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Regional income convergence and divergence has been an active field of research for more
than 20 years, and research papers in this field are still being produced at a prodigious
rate. Despite their importance for the study of dynamics of income distribution, interactive
visualization tools revealing spatiotemporal dimensions of the income data have been
sparsely developed. This study introduces a visual analytics system for the space—time
analysis of income dynamics. We use state-level US income data from 1929 to 2009 to
demonstrate the visual analytics system and its utility for exploring similar data. The
system conmsists of two modules, visualization and analytics. The visualization module,
a Web-based front-end called Rank-Path Visualizer (RPV), draws inspiration from the
cartographic technique of flow mapping, originally developed by Tobler and embodied in
his canonical Flow Mapper application.

Introduction

Tobler’s innovative work on the software package Flow Mapper (Tobler 1987, 2004) integrated
two strands of his previous research: the study of movement (Tobler 1981b) and the science
of cartography. Because flows tie together pairs of places at two different points in time, they
provide a powerful mechanism to integrate space and time. Tobler’s contributions have inspired
the widespread adoption of flow mapping across many scientific domains as well as a vibrant
strand of research addressing the technical issues in flow mapping (Stephen and Jenny 2017;
Yang et al. 2019).

One of the prominent motivating applications Tobler developed was the representation of
the flow of federal monies within the continental United States (Tobler 1981a). Federal expendi-
tures in, and tax receipts from, each of the 48 lower states were considered to develop a net trans-
fer value for each state, with a positive (negative) sign indicating the state that received more
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(Iess) in expenditures than it contributed in taxes. Interstate flows were then imputed by setting
these net transfer value in a potential field, and then aggregating the flows that cross state bound-
aries. The final US map renders the visible movement of US Federal Reserve through arrows
whose width is proportional to the average flow that connects the centroids of adjacent states.

In this article, we draw inspiration from, and extend, Tobler’s flow mapping of federal funds
framework to provide a new visual-analytical approach to study spatial income distribution dy-
namics. We explore the question of how the recasting of flows to the case of income distribution
dynamics may reveal novel insights on the evolution of spatial income inequality. Our approach
is based on the concept of a Rank Path that portrays the “migration” of ranks of the income dis-
tribution over time. The concept of a rank path emerges from work in the distributional dynamics
literature that employs Markov chain frameworks.

The article makes three contributions. First, we develop an analytical framework that com-
bines the notion of a rank path with that of a flow map to provide a new approach to distributional
dynamics. Second, while the notion of a rank path has been introduced by Rey (2014b), to date
its impact has been limited to a proof-of-concept. By embedding the rank path in the visual an-
alytic framework, we feel the rank path concept may now be applicable across a wide number
of domains dealing with longitudinal spatial data. Finally, we develop the Rank-Path Visualizer
(RPV), an interactive web-based visual analytic system, and illustrate its functionality with the
case of US income distribution dynamics.

The article is organized as follows. Section “Literature review” provides a discussion of pre-
vious work on flow mapping and spatial income distribution dynamics research to set the context
for our approach. This is followed by Section “Methods,” where we introduce the notion of rank-
based Markov chains and the associated rank path, and detail the design and implementation of
the RPV. We provide an illustration of the framework applied to US per capita incomes over the
1929-2009 period in Section “Illustration: Spatial dynamics of US income inequality”. Section
“Conclusion” closes the article with key findings and directions for future research.

Literature review

Mapping flows through time and space

Distributive flow maps represent “the movement of commodities, people, or ideas between geo-
graphic regions” (Slocum et al. 2008, p. 360). They have straight or arc-shaped flow lines con-
necting each pair of origin and destination, where line width denotes the magnitude of the flow
and arrows at the end of lines represent the directions of flows. Flow mapping is one of the oldest
known examples of cartographic data visualization (Tufte 2001). Ten short years following the
publication of John Snow’s infamous cholera map, Minard (1862) “gave quantity as well as
direction to the data measures located on the world map in his portrayal of the 1864 exports
of French wine” (Tufte 2001, p. 24) and the first flow map was born. For more than a century
thereafter, flow maps were used as powerful data visualizations representing the movement of
people, commodities, and services between various geographic regions around the world. Prior
to the advent of computerized cartography, however, such maps were highly labor intensive, re-
quiring both considerable artistic skills and meticulous manual measurement to design maps that
were both aesthetically pleasing and quantitatively accurate. The digital era, naturally, upended
this tradition. Indeed, at the outset of the nascent personal computing revolution, early Big Data
pioneer Tobler (1987) imagined a computational framework that would introduce the concepts
of scalability and reproducibility into the process of flow map design. After developing the first

538



Sergio Rey et al. AVisual Analytics System for Space-Time Dynamics

proof-of-concept on early consumer hardware in 1987, Tobler went on to design software capa-
ble of ingesting any arbitrary origin—destination matrix and generating a flow map encoding the
spatial interactions embedded in the data.

Almost immediately the value of flow mapping as a visual analytics system was demonstrated
by Clark and Koloutsou-Vakakis (1992) who used Flow Mapper to investigate more thoroughly
the concept of migration vector fields, the motivating theoretical construct behind Tobler’s initial
design. Focusing on Dutch migration patterns, their flow maps revealed “an important change
in the system of flows between 1975 and 1985. In 1975, there is a general movement toward the
south and east with dominant flows out of the metropolitan areas of Amsterdam and the Hague.
In 1985, the net exchanges are not only smaller but the only substantial out-migration is the one
from Amsterdam to the neighboring region (Zuid-Ijsselmeer Polders)” (Clark and Koloutsou-
Vakakis 1992, p.114). While these same patterns could have been found through a thorough
examination of the input matrix, the speed and intuition with which the flow map presents this
complex result obviates the need for tabular exploration. Following this initial work, many oth-
ers have improved and transformed flow mapping in visual analytics to reveal the unique com-
plexity in spatial interaction data to great effect; notable examples include Boyandin, Bertini,
and Lalanne (2010) who extend flow mapping to the temporal case, Chen et al. (2015) who apply
flow mapping techniques to social media data, and Wood, Dykes, and Slingsby (2010) who use
a unique treemap visualization to avoid aggregation or generalization.

However, despite continuous development in the literature and constant attention from a
group of analytical cartographers, flow mapping lags behind many other geovisual techniques
in adoption by professionals and the wider public. As Rae 2011, p. 791) describes, this lack of
adoption outside academia is troublesome, since flow mapping is the “visual approach, based on
careful spatial data analysis and analytical decision making, that best conveys [the relationships
between] functional spatial structures. It is possible to convert the complexity of large spatial
interaction matrices into simple geovisualisations, so the hope now is that others, and particu-
larly national statistical agencies, will move towards this kind of approach in their dissemination
activities.”

Nearly 20 years after its initial prototype, Flow Mapper was implemented in modern com-
puter architecture and re-released as “Tobler’s Flow Mapper” (Tobler 2004). As computers have
grown more powerful, scholars and software developers have enhanced Tobler’s original concept
by adding more advanced functionality and more appealing visual effects. For example, Jenny
et al. (2018) provides a set of aesthetic principles for designing better flow maps, and DemsSar
and Virrantaus 2010, p. 1538) extend classic flow mapping using modern graphics cards to per-
mit visualization of “3D space-time density of trajectories”. Buchin, Speckmann, and Verbeek
(2011) and Stephen and Jenny (2017) offer algorithmic solutions for better flow map layouts,
the latter of which is available as a web-based application. ' Indeed, today there is a variety of
flow mapping software packages available for both desktop and web-based environments. Other
web-based tools include work by Rae (2009) visualizing residential mobility in large migration
data and the Hubway Trip Explorer that visualizes human movements by quantitating bicycle
rides (Woodruff 2019). Even the US Census bureau provides its own proprietary flow mapping
tool for visualizing its “County-to-County Migration Flows” data set.”

For desktop environments, there are flow mapping extensions to popular GIS packages as
well as standalone platforms (Kim et al. 2012). Guo (), for example, developed a decision-support
tool for modeling pandemics that includes flow-mapping capability, including a new function-
ality for large data sets that gains efficiency by aggregating data from neighboring geographic
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regions. Boyandin, Bertini, and Lalanne (2010) also developed a desktop-based flow mapping
tool called JFlowMap that facilitates “dynamic queries for filtering out flows by their quantities
or their length” and the exploration of the temporal changes in flows.

As technology continues to progress, a new generation of flow mapping software that lever-
ages movement and animation has begun to appear. These versions continue the natural evolu-
tion of flow mapping in the digital era to elucidate the temporal change in flows. For example,
Koblin (2006) created animations of air traffic flow. CartoDB provides a function called Torque
that enables creating the animated flow representing the temporally changing movements of
objects (CARTO 2017). By using Torque, the flows of naval ships were animated to show the
yearly changing movements (Rogers 2012). Ho et al. (2011) developed a web-enabled flow
mapping tool containing a function to play animation of flows across time and various charts to
visualize additional information other than flows. Han, Clarke, and Tsou (2017) also developed
a web-based animated flow mapping tool, verifying its visual effectiveness through a human
subject opinion survey.

While it is clear that technology for constructing and displaying flow maps has improved
continuously since Tobler’s first implementation, novel applications of flow mapping as a tech-
nique have failed to keep pace. Inherently, flow mapping is a technique for visualizing the space—
time dynamics of things that move between places. Traditionally, these things have represented
physical or material objects, such as humans, commodities, or money. But the notion of visualiz-
ing movements between places over time can also be abstracted to immaterial objects.

One such abstraction is the notion of a rank within a particular distribution. More specifi-
cally, consider an ascending ranking of US state per capita incomes at one point in time. The rank
assigned to a particular state in that moment in time tells us where in the income distribution the
state would be located, with states having low ranks in the left tail of the distribution, and rich
states with high ranks in the right tail of the distribution. Over time, as states move within the in-
come distribution, their ranks would change. From the perspective of a particular rank, however,
its “geographic” location would also change. Flow mapping using this abstraction could visual-
ize how a particular rank passes through geographic units over time. Thus, although classic flow
mapping can show migration patterns by representing the quantities of people moving between
two areas, adopting the rank path abstraction could visualize, for instance, the “movement” of
the most populous city in a country over the course of a particular time period. In the following
sections, we describe a new visualization tool: the RPV that expands upon the animated flow
mapping tools mentioned above, but adopts this novel approach designed to visualize the spatio-
temporal movements of rank data across regions over time.

The concept of rank-based geographic mobility was first discussed by Rey (2014a) who de-
veloped a methodology for investigating whether geographic partitioning or spatial relationships
exist within the rank distribution of a particular variable or a portion of its value distribution. In
this article, we develop a novel method for visualizing such mobility in an interactive platform
that lets researchers explore any part of the rank distribution or geographic scope of their choos-
ing. This technique is useful because selecting and visualizing an arbitrary rank allows scholars
to examine whether certain parts of the rank distribution are more volatile than others, or whether
spatial units of an arbitrary rank move conterminously with their neighbors or get trapped in
space (Bloom, Canning, and Sevilla 2003). This can be informative for applications such as
regional economic policy development.

If we observe that rank 20 moves from city A to city B to city C, and the three cities are
proximate to one another, then we can infer that some variety of spatial process is taking place
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that keeps rank 20 isolated in a particular region. Different portions of the rank distribution may
be influenced by different varieties of spatial effects (for instance, spatial poverty traps versus ur-
banization agglomeration). Our interactive visual analytics system lets researchers explore these
dynamics at will, to investigate how the relationships between geography and rank dynamism
vary for different portions of an attribute distribution (or a particular portion of the study area).

GIS applications of Markov chains

Formally, a Markov chain is a sequence of discrete random variables X, X|, X, ..., X, where
the probability of arriving at a given Markov state x at time 7 + 1 depends only on the immediate
past value X:

P(Xt+1:x|X0,Xl,...,Xt)ZP(Xt+1=x|X,) (1)

Since this mathematical framework can model the dynamics of different types of phenomena,
the applications in a geographical context are quite vast including land use changes (Muller and
Middleton 1994), spatial criminology (Rey, Mack, and Koschinsky 2012), migrations (Pan and
Nagurney 1994), and weather (Jordan and Talkner 2000), among others.

Interactive visualization of Markov Chain analysis in GIS can be dated back to (Logsdon,
Bell, and Westerlund, 1996) where a Graphic User Interface is used to present transition proba-
bility matrices for land type data using ARC/INFO Macro Language. The IDRISI-GIS Analysis
Tools of TerrSet (Eastman 2015) also provides a suite of tools for predictive land cover change
modeling that include the Land Change Modeler extension for ArcGIS, (Johnson 2009) which
uses Markov Chain analysis to project the expected quantity of change in a competitive land
allocation model to determine scenarios for a specified future date. Another data visualization
tool that takes advantage of Markov Chain analysis in GIS is CrimeVis® (Cortes et al. 2017)
developed using the R language’s Shiny package (Chang et al. 2018). This web application
permits a detailed analysis of how Markovian transition models can help reveal temporal and
spatiotemporal crime dynamics in the city of Rio Grande do Sul state, BR. The variable under
analysis is a dichotomous dummy variable indicating whether the municipality had at least one
occurrence of a particular crime. Following Rey, Mack, and Koschinsky (2012), the application
applies Markov chains to analyze the probabilities that a municipality transitions across Markov
states during the initial period and end period; it also facilitates analyses of joint spatiotemporal
analysis by stratifying the sample in cities that had (or not) contiguous municipalities with a
crime. Several maps, probabilities matrices, odds ratios, and hypothesis tests for temporal and
spatial homogeneity are provided in an interactive interface.

Despite their widespread application in the study of regional income inequality dyn.amics,4
the use of visualization for Markov chains has been very limited. Instead, the emphasis has been
on the estimation of transition probabilities and related derived summary measures. Some excep-
tions to this are early work on the package Space-Time Analysis of Regional Systems (STARS)
(Rey and Janikas 2006) that has many features to deal with transitional dynamics of distribu-
tional attributes through the use of classic Markov and spatial Markov techniques. One of the
innovations of STARS was interactive transition tables that allow the user to select specific cells
of the estimated Markov transition matrix, which, in turn, highlight the areas on a choropleth
map that made transitions associated with the selected cell.

Since the original release of STARS, a number of new analytics for spatial Markov chains
have been introduced including rank-based Markov chains (Rey 2014b), joint and conditional
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tests for spatial dependence in Markov chains (Rey, Kang, and Wolf 2016), and local indicators
of mobility association (Rey 2016). Each of these new measures can be coupled with new visual
analytics, and in this article we describe one particular development in this regard, the integra-
tion of rank paths from rank-based Markov chains, together with the Tobler’s flow mapping
framework.

Methods

We have developed a web-based visual analytics system for exploring the movements of the
ranks of data across regions over time. It consists of two modules: RPV and Geographic Rank
Markov (GRM). These two modules together provide insight into the spatiotemporal move-
ments of ranks of data that are difficult to reveal using conventional visualization methods. To
illustrate this framework, we use annual (1929-2009) per capita income data from the United
States; however, the methods and visualization tools developed in this study can be used for any
spatiotemporal data.

GRM and rank paths

The application of classic Markov chains to the study of regional income distribution dynamics
has been criticized for the ad-hoc nature of discretization methods used to estimate the transition
probability matrices (Magrini 1999). As these matrices are used to draw inferences about dynam-
ics, convergence, and inequality, the sensitivity of the probability estimates to the choice of the
quantization method has been seen as a central concern.

Rank-based Markov chains were suggested as a way to deal with the issues surrounding
the arguably ad-hoc nature of discretization used in the study of regional income distributions.
Rather than discretizing the usually continuous variable of interest (e.g., income) where the re-
sulting Markov state space is contingent on the choice of discretizing scheme, numeric ranks are
assigned beginning with 1 for the smallest value to n for the largest value given n observations.

Two forms of rank-based Markov chains were introduced in Rey (2014b): Full Rank Markov
and GRM.? The first form defines the state of the discrete Markov chain from (1) on the ranks
of the variable under consideration. In the case of regional convergence research, the focus is on
the ranks of regional per capita income. More formally, define " ;+ = 1if a geographical unit
i held rank [ in period ¢ and rank m in period ¢ + 1, 0, otherwise. From this, form the (nxn) Full
Rank Transition Matrix P(r):

P(V)l,l P(V)l,z P(V)l,n
P(r)= p(r :)2,1 p(r :)2,2 p(r :)Z,n )
p(r)n,l P(V)n,z p(r)n,n

with elements p(r);,,, = @ where: f;,, = Y1 Y f;:} and f; = X" fiq
The second form of 4 rank-based Markov the GRM, is the dual of the Full Rank form.

Rather than modeling the transitional dynamics of individual regions moving across discrete in-
come classes where the choice of the discretization is essential but unresolved, the GRM focuses
on the transitional dynamics of income ranks moving across regions over time. It does so by
embedding the states of the Markov chain in geographical space. Letting a)' 1 = 1if rank r was
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in region i in period ¢ and region j in period ¢ + 1, 0 otherwise, we can similarly form the (n x n)
Geographic Rank Transition matrix P(g):

Py p@in v (@i
Plg)= p(g)z,l p(g)z,z N p(g)z,;1 3)
Pt P@ua Py
with elements p(g);; = %where: fij= 20 Z,T:_ll a):gl and f; = ZZ:l i

Two mobility measures can be constructed based on the transition probability matrix P(g)
(equation (3)), shedding light on the interactions between regions in a dynamic setting. The first,
Mean Sojourn time, defined for a given region is the expected time any income rank spent in this
region before leaving it®:

1

=— 4
1_]7(g),‘,,' @

S

The larger the Mean Sojourn time is for a region, the less likely this region is to interact with

other regions in terms of exchanging ranks in the income distribution. The second mobility mea-

sure, mean first passage time (MFPT), is defined for a pair of regions. For example, the MFPT

from region i to region j is the expected time any income rank takes to move from i to j for the
first time. The mean first passage time matrix is estimated as’:

MFPT=(1-Z+EZ

)P &)

where Z,, is the matrix formed from the diagonal elements of the fundamental matrix
Z = (I—(P—A))~!, with A the limiting matrix of the chain. D is the diagonal matrix with el-
ements d;; = 1/a; with g; the limiting probability of the chain being in state i. E'is a matrix of
ones.

While mobility statistics provide insight into the overall dynamics of the system, the GRM
affords a particularly interesting analytic in the form of a Rank Path that can provide a spatially
explicit view of these dynamics. The path for each rank consists of the consecutive source and
destination regions that the rank moves between. The rank path, thus, provides a view of rank
migration. Because there is a path for each rank in the variate distribution, comparisons between
different rank paths can provide insight into the spatial structure of the distribution’s evolution.
In what follows, we develop a new visual analytic that exploits this opportunity, together with
new approaches to visualizing the information provided by the MFPT and Geographic Rank
Transition Matrix.

A web-based visual analytics systems for exploring rank mobility
Our visual analytic framework consists of two tools, a RPV and a Geographic Rank Markov
Explorer (GRME).

An overview of the RPV is provided in Fig. 1. The system is built with a collection of open-
source JavaScript libraries and presents to the user five interactive elements comprising the web-
based interface. Starting at the top left, there are controls allowing the user to specify what ranks
and time periods are to be examined. This affords different types of filtering that we demonstrate
more fully in the case study below. Below the controls is a map canvas, which portrays the rank
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% Space-Time Analysis of Regional Systems (STARS) : Rank Path
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Figure 1. Rank Path Visualizer: The large map canvas plots movement of the 45th rank from
1929 to 2009. Above the map are button controls that allow the selection of ranks, and a slider
bar that controls the time window. On the right column, a radar plot reports the angular direction
of the rank migrations, on top of a choropleth map for per capita income values in the last year
of the sample. The bottom right figure contains two views of the density of per capita incomes
for the current year: the top focuses on a selected portion of the density and the bottom has the
control which allows the user to select portions of the density for examination.

path for the currently selected rank. The next three components are nested in the right column,
beginning with a radar chart at the top of the right panel to visualize the direction and distance
of flows. Below the radar chart is another choropleth map which portrays the distribution of per
capita incomes at one point in time. Finally, a pair of distributional views are included that dis-
play the statistical distribution of the incomes for the same point in time. The bottom distribution
is an overview of the full distribution which has a slider. The slider provides two knobs that can
be moved horizontally to zoom-in the distribution between the two knobs. The top density shows
the section of the distribution focused by the slider.® As the user hovers the pointer over the
distribution, the state name appears to show its location in the distribution. A zoomable density
distribution is especially useful in the high-density area of the graph to help the user locate the
state in the distribution. The five elements in the interface are interconnected and enable interac-
tive exploration of the space—time dynamics of the attribute of interest. Each of the elements is
dynamically linked with one another such that user interaction in the choropleth map will also be
reflected in the density charts and radar charts. For example, using a lasso select on the map will
trigger a recalculation of the density estimate based on the selected states only.

Fig. 2 provides an overview of the GRME. To construct our GRM Chain models and asso-
ciated analytics, we leverage the open-source Python package “giddy” (Kang et al. 2019) part
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Figure 2. Geographic Rank Markov Explorer: Top controls for selection of color map and
classification scheme to map mean first passage time (MFPT) and sojourn times for ranks. The
top map displays MFPT for ranks leaving Mississippi; the middle map shows MFPT for ranks
entering California; the bottom map displays sojourn time for ranks in all US states. On the right
is a heatmap matrix of the MFPT for ranks between all states, with a selected cell highlighting
California and Mississippi on the three maps.

of the Python Spatial Analysis Library (PySAL) ecosystem (Rey and Anselin 2007). Similar
to the RPV, the GRME has five interface elements based upon Han et al. (2019)’s Adaptive
Choropleth Mapper. The toolbar along the top allows users to set parameters used to draw the set
of choropleth maps below. Users can select from a list of summary statistics describing mobility
from or to each region, including sojourn times and mean first passage times by clicking on the
dropdown box above each map. On the right side of the interface, a heatmap displays transition
rates, defined in (3) between each pair of Markov states. The heatmap is interactive such that
hovering over each cell in the matrix displays a popup with the summary statistic for that cell.
The left side displays three maps whose content can be conveniently adjusted by the users. The
maps in Fig. 2 showcase (1) the MFPTs from Mississippi (2), the MFPTs to California, and (3)
the Sojourn times for all US states.

Illustration: Spatial dynamics of US income inequality

We demonstrate the core functionality of our visual analytics system using US per capita income
data annually from 1929 to 2009, from the US Bureau of Economic Analysis.9 The focus is on
the 48 conterminous states. We first illustrate the use of the RPV, followed by a demonstration of
the GRME. The tools are highly interactive, so it is important to stress the static images reported
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below do not capture the full dynamics of the system. Interested readers can explore the interac-
tivity in more detail online. '’

Rank-Path Visualizer

The departure point for our illustration is the overview of all rank paths portrayed in Fig. 3. Such
a view is clearly overly complex as the vast number of paths makes the identification of pattern
difficult. To allow for more refined inspection of the rank paths, a number of different types of
filtering are supported by the tool: filtering by rank; filtering by space; filtering by time; and fil-
tering by combinations of rank—space—time.

The map of the rank path was designed to visualize where the selected rank path moves in
each different year and how often they move or stay among the 48 lower US states in each year
from 1929 to 2009. The path of a rank is represented using distinctive colors to differentiate each
different rank path (e.g., Fig. 3). As seen in the legend area of Fig. 3, nine visually distinctive
colors are used to differentiate the first nine rank paths from one another, and the nine colors are
repeated to color the rest. Each rank path can be toggled on and off, which helps differentiate two
or more rank paths represented in the same color. The legend is also collapsable, it opens when
the user mouse hovers over the layers symbol on the top right corner of the map.

The location of the circles represents the origins and destinations of each movement. In the
case when a user isolates a single rank path, such as Fig. 1, the origin is represented in red, and
the destination is represented in green. The radii of the circles increase with the frequency at
which the state obtained a specific rank over the time series. In Fig. 1, Alabama ranked 45th 26
times while Louisiana held the same rank only 3 times, hence Alabama’s circle is much larger.

Please select the rank (st: richest, 48th: poorest) Click to See User O Fix s o
o "
Al ian Ehbn  Be2n Bielh B0 B2 B2sn Ba-end BE0h @5-40n B4 @aeasn Direction{(*) 8 Pistanee (K006} oF Iraiie MAbIY
a1st st Soth @1n B Gt E2sh B2 B3 D3h G4t @45 o
;g o Z1h  Bun Z8h U2 @26h  Eh  BMn 2B Q4 D4eh

=R @7t & 1ith & 15th 210t ©23 227th 231t 235t 230t @430 Q47th
B4t 2oth 12t E16th 220 =24th 220t Ba2nd B3 240t B 44th B4oth

The path of the selected rank will be drawn as time increases.

aJ1929 » | La]2009 » |

Dol Animaton ks Animation Many years: 1929 - 2009 Rafroch ol chate o 200

0 Fix Axis Chart Year [2008

US Incorne by Stale in 2009

0 Fix Axs State - [cans ]

US Income Distribution in 2000

Censity Estimation

Income per Capita Relative Katio (FCK)

Mexico

Advanced Analysis: Geographic Rank Markov

Figure 3. Rank Path Visualizer: Overview with all rank paths selected for all 48 conterminous
states. See Fig. 1 for details on components.
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When multiple rank paths are visualized, the color of the circles is the same as the color of the
lines to differentiate clearly the paths of each rank (e.g., Fig. 3).

Filtering by rank

Fig. 4 demonstrates the case comparing the rank paths for three parts of the distribution: Rank
paths 1,24, and 48. Several visual cues are used to represent the temporal dimension of the paths.
First, each rank path is distinguished by a unique hue, and the temporal ordering of each segment
of the path is represented by an intensity that declines with time. In other words, more recent
edges of a path are darker relative to edges that appear earlier in the path. Edges that repeat take
on the intensity associated with the latest period the edge was traversed, and the width of the
edge is used to represent the edge’s frequency. The terminal node for each path is identified by
increasing the saturation of the hue filling the node.

Filtering by rank reveals how spatial dynamics vary over the two tails and the center of the
distribution. At the extremes of the distribution, the rank paths display strong return and staying
tendencies focusing on Connecticut (Rank Path 1) and Mississippi (Rank Path 48), respectively.
In contrast, the path associated with the middle of the income distribution (Rank Path 24) shows

Please select the rank (1st: richest, 48th: poorest) Click to See User Documents
< 1st 5th 9th 13th 17th 21st 25th 29th 33rd 37th 41st 45th

2nd 6th 10th 14th 18th 22nd 26th 30th 34th 38th 42nd 46th

3rd 7th 11th 15th 19th 23rd 27th st 35th 30th 43rd 47th

4th sth 12th 16th 20th “ 24th 28th 32nd 36th 40th 44th “ 48th

The path of the selected rank will be drawn as time increases.

_«]1929 » | _«]2009 »|

Draw All Animation Auto Animation Manually years: 1929 - 2009 Refresh all charts to 2009

+

Mexico

| Map dats © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

Figure 4. Filtering by Rank: Selection of Ranks 1, 24, and 48 over all time periods. The radius of
graduated circle reflects the number of times the rank was held by that state. States that held the
selected rank most frequently are labeled in the upper right.
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a much more dispersed pattern over the entire sample period. This filtering by rank provides a
mechanism to identify spatial polarization in the rank distribution.

Filtering by time

A second type of filtering can be adopted to contrast the dynamics over temporal subsets of the
sample. An example can be seen in comparing Figs. 5 and 6 splitting the data into two temporal
regimes: 1929—-1969 and 1970-2009. For each of the three rank paths, there is a change in the
greater concentration of rank migrations between fewer nodes, with the pattern most pronounced
for the two extreme ranks.

The visulization lays bare a vivid spatial poverty trap in which Mississippi is prominent
during the second period; the state never escapes the bottom of the income distribution. This is
in contrast to the previous period where there was some migration of the 48th rank. Interestingly,
even in the earlier period, the migration for the 48th rank follows a circular path, briefly escap-
ing to South Dakota before returning to Mississippi. At the other end of the distribution, there
is a similar circulation of the top rank between Connecticut and Nevada in the second period,
whereas more states were visited by the migration of rank 1 in the first period.

Please select the rank (1st: richest, 48th: poorest) Click to See User Documents
< st 5th gth 13th 17th 21st 25th 29th 33rd 37th 41st 45th

2nd 6th 10th 14th 18th 22nd 26th 30th 34th 38th 42nd 46th

3rd 7th 11th 15th 19th 23rd 27th 31st 35th 39th 43rd 47th

4th 8th 12th 16th 20th < 24th 28th 32nd 36th 40th 44th < 48th

The path of the selected rank will be drawn as time increases.

_<|1929 » | < [1969 » |

Draw All Animation Auto Animation Manually years 1929 1 969 Refresh all charts to 1969

Mexico

afiet | Map data © OpenStreethap contributors, CC-8Y-SA, Imagery © Mapbax

Figure 5. Filtering by Time and Rank: Rank Paths 1, 24, 48 over 1929-1969. See Fig. 4 for
details on components.
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Please select the rank (1st: richest, 48th: poorest) Click to See User Documents
* st 5th 9th 13th 17th 21st 25th 29th 33rd 37th 41st 45th

2nd 6th 10th 14th 18th 22nd 26th 30th 34th 38th 42nd 46th

3rd Tth 11th 15th 19th 23rd 27th 31st 35th 39th 43rd 47th

4th 8th 12th 16th 20th < 24th 28th 32nd 36th 40th 44th  48th

The path of the selected rank will be drawn as time increases.

<] 1970 > | _<]2009 »|

Oraw All Animation Auto Animation Manually years: 1970 - 2009 Refresh all charts to 2009

+

Mexico

afiet | Map data® OpenSireetMap contributors, CC-BY-SA. Imagery © Mapb

Figure 6. Filtering by Time and Rank: Rank Paths 1, 24, 48 over 1970-2009. See Fig. 4 for
details on components.

Filtering by space

Filtering the data by region allows a user to focus on the dynamics within the selected spatial
units only. For instance, after selecting n; spatial units, numeric ranks are reassigned to these
n, selected observations beginning with 1 for the smallest value and r, for the smallest value to
create “local” or “conditional” ranks, in the sense that ranks are recreated to be locally adaptive
or conditioned on the selected regions. Filtering by space can be achieved by applying the lasso
tool to the middle map on the right of the RPV. Fig. 7 illustrates this user case where the user
has changed to focus to the south, having selected 10 states (1; = 10) that are highlighted in the
main map. This triggers a change in the interface for rank filtering (top of tool) to only reflect the
internal rank migrations between the selected 10 states, where the ranks now become local, or
conditional, to the selected sets. Here the user is now examining the movement of the first and
ninth ranks within this conditional set of southern states. Doing so reveals that Florida used to be
the richest state in the south, however, it has been surpassed by Virginia which assumes the top
local rank at the end of the period. Conversely, the rank path of 10th local rank moved back and
forth between Alabama and South Carolina until 1982, moved to West Virginia in 1983 before
returning to South Carolina where it remained.
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GRM explorer

The dynamics of the income rank migrations across space and time are modeled with GRM,
which provides a suite of summary statistics to reveal interactions between regions. As discussed
earlier, the combined use of RPV and GRME offers insights which cannot be revealed using only
one tool in isolation.

GRM overall

Fig. 2 provides the visualization of the GRM mobility statistics, serving as a concise summary
complementary to the rank path visualization in Fig. 3. More specifically, a GRM transition
probability matrix P(g) was estimated and visualized as a heatmap on the right side. Each cell
presents the probability of ranks migrating from the corresponding US state (indicated by the
column of state names to the left of the heatmap) to another (indicated by the row of state names
to the bottom of the heatmap). The diagonal cells show the probabilities of income ranks staying
in correspondent states.

It is clear from the heatmap that the darkest cell lies in the row and column of Mississippi.
Utilizing the convenient interactive functionality of GRM Explorer, we can obtain the value of
this transition probability by hovering over the cell to reveal the probability of income ranks
staying in Mississippi over a year interval as 96.5%. As shown in the third map in Fig. 3, the
Sojourn time for Mississippi is 26.67 years, meaning that it takes an average of 26.67 years for
an income rank to leave Mississippi once it has entered the state. Recall the visualization of the
path of income rank 48 (the poorest) in Fig. 4 which tends to return to and stay at Mississippi,
we can verify and complement our visual inspection with quantitative evidence by turning to
the first two maps which visualize the expected number of years a rank takes to migrate from
Mississippi to any other state and from any other state to Mississippi.” From these two maps,
we can see that it generally takes a much longer time for an income rank to move to Mississippi
than moving from Mississippi. For instance, it takes a rank 1297 years to move from California
to Mississippi while it takes 147 years for a rank to move from Mississippi to California. It
would seem that Mississippi tends to be trapped in the bottom of the income distribution, lacking
upward mobility.

GRM—Temporal structural breaks

Following the filtering by time option in RPV, we can also utilize GRME to model the dynamics
of income ranks across space and time for selected periods. In Fig. 8, we have partitioned the
data into the same temporal regimes used in Section “Filtering by time”. At first glance, a visual
comparison of the MFPT maps and transition probability matrix heat maps between the two
periods does not reveal any obvious differences in the spatial dynamics over the two periods.
However, closer inspection reveals that there is an important structural difference between the
two periods. In the second period, the graph that is obtained from the rank paths is not fully
connected as there are two connected components, one consisting of 47 states, and the second
component is the isolate of Mississippi. This is clearly evident from Fig. 6 where the rank path
for rank 48 is a singleton at Mississippi.

In contrast, the graph for the rank paths in the first period is fully connected. In addition to
the differences in connectivity structures, the MFPTs are generally larger in the first period. For
example, the MFPT for a rank leaving California to enter Alabama is 256 years in the first pe-
riod, but this time drops to 104 years in the second period of the sample. Two factors may be at
work behind this change. First, the rank paths for 1929-1969 include those that circulate through
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Figure 8. Temporal change of income rank mobility: (a) GRM modeling of US states over 1929—
1969 (b) GRM modelling of US states over 1970-2009. See Fig. 2 for details components.

Mississippi, while in the later period, Mississippi is not a node in the larger connected compo-
nent that is used to estimate the MFPTs. As we saw earlier, the rank paths involving Mississippi
in the first period are highly concentrated. Thus, any path that would include edges leading to
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or from Mississippi will incur larger escape costs. The second factor is that the MFPTs from the
two periods are based on different size-connected components, with all 48 states used in the first
period, while only 47 in the second period, so the later graph is smaller and less complex.

GRM in a regional/local context

Similar to what we saw with the RPV in Section “Filtering by space”, we can select a subset of
states to explore spatial heterogeneity in the overall income dynamics. Fig. 9 demonstrates this
for the same 10 southern states that were selected previously in Fig. 7. Here the focus is on how
a number of properties of the spatial dynamics may manifest local differentiation.

The selection of a subset of states creates a new set of estimates of the GRM whose transi-
tion probability matrix is shown as a heat map in the right side of the Fig. 9. Similar to the global
GRM matrix, this local matrix is diagonally dominant, reflecting the higher probability of a rank
remaining in a state over a year interval rather than moving to a new state. The top two maps
are used to examine the MFPT from, and to, Florida, but conditioned upon the collection of 10
states. States in the rest of the system are excluded from the estimation. Virginia is the focal state
selected in the top map which reveals that the time it takes for a rank to leave Florida to arrive in
Virginia is in the order of 16 years. In contrast, the second map indicates that it takes a consider-
ably longer period for a rank that Virginia held to migrate to Florida. In other words, there is an
asymmetry in the timing of these two directional rank migrations.

Conclusion

The impact of Tobler’s work on flow mapping continues to grow in both the scope of the differ-
ent domains adopting the framework, as well as the sheer number of applications. In this article,
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we contribute to this line of research by integrating concepts from flow mapping with recently
developed measures to model spatial income distribution dynamics. A new web-based visual
analytic framework recasts the notion of a rank path as tracing the migration of ranks of a vari-
able distribution over a collection of locations. Coupled with this is a geographical rank Markov
exploration tool that provides summary measures on the spatial dynamics that complement the
RPV. Both of these tools are highly interactive and implement different forms of data filtering
which can be exploited to explore spatial, temporal, and distributional heterogeneity in longitu-
dinal spatial data. We illustrate selected components of the framework by examining US regional
income distribution dynamics over the 48 lower states from 1929 to 2001.

There are a number of enhancements to the RPV and GRM Tools that we are planning to
pursue. In the original development of the rank-based Markov chains, several global and local
tests for spatial dependence in the rank exchanges were developed (Rey, Kang, and Wolf 2016)
that could be added to the interface to complement the visual analytics presented here. Related to
this, the rank paths have a natural affinity to graph theory, and there is a wealth of graph theoretic
results, summary measures, and visualization concepts that we intend to explore for incorpora-
tion into the RPV.

Space—time data come in a rich variety of forms, and our initial implementation of both
the RPV and GRM tools assumes a particular kind of longitudinal spatial data where the spatial
boundaries are fixed over time for the polygon units under consideration. Extending the frame-
work to consider other types of spatial support, including marked point patterns, and various spa-
tial networks (street networks, pipelines, etc.) remains an important future direction. Moreover,
our example illustration is of a modest data size (48 spatial units over 81 periods), and we are
considering modifications of the design of the filtering functionality as well as of the animation
mechanisms to scale to big data contexts.
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Notes

lhttps://usmigrationﬂowmapper.com/.

2https://ﬂowsmapper.geo.census.gov/.

3Available at https://visualiza.fee.tche.br/crime/. only in Brazilian Portuguese. The Markov analysis is
present in the Section of “Mapas” (Maps) and then “Cadeias de Markov” (Markov Chains).

“For a recent overview see Rey (2014a).

SA referee noted that the term “Rank” as used here should not be confused with the rank of a matrix.
Instead, as explained in the text, the ranks of the attribute values are used to form the matrix.

SFor the derivation of the Mean Sojourn time, the interested reader is directed to Ibe 2009, sec. 4.6).

"For the derivation of the MFPT the interested reader is directed to Kemeny and Snell 1976, p. 76). For a
detailed description of the use of first passage times in the context of the GRM refer to Rey (2014b). All
the computations were conducted in Python using PySAL/giddy (Kang et al. 2019) which has imple-
mented GRM and relevant statistics.

8The top density is not renormalized as the slider moves.

ghttps://www.bea. gov/data/income-saving/personal-income-by-state.

OURL Removed temporarily to protect author anonymity

UThese are based on the mean first passage times estimated using equation (5).
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