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ABSTRACT: Computations based on density functional theory (DFT) are —
transforming various aspects of materials research and discovery. However, the 4 Time~hous

effort required to solve the central equation of DFT, namely the Kohn—Sham
equation, which remains a major obstacle for studying large systems with

A A

hundreds of atoms in a practical amount of time with routine computational ARARLL e
resources. Here, we propose a deep learning architecture that systematically learns ATATATATATA -
the input—output behavior of the Kohn—Sham equation and predicts the e g
electronic density of states, a primary output of DFT calculations, with viviviV N §

by

unprecedented speed and chemical accuracy. The algorithm also adapts and
progressively improves in predictive power and versatility as it is exposed to new
diverse atomic configurations. We demonstrate this capability for a diverse set of
carbon allotropes spanning a large configurational and phase space. The electronic
density of states, along with the electronic charge density, may be used downstream to predict a variety of materials properties,
bypassing the Kohn—Sham equation, leading to an ultrafast and high-fidelity DFT emulator.
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B INTRODUCTION community is beginning to focus attention on the creation of
“surrogate” models that can be much faster than a fresh and
direct DFT calculation, but mimics it in the accuracy. Such
surrogate models are trained, using machine learning
algorithms, on a set of reference data produced by prior
DFT calculations. The past decade has seen several successful
examples of such predictive machine learning models applied
to a variety of materials properties and application spaces.m_25
In these efforts, a mapping is established between atomic
configurations and appropriate quantities of interest, such as
atomic forces, potential energies, and a variety of materials or
molecular properties of interest.

The primary bottleneck in DFT-based workflows is the
computation of the electronic density of states (DOS) and
charge density. Once computed, the DOS and charge density,
owing to their fundamental nature, may be used to determine
the above listed other quantities of interest at negligible cost.
Thus, creation of a capability that can significantly speed up
the prediction of DOS and charge density will impart
unprecedented efficiency to the overall DFT workflow, and
can lead to an ultrafast DFT emulator that can produce DFT-

Density functional theory (DFT)"” has become an invaluable
computational workhorse for materials development and
design. It has impacted a variety of fields ranging from energy
storage,” > catalysis,”” fuel production and chemical trans-
formations,*’ design of advanced electronic and functional
materials,'”'" and the understanding of materials behavior
under a variety of extreme conditions,' " to just name a few.
DFT addresses the many-electron many-nuclear problem of
quantum mechanics through a series of approximations and
leaps of imagination and ingenuity, and ultimately involves
solving the effective one-electron Kohn—Sham equation.” For
a given configuration of atoms, the solutions of the Kohn—
Sham equation include the one-electron wave functions (or the
electronic charge density), one-electron energy spectrum (or
the electronic density of states), atomic forces, potential
energy, and a variety of application-relevant equilibrium
materials properties.

Despite its versatility and reach, DFT remains a laborious
computational enterprise. It requires high-performance com-
puting hardware, robust and specialized software, and fairly in-
depth knowledge and expertise to execute the calculations in a
credible manner. Even with the availability of such resources,
modern DFT ecosystems only allow the practical or routine
treatment of systems involving not more than a few hundreds
of atoms per repeating unit cell.

In order to accelerate the speed with which one may reliably
predict application-relevant properties of new materials, the
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Figure 1. (a) Data sets used to train the models in this work. The number of atoms refers to those in the repeating unit cell of each structure. (b)
Main two principal components (PC) of the mean atomic fingerprints of each configuration. (c) Snapshots of carbon allotropes included in data set
1 and in data set 2, with red-colored atoms to identify the location of the defects.

like output with a high degree of verisimilitude. This manner of
solving the electronic structure problem will be a radical
departure from attempting to directly solve the Kohn—Sham
equation.

Previous work to bypass the Kohn—Sham equation
predicted the ground state electron density associated with
an external potential as an intermediate step toward the total
energy prediction.”® Subsequent work suggested various
representations to improve the accuracy of the §round state
electron density’’ ~>" and DOS predictions.””*>**

In this contribution, we mainly focus on the creation of an
efficient deep learning capability for the instantaneous
prediction of the electronic DOS for a given configuration of
atoms. A neural network (NN) architecture is trained on a
database of prior reference DFT computations and learns the
relationship between the atomic configuration and the
electronic DOS. Specifically, the NN is designed to take as
input the environment around an atom, i.e., the distribution of
its neighboring atoms, producing as output the corresponding
atomic DOS spectrum. The NN is trained such that the sum of
the thus-predicted atomic DOS of all atoms in the system is
required to be equal to the correct total electronic DOS
calculated by DFT. As we will show here, this deep learning
capability proves to be several orders of magnitude faster than
the parent DFT calculation. Moreover, the present develop-
ment is also a significant advance, both in terms of conceptual
aspects and in terms of efficiency, compared to a recipe we
proposed recently.”” While this past work also utilized deep
neural networks to predict the DOS (and the electronic charge
density), the training data consisted of the projected DOS at
each spatial grid point. As the typical ratio of the number of
grid points to the number of atoms in any system is about a
million, the method of ref 30 leads to an enormous memory
requirement (for the storage of the training data), and an
enormous amount of training and prediction time, hindering
its use with large data sets.

Other attempts delved into predicting the pattern of the
DOS in metals by providing as input global properties of the
structure such as composition or crystal structure.”> The
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general protocol followed to describe the atomic structure
greatly limits model accuracy and cannot capture modifications
to the DOS due to disorder or defects. Another study used
NNs to map the atomic ﬁng;erprints to specific energy values of
the DOS, one for each NN.** Due to the computational cost of
the procedure, the sampling of the DOS was too sparse to
capture fine details and only the general trend could be
correctly predicted.

As a demonstration of the present development, we train our
NN to predict the total electronic DOS of a variety of
graphene-derived allotropes, including carbon nanotubes of
various types, fullerene molecules, and graphene as well as
graphite. Specifically, as listed in the tables of Figure la, we
created two different data sets, for which accurate reference
DEFT calculations were done. We first trained the model using
data set 1, comprised of graphene, graphite, C20, C40, and
C60 fullerene molecules, and C(6,4), C(9,9), and C(8,0)
single-walled carbon nanotubes (SWCNT) with different
chirality. To provide the NN with sufficient examples of
configurational diversity within the space of the above list of
structures, 200 random snapshots of each of these structures
from DFT-based molecular dynamics (MD) runs at 300 and
600 K were procured. From this set, 80% of the configurations
were used for training and 20% for validation. An additional
separate test set of 20 configurations of each structure was
created to select the best performing model after cross-
validation. Figure lc (left) shows some representative
structures contained in data set 1.

In order to test the generality of the model built out of data
set 1, and also to unambiguosly demonstrate the ability to
systematically improve the model through exposure to newer
environments, data set 2 was considered. Data set 2 is
comprised of defects in graphene and highly disordered
structures. The considered graphene defects are Stone—Wales
(SW), single-vacancies (SV), and double-vacancies (DV). A
representative set of such defected structures are shown in
Figure lc (right). The highly disordered structures were
procured from DFT-MD runs at 2000 K. The train and test
sets of data set 2 were composed of a total of 830 and 83
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Figure 2. Overall scheme and workflow designed to compute the DOS of a given atomic structure using deep NN with atom centered fingerprints.
After the data set is created, each atom in an atomic structure is replaced by a fingerprint vector representing the surrounding environment. These
fingerprints are provided as input layers to the NN, resulting in a DOS per atom as the output layer. All atomic DOS from the same atomic
configuration are added to obtain the total DOS. Once normalized, the DOS is concatenated to its cumulative sum and validated against the DFT

reference.

configurations, respectively. Overall, the structural and
topological diversity of the cases included in the training
data considered here is enormous relative to past studies. We
choose the vacuum energy as the global energy reference, and
the DOS of every atomic configuration was aligned with
respect to it. The DFT DOS curve is partitioned into 310
windows of 0.1 eV, from —30 to 1 eV.

To describe the atomic environment surrounding each atom
in a machine-readable form, we used the same set of
permutation, translation, and rotation invariant fingerprints
introduced in our previous NN DOS protocol,”” but centered
at each atom instead of at grid points. The fingerprints consist
of a hierarchy of scalar, vector, and tensor expressions which
capture the radial (scalar) and angular (vector and tensor)
teatures of the surrounding atomic environment. The finger-
prints are based on a predefined set of Gaussian functions with
varying widths centered at every atom. Figure 1b shows the
variation of the two principal components (PC) of the
fingerprint features for each type of the aforementioned
structures, spanning a large region of configurational space.

The atomic fingerprint vectors are provided as the input
layer for the NN, resulting in a DOS per atom as the NN
output. Addition of all the atomic DOS for a given
configuration results in the predicted total DOS. To ensure
an accurate prediction of the Fermi level, the cumulative sum is
concatenated to the predicted total DOS. Owing to the
variability in size of the structures in the data sets, the
prediction is normalized by the number of atoms in the
configuration. This normalization ensures an equal contribu-
tion to the error metric from each structure. Figure 2 provides
a schematic view of the entire protocol.

As we will demonstrate below, the NN DOS model predicts
the electronic structure of sp>type carbon allotropes (metallic
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or semiconducting, and with or without a variety of defects and
significant disorder) with unprecedented accuracy and speed
(relative to conventional DFT computations). Owing to the
flexibility of training afforded by the NN architecture, model
prediction performance can be systematically and continuously
improved via persistent exposure to newer varieties of
configurational diversity. Further, the predicted DOS allows
for a precise evaluation of the contribution of the occupied
energy levels to the total energy of the system, a necessary step
to achieving a machine learned DFT emulator.

B METHODS

DFT Details. All the reference data calculations were
performed using DFT-MD simulations using the Vienna Ab
Initio Simulation Package (VASP).>**® The exchange-
correlation functional was modeled using the Perdew—
Burke—Ernzerhof approximation,3'6 and the ion-electron
interaction was modeled using projector-augmented wave
(PAW) potentials.”” We employed a Monkhorst—Pack grid*®
with a density of 0.03 A™! to sample the Brillouin zone. A plane
wave basis set with a kinetic energy cutoff of 800 eV was used.
The chosen kinetic energy cutoff and k-point sampling
converged the total energy to less than 1 meV per atom.
Grimme’s D2 vdW correction was included.”” A Gaussian
smearing of 0.2 eV was used. The MD simulations were
performed in the NVT ensemble, with a time step of 1 fs. All
structures were thermalized for 500 time steps at the desired
temperature (300, 600, and 2000 K), and the snapshots were
taken from the subsequent thermalized simulations spanning 2
ps.

Fingerprint Details. The scalar fingerprint for a given
atom, i, is expressed as the sum over the number of Gaussian
functions (k) of width o,

https://dx.doi.org/10.1021/acs.jpca.0c07458
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Figure 3. DFT DOS (blue) and predicted NN DOS (red) for test configurations of (a) graphene, (b) graphite, (c) C60, and the SWCNTs of (d)
C(9,9) and (e) C(8,0). The DFT and NN Fermi levels calculated as the cumulative integral of the DOS curves are included as vertical dashed blue
and red lines, respectively. The vertical dashed green line indicates the vacuum energy used as the global energy reference. The uncertainty in the
Fermi level prediction is marked by the dashed pink vertical lines. (f) Histogram of the Fermi level difference between DFT and the NN prediction.
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where o and f represent the x, y, or z components of the radial
vector between atoms i and j. While S; is rotational invariant,
V¢ and T are variant, but can be combined into four
rotational invariant expressions,
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T=T"+ T+ T (5)
T, = TETY + TPTE + TETE — (T2 — (1)

- (1) (6)
Ty = det(T{) )

9499

Therefore, for each width there are five features. We
employed 18 different widths, providing a feature vector for
each atom with 90 components.

Neural Network Architecture and Performance. The
number of hidden dense layers and nodes per layer were
optimized to five with the first four with 300 neurons each and
the last one with 312. After the last dense layer, there is a 1D
convolution layer with three filters of size 3, resulting in 1D
vectors of size 310, equal to the number of energy windows
used to discretize the reference DOS curve. Finally, the average
value of the three 1D vectors for each bin is selected as the
output for the value of each energy window in the DOS. The
final 1D convolution layer is included to introduce the
correlation between adjacent points and ensure a smooth
shape in the predicted atomic DOS. Details on the perform-
ance of the NN with different number of dense layers can be
found in the Supporting Information (SI).

The activation function used for each dense layer as well as
for the final 1D convolution layer is the rectified linear unit
(ReLU). To prevent overfitting, an L2 regularizer with 0.1 was
used in each hidden layer. A dropout rate of 0.1 was also
included for the hidden layers, meaning that, for every pass,
each node in the layer has a 10% probability of not being
active. The benefit of including the dropout is 2-fold. First,
during training, it acts as a regularization technique to reduce
over fitting and second, during prediction, it allows for an
evaluation of the uncertainty in such prediction. The latter
technique of activating the dropout during prediction is known
as Monte Carlo dropout.*”*'

We used Keras™* with a Tensorflow backend to implement
the NN DOS model. A mini-batch training of 30 with random
sampling was employed along with an Adam optimizer with a
learning rate of 0.0001 and momentum vectors f; = 0.9 and j3,
= 0.999. The RMSE was employed as the objective function.

We compared the computational performance of DFT and
our NN DOS model, for a given graphene configuration of 128

https://dx.doi.org/10.1021/acs.jpca.0c07458
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Figure 4. (a and b) Transferability and systematic improvement of the NN DOS on data set 2 (DS 2): defects on graphene and highly disordered
structures at 2000 K. Mean RMSE (a) and mean absolute error in the Fermi level calculation (b) for Model 1 trained on data set 1 (DS 1) (gray)
and for Model 2 trained on both data sets (dark red). Parity plots for the contribution to the total energy from the NN DOS using Model 1 (c) and
Model 2 (d). The error bars represent the standard deviation obtained from the uncertainty in the predicted NN DOS.

atoms. DFT employs 3615 s to solve the Kohn—Sham
equation and calculate the DOS on a Broadwell node with
28 cores and 128 GB of RAM. On the other hand, the NN
requires only 5 s on a Tesla P100-PCle GPU with 16 GB of
RAM. Out of that time, the fingerprinting process requires 3 s,
while the DOS prediction only takes 2 s. Albeit the comparison
limitations due to the different architectures used, the achieved
speed up is several orders of magnitude. Furthermore, it is
worth noting the quadratic scaling (at best) of modern DFT
codes with system size as opposed to the linear scaling of NN.

As a final note, we performed a baseline comparison with the
model in ref 30 by training and testing our model on the same
aluminum configurations from the study. The accuracy of the
prediction is similar for both models: the R reported in ref 30
is 0.9992, whereas in our model it is 0.9996. The major
improvement is in the training time: ref 30 reported 5—6 h
(also on a GPU), whereas our NN DOS model only required
10 min. Additionally, the prediction time is further reduced
with our protocol due to the atomic fingerprint (3 s) as
opposed to the grid-point fingerprint in ref 30, requiring 20 s.

B RESULTS AND DISCUSSION

Figure 3 summarizes the results of the model trained and
tested on data set 1. From a S-fold cross-validation, the
predicted DOS curves have a mean root-mean-square-error
(RMSE) per atom of 0.0192 states/eV with a standard
deviation of 0.0004 states/eV, and a mean R? = 0.9756 with a
standard deviation of 0.0012. Using the separate test set from
data set 1, we selected the best performing NN model, with R?
= 0.977, RMSE = 0.0188 states eV~!/atom, and 1% highest
error (HE) of 0.0716 states eV~'/atom. These accurate metrics
are reflected in Figure 3 where the NN DOS (red curve)
follows very closely the reference DFT DOS (blue curve).
Likewise, the calculated Fermi level from the cumulative
integral of NN DOS (dashed red line) coincides with the DFT
Fermi level (dashed blue line). The dashed pink vertical lines
represent the uncertainty in the predicted Fermi level. More
information on the evaluation of the uncertainty can be found
in the SL

Besides an accurate DOS prediction, quantities such as band
gap requires a precise calculation of the Fermi level from the
predicted DOS. Figure 3f displays the histogram of the error in
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the calculated Fermi level between the DFT DOS and the NN
DOS, for data set 1. The results follow a Gaussian distribution
with a standard deviation of 0.15 eV. The number of instances
with a higher error drastically decays after +0.2 eV, with
maximum values up to —0.47 eV. Despite such good results, it
is worth mentioning that the Fermi level is a very sensitive
quantity, especially in cases with band gaps, where very small
deviations from the total number of electrons can shift the
Fermi level to the other side of the band gap.

Systematic Improvement with New Cases. Trans-
ferability to new environments along with a capability for
systematic improvement is essential for an NN model in a field
of ever growing data sets and need to explore newer
configurational environments. As such, first we decided to
test the NN trained on data set 1 (Model 1) on the test
configurations of data set 2 and afterward evaluate the
improvement in the predictions once the model is trained on
both data sets. Figure 4a and b (gray) show the results for the
mean RMSE of predicted DOS and mean absolute error in the
Fermi level calculation. The results on data set 1 are included
as a comparison baseline. As expected when using machine
learning models on unseen cases, the performance of Model 1
on data set 2 is worse than on data set 1, for both the graphene
defects, DS 2 (Defects), and for the highly disordered
structures, DS 2 (2000 K). However, given the considerable
difference between the atomic environments and types of
carbon hybridization between data set 1 and data set 2 (see
SI), the results are still surprisingly good. Nevertheless, the
model can be extended and improved by training on both data
sets 1 and 2 resulting in Model 2, Figure 4a and b (dark red).
The drastic error decrease on data set 2 along with the slight
error reduction on data set 1 illustrates the capability of the
model for systematic improvement as the data set size is
expanded with entirely new information. In addition, the
specific atom-based NN allows studying the atomic DOS of
specific atoms and learning the chemical changes introduced to
the electronic structure of the system by these defects (see SI
for an example).

Total Energy Contribution. The culminating goal of
utilizing machine learning to emulate and dramatically
accelerate DFT is to bypass the computationally expensive
Kohn—Sham equation by directly predicting the electronic

https://dx.doi.org/10.1021/acs.jpca.0c07458
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structure. To realize this vision, the electronic structure
prediction requires highly accurate results of both the
eigenvalues and the charge density in order to compute the
total energy as”’

N2

E=2 ) ¢ — Eylp(t)] + Elp(r)]

dr + E

n—n

_ / SE, [p(r)]
p(r) (8)

where, p, N,, Ey, E,, E,_, are the charge density, number of
electrons, Hartree energy, exchange-correlation energy, and
nuclear—nuclear interaction energy, respectively. €; is the
eigenvalue of the i-th Kohn—Sham orbital. In eq 8, the first
term 225\1 ’¢, can be written in terms of the DOS as

N/2

2 € =
Z )

while the remaining terms are known functions of the charge
density (for a given level of theory).

As a final assessment of the DOS prediction model, we
evaluate the accuracy of the contribution to the total energy
from the predicted DOS and Fermi level using eq 9. Figure 4c
and d display the parity plots of the predicted energy
contribution compared to the reference energy contribution
calculated from the DFT DOS and Fermi level. The
performance of Model 1 on both data sets is displayed in
Figure 4c. Model 1 successfully predicts the total energy
contribution with a mean absolute error (MAE) of 0.033 eV/
atom, below the chemical accuracy threshold of 0.043 eV/
atom (1 kcal/mol). Nonetheless, the results on graphene with
defects and highly disordered structures at 2000 K display a
decay in accuracy with an MAE of 0.112 eV/atom and 0.082
eV/atom, respectively. However, this lower accuracy can be
mainly ascribed to some specific structure types which present
a more significant challenge to Model 1 due to different carbon
hybridizations or to more significant disorder in the geometry
of the system (see SI). Nevertheless, once the NN is trained on
both data sets, the resulting Model 2 outperforms Model 1 for
all the data sets, all of them considerably below the chemical
accuracy threshold (see Figure 4d). More detailed results can
be found in the SI. These successful results outline the
promising capability of our NN DOS model within the
envisaged DFT emulator.

Eg
/ DOS(e)ede

B CONCLUSIONS

In summary, we have developed an NN DOS predictor which
outperforms DFT in computational time by several orders of
magnitude while preserving chemical accuracy. Despite the
myriad of diverse structures and topologies of carbon
considered (albeit within generic sp>-type environments), the
model is flexible enough to perfectly adapt to every atomic
environment and to systematically improve the predictions as
the data set is expanded to new chemical spaces. A very
promising outcome, owing to the linear scaling of NN with the
system size, is the deployment of the DOS prediction model
on extremely large systems, impractical with conventional DET
or any available electronic structure code.

Going forward, we plan on exploiting the capabilities of the
NN DOS model in two parallel but interconnected pathways.
First, to profit from the performance and scaling of the model
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for large systems, we will develop a NN DOS predictor to
provide ‘immediate’ access to the electronic structure of
complex polymeric structures composed of sp, sp’, and sp’
hybridizations, and multiple elements. To achieve such a goal,
we will extend the model to include multielemental systems
starting with hydrocarbons and progressively expand to
polymers with increasing chemical complexity. Second, to
continue work toward DFT emulation we will couple our NN
DOS predictor along with a charge density predictor to
calculate the total energy of the system following eq 8. The
former pathway will subsequently feed off of the latter,
allowing for molecular dynamics simulations of polymers
which preserve DFT accuracy and provide information on the
electronic structure at each step, all within short computational
times.

Despite the outstanding results of the present model, a
promising avenue for improvement is the development of
alternate fingerprint representations in the form of NNs
instead of hand-crafted features. While the fingerprints
employed in the present work provide very good results,
such hand-crafted features may impose a bias, limiting the
mapping between the structure and the DOS. By eliminating
some of those constraints and allowing the NN to find the best
mapping, a further increase in accuracy, versatility, and
transferability is expected. Promising representations to be
considered will employ spherical and icosahedral convolutional
NNs within an approach that still preserves the permutation,
translation, and rotation invariance of the atomic structure.
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