STATIONARY CAHN-HILLIARD-NAVIER-STOKES EQUATIONS FOR
THE DIFFUSE INTERFACE MODEL OF COMPRESSIBLE FLOWS

ZHILEI LIANG AND DEHUA WANG

ABSTRACT. A system of partial differential equations for a diffusion interface model is con-
sidered for the stationary motion of two macroscopically immiscible, viscous Newtonian fluids
in a three-dimensional bounded domain. The governing equations consist of the stationary
Navier-Stokes equations for compressible fluids and a stationary Cahn-Hilliard type equa-
tion for the mass concentration difference. Approximate solutions are constructed through a
two-level approximation procedure, and the limit of the sequence of approximate solutions is
obtained by a weak convergence method. New ideas and estimates are developed to establish
the existence of weak solutions with a wide range of adiabatic exponent.

1. INTRODUCTION

We are concerned with a diffuse interface model for a mixture of two viscous fluids. The
interface is usually caused by continuous but steep change of flow properties of immiscible
or partially miscible fluids, which has been studied largely in literature (see [9, 34]). An
important analytical and numerical method to model such two-phase flows is the diffuse
interface modeling (see [45]). The hydrodynamical system of the mixture of two fluids is
naturally the Navier-Stokes equations in each fluid domain with the kinematic and other
conditions on the interface. On the other hand, the Allen-Cahn type or Cahn-Hilliard type
of mixing models is commonly used based on the choice of the flux and production rate,
see [19, 33] and the reference cited therein. In this paper, we study the following stationary
Cahn-Hilliard-Navier-Stokes equations of the compressible mixture of fluid flows in a bounded
domain Q C R3:

div(pu) = 0,

div(pu ® u) = div (Sps + Sec — pl) + pg1 + g2,

div(puc) = div(mVp), (1.1)

pp = pafé’oc’c) — Ac,
where p, u, ¢, i denote the total density, the mean velocity field, the mass concentration
difference of the two components, and the chemical potential, respectively; m is the mobility
that is assumed to be one for simplicity, and ¢g; and go are given force terms. We denote the
Navier-Stokes stress tensor by

Sns = M1 (Vu+ (V) ) + Aedival, (1.2)

where (Vu)T denotes the transpose of Vu, I is the identity matrix, and A1, A2 are constants
satisfying A1 > 0, 2A\; + 3X2 > 0. In comparison with a single fluid, there is an additional
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capillary stress tensor
1
Se =-Ve®@Ve+ i\VdZH, (1.3)
which describes the capillary effect related to the surface energy. In this paper we assume the
following form of pressure
_ 2 8f(p7 C)
p=p =0

b (1.4)

and the free energy density
F(pie) = "7+ fiiwlp, ) = p7 71+ Hi(e) Inp + Ha(c), (1.5)

with the adiabatic exponent v > 1 and two given functions H; (i = 1,2) of one variable. We
remark that the mixed free energy density finiz(p, ¢) is mainly motivated by the well-known
logarithmic form (cf. [5, 34]). We shall study the stationary equations (1.1) with the following
boundary conditions:

% _o, I _o, on 00 (1.6)

u=0, on on

and the additional conditions:
/p(:):)dx =mp >0 and /p(m)c(m)dw = ma, (1.7)

with two given constants m; > 0 and mo.

System (1.1) describes the equilibrium state for the compressible mixture of two macro-
scopically immiscible, viscous Newtonian fluids (cf. [19, 34, 44]). The goal of this paper is
to investigate the existence of solutions to the problem (1.1)-(1.7), and give a rigorous math-
ematical justification of the existence of an equilibrium state for the mixture of fluids. We
recall that the corresponding evolutionary system:

Op + div(pu) = 0,

O(pu) + div(pu ® u) = div (Sns +S.— pzafép,C)]Q ’
i g (1.8)
O (pec) + div(puc) = Ap,
of (p,
pr = pfépc) — Ac,
c

was derived in Abels-Feireisl [5, Section 2.2], and can be regarded as a variant of the model
suggested by Lowengrub-Truskinovsky [34]. For the evolutionary system (1.8), the existence
of multi-dimensional renormalized weak solution of finite energy was obtained in [5] for v > %,
and the one-dimensional weak and strong solutions were studied in [15, 18]. For the results
on the stationary compressible Navier-Stokes equations, we refer the readers to the books
[32, 37], the papers [27, 35, 36, 38] and references therein. For the models of the Cahn-
Hilliard-Navier-Stokes type of multi-component viscous fluids with phase transitions, in the
case of incompressible fluids with matched or non-matched densities, there are several different
approaches to describe the evolutionary diffusion processes (cf. [6, 10, 20, 21, 30, 43]), and
there is a large literature on the existence and long-time behavior of solutions; see, e.g., [1—
4,12, 13, 17, 25, 26, 29, 33, 43] and the references therein; and we also mention the existence
results in [11, 40, 41] for weak solutions to the stationary non-Newtonian flows in two and
three dimensions. As far as the compressible flow is concerned, Lowengrub-Truskinovsky [34]
developed a thermodynamically and mechanically consistent model that extends the Euler
and Navier-Stokes models to the case of compressible binary Cahn-Hilliard mixtures; see also
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[8, 9, 16] for other different approaches. For general interface dynamics of the mixture of
different fluids, solids or gas, including the Allen-Cahn type and Cahn-Hilliard type, see [5, 8-
10, 14, 16, 17, 19, 20, 33, 34, 39, 43, 44] and the references therein for the discussions and
mathematical results.

We now introduce the notation and state our main result. For two given matrices A =
(aij)ax3 and B = (b;;)3x3, we denote their scalar product by A : B = Z?,j:l a;jbij. For two
vectors a, b € R3, a @ b = (a;bj)3x3. The characteristic function of a set A is denoted by
14. Let C§°(2, R3) be the set of all smooth and compactly supported functions f : Q — R3,
and C§°(Q) = C§(2, R). Similarly we denote by C*®(Q2) = C*°(Q, R) the set of uniformly
smooth functions on Q. We use [ f = [, f(x)dz to denote the integral of f on €. For any
p € [1,00] and integer k > 0, W*P(Q, R3) and W¥P(Q) are the standard Sobolev spaces (cf.
[7]) valued in R? or R, and LP = W and H* = W2, We denote by f the weak limit of
function f.

The definition of weak solutions is as follows.

Definition 1.1. The function (p, u, i, c) is a weak solution to the problem (1.1)-(1.7) if for
some p > g and 6 > 0 with 6 +~ > %,

pe LQ), p>0ae inQ,

uwe HY LR, peHNQ), ceWP(Q),
where WP (Q) = {f € WkP(Q) : g—f;]ag = 0} for any positive integer k and H! = W%, such

that,
(i) The system (1.1) is satisfied in the distribution sense in , i.e., for any ® € C§°(Q, R?),

0
/(pu®u+p2jigi)’c>ﬂ—8m—8c> :V<I>=/(p91+g2)-<1>’

and for any ¢ € C*(Q),
0
/pu-wzo, /pcu.wz/w-w, /pugﬁ—p“’c(a’;’%:/w-w;

and (1.7) holds for some m; > 0 and mg € R.
(i) If (p, u) is prolonged by zero outside €2, then both the equation (1.1); and

div(b(p)u) + (V'(p)p — b(p)) dive =0

are satisfied in the distribution sense in R?, where b € C1([0, 00)) with b/(2) = 0 if z is large
enough.
(iii) The energy inequality is valid

/ (M[Vul? + (A + Ao)(diva)?® + [Vpl?) do < / (por + g2) - .

We are ready to state our main result.

Theorem 1.1. Assume that Q C R? is a bounded and simply connected domain with C?
smooth boundary,

g1, g2 € LOO(Q,RB), (1.9)
the functions in (1.5) satisfy

|H;(c)| + |H{(c)|] < H < o0, VceR, i=1,2, (1.10)
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for some constant H, and in addition,

’y>§, if Vxg1=0in{,

v > 2, otherwise.

(1.11)

Then, for any given constants my > 0 and ma € R, the problem (1.1)-(1.7) admits a weak
solution (p,u, p,c) in the sense of Definition 1.1.

We shall prove Theorem 1.1 via two levels of approximations and weak convergence meth-
ods, which rely on the heuristic approaches in [5, 24, 27, 31, 32, 35-38]. We remark that our
stationary problem seems worse than the time-evolutionary one because the energy inequal-
ity by itself gives less useful information about the sequence of approximate solutions, and
it is much more complicated than the Navier-Stokes equations of the single fluid due to the
coupling with the Cahn-Hilliard equations. Our construction of weak solution in Theorem
1.1 of this paper follows the spirit of [27, 32, 35-38] for the stationary compressible Navier-
Stokes equations, but we also need to overcome extra barriers from the coupled Cahn-Hilliard
equations. The main difficulties and our strategies are described below.

We first construct the approximate system (2.2), which is inspired by the time-discretization
of equations (1.8). The main ideas for this approximation are the following: (1) To guarantee
the sufficient regularity on density p, we add the diffusion term €*/Ap in the transport equa-
tion and an artificial pressure in the momentum equation. Our choice of ¢* as the diffusion
coeflicient makes it possible to avoid the appearance of new parameters and thus simplify the
approximation procedures. (2) In the proof, the total mass and difference of volume fraction
should be preserved, namely, both fQ p(x)dx and fQ p(z)c(x)dx are constant. This is nec-
essary from both the physical and mathemamcal point of view, and can be derived by the
Hardy-Poincaré type inequality as well as the well-posedness of solutions. For this purpose,
we use €2(p — po) and e(pc — poco) in the approximation, which can be regarded as time
discretization of dip and 0;(pc) respectively. (3) For fixed ¢ and &, we solve (2.2) by the
Schaefer fixed point theorem. Some new ideas are needed in the proof. Firstly, the solution is
not self-contained due to the Neumann boundary conditions imposed on p and ¢. To fix the
constants, we add compatible integral conditions in the system (2.11). Secondly, we use the
conservative quantities (1.7) and interpolation techniques to obtain the required estimates so
that the uniform a priori bounds can be closed. Next, notice that the pressure p relies not
only on p but also on ¢, and hence is not monotone in p for all range of ¢. In this connection,
we adopt some idea in [5] and decompose

of  ,0f = —
= p°== = p* == = 2Hpl ey = p— 2Hpl <y, (1.12)
ap op
where ﬁpl{ p<k} is bounded for some large but finite constant k. See Remark 2.3 for the detail.
Finally, to avoid the appearance of higher order derivatives of ¢, we replace the capillary stress

div (—=Ve® Ve + 3|Vel’I) in (2.2) by the equivalent expression (pu paf(p c)) Ve.

Then we shall establish the a prior: estimates uniform in € to guarantee the e-limit proce-
dure to obtain the approximation sequence (3.1) by using the compactness theories developed
n [24, 31, 32]. In the proof, we need strong convergence of Ve for taking limit in the mo-
mentum equation. For this purpose, we shall make full use of the properties obtained from
the higher order diffusion in the Cahn-Hilliard equation; see for example the proof of (3.19).
Another difficulty is the non-monotonicity of the pressure with respect to p. Thanks to the
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decomposition technique (see Remark 2.3) Hi(c) is always positive, which leads to our desired
estimates.

Finally we need to show the §-limit in the vanishing artificial pressure term. The proof shall
be based on the compactness theories in [24, 31]. The difficulty is that the approximation
sequence does not provide any good estimate on the density but ||p||;1, which is different from
the evolutionary equations for which the density p is bounded in L7 with v > 1. To overcome
the difficulty, we borrow some ideas developed in [27, 36] and derive the higher regularities
by means of weighted pressure estimates. However, we need to handle the difficulties caused
by the Newmann boundary conditions and the appearance of the strongly nonlinear stress
tensor div (—Ve® Ve + 1(Ve|I). See Lemma 4.1 for the detail.

The rest of the paper is organized as follows. In Section 2, we construct the two-level
approximation system, find the solution by the fixed point theorem, and derive some energy
estimates. In Section 3, we derive the uniform estimates in € and pass the limit as € goes to
zero. In Section 4, we derive the uniform estimates in § and pass the limit as § goes to zero
to finally obtain the weak solution in Theorem 1.1.

2. CONSTRUCTION OF APPROXIMATION SOLUTIONS

We first set the following fixed constants:
mi mo

€ € (0, 1), 6 S (O, 1), PO = @, Cy = m71, (21)

where mj, mg are taken from (1.7), and |2 denotes the Lebesgue measure of 2. Then we
consider the following approximate system:

£2p 4 div(pu) = e*Ap + £2po,
0
2pu +div(pu @ u) + V (5,04 + p2fépp76)> +£'Vp - Vu
9f(p,c)
P8¢
gpc+ pu- Ve = Ap+ epoco,

df(p,c
pMZPfg))—Ac,
C

with the boundary conditions

=divS,s + puVe — Ve + pg1 + g9, (2:2)

op dc = Op
= = 0, e 0, on 09Q. (2.3)

Remark 2.1. A direct computation shows, at least formally,

af(p;c)
P Oc

u =0,

1
puNVe — Ve=—-AcVe =div (—Vc ® Ve+ 2|Vc\211> = divS,.

The following lemma is concerned with the solvability of (2.2),, and its proof can be found
in [37, Prop. 4.29].
Lemma 2.1 ([37], Proposition 4.29). Suppose

v e Wy™(Q,R?) = {v e Wh(Q,R?), v]sq =0}. (2.4)
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Then there exists a function p = p(v) € W2P(Q) (1 < p < o) such that for any n € C>(%),

54/Vp-Vn—/pv-Vn+€2/(p—po)n:0, (2.5)

where € > 0 is a fixed constant. Moreover,

p=0aein® ol =mi, lplwas < CEp [olw): (2.6)
Next, we consider the Neumann boundary problem
dp

Ap=divh with —| =0. 2.7

p=ave W onlog 27)

Lemma 2.2 ([37], Lemma 4.27). Let p € (1,00) and b € LP(Q,R3) be given. Then the
problem (2.7) admits a solution p € WHP(Q), satisfying

[ve-vo= [v:90. voecmm)
and the estimates
Vel < Clp, Q)[bllr  and  [[Vpllwre < C(p, Q)([|b]lzr + [|divbl|zr).
Our main task in this section is to prove the following theorem.

Theorem 2.1. Under the conditions (1.9), (1.10) and (2.1), for any fixred € > 0 the problem
(2.2)-(2.3) has a solution (pe,ue, e, c), such that for all p € (1, 00),

0< pe € W2P(Q), lpellrr() = ma, (2.8)
ue € Wy (R N WHP(Q,R?), (e, cc) € WHP(Q) x WP(Q). (2.9)

Proof. We will prove Theorem 2.1 by the fixed point theorem. Setting
(v, 1,8) € W 1= W™ (Q,R?) x WIP(Q) x WiP(Q), (2.10)

where Wo? (Q) = {f € W'P(Q) : %Iag =0} and WO’ is from (2.4). Let us consider the
elliptic system of (u, u, c):

(divS,s = F'(v, 1, ¢)

= e2pv + div(pv @ v) + V(5p* + p? afg;’ C)) +&fVp - Vo
of(p,6) . .-
+p fgé )Vc—pch—pgl - g2,
Ap = F?(v, i, &) := epé + pv - V& — epoco,
De=F*(v, fi,¢) = pafgi’ ) (211)
¢

/Pé:m2+6/(p0—p)5—53/v,o-w, / /8fpv 7
/pc:m2+5/(P0—P)C—€3/Vp-VQ / /afp’ ,

o dc
= _— = _— = Q
u =0, n 0, o 0, on 09,
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where p = p(v) is determined in Lemma 2.1. For any given (v, fi, ¢) satisfying (2.11),, the
system (2.11) has a solution

(. ) = Al(o, 5, ). (2.12)
Applying the LP regularity estimates (cf.[28]), we have

I(u, . w2 < CII(E, F2, F2) 1o < 0.

Remark 2.2. The condition (2.11), guarantees [ F? = [ F® =0 which is compatible with the
Neumann boundary conditions in (2.11). In fact, by this condition together with (2.1) and
Lemma 2.1, one has

/Fz—/(apéerv‘V@—é‘PoCo) —/(EPEJFPU’VE)_””?

:5/p6+€4/v,0'Vé—l—eZ/(p—po)é—st:0.

The second equality of the condition (2.11), yields [ F? = 0 immediately. Finally, we note
that the condition (2.11); is for the uniqueness of 1 and c. The two conditions (2.11), and
(2.11); coincide after the fixed point argument.

Proposition 2.1. Suppose that (u, u,c) is a solution to (2.11) and the operator A : W — W
is defined in (2.12). Then, the set of possible fized points

u, p,c) := cAl(u, u, ¢
{(u%c)ew( 14, €) [(u; 1, )] }

2.13
for some o € (0,1] and p = p(u) (2.13)
is bounded, where W is defined in (2.10).

A standard argument shows that A is compact and continuous in W. Therefore, using
Proposition 2.1, we conclude from the Schaefer Fixed Point Theorem (Chap. 9, Th. 4 in [22])
that (u, p,c) := A[(u, u,c)] with p = p(u). This and Lemma 2.1 guarantee the existence of
solution (pe, ue, fte, ¢c) to (2.2)-(2.3). Consequently, (2.8) follows directly from (2.6).

It remains to prove Proposition 2.1 as well as (2.9).

Proof of Proposition 2.1. It suffices to show that there is a constant M < oo independent
of o such that

1(w, g, 0) [ < M, (2.14)

where (p,u, u, ¢) solves

/

e2p + div(pu) = e*Ap + % po,
divS = o F(u, i, ¢),
Ap = O-FQ(umuv 6)7

Ac = oF3(u, ,c), (2.15)
d
/pC—m2+e/po Je—¢ /Vp Ve, /pu /p ff% ),
4 9 _, Ou _
lu-O, =" 3, =0, 8n—0, on Of).

We divide the proof into several steps.
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Step 1. 1t follows directly from (2.15); that ||p| ;1 = mq. Multiplying (2.15); by 3|u/* and

(2.15), by u respectively, we get

/p+ﬂo |u!2+a/u V(ép +p28f>

-l-/Sns:Vu—i—a/pg'é(u-V)c—a/p,u(u-V)c:U/(Pgl+g2)'u

Using (2.15),, one has
/u-V ((5p4+p2§‘;>
5 0
/pu % (43 + g,p) +/u~ (Vpgg) —V(pf)>

- —/diV(PU) <46p3 + W) — [ 2w e

3 dp de
5 2
of
dpdc p—c(u Ve

Substitute the above into (2.16) to obtain

20'
o+ mlul+ 2 | (“p3+w) (o o)

2 3 Op
2
+/Sns : Vu—a/pu(u-V)c%—z—:%*/ (45p2+ 8(9(;]”)) Vp|?
9*(pf)
_ Ly — e .
—U/(P91+92) u—ceo Bpdc Vp-Ve.

Next, multiplying (2.15)5 by p and (2.15), by c gives rise to

0
/|VH|2+U/PH(U'V)C+5/|VC|2 =€U/p060u—60/pa£c.

Combining (2.17) with (2.18) leads to

46 0
/p+po )ul® + &2 U/<3p +E9p[')f)> (p — po)
—|—6/|VC|2—|—/|VM|2—|—/STLS : Vu+e4a/ (46p2+ >|V ?
82
:a/(P91+g2)'U—£4a a/()g];)Vch—i-aU/pocou—ea/ a—f
We first assume that

Hi(c)>1 forall ceR.
(See Remark 2.3 for the opposite case). Then, from (1.5) we compute

(pf )

46p* 4+~ > AP (v — Dp 2+ p > 0.

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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Therefore,

0? _ s
/ (46p2+ o] )) Vol > [ (196 + 40— 0y 1903 P + 419 P
and

[+ %) == [ (55 +0160.00) = [ (G4 mson).

Taking the last two inequalities into accounts, we estimate (2.19) as

5
62/(p+po)IUI2+62U/3p4+620/pf(07 c)
+5/\V0\2+/\Vu\2+/S:Vu

2 _ ol
+z—:4a/(6\vp2| +4(y — 1)y 1|Vp3|2+4|v\m|2) (2.22)

<U/(Pgl+gz)-u+6za/gp — a/pof(po, 9

& (pf) of
4 . -
o ode Vp Vc—i—sa/pocoﬂ 50//) %C-

Remark 2.3. If (2.20) fails, we follow the idea in [5] and express the f(p,c) in (1.5) as
flp,¢) = p" "+ (Hi(c) + 2H1(,cpy) Inp + Ha(c) —=2In pH1(,cpy,
Flp.c)

where H is taken from (1.10), and the constant k is large but fixed. Let us decompose the
pressure function as

20f _ 50f

=p 95 = p? a—p —2Hplyp<py =D — 2Hplypcpy (2.23)
and replace p = p*% af with p = p in (2.16). We claim that (2.21) is also valid. To see this,
if p <k, we have

& (pf)

45p° + =46p> +y(y = 1)+ (H1 +2H)p~!

op?
> 40p” +y(y—1)p"* + Hp~' >0,
owing to Hi(c) + 2H > H; while if p > k,
*(pf) 5, O*(pf)
— 46
Op? et 0p?
> 46p" + (v = 1)p" > + Hi(c)p " > 46p> — Hp " > 26p* > 0,

46p% +

as long as k = k(5, H) is taken to be large enough. However, the following extra term will be
induced by the decomposition (2.23),

/ ZFpl{pSk}divu.
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Fortunately, it can be bounded by |Vul[|z> because pli,<i) is bounded. Without loss of
generality, in what follows, we always assume that, for all ¢ € R, Hj(c) is positive and
bounded from below.

Step 2. Let us deal with the terms on the right-hand side of (2.22). Thanks to (1.5), (1.10),
(1.9), (2.1), and the Hélder inequality, the first three terms satisfy
J
U/ (P91 + g92) - u+ 520/ §p§ + EQU/Pof(Po,C)

< Cllullzslioll ¢llgrllze + Cllullsllg2llze + C (2.24)

A1
<C(1+ 1ol ) + S IVulle.

Throughout this section, the positive constants C,Ci(1=1,2,---) may depend on g1, g2, A1,
my, ma, 9, v, H, ||, but not on € or o.
Using (1.5) and (1.10) again, one has

R R0)) C G, Ve < Cto|| Vel 2| (1 + In p) V| 12

dpde (2.25)

< SIVelRs + Cre 0/ (51902 + 419 yP)

It follows from (2.15) , that

[on=] <+a-1Ac) [ <ciompl+1). (2.26)

Then we have, from (2.26) together with (2.1) and the Poincaré inequality,
oo
p=— | pl =
Po €
1 1 / < 1 / > (2.27)
P — plm— s [ 1
" PO 1]

< C(lpmplipr + 1)+ Cllpll s [V ull 2,
which implies
lullr < ClIVpllz + C (lppllpr +1) + Cllpl s Vil 22
CA+Vull2)X+ el 6,

where we have used ||plnp|: < C + Hp||L%, owing to the interpolation and ||p||,1 = mi.
Thus,

Il <€ (14 IVll)(3 + ol ).V p e L6 (229)
Thanks to (2.1) and (2.15), one has

/pC=m2+8/(pop)c+€3/cAp
=mg + E/(po —p)c+ 53/pAc (2.29)
< C+Celpll ¢ IVellzz + C(llpll sl s + llp* I pll 1),
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where we have used the estimate:

/(p—po)cz/pc— Kl)’/mlcz/,0<6—’§12‘/6> < Clpll oI Vell -

With the aid of (2.29), the same method as (2.27) yields,

/:po/pc_/p<c !QI/) (2.30)

< C+Clpll g lIVelze + C ol gz llullzs + llp* I pll ).
Thus, for p € [1, 6],
lellr < CQ+ Dol o)A+ Vel z2) + C (o2 sz Il s + [l I p| 1) (2.31)

Having (2.28) and (2.31) in hand, we can make the following computation and estimate,

O‘/ C — &0 6f
POCOM 6

< Coz (llullz + lpnp+ DI, gliel o)
< Coe (14 | Vplg2) (14 ol g ) + Coe (1+ loTnpl?g ) (1 + Vel 12) o)
+Cost (1+ llompl o ) (ol g 1l o + 117 1 pll 1)
< O+ S Vuls + SIVelRs
+Co (llompl g +<llplnpll g o mpll + < llplnpl g loll 1z ) -
Then, we compute
o (elomplt s + ot pll o llo? I pll s+ llolnpl* o ol 5z )

%o 8 %o 4 8 4 4
<C+ ?HPIDPHL%S + ?HPHL‘l +o¢ HPIDPHLg ||P\|Lg

2
€0 14 8 4 4

<C+ THPHM +o¢e HPIHPHLg HPHLg
2 20
ETO 20

<C+ 7IIpH3§4 + UESHPQH o

< C(0) + Hp!!L4 + 22 HV( zes

where in the third inequahty sign we have used

lotnpl? s llpll 2 < C||PHL12 < C+llp? ||L6’

owing to interpolation and the fact ||p||;1 = mi. By the above estimates, substituting (2.24)-
(2.25) and (2.32) into (2.22) concludes

2
ool + IVull + [Vl + 2| Vells +'o [ (5|96 + 419 v5P)
2
<C+Clolls,
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which, along with (2.28) and (2.31), implies

ellpllzs + lullfy + ellellin + el + e Ve? | +1VValllZ: < € +Cliell s (2.33)

Step 3. By (2.33), it is clear that
ol za + llullzgy + lelizp + llellzn + 11V + [V Vollz: < Ce). (2.34)

From [37, Lemma 3.17] we take the Bogovskii operator

Bzwhaim:{feﬂw/fzo}Hwéwm,zmem» (2.35)
Then, divB(f) = f a.e. in €, and moreover,

IVB(Hllzr < Clifllzes  [1B(AHzr < Cllgllze, (2.36)

where f = divg and g € LP with ¢g-n|pq = 0. Furthermore, we write (2.15), as the equivalent
form

efA\p = div(pu + £2B(p — po)). (2.37)
Applying Lemma 2.2 to (2.37), using (2.34) and (2.36), we find
IVpllze < llpu+e*B(p — po)ll 2
< llpullps +1[IVB(p — po)l| 4 (2.38)

1
< llullzsllp®ll7s + llp = poll s < C(e),

and hence,
loll e < Cldiv(pu-+ *B(p = po)) 12 239)
< lu-Vp+ pdivul|z2 + [|[divB(p — po)|lz2 < C(e).
Combining (2.34) with (2.39) gives
||0F1(u,,u, C)HL% + ||O'F2(U,,u, C)HLG + ||O'F3(U,,LL, C)HLG < C(E)
By LP regularity estimates, we obtain
ull 23 + lellwze + [lefw2e < Cle). (2.40)

From (2.40) we have ||oF*(u,p,c)|ze < C(e), and thus |luly26 < C(e). By a bootstrap
procedure,

”(U,,U,, C)HWQaP < 0(8)7 Vpe (1700)

This completes the proof of Proposition 2.1 and (2.9). O
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3. e-LIMIT PROCEDURE FOR THE APPROXIMATION SOLUTIONS

In this section, we shall take the e-limit procedure and prove the following result.

Theorem 3.1. Under the same assumptions as in Theorem 2.1, the system
div(pu) =0,
, 1, 20f :
divipu @ u) + V | 6p” + p*== | = divS,s + puVe — p—
dp Oc

pu-Ve=Apu,

_ of
pu—pac—Ac,

with the boundary conditions (1.6) admits a weak solution (p,u, u,c) such that

/p—ml, /pC—m%

0<peL3(Q), ue HQRY), (nc) e HY(Q) x H(Q)
Moreover, V ® € C§°(Q,R?) and ¢ € C*(9Q),

/ (5p4 +p28f> div®d
dp
of
=/(Sns—pU®U):V‘I>+/<p6,ch—pch—pgl—gz> -,
and
of
/pu-wm/w-w:u /pw—pacqb:/w-w;

when (p,u) is prolonged by zero outside 2,

/ bp)u- Vo = / 6 (¥ (p)p — b(p)) diva,
R3 R3

0
fvc+pgl +925

13

(3.4)

(3.5)

(3.6)

where b(z) = z, or b(z) € CY([0,00)) with V/(z) = 0 if z is large; and the following energy

inequality holds:

/ (M [Zul? + O + Do) (diva)? + [Vpl?) < / (pg1 + g2) - .

(3.7)

Theorem 3.1 is indeed a result of e-limit of the solutions (pe, ue, fie, ¢c) obtained in Theorem
2.1, as shown below. First the following lemma derives some uniform in € estimates on

(p€7 UE’ME’ CE)'

Lemma 3.1. Let (pe, ue, e, c=) be a solution in Theorem 2.1. Then there exists a constant

C which is independent of €, such that

of
dpe

12l r + o257 Mler + el < C.

(3.8)
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Proof. Let B be the Bogovskii operator as defined in (2.35). If we test (2.2), by B(ps — po),

we infer
0
/ <5p§+p§ f>ps
Ope
0
= / (503 + pfag > po — /(Pegl + 92) - B(ps — po)

+ g? /paus : B(pa - PO) + et / Vpe - quB(pE - ,00)

- /pz—:us X U : VB(pE - PO) (3-9)

+ / M (Vue + (Vue) ") : VB(p. — po) + AadivudivB(p: — po)

0
+/ (paacf - paMs) B(ps — po) - Vee

Owing to (1.5), (1.10), (2.8), (2.36), and the simple fact pQg—J; = (y—1)p" + Hyp, we get

0
11—1—123‘/ (5p§+p?af)00
pe

+ ‘/(psgl + 92)B(pe — po)

5
< C/ <5p§ + Pga; ) + O+ lpell )IVB(ps — po)ll 2
€

1 of
< = 6p2 + =L :
o 8/< P5+P58p5> e
Next, by (2.33) we have

I3+ 1y + I
< (€2 +*IVpellz2) [luell i 11B(p= — po) |l Lo
+ el 12 luell 261V B(pe — po)ll s

<C(1+1pelP ) el 22 1B(o- = po)llwr

)
< §||,05H25 +C.
Similarly,
Iy < ‘/ M (Vue + (Vue) ") - VB(pe — po) + dadivu.divB(p. — po)

)
< Ol Vuel[r2lpe — pollr2 < §||P6Hi5 +C.
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To deal with the last term, we multiply (2.2), by c., then use (1.5), (1.10), (2.31), (2.33) and
the interpolation inequality to deduce

of
Vecle = [ (o= pgl ).

oF
<lledoa ([ Vo = 5 ) 0

< Clleellpz (lpellsllpells + [lpe In pell 2 + 1)

1 5
< 5Ivele+ 0 (o +1).

0
I; < ‘/ <paag - paﬂa) B(ps - pO) -Vee

1
of 2\?2
< 1B~ )l Vel [ oo = o5 )

< Cllpellzs + C.

In summary, substituting the estimates above back into (3.9), using (3.10), we conclude

Vealis+ [ (55240250 ) <.

This, along with (2.33) and (2.31), gives rise to (3.8). The proof of Lemma 3.1 is completed.
Having (1.5), (1.10), (2.33) and (3.8) in hand, we can take the limit as ¢ — 0 of (pg, ue, fie, ¢c),
subject to some subsequence, so that,

whence,

pe = pin LSNLT pt = pt in L%, (3.11)
(Vaue, Ve, Veo) — (Vu, Vi, Vee) in L2, (3.12)
(ug, fe, ce) = (u, p, ¢) in LP (1 < p; <6), (3.13)
e'Vp. =0 in L2 (3.14)
e2p. =0, e*pou. — 0, ep.cc =0, e*Vp.Vu. -0 in L. ( )
Moreover, it follows from (3.11) and (3.13) that
(petie, pepie) — (pu, pp) in L2 Pelle @ Uue — pu @ u in  LP (for some p > 1), (3.16)

and
0 L 57
psaig :pslnpsHi(Cs)"‘PsHé(CE) 4p]np[{l( )—|—pH2( ) 67f in L2 (317)
€
0 o 8 .
pg 8Pf = (v = Dpd + peHilece) = (v = 1)p7 + pHi(c) = IJ; in L (3.18)
€
It remains to verify the strong convergence of Vc,, i.e.,
Ve, — Ve in L2 (3.19)

In fact, as in [5], we use equality (2.2), to obtain

[vevo= [omo- [ pggciqzs, (3.20)
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which, together with (3.13), (3.16)-(3.17), provides us

lim |Vca\ —hm/pg,uacE hm/pga Ce = /p,uc—/ 3¢

On the other hand, if we select ¢ = ¢ in (3.20), we obtain

/]Vc|2 = lim/VcE-Vc: lim/pg,ugchm Pe—— c—/p,uc/
e—0 e—0 oc

Thus
lim/]Vca|2:/|Vc\2,
e—0

which, together with (3.12), guarantees (3.19).

From (3.11)-(3.19), we are able to pass limit and get the integral equalities (3.4)-(3.5) with
ot p 8’; , p? gf replaced by p?, p 8{ , ng—ﬁ, respectively. In addition, we obtain (3.2) and (3.7)
from (2.1), (2 2);, (2.29), and (3.8).

Finally, (3.6) is guaranteed by the following lemma, whose proof is available in [38, Lemma

2.1] and [37, Lemma 3.3].

Lemma 3.2. Let (p,u) be a solution to (3.1),. Assume that p € L*(Q) and u € H} (2, R3).
If we extend (p,u) by zero outside 2, we have

div(b(p)u) 4+ (V' (p)p — b(p))divu =0 in D' (R3), (3.21)
where b(z) = z, or b € C([0,00)) with ¥/(z) = 0 for large z.
In order to complete the proof of Theorem 3.1, we need to verify

T of  of ,O0f  o0f
PP=r Poe =Poc P dp P op
For that purpose, let us define

(3.22)

pln(p + 1), p<n
C?([0,00)) 2 ba(p) = "

1
m+1)In(n+14+-), p>n+1.
n

First we see that b,(p) — plnp a.e. because of the fact: p € L. Select b, in (3.21) and send
n — oo to obtain

div(uplnp) + pdivu =0 in D'(R?).
This implies
/pdivu =0. (3.23)
On the other hand, multiplying (2.2), by b),(p.) gives

/(bIn(Ps)ps — bn(pe))divue
:52/0017%(%) —€ /peb' pe) 54/1)” pe)|Vpel? (3.24)

< 82//)06;(/)5) —Ez/peb;(pa)—s‘*/ by (pe) |V pe|*.
{&: b7 (p<)<0}
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It follows from (2.34) that ||[Vp:|lz2 < C([[Vp2| 12 + [V/pellr2) < C(e). Then, for fixed
e >0,

saa/ V.2
{z: 0], (p)<0}

< 0(5)/ Vo2 =0 (n— oo),
{z:n<p<n+1}

—&/" W (p) Ve ?
{z: 0], (p)<0}

where in the second inequality we have used the fact b/!(p:) > 0 if p. <n or p. > n+ 1.
Recalling (3.8) and the definition of b, one deduces

. /

Jim / pobr, (pe)
= Jim ([ e [ )

nee {pe<n} {pe>n}

. 1 Pe .
<1 1 — C1 D pe >
<) (n(pa +o)+ Py i) +C lim meas [{z; p: > n}|
1

< lim poln(p: + =) + lim Popel

n—00 {1/2<p.<n} n n—00 Pe —+ =
<C.

Similarly,

lim [ p:by,(p:) < C.

n—o0

Therefore, taking sequentially n — oo and € — 0 in (3.24), using (3.23), one has

/pdivu = lin(l]/pgdivu8 <0= /pdivu. (3.25)
e—
To proceed, define the following effective viscous flux:

of

e

— (2M\1 + Xo)divu, and F = Spt + ngf — (2A1 + A2)divu.
0

We have the following lemma.

Lemma 3.3. Under the assumptions in Theorem 3.1, the following property holds:

ti [ op.F. = [orF, ¥ e C@. (3.26)

Let us continue to prove (3.22) with the aid of (3.26). The proof of Lemma 3.3 will be
postponed to the end of this section.
In view of (3.25), F. and F, we take ¢ — 1 in (3.26) and deduce

lim/pe 5ot + 2 S/p 5o+ 22 (3.27)
=0 Ope dp
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According to (3.18) and (3.27), we have
/ (55 + (=Dt + ﬁH1(0)>
- 4
— tim [ p- (55! + (= D7 + )
of
_ 4 2
= glgé/pa (5/)5 + pZ 8/)5)

< [o(o7 0250 ) = [ (697 (2= v + ().

which implies

[s(o=7) = =0 [ (777 =) + [ (7= ) tl) 20 (329

where the last inequality is due to convexity and Hj(c) > 0. Next, for the given constant
B > 0 and any n € C*°(Q),

0< / (b2 = (p+ Bn)*) (p= — (p + )
= / (02— pp— pBn— (p+ Bn)'pe + (p+ Bn)°) .
By (3.28), as € — 0,
0< / (ﬁ —ppt = p B+ (p+ 677)4617) < / (—F +(p+ ﬁn)“) B
Replacing —( with £ in the argument above, and then taking 8 — 0, we get

/(p4p”‘)77=0-

This implies p* = p*, and thus p. — p a.e. in Q since 7 is arbitrary. Moreover, (3.11) implies
that, for all s € [1,5),

pe = p in L°. (3.29)
As a result of (3.29), (3.11), (3.17)-(3.18), we obtain (3.22). The proof of Theorem 3.1 is
completed. ]

Proof of Lemma 3.3. We will prove Lemma 3.3 by the results developed in [32]. Let
A~Y(h) = K % h be the convolution of h with the fundamental solution K of the Laplacian in
R3. For 9;A~! (i =1,2,3), by the Mikhlin multiplier theory (cf. [42]),

10: 57 (B) lwrw) < CQ )Rl Lo@sy, € (1,00),
0,87 e ) < CQPIGA Dl "= 57— p<3 (330
10:87 1 (B) || Lo () < COL D))l Lors)y, P> 3.
If h,, — h in LP(R?), we have
9;0;A" (hy) = 0;0,A7 (h) in LP, (3.31)



CAHN-HILLIARD-NAVIER-STOKES EQUATIONS 19
and additionally, by the Rellich-Kondrachov compactness theorem,
KA (hy) — 0;ATHA) in LY, (3.32)

where g < p*if p< 3 and ¢ < oo if p > 3. A
Prolonging p- to the whole space R® by zero, multiplying (2.2); by ¢, A~ (p:) with ¢ €
C°(€2), we obtain

of
Ope

S / KN (p:)0igp <5p§ + o2 — (M + )\g)divu5>

+A{/«wéaA*ma@¢—@@&A*@@@¢+%mevw
of - . (3.33)
- / <p€,ueaics - psaceazfs) PO A7 (pe) — / (P91 + 92) PO (pe)
- [ paduiozo0s (o) = [ pauluion0.87 o
42 [ paionisp) + 2 [ Voo Vulonispo),
where the second line on the right-hand side comes from
Al/awg@¢c%%ﬁ%¢+@@A-%&wa
=\ / (05uldi N~ (=)0 — ul0;0 N (pe) D — ulip=0)
=\ / (0uldi N (pe)Djd — ul0;0: N (pe)Djdp + peue - V) + A1 /pgdivugqﬁ.

Next, since (p-,u:) € (H', H}), then div(p.u.) € L%(Rg) and div(peue) = 0 in R3\Q. In
addition, p. € H? and %bﬁ = 0 imply

Thus, it makes sense to extend (2.2); to the whole space by zero,
e2(pe — po) + div(poue) = e'div(1qVp.) in R3,

which yields by straight forward computations,
- /Paui-(ﬁaz‘@jﬁl(ﬂaug)
—— [ pato0,s divipea)

== [ pado0ts iv(1a¥0) + 2 [ peak il (oo = po)
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and

- / peudnit 0,60, (p.) — / pedi 0,0, (p2)

= — /pguguéﬁjqb@iA_l(pe) + /uéqb [pf_;@i@jA_l(psug) - psugaj&A_l(pg)]

- [ peuto00,87 puud) (3.34)

—— [ paduiogo0.s (o) + [ 0o 000,07 peud) = pende,0is )]

- 54/psuéﬁsaiﬁ_l(div(lﬂvf’e}) —|—52/,05u2¢6¢A_1(p5 = po)-

Now, replace the second line from the bottom in (3.33) by (3.34) to obtain

= —/@'Al(pg)aid) <5pg + pz gpf — (A1 + )\Q)div’ua)
+ M / (05ut0i 57 (pe)0jp — uLd; 0N (pe) Db + peuie - V)
‘ Of o Vi A-l e
- (pepeOice + pe e 0ice )P0 N (pe) — (pg1 + 92) 0 AN (pe)
j i -1 i -1 j j -1 (3.35)
- /Pauﬁueajwiﬁ (pe) + /Us¢ [pe0i0; A (peul) — peuld;di AT (pe)]
~ ' [ pauio0,87 @iv(1Vp)) - V. - Val60.07 (o)

+ & / pgung&'&_l@pg = po)

7
€
=2
i=1

where J£ denotes the 7" integral quantity on the right hand side of (3.35).
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On the other hand, if we take e-limit in (2.2), first and then multiply the resulting equation
by ¢9;A~1(p), we obtain

/¢pF
o — . L0f :
= —/&A (p)8Z¢ <5p4 + p287p - ()\1 + )\Q)dlvu)

+ M\ / (8jui8iA_l(p)8j¢ — uiajaiﬂ_l(p)aj(ﬁ + pu - V(b)
(3.36)
8f —1 -1
- / ((puaic +p=L0,)00i0 7 (p) = (pg1 + 92) 00 (p))

= [ 060,87 0 + [ o[22, (o) — pu230.7 o)

In terms of (3.35) and (3.36), to prove (3.26) it suffices to check

limJ; =J; (i=1,2,---,5) and lin&szO (i=06,7).
e—

e—0

In fact, owing to (3.32), (3.11)-(3.12), (3.18), we have lim._,o J§ = Ji. In a similar way, for
i = 2,3, 4, we obtain lim._,o J¢ = J; from (3.31)-(3.32), (3.11)-(3.13), (3.16)-(3.17), and (3.19).
Next, by (3.30), (2.33), and (3.8), we estimate

| J6 + J7]

< eIV pell 2l el lluell o + €%l pel 2 lluell 2 18: A7 (2pe — po)llzee
+ Vel 2 [Vuell 2 10:47 (pe) |

< e (211Vpell2) luellsy (lpelizs + 10:87 (pe) )

+ %)l pell 2 lluell L2 10:A 71 (202 — po) Il e
<(Ce—=0 as —0.

Finally, in order to check J5, we present the following div-curl Lemma.
Lemma 3.4 ([23]). Let % + % =1 and 1 <r,r,ry < oco. Suppose that
ve = vin L' and w.— win L™.
Then, fori,j=1,2,3,
vaaif)jAfl(wg) - wgaiajAfl(va) — v@iajAfl(w) - w@iajﬁfl(v) in L".

Taking v. = p.ul and w. = p. in Lemma 3.4, and using (3.13), (3.16), we get lim._ JE =
J5. This completes the proof of Lemma 3.3.
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4. VANISHING ARTIFICIAL PRESSURE

In this section, we take the J-limit in the artificial pressure and prove the main result in
Theorem 1.1.
By (3.1),, it follows from (3.5), that

/Vu V(]ﬁ——/pu-chS:—/pu-V(cd))—i—/pcu-V(]ﬁ:/pcu'Vd). (4.1)

Next, from (1.5), (2.28), and (3.3), one can easily check that ¢ € W2P(Q) for some p > 1. Let
¢ =Vec-®in (3.5), with ® € C5°(Q;R?). We have, by approximation if necessary,

/(pu pgf)Vc ® = /Vc V(Ve- ) /S Vo,
which, along with (3.4), leads to

0
/ <5,04 + p28£> divd = / (Sns +Se —pu®@u) : VO — /(p91 +g2) - ®. (4.2)
As a result of (4.1), (4.2), and Theorem 3.1, we have the following theorem.

Theorem 4.1. Under the same conditions in Theorem 3.1, for any fixed § > 0, the following

system
div(pu) =0,

0

div(pu @ u) +V <5,04 + p28£> = div (Sps + Se) + pg1 + 92,
4.3

div(puc) = Ap, (4:3)

of

PR =Pg Ac,

with the boundary conditions (1.6) admits a weak solution (ps, us, pis, cs) which satisfies (3.2)

and (3.3).

We will prove Theorem 1.1 by taking § — 0 in the solutions (ps, us, tis, ¢s) obtained in
Theorem 4.1. Firstly, we derive some refined estimates on (ps, us, 5, ¢s) which are uniform
in 4.

Lemma 4.1. Let (ps,us, pis, cs) be a solution obtained in Theorem 4.1. Assume that (1.11)
1s satisfied. Then there is some p > g and 0 > 0 with v+ 60 > 2 such that

of
3llp5 0o + ”p2+9EHL1 + llusllmg + sl ar + llesllwze < C, (4.4)

where, and in what follows, the constant C' is independent of J.

Proof. We shall borrow some ideas from [27, 36] to give a weighted estimate on pressure.
Owing to (1.9) and (1.11), it follows from (3.7) that

" / Vausl? + / Vsl < / (P51 + 02) - s s

< g llpsusllprllgnlze + llusllmllg2l o
where 1, =1if V x g1 #0 and 1, = 0if V x g1 = 0. Taking

3s—2 6(74—0)]7

b> ,
- s 5y + 20

and s € [1 (4.6)
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we have
Ts—6 24 (b=3)s (6—s)b—4s
losualle = [ (sblasl?) ™ (usl®) " (o) 5
(4.7)
T = T
< Noblus 21 usll o ™ llpsllys
Substituting (4.7) into (4.5) gives rise to
b 25
Jusllng + [¥slze < € (IoblusIE? +1). (43)

The case of V x g1 # 0. The estimate is divided into several steps.

Step 1. Let B be the Bogovskii operator defined in (2.35). Choosing ® = B(pl— Q™! [, p%)
in (4.2) with @ = 0(~y) small and to be determined, we get

of
5 4+ 2> 0
/ ( Ps p5ap6 Ps
-1 0 4 2 8f
= ’Q| Ps 5/05 + pé(’?T)(; + [ Sps: VO — (/)591 + 92) - @

—/pgug@ug:V‘I’-f—/Sc:V(I)

4
=> K,

=1

(4.9)

Firstly, by (1.5) and (1.10), we have

of
o (a2
1 Ps p66p5

1
<3 / (5p§+" +(y=1)py + p?;*"Hl(c(s)) +C (4.10)

1 of
- = 5 4 2YJ 0 i
8/<%+%%9%+C
Secondly, thanks to (4.8) and (1.11),

K2:/Sns:vq)_(p5gl +92)'(I)

< (IVusllze + losll g llgnllzs + llgal g ) IVl
199 (4.11)
1

b 6b—2 0
<0 (IebtusPIEE" + sl + 1) 1o

<5 [0Sl 4 ClblusIE? +0
“8Ja"? 9ps ° 2 '
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Next, by (4.8), one has

4t—3 (2—b) 3b—t(2+b)

losluslls: = [ (shlus®) ™ (fusl®) T gy
4t—3 6(1—t(2—b)) 3b—t(2+b)

3b—2 3b—2 3b—2

< NeblusPUET sl ™7 lsll 7

5t—3
<c@+wmmn@”)

Let t = WT—FG in (4.12), then we have

K3 = —/p5U5®U5 : Vo
< Ve e Hpa\ué|2HLvT+9

< CHﬂaHiwaHpaluzs!QHLwTw

<5 [ Aol w0 (1 bl
u .
=3 P 9ps Ps

Finally, if we replace us with 5 and take b =3 — 2 in (4.7), we find

75—6
losmsllis < Cllokugli i
Taking s = 5(,7;93 in (4.14), we deduce
9 6(~/+96) 6(7+99)
5 2 5 2
IVZesll *5ive) < CllAC "5t
[ 5v+20 [, 5v+20
55
< CHPJ/L(; + p(saiH g(,erg)
Cs 15720
st0) 61+0)
5 2 5 2
<C+ C”ﬂ&/‘d” 17+ Cllps In ps|| ’Z)'-(:—O—G) )

[, 5v+20

where the exponents in the last inequality are due to

_ 6(y+0) and G — 47+79'
5y + 20 3(y+0)

With the help of (4.15) and ||ps||;1 = m1, we have the following estimate,

Ky <OV 40 HVCéHQ 2(y+6)
L 6 L ¥y

, , 8050 et
Sﬂ%hmw@WCﬂ%ﬁm)
[, 5v+20
9

< +§ Ps 8p + ”Pa#a”,;l-

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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In conclusion, substituting (4.10)-(4.13), (4.17) back into (4.9) gives rise to

2v+56 Y40

of ; £ ;
/ <ap§ +P§ap5> o< O+ CllbluslI 5 + b2l 1

(4.18)

y+0

< O+ Clips(lusl* + g3l i

2v+56 27450 _ ~+6
from (4.16) and oD Sy = o

Step 2. We show the following estimate:

Proposition 4.1. For any fired ag € (0,1) and x* € Q, there is some constant C independent
of 6 or x*, such that

.
ps () b 2, .2
mdl’ <C (1 + [lps(Jus|” + Ma)HLl) ; (4.19)
with b being defined in (4.16).

Proof. We consider two cases.
Case 1: boundary point z* € 0. As in [27], we introduce

£(@) = 0@dro(e) (6(2) + o — a7 ) T, i=1,2,3, (4.20)

where the function ¢(x) € C?(Q) satisfies the following properties:
¢(x) >0 in Q and ¢(z) =0 on 99,
lp(x)| > k1 if z€Q and dist(x, 0Q) > ko, (4.21)
IVo(z)| > k1 if € Q and dist(z, Q) < ko,

and the constants k; > 0 are given.

Remark 4.1. The function ¢(z) satisfying (4.21) is in fact the distance function near the

boundary with C? extension to the whole Q. Moreover, for every point z €  near the
boundary, there is a unique & € 02 such that

rT—I
o(x)
See, e.g., [46, Exercise 1.15] for the detail.

Vo = and ¢(x) = |z — 7| (4.22)

It is clear that £ € L*°(€2) and £ = 0 on 0f2. In addition, a direct computation yields

9;¢" = ¢0;0:¢ _ 9;90;¢ I
(6+ 12 —avm) " (640 —ar|7m)
2 (4.23)
$0;90;¢ o $0i005|z — 2|20

—Q 2 ~ oo+l 0 2 \aot+l’
(64l — =) (64 ko — =)

Thus, |[V¢| € LY for all ¢ € [2,%) because |9;¢!| < C + Clz — 2*|72°. Due to (4.21) and
2
2—ag

> 1, the following inequalities hold true:

2
<P+ |r—a*?>0 <Clr—2z"| (4.24)
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With (4.21)-(4.24), one deduces that, for dist(z, 0Q) < ko,

2
divé > —C + L Vol > ¢

Take ® = ¢ in (4.2) to obtain

0 .
/ <5P§ + P?saf> divg + /paua ®@us : VE
s

— [Su:ve= [ (oo +an) ¢+ [50:ve

The first two terms on the right-hand side of (4.26) satisfy

‘ [ -5\ < Clao) ([Vusllpz +1).

Next, let

v+ 0 3

0 Oé()’

where 6 and «g will be determined in (4.46). One deduces

[[50:9€] < CIVEL e IVl sz < CIT 651 g
v

[ 5v+26

_ af
<c+Clduiln +C [ A2,
Ps

where the last inequality is from (4.15).
Now let us focus on the left-hand side of (4.26). Owing to (4.25), one has

4 2
9 0 0ps + P
/<5p§+p§af)divsz—c/(5p§+p§ f>+C [ )<
n kzx*

|x — z*|@0

9ps 9ps

By (4.22), one has 9;0;¢ = ai(x(;j)j — aj(zfid’. Then,

2(1 —040) <¢+ |x—m*|ﬁ>a0 = ’x—x*‘ao.

Ppstis ® us : (0;0i9)3x3 _ / pslus|? _/ pslus - Vo |?
(czﬁ + |z — x*]ﬁ) ’

2 [a73) 2 [e7)]
(¢+10—2*7=) (¢+10—2*7=)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
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and hence, by (4.23) and (4.24), we have

/Paua ®us : V§

_ ps|us|® B ¢ps(us - V)
/<¢+|x—x*|2—2ao)ao ao/( 2 )QOH

6+ |z — 2% =0

_%m/¢mwwvu—mﬂf%xw-vw
2 ag+1
(6+z—a7) !

2 4.31
ps|us|* Pps(us - V|r — x*[2720) (us - Vo) (4.31)
> (1 - ao) 3 a0 @0 NS
(¢+|x_$*|2—a0) (¢+|$_x*|270¢0)
2aq
1— 2 2 2 k| 2Tan
> ( 2@0)/ P&‘U6|L . —C(ao)/ ¢ ps|us|”|z f | a00+2
(¢+|x—$*|2“’0) <¢+|xfx*|m)
2
5|Us
> ¢ L g g 2
QﬂBkQ(x*) |‘,E - |
Therefore, (4.26) together with (4.27) and (4.29)-(4.31) yield
4 2 0f
/ (5’)5 +p5f’7a) L _polusl”
OBy, (@) \ T — |20 |z — z*|oo
<C 5ot 2% C b 2 2 1
< Pot P, )+ lusllzg + lpseslie + llpslus|™l o +
(4.32)

— ) 740
< C(v,6,H) (/ <5p§ +p§af> p§>
ps

+C (Jlusllmy + Il oBr3ler + lpshus 2l +1)

< C + Cllps(Jusl® + 1)l 11,

where, for the last two inequalities we have used the Holder inequality, (4.8), (4.18) as well as

2

lpslusllze < C+ Cligslus*lIFE" < C + Cllp§lus [ 1,

which comes from (4.12).
Case 2: interior point * € Q. There is a constant r > 0 such that dist(z*, 0Q) = 3r. Let
X be a smooth cut-off function satisfying x = 1 in B,(2*) and x = 0 outside Ba,(z*), as well
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as |Vx| < 2r~!. Choosing ®(x) = ﬁx in (4.2), we find

of 3— o r—ax*
st 1 290 2 / v 2
/( P5+P5apé> |a:—a:*\a0x + | psus © us ]m—x*\aox
r—z* 5 r—z* 5
=— — Sns : _— 4.
[ o 2o | v(mﬁwﬂ) (4.33)
5 Of Vx (zr—=x x—a* oz
-2 0 Se .
(ot s ) T+ v (R
By a direct computation, one has
|x — |0
0i(x? — (a*)7) 4 (27 — (&))@ = (&*)") , = (@)

_ _ 2
z e X 00 . X D

el qel2,—),
o

and hence, the second term on the left-hand side of (4.33) satisfies

) T—x* 5
/”W®W'V<m:mwx>

ps|us|? xps(us - Vx)(us - (x — x*))
> 2 .
— / | $*|a0 + / |IE _ $*|O‘O (4 34)
_l-a0 [ pslusl® 2—(1/ ps|us]*
N 2 ‘x - x*|a0 r<|e—a*|<2r |$ - $*|o¢0’

where C' is independent of r.
For the terms on the right-hand side of (4.33), we have

‘—/(pagl +92) - | /Sns: <$x2>

< C+ Clusl

and

2 of
_ g Py 92 0f\ Vx-(x—a* <C 6p5+p58p5>
Ps P576 X e z — *|a0 z — z*[a0
Ps r—T r<lz—a*|<2r r—x

where C'is independent of r. Similarly to (4.29), we deduce

) r—x" o, b 2 2 Of
/Sc'v<|x—x*P‘OX ) §C+C’P6H5||L1+C/Péa
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From the above estimates, we obtain

4 2 0f
/ (5p5 +p5676) pslus|”
Br(z*)

e N

< [ gL+ (lusllg + Iobules + loshusPlus +1)

4 2 0f
o @%+%%J+ pslus|2 (4.35)
r<|z—x*|<2r |3j - x*|010 |J} - $*|a0
< C+Cllps(usl* + 1)l 1

4 2 0f
(595 +p58pa> ps|us|?
* | Qo + * | QQ
r<|z—z*|<2r ‘JJ -z | |.’L’ -z ’

+C

)

where the last inequality follows from (4.32).
We need to discuss two situations: (i) z* € § is far from the boundary. (i7) x* € Q is close
to the boundary.
(1) The case of dist(z*, 002) = 3r > %2 > 0, where ks is the same as in (4.21). From (4.35),
one has
0,
/ (5ﬂ§ + 03 5 )
Bo(av) |z —a*[®

of (4.36)

< O+ Clabllusl + ilus + Clk) [ (0 + s
< C (1+ llob(usl? + ) 1)

where in the last inequality we have also used (4.32).
(73) The case of dist(x*, 0Q) = 3r < ]“2—2 Let |z* — Z*| = dist(z*, 002). Then,

Az —zx*| > |z -2, V z¢ B.(z"). (4.37)
In view of (4.37), we infer from (4.35) that

4 P
/ (5P6 + P%aTQ ps|us|?
r(x*)

|z — a*[ao |z — a*[ao

+P§|U6|2>

~ (5p§+p§§ff) 2
ps ps|us|
< O+ C|1p%(lus|* + 12)|| 12 + C +

r<lr—z*|<2r ‘.%‘ - x*‘ao |$ - m*’ao (438)
_ <5p§ +p§§—f) 2
ps|us|
< C+Cllos(Jusl® + pi)llp +C —= -
QNBy, (&) |ZE — 1’*|a0 |:E — x*‘ao

< C (1 + lok(lus® + 1) 10

where for the last inequality we have also used (4.32).
In summary, we obtain (4.19) from (4.32), (4.36) and (4.38). O
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Remark 4.2. The case that x* € Q is close to the boundary was first treated by Mucha-
Pokorny-Zatorska [36], where they combined the test functions for both the interior and

boundary cases.

Step 3. By (4.19) and the Hoélder inequality, we have
b Y
/ Ps _ < ( Pa* ao) / 1 —
‘x_x| ’x_x’ |:L‘—x*|ﬁ
(/)

< C (1+ ldh(lusl® + 1))

2|
2

2|

| /\

2o

if
b(3 — 040)

<.
9 gl

We note that (4.40) implies ”’7_75%“’ < 3.
Consider the Neumann boundary value problem:
Ah(ﬂf*)zﬂg—l/pg:pf_’;—m in Q,
€] Ja
Oh(x™)
Con

where m = ﬁ fQ pg. Recalling the Green’s function representation

h(z*) = /QG(:U*,:U) <p§(x) - m) dz,

=0 on 012,

and using (4.39), we have

|h]|Lee < sup / ——dx
z*eQ JQ |$_‘T |

b
<sup/ p‘s()d +Cm
Q

T zre |x—m*|

5
<c@+wmm+mnhQ.

From (4.41) one has

|wwm:/ﬁm+mw

Zm/u§—2/uavua'Vh
%
Sm/ﬁ+wwmy</ﬁwmﬁ,

(4.39)

(4.40)

(4.41)

(4.42)
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and

/p,g\vny? = —/ (H3hOh + 205V ushV h)
) :
< |Ih|z= <m / 12t / Phi2 + 2|V jug| 2 ( / uzrvm?) ) ,

lp5ksll < C (1Pl Vsl 7 +mllus72) - (4.43)

Thanks to the interpolation inequality and ||ps||z1 = m1, we have

thus,

b—1 1

m < Clipfllze < Clipgllzit and lpsl? g < Cllogllz

Then, by (2.28) one has

3b—2

ml|pas]|Z2 < Cllpgll " (1 + [ VaslZ2).
Substituting it back into (4.43) yields

3b—2

1kl < C <||h||L°° el zw) (1+ Vs ).

Similarly, we have
13lusl*l e < Cll L[ Vus| 72

Thus, from (4.42), (4.19) and (4.8), we obtain

_ 3b—2
15 (usl® + 13) I < C (HhHLw + Hpgllzﬁ”‘”> (14 Vsl 2 + | Vusll2)? (4.44)
< C+Clip§(lusl® + 1)1 71
with
b 3b—2 1
Step 4. If we can prove
1§ (usl? + 1)l < C, (4.45)

then, we conclude (4.4) from (4.8), (4.15), and (4.18), and thus complete the proof of Lemma
4.1.

To prove (4.45), it suffices to show 8 < 1 in view of (4.44). By (4.28), we may take 6 close
to zero as ag — 0. From (4.40) and (4.16) we see that
2 2 1 y+0

b
- < — = —0 d — =
S <3 ag 3 a0 and o=

— - (as 0 — 0). (4.46)

1
3

Hence, § = % + 35%1 < 1 if both ag and 6 are chosen small enough. Besides, to guarantee
(4.40), from (4.16) we have

3—0406_3—040 4y 470
2 2 3(v+0)

v > —2 (as ag, 0 — 0).
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If p = Sb 2 5+ ﬁ (we have no need checking (4.40) any more), we see that 3:())3:%) < 2is
equlvalent to v > 3b. By (4.16),
3- 3 4y+76
b= =2 6 —0). 4.47
12 s 2 020 (4.47)
This and (4.46) guarantee that 8 < 1 as long as 6 is small.
The case of V x g1 = 0. In this case, from (4.8) we have
lusll g + Vil < C.
Then, the same deduction as (4.44) yields
36—2
2 3(v=1)
ps(us|” + p 1<C’<hLoo+p )
ok (usl® + #)1l 7] 151l 5 (4.48)

< C+Cllp(lus® + 1)1 75

a {b 3b—2}
= X9 —y =~ (-
v 3(y—1)

By (4.40), we see that § = 2 < ﬁ < 1 is always valid for all ag € (0,1). In order for
(4.40) and (4.28) to be satisfied, from (4.16) we have

with

™

2|

3—ap- - 4Ay+ 70 4 Qp 5
> b>b=—— - —1).
vy 5 > 307+ 9) + 5 3 (as ag )
If g = 3:(33:?) (we have no need checking (4.40) any more), to guarantee 5 < 1, it suffices to
require
1 - 1 4v+70 5 5
> +b=c+ > F — = = — 0).
V3tb=stsn e o3t 3 (a0
The proof of Lemma 4.1 is completed. (|

By Lemma 4.1, we can take the following limits, subject to some subsequence,

(vu57 V,u’(;) - (VU, v:u') in L27 (449)
(us, p5) = (u, p) in LP* (1 <p; <6), (4.50)
cs — cin WP (forsomepy > 2), (4.51)
5p4+9 —0 in L', and ps— pin L7, (4.52)

where (4.52) is due to ,05 b < (y- 1)p5+9 A1 As a result of (4.50)-(4.52),
(psus, pspis) — (pu, pu) in LP (forsomeps > 6/5), (4.53)
(psus ® ug, psuscs) — (pu @ u, puc) in  LP (forsomep > 1); (4.54)

and furthermore,
0 — of . 40

g = (1= 1} + psta(es) = (1= DT + pHa(e) = b i L5 (455)

8 PSS .
Péag; = psIn psH}(c5) + psHy(cs) — pln pHj(c) + pHS(c) == p—— in LF3. (4.56)



CAHN-HILLIARD-NAVIER-STOKES EQUATIONS 33

With (4.49)-(4.56) in hand, we are able to take d-limit in (4.3) and obtain the following
equations in the distribution sense:

div(pu) =0,

div(pu @ u) + V <p2 of

ap) =div (Sns + Sc) + Pgi + g2,

(4.57)
div(puc) = Ap,
af
=p=— — Ac.
pR= P c

In order to complete the proof of Theorem 1.1, it remains to verify

— =p°7= and or _ o1
p@p_pap Pac = Poc

To this end it suffices to prove ps — p in L', which is our task in the rest of the paper.
Let Ti(z) be an increasing and concave function, in particular,

cl(o T D 4.58
(.00 37 = {1 T5I0 0 (158
Clearly,

Ti(ps) = Ti(p) in LP(Q), V p € [1,00]. (4.59)

Lemma 4.2. Let (ps, us, iis, ¢s) be a solution obtained in Theorem 4.1. Then, for the effective
viscous flux the following holds,

lim / Ti(ps) (p%jfd —(@n+ Az)diVU5> - / Ti(p) (p2§;j — @+ &)divu) L (4.60)

where Ty, is defined in (4.58).
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Proof. The argument is similar to that in Lemma 3.3. Choose ® = ¢VA (T} (ps)) in (4.2)
to get

/ ¢Tx(ps) <p§§p]; — (201 + )q)diVUg)
- [ 86Tiont-+ 0: Tutos)ions (Sok + s — O+ daaivs
+ M /3jU33iA1(Tk(P6))3j¢ — ugd; 0N (Ti(ps5)) 06 + Ti(ps)us - Vb
- /(pagl + 92)00, 5 (Ti(ps))
45 [ 196 (0Tion) + 0100227 (Tios))
- / Ves @ Ves (600,07 (Ti(ps)) + 0,60, (Ti(ps)))
—/psuguf%ajqﬁ@iﬁ_l(Tk(Pa))
~ [ ko [ps00,0.87 Tlow) ~ Tilondi05 )|
= 27:3;5
P
On the other hand, if we use ¢VA~! (T(p)) as a test function in (4.57),, we infer
/ #Tr(p) <,022£ — 2\ + )\g)divu>
/a £ (Tilp)) i ( 297\ 4 /\Q)dlvu>
+ A /aju A (Tk(p)> 030 = w'0,0,57" (Ti(p)) 036 + Tr(p)u - Vo
- /(pgl + g2)pOi A (m)
+ % / Vel? (qﬁTk(p) + 8,00 A (m))
- /vc Ve (60,007 (Tilp)) + 9500,07 (Tu()) )
- [ o007 (1)

— /uigb [pujajaiAfl (T(p)) —maiajﬁfl(PUj)}
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Therefore, we obtain (4.60) provided

lmR =R, (i=1,2,---,7). (4.61)
0—0

In fact, (4.61) can be verified by modifying slightly the argument in Lemma 3.3. The detail
is omitted here. g

Finally, let us prove the strong convergence of density. By (1.5) and the simple fact

(] = p") (Ti(ps) — Te(p)) = (Ti(ps) — Te(p)"*,
one has

20f(ps, cs) 20f
/(Paam - P 87)

— [6= D~ ) (Tilos) - Til)

+ [(esties) = pHA(E) (o) ~ Tip)
> [ (= 1) @elos) ~ Tulp)) ™

+ [ plts(es) = Hi(©)) (Tulps) = Tulp) + (05 — p)Hi(cs) (Tilps) ~ Talp)
> /(7 — 1) (Ti(ps) — Tu(p)"*' + /p(Hl(ca) — Hi(c)) (Ti(ps) — Ti(p)) -

Consequently,

) (Tk(ps) — Tk(p))

20f(ps,c5)  ,0f

lim /(5 s p 87)) (Tk(ps) — Tk(p)) w2
> (= 1)l [ (Talps) — Tulo) ™
By virtue of (4.62) and (4.60),
(21 + N2) lim/ Tk (ps)divug — T(p)divu)
_ hm/ <Tk 28f Pé,cd) ng?ﬁ)
= 1y [ (20ms) pr)ﬁ) (Tu(ps) — Tu(p)) (4.63)

+/(p2g£ pZaf)( OEAR)
2af(06706) 2%

> 1i T; —T;
2 lim (P s 8p)( k(ps) — Tk(p))
where the last inequality is due to the concavity of T and
af S af
Py = (v = V7 +ppHi(e) 2 (v~ 1)o7 + plnpHi(€) = an :
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Following [24], we define

z1n z, z <k,
Ly = Z T,
F zlnk—l—z/ k(;)ds, z>k.
k S

A direct computation shows that

be(2) = Li(2) — <hak+/:+1 Tilo) +1> :

belongs to C([0,00))NC((0,0)), b,(z) = 0if 2 > k+1, and b}, (2)z —bg(z) =

b = by in (3.21), we infer (approximating by(z) near z = 0)
div(br(p)u) + Tr(p)divu = 0 in D(R?),

/Tk(p)divu = 0.

/Tk(p)divu = lim /Tk(p(g)divu(g =0.
0—0
From (4.64)-(4.65) we obtain
ClITi(p) — Ti(p)| 22

(2)\1+)\2)/( (o)~ Ti(p) ) divu

_ (2)\1—1-)\2)/ 2 (o)divu — Th(p)divu

which implies

Also, one has

= (21 + A2) hm/ ( (ps)divus — T (p )leU)

2 0F  ,0f

> lim [ (p —p 87)) (Tk(ps) — Tk(p))

6—0 5 B0s 3p
> (y=1)lim [ (Th(ps) — Th(p))"",
6—0
where the inequalities are due to (4.62)-(4.63). Therefore, (4.66) gives
klggo(%l_)néHTk( p) — Tk(p5)||L’v+1
< C lim |Ti(p) - Ti(p)ll 2
—00
< € lim lim ([|Tj,(p) = pll 2 + | Ti(ps) — psllr2) -
—000—0
However, by Lemma 4.1,

+6 0 Of
lpsll72 < Cllpsliiis < ||P2+ H 1 <C.

Then, the following estimate holds true

1Tk (ps) — psllr = 1 Tk(ps) — psll 205>k}

<2|lpsllL2({ps=ky) < Ck'™z =0 ask— oo,

T} (z). Choosing

(4.64)

(4.65)

(4.66)

(4.67)
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which is uniform in §. Consequently,

lim [ Te(p) — pll2 < lim lim |[T(ps) — psllz> = 0. (4.68)
k—o0 k—00 6—0
The same argument yields
Jm ([ Ti(p) = pli2 = 0. (4.69)
— 00

In terms of (4.67)-(4.69), one has

lim li —
&, i lles =l

< lim Lim ([lps — T(ps)l 22 + 1 Tie(ps) = Te(p)llor + 1T (p) = pllz1)

" k—oo

=0.
The proof of Theorem 1.1 is completed.
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