

1 **Stress Induced Structural Transformations in Au Nanocrystals**

2 *Abhinav Parakh¹, Sangryun Lee², Mehrdad T. Kiani¹, David Doan³, Martin Kunz⁴, Andrew*
3 *Doran⁴, Seunghwa Ryu² and X. Wendy Gu^{3*}*

4 ¹Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.

5 ²Mechanical Engineering, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea.

6 ³Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.

7 ⁴Advanced Light Source, Lawrence Berkeley National Lab, Berkeley 94720, USA.

8

9 **Abstract:** Nanocrystals can exist in multiply twinned structures like icosahedron, or single
10 crystalline structures like cuboctahedron. Transformations between these structures can proceed
11 through diffusion or displacive motion. Experimental studies on nanocrystal structural
12 transformations have focused on high temperature diffusion mediated processes. Limited
13 experimental evidence of displacive motion exists. We report structural transformation of 6 nm
14 Au nanocrystals under nonhydrostatic pressure of 7.7 GPa in a diamond anvil cell that is driven
15 by displacive motion. X-ray diffraction and transmission electron microscopy were used to detect
16 the structural transformation from multiply twinned to single crystalline. Single crystalline
17 nanocrystals were recovered after unloading, then quickly reverted to the multiply twinned state
18 after dispersion in toluene. The dynamics of recovery was captured using TEM which showed
19 surface recrystallization and rapid twin boundary motion. Molecular dynamics simulations showed
20 that twin boundaries are unstable due to defects nucleated from the interior of the nanocrystal.

21

22 **Keywords:** Diamond Anvil Cell, X-ray Diffraction, Transmission Electron Microscopy
23 Molecular Dynamics Simulation, Asymmetric Mackay-like Transformation

24 **Main Text:**

25 Metallic nanocrystals are used widely in fields such as photonics, biomedical therapies, catalysis,
26 electronics and sensing¹. Properties of these nanocrystals are highly dependent on their size, shape,
27 and crystalline structure². Multiply twinned (MT) icosahedron, MT decahedron, single-crystal
28 (SC) cuboctahedron, and SC Wulff-polyhedron nanocrystal shapes are commonly observed, and
29 can have different catalytic, magnetic, mechanical, structural, and electronic properties³⁻⁸. For this
30 reason, it is often desirable to synthesize one particular nanocrystal size and shape, and maintain
31 this structure during use. This remains difficult because the thermodynamic stability and structural
32 transitions between different nanocrystal structures are still incompletely understood. The
33 structural transformation of polyhedral structures such as MT icosahedron is also important for
34 understanding materials like metallic glasses and magnetic nanoclusters, in which polyhedral
35 atomic clusters make up the basic structural unit, and changes in these atomic clusters dictate
36 material properties⁹⁻¹¹.

37 Structural transformation between different nanocrystal shapes have been studied using
38 theory, simulations, and experiments. Using energy balance calculations and molecular dynamics
39 (MD) simulations that consider differences in surface energy and lattice strain, it has been
40 determined that MT nanocrystals are stable at smaller sizes and SC nanocrystals are stable at larger
41 sizes^{9,12-14}. The transition occurs from 2 to 10 nm depending on the calculation method, and varies
42 in experiments due to the influence of surface ligands, solvents and substrates on surface energy.
43 It has been proposed that the transformation between MT and SC structures occurs through
44 diffusive or displacive processes, such as surface melting and restructuring,
45 dislocation/disclination activity, and the symmetric and asymmetric Mackay-like transformation¹⁵⁻
46 ¹⁹. Transformation in nanocrystals have been studied experimentally by heating nanocrystals with

47 the electron beam in a transmission electron microscope (TEM), high energy laser pulses, and
48 annealing nanocrystals on a substrate^{16,17,20-23}. These experimental studies observed that enhanced
49 mobility, melting and recrystallization of nanocrystals lead to diffusion mediated structural
50 transformations. However, displacive motion mediated structural transformation has not been
51 studied systematically in nanocrystals.

52 High-pressure compression in a diamond anvil cell (DAC) is an ideal technique to study
53 displacive motion in nanomaterials, because diffusion is suppressed at high pressure²⁴. DAC has
54 previously been used to study high-pressure phase transformation, crystallization and sintering of
55 aggregated nanocrystals²⁵. DAC techniques have also been used to study structural transformations
56 in Ag nanocrystals under hydrostatic pressures,²⁶ which minimizes both diffusion and displacive
57 motion. Here, we study the structural stability and structural transformation between MT and SC
58 nanocrystals by compressing 6 nm Au nanocrystals in a DAC under non-hydrostatic pressure, and
59 monitoring nanocrystal structure using *in situ* X-ray diffraction (XRD). The nanocrystals are
60 recovered after compression and imaged using TEM. We find that the 6 nm nanocrystals undergo
61 a MT to SC transformation after compression to 7.7 GPa of pressure. This is in contrast to smaller,
62 3.9 nm Au nanocrystals which did not show a structural transformation under pressure, and instead
63 formed stacking faults via surface nucleated partial dislocations²⁷. MD simulations were conducted
64 to understand defect formation in nanocrystals of 3.9 nm and 6 nm in size. These simulations
65 showed that dislocation activity is enhanced in larger nanocrystals. These results indicate that
66 displacive motion driven large scale structural transformation is possible in nanocrystals and must
67 be considered in designing structures at the nanoscale.

68

69 MT Au nanocrystals were synthesized using organic phase reduction of chloroauric acid
70 and capped with dodecanethiol ligands²⁸. The nanocrystal size distribution was found to be 6.0 ± 0.3
71 nm using TEM (see Fig. 1A and Fig. S1). High-resolution TEM images showed that the majority
72 of nanocrystals (~80%) were MT and remaining nanocrystals were SC (a total of 59 nanocrystals
73 were analyzed). The MT nanocrystals were icosahedral structures which are formed with 20
74 tetrahedral units joined by 20 twin boundaries. An icosahedral polyhedron has 6 5-fold, 10 3-fold,
75 and 15 2-fold axes. Fig. 1B shows the icosahedral nanocrystal along the 3-fold axis and Fig. 1C
76 shows the icosahedral nanocrystal along a 2-fold axis. The SC nanocrystals were cuboctahedron
77 or Wulff-polyhedron in structure, and sometimes contained 1-2 twin boundaries rather than the
78 high density of twin boundaries in MT nanocrystals.

79 Ambient pressure XRD for the nanocrystals showed an FCC crystal structure, and
80 significantly broader peaks than bulk Au due to crystallite size broadening (see Fig. S2).
81 Nanocrystal surfaces exert a Laplace pressure on the interior of the nanocrystal, which scales
82 inversely with the radius²⁹. This compressive force shifts all the ambient pressure XRD peaks
83 except the (200) peak to a higher 2θ angle compared to the bulk. The {111} planes form the surface
84 of MT icosahedral nanocrystals. Hence, the (111) peak was shifted by $\sim 0.06^\circ 2\theta$ compared to the
85 bulk, which corresponds to a volumetric strain of $\sim 1.5\%$. The position of the (200) peak does not
86 shift in the same way as the other peaks because it is affected by twinning in the nanocrystal. This
87 was previously shown in a model which revealed that the (200) peak shifts towards lower 2θ angles
88 with an increase in twinning density^{30,31}. This model simulates the effect of low twinning density
89 and cannot be directly applied to MT nanocrystals which each contain 20 twins, but the qualitative
90 trend is still relevant. Another feature of the (200) peak is the double peak which is due to the
91 mixture of 80% MT and 20% SC nanocrystals. One peak is located at the bulk (200) peak position,

92 and the other is shifted towards lower 2θ angles by $\sim 0.6^0$ 2θ . The icosahedral nanocrystals
93 correspond to the lower 2θ (200) peak, which is shifted due to the twins, and the SC nanocrystals
94 correspond to the (200) peak at the bulk position.

95 High-pressure XRD was obtained *in situ* during DAC compression experiments at the
96 Advanced Light Source at Lawrence Berkeley National Laboratory. Toluene was used as the
97 pressure medium and toluene becomes non-hydrostatic above 1.9 GPa pressure³². The nanocrystals
98 were loaded as a thick film at the bottom of the DAC sample chamber. XRD was collected while
99 the nanocrystals were loaded up to 7.7 GPa and as pressure was released. The pressure was limited
100 to 7.7 GPa to avoid sintering between the nanocrystals, which has been observed at higher
101 pressures³³⁻³⁵. The XRD peak position and width (full width at half maximum) were observed to
102 change with increasing and decreasing pressure and were quantified at each pressure (Fig. 2).

103 High-pressure XRD and the corresponding peak positions and widths are shown in Fig. 2.
104 The shift in XRD peak position indicates the pressure-induced elastic strain in the nanocrystals.
105 XRD peak position for all peaks except the (200) peak recovered completely with pressure cycling
106 to within 0.1% of their original value (Fig. 2 D). An irreversible change was observed for the (200)
107 peak position with pressure cycling (Fig. 2 B). The ratio of the left to the right (200) peak intensities
108 is proportional to the degree of twinning, or the fraction of MT to SC nanocrystals in the sample³⁰.
109 After pressure cycling, this ratio decreased by $\sim 22\%$: the right (200) peak intensity increased
110 significantly with pressure and remained at higher values after unloading, while the left (200) peak
111 decreased in intensity. This indicated that the MT nanocrystals detwinned with pressure cycling
112 and underwent a structural transformation from MT to SC. Changes in peak width with pressure
113 cycling also indicate that this structural transformation occurred (see Fig. 2 C). The XRD peak

114 width for (111), (220) and (311) peaks decreased by 11%, 19%, and 22%, respectively. This can
115 be explained by an increase in crystallite size upon transformation from MT to SC nanocrystals³⁶.

116 Post-compression TEM imaging corroborated these findings. Nanocrystals were loaded to
117 ~5 GPa in the DAC. The sample was then quickly unloaded, and the sample chamber was opened
118 to air to dry out the liquid toluene. The nanocrystals were picked up using a needle and scraped
119 onto a TEM grid and inserted into the TEM within 10 minutes. The post-compression TEM images
120 are shown in Fig. 3. We found that the ratio of nanocrystals changed from 80% MT and 20% SC
121 nanocrystals before pressure cycling, to 40% MT and 60% SC nanocrystals after pressure cycling.

122 The fraction of MT nanocrystals decreased by 50% with pressure cycling. High-resolution TEM
123 images of 59 as-synthesized and 23 post-compression nanocrystals were analyzed. Post-
124 compression nanocrystals were SC with cuboctahedron, truncated-octahedron or Wulff-
125 polyhedron shapes (Fig. 3). Some SC nanocrystals had a twin that extended across the nanocrystal
126 (Fig. 3 B). Using the ratio of MT to SC nanocrystals from TEM, the Debye scattering equation
127 was used to simulate pre- and post-compression XRD patterns. Fig. S4 shows the simulated XRD
128 pattern for mixtures of 80:20 and 40:60 MT and SC nanocrystals. The simulated XRD pattern
129 showed similar trends as the experimental XRD patterns, in which the ratio of the left and right
130 (200) peaks decreased with decreasing fraction of MT nanocrystals. This showed that the post-
131 compression TEM analysis matches the high-pressure XRD patterns.

132 The post-compression SC structure of the nanocrystal was observed to be unstable. Toluene
133 was added drop by drop to a TEM grid with post-compression nanocrystals. TEM imaging was
134 performed after waiting for 10-15 mins, which showed that the ratio of MT to SC structures
135 reverted close to the as-synthesized value (85% MT and 15% SC, 48 nanocrystals analyzed). This
136 showed that the nanocrystal can rapidly convert to the thermodynamically stable MT structure in

137 solution at ambient pressure (see Fig. S5). The dynamics and mobility of twin boundaries in
138 nanocrystals was further investigated by heating individual nanocrystals under a 200 keV electron
139 beam within the TEM. TEM movie and snapshots of the nanocrystal coalescence process³⁷⁻⁴⁰ is
140 shown in Supplementary Movie S1 and Fig. 4. At the start of the movie, nanocrystal I is 7 nm in
141 size and has two visible inclined twin boundaries at 35°. Nanocrystal II is 6.3 nm in size and has a
142 MT structure (Fig. 4 A). Fig. 4 B, C and D show the nanocrystals after 10 s, 40 s and 70 s of
143 electron beam irradiation, respectively. After 10 s, nanocrystal I rapidly developed a MT structure
144 in the lower half of the nanocrystal, and the angle between the twin boundaries increased to ~70°.
145 The surface of nanocrystal I started melting and sintering with the nanocrystal II. After 40 s, the
146 surface of nanocrystal II started melting and nanocrystal II rotated to sinter with the nanocrystal I.
147 The twin boundaries in nanocrystal I dynamically moved away from the sintered part of the
148 nanocrystal. Fig. 4 D shows final state of the nanocrystals. A SC region connects both nanocrystals.
149 The nanocrystal I has a MT structure with the twin boundaries at an angle of ~71° which is close
150 to the ideal ~72° for a strained penta-twinned structure. This showed that the twin boundaries in
151 nanocrystal can evolve due to enhanced diffusion under excitation by the electron beam. It is likely
152 that the enhanced mobility of twin boundaries and interaction of ligands/surface of the nanocrystal
153 with toluene solvent resulted in the rapid recovery of MT structure from SC nanocrystal in solution.
154 The post-compression TEM and high-pressure XRD analysis confirmed that the MT 6 nm
155 nanocrystals transformed into SC nanocrystals with pressure cycling, and the SC structure was
156 unstable at ambient pressure and reverted back to MT structure after leaving in solution for short
157 time.

158 The high-pressure behavior of 6 nm nanocrystals differs from that of 3.9 nm nanocrystals
159 previously studied by our group²⁷. High pressure experiments for 3.9 nm nanocrystals showed that

160 all the XRD peak positions including the (200) peak recovered with pressure cycling to within
161 0.2% of its original value (see Fig. S6). The complete recovery of the (200) peak position indicated
162 that the MT structure of the 3.9 nm nanocrystal was preserved with pressure cycling. In addition,
163 the XRD peak widths for 3.9 nm nanocrystals showed the opposite trend as for 6 nm nanocrystals.
164 The 3.9 nm XRD peak widths for (200) and (220) peaks increased by 16% and 23%, respectively,
165 and remained at higher values after unloading. The peak width for (111) plane remained at about
166 2% of its initial value with pressure cycling. This indicated the introduction of surface nucleated
167 partial dislocations (stacking faults) with pressure cycling.

168 The size-dependent MT to SC structural transformation can be analyzed in terms of the
169 thermodynamic stability of the two structures. Howie and Marks represented the energy of a
170 nanocrystal as:⁴¹

$$U = W_s + W_\gamma + W_{el} + H(V) \quad (1)$$

171 Where W_s , W_γ , W_{el} and $H(V)$ are the energy due to surface stress, energy due to strain in the
172 surface, elastic strain energy due to applied external pressure and nanocrystal geometry, and
173 cohesive energy, respectively. Using this approach, it is found that the MT structure is stable at
174 smaller sizes, the SC structure is stable at larger sizes and that the MT structure transforms into
175 SC structure at a critical nanocrystal size of 7.2 nm at ambient pressure. At high pressure, the
176 elastic strain energy and energy due to strain in the surface is modified to include additional energy
177 input from the external pressure (see supplementary information). The transition size reduces with
178 increasing pressure (see Fig. S7) and is 5.4 nm at 7.7 GPa (the maximum applied pressure in the
179 experiments). This shows that it is thermodynamically favorable for 6 nm nanocrystals to be SC
180 at high pressure, while it is favorable for 3.9 nm nanocrystals to be MT.

181 Similarly, MD simulations have shown that the MT structure is stable at smaller sizes and
182 the SC structure is stable at larger sizes^{9,13,14,42}. The MT structure transforms into the SC structure
183 at a critical nanocrystal size of ~2-5 nm depending on the interatomic potential. This transition
184 reflects the lower surface energy and higher lattice strain of MT structures. At high pressures, the
185 MT structure is unfavorable compared to the SC structure due to its lower atomic packing
186 fraction¹⁹.

187 Next, we consider the atomistic mechanism of the MT to SC transition at high pressure.
188 Transformations in nanocrystals can occur through surface diffusion mediated mechanisms at
189 elevated temperatures^{21,22}. Diffusion is suppressed at high pressure and cannot be the mechanism
190 for the MT to SC transformation in the nanocrystals²⁴. At high pressure, the transformation can
191 occur through a nondiffusive Mackay transformation or a dislocation/disclination mediated
192 detwinning process. The Mackay transformation is displacive atomic motion driven MT
193 icosahedron to SC cuboctahedron transformation which can proceed through symmetric¹⁹ or
194 asymmetric paths¹⁵ (Fig. S8). The Mackay transformation requires low activation energy⁴³⁻⁴⁵.
195 Simulation studies predict the dynamics of transformation using total energy calculation along the
196 Mackay path^{15,43,46,47} or MD simulations for small nanocrystals⁴⁸⁻⁵⁰. Symmetric Mackay
197 transformation is not compatible with deviatoric stresses however, the asymmetric Mackay-like
198 transformation can be driven by deviatoric stresses. The MT to SC structural transformation can
199 also proceed through dislocation or disclination mediated detwinning. Dislocation mediated
200 detwinning was previously observed in large Pt nanocrystal under oxidative heating¹⁷. The SC
201 grain nucleated at the surface of the nanocrystal and then grew when dislocation motion led to the
202 retraction of twin boundaries. This transformation has also been observed to occur through the
203 motion of disclinations¹⁸.

204 The MT to SC transition is driven by deviatoric stresses caused by the nonhydrostatic
 205 pressure medium. The stress in the nanocrystals is higher along the loading axis (and the direction
 206 of imaging) than in the transverse direction. The difference between axial and transverse stress is
 207 termed differential stress. Differential stress in the sample chamber can be estimated using the
 208 lattice strain theory for FCC metals⁵¹. The maximum differential stress in 6 nm nanocrystals was
 209 ~2 GPa (see Fig. S9). We have previously shown that 3.9 nm nanocrystals can sustain dislocation
 210 activity due to the deviatoric stresses, while sustaining its twin boundary structures²⁷. In order to
 211 understand the size-dependent stability of twin boundary structures, we performed MD simulations
 212 of 3.9 nm and 6 nm icosahedral nanocrystals (Fig. 5). Although the direct observation of structural
 213 transformation was not accessible in MD simulation due to the limited timescale, we were able to
 214 quantify the size-dependent pre-stress and to discover different twin boundary stabilities in small
 215 and large nanocrystals. While the angle between two non-parallel {111} surfaces is 70.53° in bulk
 216 FCC crystals, the twin boundaries in icosahedral nanocrystals form a 72° angle due to the five-
 217 fold symmetry, which inevitably induces pre-stress from the mismatch strain. The mismatch strain
 218 and resulting pre-stress inside icosahedral and decahedral MT nanocrystals can be approximated
 219 by the superposition of multiple finite-length disclinations. By assuming elastic isotropy and
 220 spherical surface, the pre-stress distribution inside MT icosahedral nanocrystal can be
 221 approximated as follows (see supplementary information).

$$\sigma_{rr} = \frac{4\mu\epsilon_I}{3} \left(\frac{1+\nu}{1-\nu} \right) \ln \left(\frac{r}{R} \right) - P \quad (2)$$

222 where $\epsilon_I = 0.0615$, μ is the shear modulus, ν is the Poisson's ratio, R is the radius of the
 223 nanocrystal, P is the external pressure, and r, θ and ϕ are the spherical coordinates. The solution
 224 indicates pure compressive stress along the radial direction. The maximum value of compressive
 225 stress is found to be higher in the larger nanocrystal. Smaller nanocrystals are subjected to higher

226 average strain energy and larger hydrostatic compression due to higher Laplace pressure from
227 surface stress⁴¹. This is consistent with our ambient pressure XRD measurement where 3.9 nm
228 shows a larger shift in the (111) peak position. Even though the theoretical analysis omits elastic
229 anisotropy, the analytical solution with $\ln \frac{r}{R}$ dependence matches qualitatively well with the atomic
230 potential energy distribution depicted in Fig. 5 B, which shows that 3.9 and 6 nm nanocrystals
231 have higher strain energy density near the core and 6 nm nanocrystal has larger maximum atomic
232 potential energy (i.e. higher pre-stress). Defect nucleation from the pristine twin structure is likely
233 to initiate from the region of high pre-stress, so it is expected that defect nucleation occurs
234 preferentially near the core of the MT nanocrystal. The MT structure in the larger nanocrystal is
235 more susceptible to defect nucleation near the core because of its higher maximum pre-stress and
236 can sustain pre-existing dislocations at ambient pressure. The twin boundary structures with five-
237 fold symmetry become progressively unstable for larger MT nanocrystals. We found that, even in
238 the absence of any external stimuli, dislocation nucleation and distortion of twin boundaries were
239 observed in 6 nm icosahedral nanocrystal in vacuum under relatively long high temperature MD
240 simulation, while neither dislocation activity nor distortion of twin boundary structure is observed
241 in the 3.9 nm nanocrystal due to smaller pre-stress (Fig. 5 C). These unstable twin boundary
242 structures and pre-existing defects allow deviatoric stress on the 6 nm MT nanocrystal to drive the
243 asymmetric Mackay-like transformation or dislocation/disclination mediated detwinning.

244 In summary, we have used high-pressure XRD and post-compression TEM to provide the
245 first evidence of deviatoric stress induced MT to SC structural transformation in nanocrystals.
246 Energy calculations showed that the 6 nm MT nanocrystals become unstable at high pressures and
247 the critical size for transition between MT and SC nanocrystals reduces with increasing pressure.
248 MD simulations showed that the 6 nm MT nanocrystal was more susceptible to dislocation

249 nucleation, had unstable twin boundaries and can have pre-existing dislocations. Deviatoric stress
250 driven kinetics of the process is governed by two possible paths – asymmetric Mackay-like
251 transformation or dislocation/disclination mediated detwinning. High-pressure SC nanocrystals
252 were recovered after unloading, however, the nanocrystals quickly reverted back to MT state after
253 redispersion in toluene solvent. The *in situ* TEM heating experiment indicated that the recovery
254 can be governed by surface recrystallization, and rapid nucleation and motion of twin boundaries.
255

256 ASSOCIATED CONTENT

257 **Supporting Information.**

258 The Supporting information is available free of charge on the ACS Publication website at DOI:

259 • Detailed methods and experimental conditions with additional figures detailing data
260 analysis, nanocrystal size distribution, simulated XRD patterns, TEM images,
261 calculations for deviatoric stress and bulk modulus, derivation of thermodynamic MT to
262 SC transition under pressure (PDF)

263 • TEM heating movie showing the nanocrystal twin boundary motion (MP4)

264

265 AUTHOR INFORMATION

266 **Corresponding Author**

267 *Corresponding author:

268 X. Wendy Gu

269 452 Escondido Mall, Room 227,

270 Stanford University, Stanford CA 94305

271 650-497-3189

272 xwgu@stanford.edu

273 **Author Contributions**

274 X.W.G. and A.P. conceived the idea and X.W.G. supervised the research of this work. A.P.
275 synthesized the nanocrystals and M.T.K performed the TEM characterization. A.P., M.T.K., D.D.,
276 M.K. and A.D. performed the high-pressure XRD. A.P. performed the XRD simulation and
277 analysis. S.L. and S.R. performed the MD simulations and analysis. A.P., S.L., S.R. and X.W.G.
278 wrote the manuscript. All authors have given approval to the final version of the manuscript.

279 **Notes**

280 Authors declare no competing financial interest.

281

282 **ACKNOWLEDGMENT**

283 X.W.G. and A.P. acknowledge financial support from the National Science Foundation under
284 Grant No. DMR-2002936/2002891. The Advanced Light Source is supported by the Director,
285 Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under
286 Contract No. DE-AC02-05CH11231. Beamline 12.2.2 is partially supported by COMPRES, the
287 Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative
288 Agreement EAR 1606856. Part of this work was performed at the Stanford Nano Shared Facilities
289 (SNSF), supported by the National Science Foundation under award ECCS-1542152. M.T.K. is
290 supported by the National Defense and Science Engineering Graduate Fellowship. D.D. is
291 supported by the NSF Graduate Fellowship. S.L. and S.R. are supported by the Creative Materials
292 Discovery Program (2016M3D1A1900038) through the National Research Foundation of Korea
293 (NRF) funded by the Ministry of Science and ICT.

294

295 **ABBREVIATIONS**

296 XRD, X-ray Diffraction; DAC, diamond anvil cell; MD, molecular dynamics; TEM,
297 transmission electron microscopy; SC, single crystalline; MT, multiply twinned.

298

299 REFERENCES

300 (1) Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Shape-Controlled Synthesis of Metal
301 Nanocrystals: Simple Chemistry Meets Complex Physics? *Angewandte Chemie -*
302 *International Edition*. John Wiley & Sons, Ltd January 1, 2009, pp 60–103.
303 <https://doi.org/10.1002/anie.200802248>.

304 (2) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and Properties of
305 Nanocrystals of Different Shapes. *Chemical Reviews*. 2005, pp 1025–1102.
306 <https://doi.org/10.1021/cr030063a>.

307 (3) Goubet, N.; Yan, C.; Polli, D.; Portalès, H.; Arfaoui, I.; Cerullo, G.; Pileni, M. P.
308 Modulating Physical Properties of Isolated and Self-Assembled Nanocrystals through
309 Change in Nanocrystallinity. *Nano Lett.* **2013**, *13* (2), 504–508.
310 <https://doi.org/10.1021/nl303898y>.

311 (4) Uttam, P.; Kumar, V.; Kim, K. H.; Deep, A. Nanotwinning: Generation, Properties, and
312 Application. *Materials and Design*. Elsevier Ltd July 1, 2020, p 108752.
313 <https://doi.org/10.1016/j.matdes.2020.108752>.

314 (5) Tang, Y.; Ouyang, M. Tailoring Properties and Functionalities of Metal Nanoparticles
315 through Crystallinity Engineering. *Nat. Mater.* **2007**, *6* (10), 754–759.
316 <https://doi.org/10.1038/nmat1982>.

317 (6) Huang, H.; Jia, H.; Liu, Z.; Gao, P.; Zhao, J.; Luo, Z.; Yang, J.; Zeng, J. Understanding of
318 Strain Effects in the Electrochemical Reduction of CO₂: Using Pd Nanostructures as an
319 Ideal Platform. *Angew. Chemie - Int. Ed.* **2017**, *56* (13), 3594–3598.
320 <https://doi.org/10.1002/anie.201612617>.

321 (7) Wang, X.; Choi, S. Il; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M.; Liu, J.; Xie, Z.;

322 Herron, J. A.; Mavrikakis, M.; Xia, Y. Palladium-Platinum Core-Shell Icosahedra with
323 Substantially Enhanced Activity and Durability towards Oxygen Reduction. *Nat.*
324 *Commun.* **2015**, *6* (1), 1–8. <https://doi.org/10.1038/ncomms8594>.

325 (8) Xia, Y.; Gilroy, K. D.; Peng, H. C.; Xia, X. Seed-Mediated Growth of Colloidal Metal
326 Nanocrystals. *Angewandte Chemie - International Edition*. Wiley-VCH Verlag January 2,
327 2017, pp 60–95. <https://doi.org/10.1002/anie.201604731>.

328 (9) Baletto, F.; Ferrando, R. Structural Properties of Nanoclusters: Energetic,
329 Thermodynamic, and Kinetic Effects. *Rev. Mod. Phys.* **2005**, *77* (1), 371–423.
330 <https://doi.org/10.1103/RevModPhys.77.371>.

331 (10) Gruner, M. E.; Entel, P. Simulating Functional Magnetic Materials on Supercomputers. *J.*
332 *Phys. Condens. Matter* **2009**, *21* (29), 31. <https://doi.org/10.1088/0953-8984/21/29/293201>.

334 (11) Sheng, H. W.; Luo, W. K.; Alamgir, F. M.; Bai, J. M.; Ma, E. Atomic Packing and Short-
335 to-Medium-Range Order in Metallic Glasses. *Nature* **2006**, *439* (7075), 419–425.
336 <https://doi.org/10.1038/nature04421>.

337 (12) Ino, S. Stability of Multiply-Twinned Particles. *J. Phys. Soc. Japan* **1969**, *27* (4), 941–
338 953. <https://doi.org/10.1143/JPSJ.27.941>.

339 (13) Baletto, F.; Ferrando, R.; Fortunelli, A.; Montalenti, F.; Mottet, C. Crossover among
340 Structural Motifs in Transition and Noble-Metal Clusters. *J. Chem. Phys.* **2002**, *116* (9),
341 3856–3863. <https://doi.org/10.1063/1.1448484>.

342 (14) Myshlyavtsev, A. V.; Stishenko, P. V.; Svalova, A. I. A Systematic Computational Study
343 of the Structure Crossover and Coordination Number Distribution of Metallic
344 Nanoparticles. *Phys. Chem. Chem. Phys.* **2017**, *19* (27), 17895–17903.

345 https://doi.org/10.1039/c6cp07571a.

346 (15) Plessow, P. N. The Transformation of Cuboctahedral to Icosahedral Nanoparticles:
347 Atomic Structure and Dynamics. *Phys. Chem. Chem. Phys.* **2020**, *22* (23), 12939–12945.
348 https://doi.org/10.1039/d0cp01651a.

349 (16) Vogel, W.; Bradley, J.; Vollmer, O.; Abraham, I. Transition from Five-Fold Symmetric to
350 Twinned FCC Gold Particles by Thermally Induced Growth. *J. Phys. Chem. B* **1998**, *102*
351 (52), 10853–10859. https://doi.org/10.1021/jp9827274.

352 (17) Gao, W.; Wu, J.; Yoon, A.; Lu, P.; Qi, L.; Wen, J.; Miller, D. J.; Mabon, J. C.; Wilson, W.
353 L.; Yang, H.; Zuo, J. M. Dynamics of Transformation from Platinum Icosahedral
354 Nanoparticles to Larger FCC Crystal at Millisecond Time Resolution. *Sci. Rep.* **2017**, *7*
355 (1). https://doi.org/10.1038/s41598-017-16900-6.

356 (18) Ajayan, P. M.; Marks, L. D. Phase Instabilities in Small Particles. *Phase Transitions A
357 Multinatl. J.* **1990**, *1*, 229–258. https://doi.org/10.1080/01411599008210232.

358 (19) Mackay, A. L. A Dense Non-Crystallographic Packing of Equal Spheres. *Acta
359 Crystallogr.* **1962**, *15* (9), 916–918. https://doi.org/10.1107/s0365110x6200239x.

360 (20) Inasawa, S.; Sugiyama, M.; Yamaguchi, Y. Laser-Induced Shape Transformation of Gold
361 Nanoparticles below the Melting Point: The Effect of Surface Melting. *J. Phys. Chem. B*
362 **2005**, *109* (8), 3104–3111. https://doi.org/10.1021/jp045167j.

363 (21) Bovin, J. O.; Malm, J. O. Atomic Resolution Electron Microscopy of Small Metal
364 Clusters. *Zeitschrift für Phys. D Atoms, Mol. Clust.* **1991**, *19* (4), 293–298.
365 https://doi.org/10.1007/BF01448314.

366 (22) Iijima, S.; Ichihashi, T. Structural Instability of Ultrafine Particles of Metals. *Phys. Rev.
367 Lett.* **1986**, *56* (6), 616–619. https://doi.org/10.1103/PhysRevLett.56.616.

368 (23) Gilroy, K. D.; Puibasset, J.; Vara, M.; Xia, Y. On the Thermodynamics and Experimental
369 Control of Twinning in Metal Nanocrystals. *Angew. Chemie - Int. Ed.* **2017**, *56* (30),
370 8647–8651. <https://doi.org/10.1002/anie.201705443>.

371 (24) Dobson, D. P. Self-Diffusion in Liquid Fe at High Pressure. *Phys. Earth Planet. Inter.*
372 **2002**, *130* (3–4), 271–284. [https://doi.org/10.1016/S0031-9201\(02\)00011-0](https://doi.org/10.1016/S0031-9201(02)00011-0).

373 (25) Bai, F.; Bian, K.; Huang, X.; Wang, Z.; Fan, H. Pressure Induced Nanoparticle Phase
374 Behavior, Property, and Applications. *Chemical Reviews*. American Chemical Society
375 June 26, 2019, pp 7673–7717. <https://doi.org/10.1021/acs.chemrev.9b00023>.

376 (26) Koski, K. J.; Kamp, N. M.; Smith, R. K.; Kunz, M.; Knight, J. K.; Alivisatos, A. P.
377 Structural Distortions in 5-10 Nm Silver Nanoparticles under High Pressure. *Phys. Rev. B*
378 - *Condens. Matter Mater. Phys.* **2008**, *78* (16), 165410.
379 <https://doi.org/10.1103/PhysRevB.78.165410>.

380 (27) Parakh, A.; Lee, S.; Harkins, K. A.; Kiani, M. T.; Doan, D.; Kunz, M.; Doran, A.; Hanson,
381 L. A.; Ryu, S.; Gu, X. W. Nucleation of Dislocations in 3.9 Nm Nanocrystals at High
382 Pressure. *Phys. Rev. Lett.* **2020**, *124* (10), 106104.
383 <https://doi.org/10.1103/PhysRevLett.124.106104>.

384 (28) Peng, S.; Lee, Y.; Wang, C.; Yin, H.; Dai, S.; Sun, S. A Facile Synthesis of Monodisperse
385 Au Nanoparticles and Their Catalysis of CO Oxidation. *Nano Res.* **2008**, *1* (3), 229–234.
386 <https://doi.org/10.1007/s12274-008-8026-3>.

387 (29) Jiang, Q.; Liang, L. H.; Zhao, D. S. Lattice Contraction and Surface Stress of Fcc
388 Nanocrystals. *J. Phys. Chem. B* **2001**, *105* (27), 6275–6277.
389 <https://doi.org/10.1021/jp010995n>.

390 (30) Longo, A.; Martorana, A. Distorted f.c.c. Arrangement of Gold Nanoclusters: A Model of

391 Spherical Particles with Microstrains and Stacking Faults. *J. Appl. Crystallogr.* **2008**, *41*
392 (2), 446–455. <https://doi.org/10.1107/S0021889808004846>.

393 (31) Warren, B. E. X-Ray Measurement of Stacking Fault Widths in Fcc Metals. *J. Appl. Phys.*
394 **1961**, *32* (11), 2428–2431. <https://doi.org/10.1063/1.1777086>.

395 (32) Herbst, C. .; Cook, R. .; King, H. . Density-Mediated Transport and the Glass Transition:
396 High Pressure Viscosity Measurements in the Diamond Anvil Cell. *J. Non. Cryst. Solids*
397 **1994**, *172–174*, 265–271. [https://doi.org/10.1016/0022-3093\(94\)90445-6](https://doi.org/10.1016/0022-3093(94)90445-6).

398 (33) Li, B.; Wen, X.; Li, R.; Wang, Z.; Clem, P. G.; Fan, H. Stress-Induced Phase
399 Transformation and Optical Coupling of Silver Nanoparticle Superlattices into
400 Mechanically Stable Nanowires. *Nat. Commun.* **2014**, *5* (1), 4179.
401 <https://doi.org/10.1038/ncomms5179>.

402 (34) Wang, Z.; Schliehe, C.; Wang, T.; Nagaoka, Y.; Cao, Y. C.; Bassett, W. A.; Wu, H.; Fan,
403 H.; Weller, H. Deviatoric Stress Driven Formation of Large Single-Crystal PbS Nanosheet
404 from Nanoparticles and in Situ Monitoring of Oriented Attachment. *J. Am. Chem. Soc.*
405 **2011**, *133* (37), 14484–14487. <https://doi.org/10.1021/ja204310b>.

406 (35) Li, B.; Bian, K.; Lane, J. M. D.; Salerno, K. M.; Grest, G. S.; Ao, T.; Hickman, R.; Wise,
407 J.; Wang, Z.; Fan, H. Superfast Assembly and Synthesis of Gold Nanostructures Using
408 Nanosecond Low-Temperature Compression via Magnetic Pulsed Power. *Nat. Commun.*
409 **2017**, *8*, 14778.

410 (36) Cullity, B. D.; Stock, S. R. *Elements of X-Ray Diffraction*; 2014.

411 (37) Song, M.; Zhou, G.; Lu, N.; Lee, J.; Nakouzi, E.; Wang, H.; Li, D. Oriented Attachment
412 Induces Fivefold Twins by Forming and Decomposing High-Energy Grain Boundaries.
413 *Science (80-.)*. **2020**, *367* (6473), 40–45. <https://doi.org/10.1126/science.aax6511>.

414 (38) Lim, T. H.; McCarthy, D.; Hendy, S. C.; Stevens, K. J.; Brown, S. A.; Tilley, R. D. Real-
415 Time TEM and Kinetic Monte Carlo Studies of the Coalescence of Decahedral Gold
416 Nanoparticles. *ACS Nano* **2009**, *3* (11), 3809–3813. <https://doi.org/10.1021/nn9012252>.

417 (39) José-Yacamán, M.; Gutierrez-Wing, C.; Miki, M.; Yang, D. Q.; Piyakis, K. N.; Sacher, E.
418 Surface Diffusion and Coalescence of Mobile Metal Nanoparticles. *J. Phys. Chem. B*
419 **2005**, *109* (19), 9703–9711. <https://doi.org/10.1021/jp0509459>.

420 (40) Chen, Y.; Palmer, R. E.; Wilcoxon, J. P. Sintering of Passivated Gold Nanoparticles under
421 the Electron Beam. *Langmuir* **2006**, *22* (6), 2851–2855.
422 <https://doi.org/10.1021/la0533157>.

423 (41) Howie, A.; Marks, L. D. Elastic Strains and the Energy Balance for Multiply Twinned
424 Particles. *Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop.* **1984**, *49*
425 (1), 95–109. <https://doi.org/10.1080/01418618408233432>.

426 (42) Wang, Y.; Teitel, S.; Dellago, C. Melting of Icosahedral Gold Nanoclusters from
427 Molecular Dynamics Simulations. *J. Chem. Phys.* **2005**, *122* (21), 385.
428 <https://doi.org/10.1063/1.1917756>.

429 (43) Barreteau, C.; Desjonquères, M. C.; Spanjaard, D. *Theoretical Study of the Icosahedral to*
430 *Cuboctahedral Structural Transition in Rh and Pd Clusters*; 2000; Vol. 11.
431 <https://doi.org/10.1007/s100530070068>.

432 (44) Wei, C. M.; Cheng, C.; Chang, C. M. Transition between Icosahedral and Cuboctahedral
433 Nanoclusters of Lead. *J. Phys. Chem. B* **2006**, *110* (48), 24642–24645.
434 <https://doi.org/10.1021/jp063982o>.

435 (45) Aragón, J. L. Transition from Multiply Twinned Icosahedral to Cuboctahedral Symmetry
436 in Particles of Arbitrary Size. *Chem. Phys. Lett.* **1994**, *226* (3–4), 263–267.

437 https://doi.org/10.1016/0009-2614(94)00722-5.

438 (46) Rollmann, G.; Gruner, M. E.; Hucht, A.; Meyer, R.; Entel, P.; Tiago, M. L.; Chelikowsky,
439 J. R. Shellwise Mackay Transformation in Iron Nanoclusters. *Phys. Rev. Lett.* **2007**, *99*
440 (8). https://doi.org/10.1103/PhysRevLett.99.083402.

441 (47) Angelié, C.; Soudan, J. M. Nanothermodynamics of Iron Clusters: Small Clusters,
442 Icosahedral and Fcc-Cuboctahedral Structures. *J. Chem. Phys.* **2017**, *146* (17).
443 https://doi.org/10.1063/1.4982252.

444 (48) Cheng, B.; Ngan, A. H. W. Thermally Induced Solid-Solid Structural Transition of
445 Copper Nanoparticles through Direct Geometrical Conversion. *J. Chem. Phys.* **2013**, *138*
446 (16), 164314. https://doi.org/10.1063/1.4802025.

447 (49) Li, G. J.; Wang, Q.; Liu, T.; Li, D. G.; Lu, X.; He, J. C. *Molecular Dynamics Simulation
448 of Icosahedral Transformations in Solid Cu - Co Clusters*; 2009; Vol. 26.
449 https://doi.org/10.1088/0256-307X/26/3/036104.

450 (50) Gao, Y.; Li, G.; Piao, Y.; Liu, S.; Liu, S.; Wang, Q. Size-Dependent Cuboctahedron-
451 Icosahedron Transformations of Co-Based Bimetallic by Molecular Dynamics Simulation.
452 *Mater. Lett.* **2018**, *232*, 8–10. https://doi.org/10.1016/j.matlet.2018.08.070.

453 (51) Singh, A. K. The Lattice Strains in a Specimen (Cubic System) Compressed
454 Nonhydrostatically in an Opposed Anvil Device. *J. Appl. Phys.* **1993**, *73* (9), 4278–4286.
455 https://doi.org/10.1063/1.352809.

456

457

458 **Figures**

459

460 **Fig. 1. TEM images of 6 nm Au nanocrystals.** A) Bright field image of monodisperse
461 nanocrystals. Scale bar is 10 nm. B, C) High-resolution images of icosahedral nanocrystals.
462 Scale bar is 5 nm.

463

464

465 **Fig. 2. High-pressure XRD for 6 nm nanocrystals.** A) All diffraction peaks and B) magnified
 466 view of (111) and (200) peaks. Change in diffraction peak C) width and D) position upon
 467 loading (solid line) and unloading (dashed line).

468

469

470 **Fig. 3. Post-compression TEM images of transformed single crystalline 6 nm nanocrystals.**

471

472 **Fig. 4. Snapshots from *in situ* TEM movie showing coalescence of MT nanocrystals under**
473 **electron irradiation.** A) Nanocrystal I and II at the beginning of imaging and after B) 10 s, C)
474 40 s and D) 70 s of electron irradiation. Red dashed line denotes the twin boundary in
475 nanocrystal I. Scale bar is 5 nm.

476

477

478 **Fig. 5. Atomistic simulation results of 3.9 nm and 6 nm icosahedral nanocrystals.** A) Twin
 479 boundary and dislocation structures in icosahedral nanocrystals using high temperature MD
 480 simulations. Dislocations are formed only in the 6 nm nanocrystal due to higher pre-stress. (green
 481 lines: Shockley partial dislocation, blue lines: full dislocation, red lines: dislocation blocked by
 482 twin boundaries). The red atoms are at twin boundaries. Atoms in regular FCC crystal positions
 483 are removed for visualization purposes. B) The atomic potential energy of pristine icosahedral
 484 nanocrystals. The 6 nm nanocrystal shows higher maximum potential energy (equivalently, higher
 485 pre-stress). C) Crystal structures of the nanocrystals after high temperature MD simulations. The
 486 twin boundary structure in 3.9 nm is preserved without noticeable distortion, while the twin
 487 boundary structure in 6 nm undergoes significant distortion.