
n→∞

∫
{1/2≤ρε≤n}

ρ0 ln(ρε +
1

n
) + lim

n→∞

∫
ρ0ρε

ρε + 1
n

≤ C.

Similarly,

lim
n→∞

∫
ρεb
′
n(ρε) ≤ C.

Therefore, taking sequentially n→∞ and ε→ 0 in (3.24), using (3.23), one has∫
ρdivu = lim

ε→0

∫
ρεdivuε ≤ 0 =

∫
ρdivu. (3.25)

To proceed, define the following effective viscous flux:

Fε = δρ4
ε + ρ2

ε

∂f

∂ρε
− (2λ1 + λ2)divuε and F = δρ4 + ρ2

∂f

∂ρ
− (2λ1 + λ2)divu.

We have the following lemma.

Lemma 3.3. Under the assumptions in Theorem 3.1, the following property holds:

lim
ε→0

∫
φρεFε =

∫
φρF, ∀ φ ∈ C∞0 (Ω). (3.26)

Let us continue to prove (3.22) with the aid of (3.26). The proof of Lemma 3.3 will be
postponed to the end of this section.

In view of (3.25), Fε and F, we take φ→ 1 in (3.26) and deduce

lim
ε→0

∫
ρε

(
δρ4
ε + ρ2

ε

∂f

∂ρε

)
≤
∫
ρ

(
δρ4 + ρ2

∂f

∂ρ

)
. (3.27)
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According to (3.18) and (3.27), we have∫ (
δρ5 + (γ − 1)ργ+1 + ρ2H1(c)

)
= lim

ε→0

∫
ρε
(
δρ4
ε + (γ − 1)ργε + ρεH1(cε)

)
= lim

ε→0

∫
ρε

(
δρ4
ε + ρ2

ε

∂f

∂ρε

)
≤
∫
ρ

(
δρ4 + ρ2

∂f

∂ρ

)
=

∫
ρ
(
δρ4 + (γ − 1)ργ + ρH1(c)

)
,

which implies∫
δ
(
ρρ4 − ρ5

)
≥ (γ − 1)

∫ (
ργ+1 − ρργ

)
+

∫ (
ρ2 − ρ2

)
H1(c) ≥ 0, (3.28)

where the last inequality is due to convexity and H1(c) ≥ 0. Next, for the given constant
β > 0 and any η ∈ C∞(Ω),

0 ≤
∫ (

ρ4
ε − (ρ+ βη)4

)
(ρε − (ρ+ βη))

=

∫ (
ρ5
ε − ρ4

ερ− ρ4
εβη − (ρ+ βη)4ρε + (ρ+ βη)5

)
.

By (3.28), as ε→ 0,

0 ≤
∫ (

ρ5 − ρρ4 − ρ4βη + (ρ+ βη)4βη
)
≤
∫ (
−ρ4 + (ρ+ βη)4

)
βη.

Replacing −β with β in the argument above, and then taking β → 0, we get∫ (
ρ4 − ρ4

)
η = 0.

This implies ρ4 = ρ4, and thus ρε → ρ a.e. in Ω since η is arbitrary. Moreover, (3.11) implies
that, for all s ∈ [1, 5),

ρε → ρ in Ls. (3.29)

As a result of (3.29), (3.11), (3.17)-(3.18), we obtain (3.22). The proof of Theorem 3.1 is
completed. �

Proof of Lemma 3.3. We will prove Lemma 3.3 by the results developed in [32]. Let
4−1(h) = K ∗ h be the convolution of h with the fundamental solution K of the Laplacian in
R3. For ∂i4−1 (i = 1, 2, 3), by the Mikhlin multiplier theory (cf. [42]),

‖∂i4−1(h)‖W 1,p(Ω) ≤ C(Ω, p)‖h‖Lp(R3), p ∈ (1,∞),

‖∂i4−1(h)‖Lp∗ (Ω) ≤ C(Ω, p)‖∂i4−1(h)‖W 1,p(R3), p∗ =
3p

3− p
, p < 3,

‖∂i4−1(h)‖L∞(Ω) ≤ C(Ω, p)‖h‖Lp(R3), p > 3.

(3.30)

If hn ⇀ h in Lp(R3), we have

∂j∂i4−1(hn) ⇀ ∂j∂i4−1(h) in Lp, (3.31)
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and additionally, by the Rellich-Kondrachov compactness theorem,

∂i4−1(hn)→ ∂i4−1(h) in Lq, (3.32)

where q < p∗ if p < 3 and q ≤ ∞ if p > 3.
Prolonging ρε to the whole space R3 by zero, multiplying (2.2)i2 by φ∂i4−1(ρε) with φ ∈

C∞0 (Ω), we obtain∫
φρεFε

= −
∫
∂i4−1(ρε)∂iφ

(
δρ4
ε + ρ2

ε

∂f

∂ρε
− (λ1 + λ2)divuε

)
+ λ1

∫ (
∂ju

i
ε∂i4−1(ρε)∂jφ− uiε∂j∂i4−1(ρε)∂jφ+ ρεuε · ∇φ

)
−
∫ (

ρεµε∂icε − ρε
∂f

∂cε
∂icε

)
φ∂i4−1(ρε)−

∫
(ρεg1 + g2)φ∂i4−1(ρε)

−
∫
ρεu

j
εu
i
ε∂jφ∂i4−1(ρε)−

∫
ρεu

j
εu
i
εφ∂j∂i4−1(ρε)

+ ε2

∫
ρεu

i
εφ∂i4−1(ρε) + ε4

∫
∇ρε · ∇uiεφ∂i4−1(ρε),

(3.33)

where the second line on the right-hand side comes from

λ1

∫
∂ju

i
ε

(
∂i4−1(ρε)∂jφ+ ∂j∂i4−1(ρε)φ

)
= λ1

∫ (
∂ju

i
ε∂i4−1(ρε)∂jφ− uiε∂j∂i4−1(ρε)∂jφ− uiε∂iρεφ

)
= λ1

∫ (
∂ju

i
ε∂i4−1(ρε)∂jφ− uiε∂j∂i4−1(ρε)∂jφ+ ρεuε · ∇φ

)
+ λ1

∫
ρεdivuεφ.

Next, since (ρε, uε) ∈ (H1, H1
0 ), then div(ρεuε) ∈ L

3
2 (R3) and div(ρεuε) = 0 in R3\Ω. In

addition, ρε ∈ H2 and ∂ρε
∂n |∂Ω = 0 imply

div(1Ω∇ρε) =

{
4ρε, in Ω,

0, R3 \ Ω.

Thus, it makes sense to extend (2.2)1 to the whole space by zero,

ε2(ρε − ρ0) + div(ρεuε) = ε4div(1Ω∇ρε) in R3,

which yields by straight forward computations,

−
∫
ρεu

i
εφ∂i∂j4−1(ρεu

j
ε)

= −
∫
ρεu

i
εφ∂i4−1(div(ρεuε))

= −ε4

∫
ρεu

i
εφ∂i4−1(div(1Ω∇ρε)) + ε2

∫
ρεu

i
εφ∂i4−1(ρε − ρ0),
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and

−
∫
ρεu

j
εu
i
ε∂jφ∂i4−1(ρε)−

∫
ρεu

j
εu
i
εφ∂j∂i4−1(ρε)

= −
∫
ρεu

j
εu
i
ε∂jφ∂i4−1(ρε) +

∫
uiεφ

[
ρε∂i∂j4−1(ρεu

j
ε)− ρεujε∂j∂i4−1(ρε)

]
−
∫
ρεu

i
εφ∂i∂j4−1(ρεu

j
ε)

= −
∫
ρεu

j
εu
i
ε∂jφ∂i4−1(ρε) +

∫
uiεφ

[
ρε∂i∂j4−1(ρεu

j
ε)− ρεujε∂j∂i4−1(ρε)

]
− ε4

∫
ρεu

i
εφ∂i4−1(div(1Ω∇ρε)) + ε2

∫
ρεu

i
εφ∂i4−1(ρε − ρ0).

(3.34)

Now, replace the second line from the bottom in (3.33) by (3.34) to obtain

∫
φρεFε

= −
∫
∂i4−1(ρε)∂iφ

(
δρ4
ε + ρ2

ε

∂f

∂ρε
− (λ1 + λ2)divuε

)
+ λ1

∫ (
∂ju

i
ε∂i4−1(ρε)∂jφ− uiε∂j∂i4−1(ρε)∂jφ+ ρεuε · ∇φ

)
−
∫ (

(ρεµε∂icε + ρε
∂f

∂cε
∂icε)φ∂i4−1(ρε)− (ρg1 + g2)φ∂i4−1(ρε)

)
−
∫
ρεu

j
εu
i
ε∂jφ∂i4−1(ρε) +

∫
uiεφ

[
ρε∂i∂j4−1(ρεu

j
ε)− ρεujε∂j∂i4−1(ρε)

]
− ε4

∫
ρεu

i
εφ∂i4−1(div(1Ω∇ρε))−∇ρε · ∇uiεφ∂i4−1(ρε)

+ ε2

∫
ρεu

i
εφ∂i4−1(2ρε − ρ0)

=

7∑
i=1

Jεi ,

(3.35)

where Jεi denotes the ith integral quantity on the right hand side of (3.35).
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On the other hand, if we take ε-limit in (2.2)2 first and then multiply the resulting equation
by φ∂i4−1(ρ), we obtain∫

φρF

= −
∫
∂i4−1(ρ)∂iφ

(
δρ4 + ρ2

∂f

∂ρ
− (λ1 + λ2)divu

)
+ λ1

∫ (
∂ju

i∂i4−1(ρ)∂jφ− ui∂j∂i4−1(ρ)∂jφ+ ρu · ∇φ
)

−
∫ (

(ρµ∂ic+ ρ
∂f

∂c
∂ic)φ∂i4−1(ρ)− (ρg1 + g2)φ∂i4−1(ρ)

)
−
∫
ρujui∂jφ∂i4−1(ρ) +

∫
uiφ

[
ρ∂i∂j4−1(ρuj)− ρuj∂j∂i4−1(ρ)

]
=

5∑
i=1

Ji.

(3.36)

In terms of (3.35) and (3.36), to prove (3.26) it suffices to check

lim
ε→0

Jεi = Ji (i = 1, 2, · · · , 5) and lim
ε→0

Jεi = 0 (i = 6, 7).

In fact, owing to (3.32), (3.11)-(3.12), (3.18), we have limε→0 J
ε
1 = J1. In a similar way, for

i = 2, 3, 4, we obtain limε→0 J
ε
i = Ji from (3.31)-(3.32), (3.11)-(3.13), (3.16)-(3.17), and (3.19).

Next, by (3.30), (2.33), and (3.8), we estimate

|Jε6 + Jε7 |
≤ ε4‖∇ρε‖L2‖ρε‖L3‖uε‖L6 + ε2‖ρε‖L2‖uε‖L2‖∂i4−1(2ρε − ρ0)‖L∞

+ ε4‖∇ρε‖L2‖∇uε‖L2‖∂i4−1(ρε)‖L∞

≤ ε2
(
ε2‖∇ρε‖L2

)
‖uε‖H1

0

(
‖ρε‖L3 + ‖∂i4−1(ρε)‖L∞

)
+ ε2‖ρε‖L2‖uε‖L2‖∂i4−1(2ρε − ρ0)‖L∞
≤ Cε→ 0 as ε→ 0.

Finally, in order to check J5, we present the following div-curl Lemma.

Lemma 3.4 ([23]). Let 1
r1

+ 1
r2

= 1
r and 1 ≤ r, r1, r2 <∞. Suppose that

vε ⇀ v in Lr1 and wε ⇀ w in Lr2 .

Then, for i, j = 1, 2, 3,

vε∂i∂j4−1(wε)− wε∂i∂j4−1(vε) ⇀ v∂i∂j4−1(w)− w∂i∂j4−1(v) in Lr.

Taking vε = ρεu
j
ε and wε = ρε in Lemma 3.4, and using (3.13), (3.16), we get limε→0 J

ε
5 =

J5. This completes the proof of Lemma 3.3.
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4. Vanishing artificial pressure

In this section, we take the δ-limit in the artificial pressure and prove the main result in
Theorem 1.1.

By (3.1)1, it follows from (3.5)1 that∫
∇µ · ∇φ = −

∫
ρu · ∇cφ = −

∫
ρu · ∇(cφ) +

∫
ρcu · ∇φ =

∫
ρcu · ∇φ. (4.1)

Next, from (1.5), (2.28), and (3.3), one can easily check that c ∈W 2,p(Ω) for some p > 1. Let
φ = ∇c · Φ in (3.5)2 with Φ ∈ C∞0 (Ω;R3). We have, by approximation if necessary,∫

(ρµ− ρ∂f
∂c

)∇c · Φ =

∫
∇c · ∇(∇c · Φ) = −

∫
Sc : ∇Φ,

which, along with (3.4), leads to∫ (
δρ4 + ρ2∂f

∂ρ

)
divΦ =

∫
(Sns + Sc − ρu⊗ u) : ∇Φ−

∫
(ρg1 + g2) · Φ. (4.2)

As a result of (4.1), (4.2), and Theorem 3.1, we have the following theorem.

Theorem 4.1. Under the same conditions in Theorem 3.1, for any fixed δ > 0, the following
system 

div(ρu) = 0,

div(ρu⊗ u) +∇
(
δρ4 + ρ2∂f

∂ρ

)
= div (Sns + Sc) + ρg1 + g2,

div(ρuc) = 4µ,

ρµ = ρ
∂f

∂c
−4c,

(4.3)

with the boundary conditions (1.6) admits a weak solution (ρδ, uδ, µδ, cδ) which satisfies (3.2)
and (3.3).

We will prove Theorem 1.1 by taking δ → 0 in the solutions (ρδ, uδ, µδ, cδ) obtained in
Theorem 4.1. Firstly, we derive some refined estimates on (ρδ, uδ, µδ, cδ) which are uniform
in δ.

Lemma 4.1. Let (ρδ, uδ, µδ, cδ) be a solution obtained in Theorem 4.1. Assume that (1.11)
is satisfied. Then there is some p > 6

5 and θ > 0 with γ + θ > 2 such that

δ‖ρ4+θ
δ ‖L1 + ‖ρ2+θ

δ

∂f

∂ρδ
‖L1 + ‖uδ‖H1

0
+ ‖µδ‖H1 + ‖cδ‖W 2,p ≤ C, (4.4)

where, and in what follows, the constant C is independent of δ.

Proof. We shall borrow some ideas from [27, 36] to give a weighted estimate on pressure.
Owing to (1.9) and (1.11), it follows from (3.7) that

λ1

∫
|∇uδ|2 +

∫
|∇µδ|2 ≤

∫
(ρδg1 + g2) · uδ

≤ 1g1‖ρδuδ‖L1‖g1‖L∞ + ‖uδ‖H1
0
‖g2‖

L
6
5
,

(4.5)

where 1g1 = 1 if ∇× g1 6= 0 and 1g1 = 0 if ∇× g1 = 0. Taking

b ≥ 3s− 2

s
and s ∈

[
1,

6(γ + θ)

5γ + 2θ

]
, (4.6)
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we have

‖ρδuδ‖sLs =

∫ (
ρbδ|uδ|2

) 7s−6
6b−4 (|uδ|6) 2+(b−3)s

6b−4 (ρδ)
(6−s)b−4s

6b−4

≤ ‖ρbδ|uδ|2‖
7s−6
6b−4

L1 ‖uδ‖
6(2+(b−3)s)

6b−4

L6 ‖ρδ‖
(6−s)b−4s

6b−4

L1 .

(4.7)

Substituting (4.7) into (4.5) gives rise to

‖uδ‖H1
0

+ ‖∇µδ‖L2 ≤ C
(
‖ρbδ|uδ|2‖

1g1
6b−2

L1 + 1

)
. (4.8)

The case of ∇× g1 6= 0. The estimate is divided into several steps.

Step 1. Let B be the Bogovskii operator defined in (2.35). Choosing Φ = B(ρθδ−|Ω|−1
∫

Ω ρ
θ
δ)

in (4.2) with θ = θ(γ) small and to be determined, we get∫ (
δρ4
δ + ρ2

δ

∂f

∂ρδ

)
ρθδ

=

(
|Ω|−1

∫
ρθδ

)∫ (
δρ4
δ + ρ2

δ

∂f

∂ρδ

)
+

∫
Sns : ∇Φ− (ρδg1 + g2) · Φ

−
∫
ρδuδ ⊗ uδ : ∇Φ +

∫
Sc : ∇Φ

=
4∑
i=1

Ki.

(4.9)

Firstly, by (1.5) and (1.10), we have

K1 ≤ C
∫ (

δρ4
δ + ρ2

δ

∂f

∂ρδ

)
≤ 1

8

∫ (
δρ4+θ
δ + (γ − 1)ργ+θ

δ + ρ1+θ
δ H1(cδ)

)
+ C

=
1

8

∫ (
δρ4
δ + ρ2

δ

∂f

∂ρδ

)
ρθδ + C.

(4.10)

Secondly, thanks to (4.8) and (1.11),

K2 =

∫
Sns : ∇Φ− (ρδg1 + g2) · Φ

≤
(
‖∇uδ‖L2 + ‖ρδ‖

L
6
5
‖g1‖L∞ + ‖g2‖

L
6
5

)
‖∇Φ‖L2

≤ C
(
‖ρbδ|uδ|2‖

1g1
6b−2

L1 + ‖ρδ‖
L

6
5

+ 1

)
‖ρθδ‖L2

≤ 1

8

∫
Ω
ρ2+θ
δ

∂f

∂ρδ
+ C‖ρbδ|uδ|2‖

1
6b−2

L1 + C.

(4.11)
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Next, by (4.8), one has

‖ρδ|uδ|2‖tLt =

∫ (
ρbδ|uδ|2

) 4t−3
(3b−2) (|uδ|6) 1−t(2−b)

(3b−2) ρ
3b−t(2+b)

(3b−2)

δ

≤ ‖ρbδ|uδ|2‖
4t−3

(3b−2)

L1 ‖uδ‖
6(1−t(2−b))

(3b−2)

H1
0

‖ρδ‖
3b−t(2+b)

(3b−2)

L1

≤ C
(

1 + ‖ρbδ|uδ|2‖
5t−3

(3b−1)

L1

)
.

(4.12)

Let t = γ+θ
γ in (4.12), then we have

K3 = −
∫
ρδuδ ⊗ uδ : ∇Φ

≤ ‖∇Φ‖
L
γ+θ
θ
‖ρδ|uδ|2‖

L
γ+θ
γ

≤ C‖ρδ‖θLγ+θ‖ρδ|uδ|2‖
L
γ+θ
γ

≤ 1

8

∫
Ω
ρ2+θ
δ

∂f

∂ρδ
+ C

(
1 + ‖ρbδ|uδ|2‖

2γ+5θ
γ(3b−1)

L1

)
.

(4.13)

Finally, if we replace uδ with µδ and take b̄ = 3− 2
s in (4.7), we find

‖ρδµδ‖sLs ≤ C‖ρb̄δµ2
δ‖

7s−6
6b̄−4

L1 . (4.14)

Taking s = 6(γ+θ)
5γ+2θ in (4.14), we deduce

‖∇2cδ‖
6(γ+θ)
5γ+2θ

L
6(γ+θ)
5γ+2θ

≤ C‖4cδ‖
6(γ+θ)
5γ+2θ

L
6(γ+θ)
5γ+2θ

≤ C‖ρδµδ + ρδ
∂f

∂cδ
‖

6(γ+θ)
5γ+2θ

L
6(γ+θ)
5γ+2θ

≤ C + C‖ρb̄δµ2
δ‖

3(γ+θ)
5γ+2θ

L1 + C‖ρδ ln ρδ‖
6(γ+θ)
5γ+2θ

L
6(γ+θ)
5γ+2θ

,

(4.15)

where the exponents in the last inequality are due to

s =
6(γ + θ)

5γ + 2θ
and b̄ =

4γ + 7θ

3(γ + θ)
. (4.16)

With the help of (4.15) and ‖ρδ‖L1 = m1, we have the following estimate,

K4 ≤ C‖∇Φ‖
L
γ+θ
θ
‖∇cδ‖2

L
2(γ+θ)
γ

≤ C‖ρδ‖θL(γ+θ)

(
‖∇2cδ‖

6(γ+θ)
5γ+2θ

L
6(γ+θ)
5γ+2θ

) 5γ+2θ
3(γ+θ)

≤ C +
1

8

∫
ρ2+θ
δ

∂f

∂ρδ
+ C‖ρb̄δµ2

δ‖
γ+θ
γ

L1 .

(4.17)
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In conclusion, substituting (4.10)-(4.13), (4.17) back into (4.9) gives rise to∫ (
δρ4
δ + ρ2

δ

∂f

∂ρδ

)
ρθδ ≤ C + C‖ρb̄δ|uδ|2‖

2γ+5θ
γ(3b̄−1)

L1 + C‖ρb̄δµ2
δ‖

γ+θ
γ

L1

≤ C + C‖ρb̄δ(|uδ|2 + µ2
δ)‖

γ+θ
γ

L1 ,

(4.18)

from (4.16) and 2γ+5θ
γ(3b̄−1)

≤ 2γ+5θ
γ(3b̄−2)

= γ+θ
γ .

Step 2. We show the following estimate:

Proposition 4.1. For any fixed α0 ∈ (0, 1) and x∗ ∈ Ω, there is some constant C independent
of δ or x∗, such that ∫

ργδ (x)

|x− x∗|α0
dx ≤ C

(
1 + ‖ρb̄δ(|uδ|2 + µ2

δ)‖L1

)
, (4.19)

with b̄ being defined in (4.16).

Proof. We consider two cases.
Case 1: boundary point x∗ ∈ ∂Ω. As in [27], we introduce

ξi(x) = φ(x)∂iφ(x)
(
φ(x) + |x− x∗|

2
2−α0

)−α0

, i = 1, 2, 3, (4.20)

where the function φ(x) ∈ C2(Ω) satisfies the following properties:
φ(x) > 0 in Ω and φ(x) = 0 on ∂Ω,

|φ(x)| ≥ k1 if x ∈ Ω and dist(x, ∂Ω) ≥ k2,

|∇φ(x)| ≥ k1 if x ∈ Ω and dist(x, ∂Ω) ≤ k2,

(4.21)

and the constants ki > 0 are given.

Remark 4.1. The function φ(x) satisfying (4.21) is in fact the distance function near the
boundary with C2 extension to the whole Ω. Moreover, for every point x ∈ Ω near the
boundary, there is a unique x̃ ∈ ∂Ω such that

∇φ =
x− x̃
φ(x)

and φ(x) = |x− x̃|. (4.22)

See, e.g., [46, Exercise 1.15] for the detail.

It is clear that ξ ∈ L∞(Ω) and ξ = 0 on ∂Ω. In addition, a direct computation yields

∂jξ
i =

φ∂j∂iφ(
φ+ |x− x∗|

2
2−α0

)α0
+

∂jφ∂iφ(
φ+ |x− x∗|

2
2−α0

)α0

− α0
φ∂iφ∂jφ(

φ+ |x− x∗|
2

2−α0

)α0+1 − α0
φ∂iφ∂j |x− x∗|

2
2−α0(

φ+ |x− x∗|
2

2−α0

)α0+1 .

(4.23)

Thus, |∇ξ| ∈ Lq for all q ∈ [2, 3
α0

) because |∂jξi| ≤ C + C|x − x∗|−α0 . Due to (4.21) and
2

2−α0
> 1, the following inequalities hold true:

φ < φ+ |x− x∗|
2

2−α0 ≤ C|x− x∗|. (4.24)
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With (4.21)-(4.24), one deduces that, for dist(x, ∂Ω) ≤ k2,

divξ ≥ −C +
1

2(1− α0)

|∇φ|2(
φ+ |x− x∗|

2
2−α0

)α0
≥ −C +

C

|x− x∗|α0
. (4.25)

Take Φ = ξ in (4.2) to obtain

∫ (
δρ4
δ + ρ2

δ

∂f

∂ρδ

)
divξ +

∫
ρδuδ ⊗ uδ : ∇ξ

=

∫
Sns : ∇ξ −

∫
(ρδg1 + g2) · ξ +

∫
Sc : ∇ξ.

(4.26)

The first two terms on the right-hand side of (4.26) satisfy

∣∣∣∣∫ Sns : ∇ξ −
∫

(ρδg1 + g2) · ξ
∣∣∣∣ ≤ C(α0) (‖∇uδ‖L2 + 1) . (4.27)

Next, let

γ + θ

θ
<

3

α0
, (4.28)

where θ and α0 will be determined in (4.46). One deduces

∣∣∣∣∫ Sc : ∇ξ
∣∣∣∣ ≤ C‖∇ξ‖L γ+θ

θ
‖∇cδ‖2

L
2(γ+θ)
γ

≤ C‖∇2cδ‖2
L

6(γ+θ)
5γ+2θ

≤ C + C‖ρb̄δµ2
δ‖L1 + C

∫
ρ2
δ

∂f

∂ρδ
,

(4.29)

where the last inequality is from (4.15).
Now let us focus on the left-hand side of (4.26). Owing to (4.25), one has

∫ (
δρ4
δ + ρ2

δ

∂f

∂ρδ

)
divξ ≥ −C

∫ (
δρ4
δ + ρ2

δ

∂f

∂ρδ

)
+ C

∫
Ω∩Bk2

(x∗)

(
δρ4
δ + ρ2

δ
∂f
∂ρδ

)
|x− x∗|α0

. (4.30)

By (4.22), one has ∂j∂iφ = ∂i(x−x̃)j

φ − ∂jφ∂iφ
φ . Then,

∫
φρδuδ ⊗ uδ : (∂j∂iφ)3×3(
φ+ |x− x∗|

2
2−α0

)α0
=

∫
ρδ|uδ|2(

φ+ |x− x∗|
2

2−α0

)α0
−
∫

ρδ|uδ · ∇φ|2(
φ+ |x− x∗|

2
2−α0

)α0
,
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and hence, by (4.23) and (4.24), we have

∫
ρδuδ ⊗ uδ : ∇ξ

=

∫
ρδ|uδ|2(

φ+ |x− x∗|
2

2−α0

)α0
− α0

∫
φρδ(uδ · ∇φ)2(

φ+ |x− x∗|
2

2−α0

)α0+1

− α0

∫
φρδ(uδ · ∇|x− x∗|

2
2−α0 )(uδ · ∇φ)(

φ+ |x− x∗|
2

2−α0

)α0+1

≥ (1− α0)

∫
ρδ|uδ|2(

φ+ |x− x∗|
2

2−α0

)α0
− α0

∫
φρδ(uδ · ∇|x− x∗|

2
2−α0 )(uδ · ∇φ)(

φ+ |x− x∗|
2

2−α0

)α0+1

≥ (1− α0)

2

∫
ρδ|uδ|2(

φ+ |x− x∗|
2

2−α0

)α0
− C(α0)

∫
φ2ρδ|uδ|2|x− x∗|

2α0
2−α0(

φ+ |x− x∗|
2

2−α0

)α0+2

≥ C
∫

Ω∩Bk2
(x∗)

ρδ|uδ|2

|x− x∗|α0
− C‖ρδ|uδ|2‖L1 .

(4.31)

Therefore, (4.26) together with (4.27) and (4.29)-(4.31) yield

∫
Ω∩Bk2

(x∗)


(
δρ4
δ + ρ2

δ
∂f
∂ρδ

)
|x− x∗|α0

+
ρδ|uδ|2

|x− x∗|α0


≤ C

∫ (
δρ4
δ + ρ2

δ

∂f

∂ρδ

)
+ C

(
‖uδ‖H1

0
+ ‖ρb̄δµ2

δ‖L1 + ‖ρδ|uδ|2‖L1 + 1
)

≤ C(γ, θ,H)

(∫ (
δρ4
δ + ρ2

δ

∂f

∂ρδ

)
ρθδ

) γ
γ+θ

+ C
(
‖uδ‖H1

0
+ ‖ρb̄δµ2

δ‖L1 + ‖ρδ|uδ|2‖L1 + 1
)

≤ C + C‖ρb̄δ(|uδ|2 + µ2
δ)‖L1 ,

(4.32)

where, for the last two inequalities we have used the Hölder inequality, (4.8), (4.18) as well as

‖ρδ|uδ|2‖L1 ≤ C + C‖ρb̄δ|uδ|2‖
2

3b̄−1

L1 ≤ C + C‖ρb̄δ|uδ|2‖L1 ,

which comes from (4.12).
Case 2: interior point x∗ ∈ Ω. There is a constant r > 0 such that dist(x∗, ∂Ω) = 3r. Let

χ be a smooth cut-off function satisfying χ = 1 in Br(x
∗) and χ = 0 outside B2r(x

∗), as well
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as |∇χ| ≤ 2r−1. Choosing Φ(x) = x−x∗
|x−x∗|α0

χ2 in (4.2), we find

∫ (
δρ4
δ + ρ2

δ

∂f

∂ρδ

)
3− α0

|x− x∗|α0
χ2 +

∫
ρδuδ ⊗ uδ : ∇

(
x− x∗

|x− x∗|α0
χ2

)
= −

∫
(ρδg1 + g2) · x− x∗

|x− x∗|α0
χ2 +

∫
Sns : ∇

(
x− x∗

|x− x∗|α0
χ2

)
− 2

∫ (
δρ4
δ + ρ2

δ

∂f

∂ρδ

)
χ
∇χ · (x− x∗)
|x− x∗|α0

+

∫
Sc : ∇

(
x− x∗

|x− x∗|α0
χ2

)
.

(4.33)

By a direct computation, one has

∂i

(
xj − (x∗)j

|x− x∗|α0
χ2

)
=
∂i(x

j − (x∗)j)

|x− x∗|α0
χ2 − α0

(xj − (x∗)j)(xi − (x∗)i)

|x− x∗|α0+2
χ2 + 2χ

xj − (x∗)j

|x− x∗|α0
∂iχ

∈ Lq, q ∈ [2,
3

α0
),

and hence, the second term on the left-hand side of (4.33) satisfies∫
ρδuδ ⊗ uδ : ∇

(
x− x∗

|x− x∗|α0
χ2

)
≥ (1− α0)

∫
ρδ|uδ|2

|x− x∗|α0
χ2 + 2

∫
χρδ(uδ · ∇χ)(uδ · (x− x∗))

|x− x∗|α0

≥ 1− α0

2

∫
ρδ|uδ|2

|x− x∗|α0
χ2 − C

∫
r<|x−x∗|<2r

ρδ|uδ|2

|x− x∗|α0
,

(4.34)

where C is independent of r.
For the terms on the right-hand side of (4.33), we have∣∣∣∣−∫ (ρδg1 + g2) · x− x

|x− x∗|α0
χ2 +

∫
Sns : ∇

(
x− x∗

|x− x∗|α0
χ2

)∣∣∣∣
≤ C + C‖uδ‖H1

0

and

− 2

∫ (
δρ4
δ + ρ2

δ

∂f

∂ρδ

)
χ
∇χ · (x− x∗)
|x− x∗|α0

≤ C
∫
r<|x−x∗|<2r

(
δρ4
δ + ρ2

δ
∂f
∂ρδ

)
|x− x∗|α0

,

where C is independent of r. Similarly to (4.29), we deduce∫
Sc : ∇

(
x− x∗

|x− x∗|α0
χ2

)
≤ C + C‖ρb̄δµ2

δ‖L1 + C

∫
ρ2
δ

∂f

∂ρδ
.
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From the above estimates, we obtain∫
Br(x∗)


(
δρ4
δ + ρ2

δ
∂f
∂ρδ

)
|x− x∗|α0

+
ρδ|uδ|2

|x− x∗|α0


≤ C

∫
ρ2
δ

∂f

∂ρδ
+ C

(
‖uδ‖H1

0
+ ‖ρb̄δµ2

δ‖L1 + ‖ρδ|uδ|2‖L1 + 1
)

+ C

∫
r<|x−x∗|<2r


(
δρ4
δ + ρ2

δ
∂f
∂ρδ

)
|x− x∗|α0

+
ρδ|uδ|2

|x− x∗|α0


≤ C + C‖ρb̄δ(|uδ|2 + µ2

δ)‖L1

+ C

∫
r<|x−x∗|<2r


(
δρ4
δ + ρ2

δ
∂f
∂ρδ

)
|x− x∗|α0

+
ρδ|uδ|2

|x− x∗|α0

 ,

(4.35)

where the last inequality follows from (4.32).
We need to discuss two situations: (i) x∗ ∈ Ω is far from the boundary. (ii) x∗ ∈ Ω is close

to the boundary.
(i) The case of dist(x∗, ∂Ω) = 3r ≥ k2

2 > 0, where k2 is the same as in (4.21). From (4.35),
one has ∫

Br(x∗)

(
δρ4
δ + ρ2

δ
∂f
∂ρδ

)
|x− x∗|α0

≤ C + C‖ρb̄δ(|uδ|2 + µ2
δ)‖L1 + C(k2)

∫ (
δρ4
δ + ρ2

δ

∂f

∂ρδ
+ ρδ|uδ|2

)
≤ C

(
1 + ‖ρb̄δ(|uδ|2 + µ2

δ)‖L1

)
,

(4.36)

where in the last inequality we have also used (4.32).

(ii) The case of dist(x∗, ∂Ω) = 3r < k2
2 . Let |x∗ − x̃∗| = dist(x∗, ∂Ω). Then,

4|x− x∗| ≥ |x− x̃∗|, ∀ x /∈ Br(x∗). (4.37)

In view of (4.37), we infer from (4.35) that∫
Br(x∗)


(
δρ4
δ + ρ2

δ
∂f
∂ρδ

)
|x− x∗|α0

+
ρδ|uδ|2

|x− x∗|α0


≤ C + C‖ρb̄δ(|uδ|2 + µ2

δ)‖L1 + C

∫
r<|x−x∗|<2r


(
δρ4
δ + ρ2

δ
∂f
∂ρδ

)
|x− x∗|α0

+
ρδ|uδ|2

|x− x∗|α0


≤ C + C‖ρb̄δ(|uδ|2 + µ2

δ)‖L1 + C

∫
Ω∩Bk2

(x̃∗)


(
δρ4
δ + ρ2

δ
∂f
∂ρδ

)
|x− x̃∗|α0

+
ρδ|uδ|2

|x− x̃∗|α0


≤ C

(
1 + ‖ρb̄δ(|uδ|2 + µ2

δ)‖L1

)
,

(4.38)

where for the last inequality we have also used (4.32).
In summary, we obtain (4.19) from (4.32), (4.36) and (4.38). �
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Remark 4.2. The case that x∗ ∈ Ω is close to the boundary was first treated by Mucha-
Pokorný-Zatorska [36], where they combined the test functions for both the interior and
boundary cases.

Step 3. By (4.19) and the Hölder inequality, we have

∫
ρb̄δ

|x− x∗|
≤
(∫

ργδ
|x− x∗|α0

) b̄
γ

∫ 1

|x− x∗|
γ−b̄α0
γ−b̄


γ−b̄
γ

≤ C
(∫

ργδ
|x− x∗|α0

) b̄
γ

≤ C
(

1 + ‖ρb̄δ(|uδ|2 + µ2
δ)‖L1

) b̄
γ
,

(4.39)

if
b̄(3− α0)

2
< γ. (4.40)

We note that (4.40) implies γ−b̄α0

γ−b̄ < 3.

Consider the Neumann boundary value problem:
4h(x∗) = ρb̄δ −

1

|Ω|

∫
Ω
ρb̄δ = ρb̄δ −m in Ω,

∂h(x∗)

∂n
= 0 on ∂Ω,

(4.41)

where m = 1
|Ω|
∫

Ω ρ
b̄
δ. Recalling the Green’s function representation

h(x∗) =

∫
Ω
G(x∗, x)

(
ρb̄δ(x)−m

)
dx,

and using (4.39), we have

‖h‖L∞ ≤ sup
x∗∈Ω

∫
Ω

(
ρb̄δ(x)−m

)
|x− x∗|

dx

≤ sup
x∗∈Ω

∫
Ω

ρb̄δ(x)

|x− x∗|
dx+ Cm

≤ C
(

1 + ‖ρb̄δ(µ2
δ + |uδ|2)‖

b̄
γ

L1

)
.

(4.42)

From (4.41) one has

‖ρb̄δµ2
δ‖L1 =

∫
µ2
δ(m +4h)

= m

∫
µ2
δ − 2

∫
µδ∇µδ · ∇h

≤ m

∫
µ2
δ + 2‖∇µδ‖L2

(∫
µ2
δ |∇h|2

) 1
2

,
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and ∫
µ2
δ |∇h|2 = −

∫ (
µ2
δh4h+ 2µδ∇µδh∇h

)
≤ ‖h‖L∞

(
m

∫
µ2
δ +

∫
ρb̄δµ

2
δ + 2‖∇µδ‖L2

(∫
µ2
δ |∇h|2

) 1
2

)
,

thus,

‖ρb̄δµ2
δ‖L1 ≤ C

(
‖h‖L∞‖∇µδ‖2L2 + m‖µδ‖2L2

)
. (4.43)

Thanks to the interpolation inequality and ‖ρδ‖L1 = m1, we have

m ≤ C‖ρb̄δ‖L1 ≤ C‖ργδ‖
b̄−1
γ−1

L1 and ‖ρδ‖2
L

6
5
≤ C‖ργδ‖

1
3(γ−1)

L1 .

Then, by (2.28) one has

m‖µδ‖2L2 ≤ C‖ργδ‖
3b̄−2

3(γ−1)

L1 (1 + ‖∇µδ‖2L2).

Substituting it back into (4.43) yields

‖ρb̄δµ2
δ‖L1 ≤ C

(
‖h‖L∞ + ‖ργδ‖

3b̄−2
3(γ−1)

L1

)
(1 + ‖∇µδ‖2L2).

Similarly, we have

‖ρb̄δ|uδ|2‖L1 ≤ C‖h‖L∞‖∇uδ‖2L2 .

Thus, from (4.42), (4.19) and (4.8), we obtain

‖ρb̄δ(|uδ|2 + µ2
δ)‖L1 ≤ C

(
‖h‖L∞ + ‖ργδ‖

3b̄−2
3(γ−1)

L1

)
(1 + ‖∇µδ‖L2 + ‖∇uδ‖L2)2

≤ C + C‖ρb̄δ(|uδ|2 + µ2
δ)‖

β
L1 ,

(4.44)

with

β = max

{
b̄

γ
,

3b̄− 2

3(γ − 1)

}
+

1

3b̄− 1
.

Step 4. If we can prove

‖ρb̄δ(|uδ|2 + µ2
δ)‖L1 ≤ C, (4.45)

then, we conclude (4.4) from (4.8), (4.15), and (4.18), and thus complete the proof of Lemma
4.1.

To prove (4.45), it suffices to show β < 1 in view of (4.44). By (4.28), we may take θ close
to zero as α0 → 0. From (4.40) and (4.16) we see that

b̄

γ
<

2

3− α0
→ 2

3
(as α0 → 0) and

1

3b̄− 1
=

γ + θ

3γ + 6θ
→ 1

3
(as θ → 0). (4.46)

Hence, β = b̄
γ + 1

3b̄−1
< 1 if both α0 and θ are chosen small enough. Besides, to guarantee

(4.40), from (4.16) we have

γ >
3− α0

2
b̄ =

3− α0

2
· 4γ + 7θ

3(γ + θ)
→ 2 (as α0, θ → 0).
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If β = 3b̄−2
3(γ−1) + 1

3b̄−1
(we have no need checking (4.40) any more), we see that 3b̄−2

3(γ−1) <
2
3 is

equivalent to γ > 3
2 b̄. By (4.16),

γ >
3

2
b̄ =

3

2
· 4γ + 7θ

3(γ + θ)
→ 2 (as θ → 0). (4.47)

This and (4.46) guarantee that β < 1 as long as θ is small.

The case of ∇× g1 = 0. In this case, from (4.8) we have

‖uδ‖H1
0

+ ‖∇µδ‖L2 ≤ C.

Then, the same deduction as (4.44) yields

‖ρb̄δ(|uδ|2 + µ2
δ)‖L1 ≤ C

(
‖h‖L∞ + ‖ργδ‖

3b̄−2
3(γ−1)

L1

)
≤ C + C‖ρb̄δ(|uδ|2 + µ2

δ)‖
β
L1 ,

(4.48)

with

β = max

{
b̄

γ
,

3b̄− 2

3(γ − 1)

}
.

By (4.40), we see that β = b̄
γ <

2
3−α0

< 1 is always valid for all α0 ∈ (0, 1). In order for

(4.40) and (4.28) to be satisfied, from (4.16) we have

γ >
3− α0

2
b̄ > b̄ =

4γ + 7θ

3(γ + θ)
>

4

3
+
α0

3
→ 5

3
(as α0 → 1).

If β = 3b̄−2
3(γ−1) (we have no need checking (4.40) any more), to guarantee β < 1, it suffices to

require

γ >
1

3
+ b̄ =

1

3
+

4γ + 7θ

3(γ + θ)
>

5

3
+
α0

3
→ 5

3
(as α0 → 0).

The proof of Lemma 4.1 is completed. �

By Lemma 4.1, we can take the following limits, subject to some subsequence,

(∇uδ, ∇µδ) ⇀ (∇u, ∇µ) in L2, (4.49)

(uδ, µδ)→ (u, µ) in Lp1 (1 ≤ p1 < 6), (4.50)

cδ → c in W 1,p2 (for some p2 > 2), (4.51)

δρ4+θ
δ → 0 in L1, and ρδ ⇀ ρ in Lγ+θ, (4.52)

where (4.52) is due to ργ+θ
δ ≤ (γ − 1)ρ2+θ

δ
∂f
∂ρδ

. As a result of (4.50)-(4.52),

(ρδuδ, ρδµδ) ⇀ (ρu, ρµ) in Lp3 (for some p3 > 6/5), (4.53)

(ρδuδ ⊗ uδ, ρδuδcδ) ⇀ (ρu⊗ u, ρuc) in Lp (for some p > 1); (4.54)

and furthermore,

ρ2
δ

∂f

∂ρδ
= (γ − 1)ργδ + ρδH1(cδ) ⇀ (γ − 1)ργ + ρH1(c) := ρ2

∂f

∂ρ
in L

γ+θ
γ , (4.55)

ρδ
∂f

∂cδ
= ρδ ln ρδH

′
1(cδ) + ρδH

′
2(cδ) ⇀ ρ ln ρH ′1(c) + ρH ′2(c) := ρ

∂f

∂c
in Lp3 . (4.56)
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With (4.49)-(4.56) in hand, we are able to take δ-limit in (4.3) and obtain the following
equations in the distribution sense:



div(ρu) = 0,

div(ρu⊗ u) +∇
(
ρ2
∂f

∂ρ

)
= div (Sns + Sc) + ρg1 + g2,

div(ρuc) = 4µ,

ρµ = ρ
∂f

∂c
−4c.

(4.57)

In order to complete the proof of Theorem 1.1, it remains to verify

ρ2
∂f

∂ρ
= ρ2∂f

∂ρ
and ρ

∂f

∂c
= ρ

∂f

∂c
.

To this end it suffices to prove ρδ → ρ in L1, which is our task in the rest of the paper.
Let Tk(z) be an increasing and concave function, in particular,

C1([0,∞)) 3 Tk(z) =

{
z, z ≤ k ∈ N,
k + 1, z ≥ k + 1.

(4.58)

Clearly,

Tk(ρδ) ⇀ Tk(ρ) in Lp(Ω), ∀ p ∈ [1,∞]. (4.59)

Lemma 4.2. Let (ρδ, uδ, µδ, cδ) be a solution obtained in Theorem 4.1. Then, for the effective
viscous flux the following holds,

lim
δ→0

∫
Tk(ρδ)

(
ρ2
δ

∂f

∂ρδ
− (2λ1 + λ2)divuδ

)
=

∫
Tk(ρ)

(
ρ2
∂f

∂ρ
− (2λ1 + λ2)divu

)
, (4.60)

where Tk is defined in (4.58).
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Proof. The argument is similar to that in Lemma 3.3. Choose Φ = φ∇4−1(Tk(ρδ)) in (4.2)
to get ∫

φTk(ρδ)

(
ρ2
δ

∂f

∂ρδ
− (2λ1 + λ2)divuδ

)
= −

∫
δφTk(ρδ)ρ

4
δ + ∂i4−1(Tk(ρδ))∂iφ

(
δρ4
δ + ρ2

δ

∂f

∂ρδ
− (λ1 + λ2)divuδ

)
+ λ1

∫
∂ju

i
δ∂i4−1(Tk(ρδ))∂jφ− uiδ∂j∂i4−1(Tk(ρδ))∂jφ+ Tk(ρδ)uδ · ∇φ

−
∫

(ρδg1 + g2)φ∂i4−1(Tk(ρδ))

+
1

2

∫
|∇cδ|2

(
φTk(ρδ) + ∂iφ∂i4−1(Tk(ρδ))

)
−
∫
∇cδ ⊗∇cδ

(
φ∂j∂i4−1(Tk(ρδ)) + ∂jφ∂i4−1(Tk(ρδ))

)
−
∫
ρδu

j
δu
i
δ∂jφ∂i4−1(Tk(ρδ))

−
∫
uiδφ

[
ρδu

j
δφ∂j∂i4

−1(Tk(ρδ))− Tk(ρδ)∂i∂j4−1(ρδu
j
δ)
]

=

7∑
i=1

Rδi .

On the other hand, if we use φ∇4−1
(
Tk(ρ)

)
as a test function in (4.57)2, we infer∫

φTk(ρ)

(
ρ2
∂f

∂ρ
− (2λ1 + λ2)divu

)
= −

∫
∂i4−1

(
Tk(ρ)

)
∂iφ

(
ρ2
∂f

∂ρ
− (λ1 + λ2)divu

)
+ λ1

∫
∂ju

i∂i4−1
(
Tk(ρ)

)
∂jφ− ui∂j∂i4−1

(
Tk(ρ)

)
∂jφ+ Tk(ρ)u · ∇φ

−
∫

(ρg1 + g2)φ∂i4−1
(
Tk(ρ)

)
+

1

2

∫
|∇c|2

(
φTk(ρ) + ∂iφ∂i4−1

(
Tk(ρ)

))
−
∫
∇c⊗∇c

(
φ∂j∂i4−1

(
Tk(ρ)

)
+ ∂jφ∂i4−1

(
Tk(ρ)

))
−
∫
ρujui∂jφ∂i4−1

(
Tk(ρ)

)
−
∫
uiφ

[
ρuj∂j∂i4−1

(
Tk(ρ)

)
− Tk(ρ)∂i∂j4−1(ρuj)

]
=

7∑
i=1

Ri.
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Therefore, we obtain (4.60) provided

lim
δ→0

Rδi = Ri (i = 1, 2, · · · , 7). (4.61)

In fact, (4.61) can be verified by modifying slightly the argument in Lemma 3.3. The detail
is omitted here. �

Finally, let us prove the strong convergence of density. By (1.5) and the simple fact

(ργδ − ρ
γ) (Tk(ρδ)− Tk(ρ)) ≥ (Tk(ρδ)− Tk(ρ))γ+1 ,

one has∫
(ρ2
δ

∂f(ρδ, cδ)

∂ρδ
− ρ2∂f

∂ρ
) (Tk(ρδ)− Tk(ρ))

=

∫
(γ − 1)(ργδ − ρ

γ) (Tk(ρδ)− Tk(ρ))

+

∫
(ρδH1(cδ)− ρH1(c)) (Tk(ρδ)− Tk(ρ))

≥
∫

(γ − 1) (Tk(ρδ)− Tk(ρ))γ+1

+

∫
ρ(H1(cδ)−H1(c)) (Tk(ρδ)− Tk(ρ)) + (ρδ − ρ)H1(cδ) (Tk(ρδ)− Tk(ρ))

≥
∫

(γ − 1) (Tk(ρδ)− Tk(ρ))γ+1 +

∫
ρ(H1(cδ)−H1(c)) (Tk(ρδ)− Tk(ρ)) .

Consequently,

lim
δ→0

∫
(ρ2
δ

∂f(ρδ, cδ)

∂ρδ
− ρ2∂f

∂ρ
) (Tk(ρδ)− Tk(ρ))

≥ (γ − 1) lim
δ→0

∫
(Tk(ρδ)− Tk(ρ))γ+1 .

(4.62)

By virtue of (4.62) and (4.60),

(2λ1 + λ2) lim
δ→0

∫ (
Tk(ρδ)divuδ − Tk(ρ)divu

)
= lim

δ→0

∫ (
Tk(ρδ)ρ

2
δ

∂f(ρδ, cδ)

∂ρδ
− Tk(ρ) ρ2

∂f

∂ρ

)
= lim

δ→0

∫
(ρ2
δ

∂f(ρδ, cδ)

∂ρδ
− ρ2∂f

∂ρ
) (Tk(ρδ)− Tk(ρ))

+

∫
(ρ2

∂f

∂ρ
− ρ2∂f

∂ρ
)
(
Tk(ρ)− Tk(ρ)

)
≥ lim

δ→0

∫
(ρ2
δ

∂f(ρδ, cδ)

∂ρδ
− ρ2∂f

∂ρ
) (Tk(ρδ)− Tk(ρ)) ,

(4.63)

where the last inequality is due to the concavity of Tk and

ρ2
∂f

∂ρ
= (γ − 1)ργ + ρ ln ρH1(c) ≥ (γ − 1)ργ + ρ ln ρH1(c) = ρ2∂f

∂ρ
.
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Following [24], we define

Lk =


z ln z, z ≤ k,

z ln k + z

∫ z

k

Tk(s)

s2
ds, z ≥ k.

A direct computation shows that

bk(z) = Lk(z)−
(

ln k +

∫ k+1

k

Tk(s)

s2
+ 1

)
z

belongs to C([0,∞))∩C1((0,∞)), b′k(z) = 0 if z ≥ k+1, and b′k(z)z−bk(z) = Tk(z). Choosing
b = bk in (3.21), we infer (approximating bk(z) near z = 0)

div(bk(ρ)u) + Tk(ρ)divu = 0 in D(R3),

which implies ∫
Tk(ρ)divu = 0. (4.64)

Also, one has ∫
Tk(ρ)divu = lim

δ→0

∫
Tk(ρδ)divuδ = 0. (4.65)

From (4.64)-(4.65) we obtain

C‖Tk(ρ)− Tk(ρ)‖L2

≥ (2λ1 + λ2)

∫ (
Tk(ρ)− Tk(ρ)

)
divu

= (2λ1 + λ2)

∫
Tk(ρ)divu− Tk(ρ)divu

= (2λ1 + λ2) lim
δ→0

∫ (
Tk(ρδ)divuδ − Tk(ρ)divu

)
≥ lim

δ→0

∫
(ρ2
δ

∂f

∂ρδ
− ρ2∂f

∂ρ
) (Tk(ρδ)− Tk(ρ))

≥ (γ − 1) lim
δ→0

∫
(Tk(ρδ)− Tk(ρ))γ+1 ,

(4.66)

where the inequalities are due to (4.62)-(4.63). Therefore, (4.66) gives

lim
k→∞

lim
δ→0
‖Tk(ρ)− Tk(ρδ)‖γ+1

Lγ+1

≤ C lim
k→∞

‖Tk(ρ)− Tk(ρ)‖L2

≤ C lim
k→∞

lim
δ→0

(‖Tk(ρ)− ρ‖L2 + ‖Tk(ρδ)− ρδ‖L2) .

(4.67)

However, by Lemma 4.1,

‖ρδ‖2L2 ≤ C‖ρδ‖γ+θ
Lγ+θ ≤ ‖ρ2+θ

δ

∂f

∂ρδ
‖L1 ≤ C.

Then, the following estimate holds true

‖Tk(ρδ)− ρδ‖Lp = ‖Tk(ρδ)− ρδ‖L2({ρδ≥k})

≤ 2‖ρδ‖L2({ρδ≥k}) ≤ Ck
p−γ

2 → 0 as k →∞,
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which is uniform in δ. Consequently,

lim
k→∞

‖Tk(ρ)− ρ‖L2 ≤ lim
k→∞

lim
δ→0
‖Tk(ρδ)− ρδ‖L2 = 0. (4.68)

The same argument yields
lim
k→∞

‖Tk(ρ)− ρ‖L2 = 0. (4.69)

In terms of (4.67)-(4.69), one has

lim
k→∞

lim
δ→0
‖ρδ − ρ‖L1

≤ lim
k→∞

lim
δ→0

(‖ρδ − Tk(ρδ)‖L1 + ‖Tk(ρδ)− Tk(ρ)‖L1 + ‖Tk(ρ)− ρ‖L1)

= 0.

The proof of Theorem 1.1 is completed.
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