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Abstract

Protein sequencing algorithms process data from a variety of instruments that has been generated under diverse experimen-
tal conditions. Currently there is no way to predict the accuracy of an algorithm for a given data set. Most of the published
algorithms and associated software has been evaluated on limited number of experimental data sets. However, these perfor-
mance evaluations do not cover the complete search space the algorithmand the software might encounter in real-world. To
this end, we present a database of simulated spectra that can be used to benchmark any spectra to peptide search engine. We
demonstrate the usability of this database by bench marking two popular peptide sequencing engines. We show wide varia-
tion in the accuracy of peptide deductions and a complete quality profile of a given algorithm can be useful for practitioners
and algorithm developers. All benchmarking data is available at https://users.cs.fiu.edu/~fsaeed/Benchmark.html
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1 Introduction

For more than four decades, benchmarks have been used
to assess the reproducibility and reliability of hardware
(e.g. SPEC computer architecture benchmark) or software
(e.g. BAIiBASE for sequence alignments). Benchmarks
provide a method of comparing the performance of given
entity across various possible variables and gives a relative
performance by running a number of standard tests. These
benchmarks ensure the reproducibility of the software for
diverse conditions.

Mass spectrometry (MS) based proteomics (Aebersold
and Mann 2003; Iglesias-Gato et al. 2016; Ebhardt et al.
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2015; Tsai et al. 2015; PedroM and Bengt 2016; Saeed
2015) has revolutionized the study of system biology, and
relies heavily on large number of software tools that auto-
mate the process of annotation and assessment of MS/MS
spectra (Gul Awan and Saeed 2016; Kong et al. 2017; Mcll-
wain et al. 2014). However, majority of the software tools
that are published have been evaluated on a small set of
experimental data which represents only a fraction of experi-
mental conditions that would be encountered by the algo-
rithm in real-world. The reliability of these algorithms and
software packages then becomes questionable when they are
encountered with novel data sets as demonstrated in Sect. 5,
and 6. Further, it is up to the proteomics (or proteogeonom-
ics/metaproteomics) practitioners to select a tool which
would give the best accuracy for a given data set without
using any quantifiable metric. The informed decision gener-
ally rests on what software tool the user is more comfortable
with instead of what software would be best for this specific
collected data set.

Similar problems have been encountered in other fields
of science. One example most relevant to proteomics is the
multiple-alignment problem in genomics analysis. Like pep-
tide deduction, multiple-alignment is challenging because of
many-solutions for a given data. In order to standardize the
algorithm and software development, researchers came up
with different benchmarks that could be used to assess the
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multiple alignment algorithms. Benchmarks such as Bali-
Base are a hallmark of alignment algorithm development
(Arbelaez et al. May 2011; Zhengin et al. 2018; Freytag et al.
2018) and have standardize the metrics that can be used for
assessment.

In this paper, we present a standard reference database
for proteomics as a bench-marking dataset for proteomics
algorithms. Proposed database consists of spectra that have
been simulated using MaSS-Simulator (Gul Awan M and
Saeed F (2018)) while carefully adjusting its input param-
eters to cover a wide range of experimental conditions such
as different dissociation strategies and peptide coverage. The
benchmark data sets then can be used for assessing the accu-
racy and sensitivity of the existing and new algorithms, and
thereby providing a scale against which all the algorithms
can be evaluated.

2 Existing methods of algorithmic
evaluation

Evaluating any algorithm requires ground truth data sets.
In case of MS proteomics, these datasets consist of spec-
tra that have been annotated with corresponding peptides.
The methods of generating ground-truth datasets consists
of annotating acquired MS/MS spectra using any existing
peptide search algorithm and then evaluating these matches
using statistical analysis tools specifically designed for MS
proteomics data. These methods assign each peptide-to-
spectra match (PSM) with statistical confidence value, each
method may employ a different strategy or a variation of
some existing method to determine statistical significance
of these matches (Kill et al. 2008; Elias and Gygi 2007,
Kall et al. 2007; Shteynberg et al. 2011; Keller et al. 2002).
Among these, the most popular and widely accepted met-
ric has been percolator’s False Discovery Rate (FDR). The
Peptide Spectral Matches (PSMs) obtained from a search
algorithm are processed by percolator which assigns each

PSM with an FDR value. PSMs with FDR value of less than
1% are generally accepted as ground-truth data. Flow chart
of FDR based generation of ground-truth has been shown
in Fig. 1. Despite the ingenuity and wide acceptance of this
method the ground truth data is far from perfect with wide
variation in quality of spectra for a given FDR (Savitski et al.
2015).

To evaluate our argument, we used the proposed reference
database to assess the reliability of a popular PSM assess-
ment algorithm which assigns FDR to PSMs. Our results
have shown that even with 1% FDR filtering, there are cases
when up-to 35% of the PSMs are incorrect.

In this paper, we present a benchmarking database with
large number of parameters that are used to simulate this
data. Using this database, we demonstrate the shortcomings
of existing ground-truth evaluation methods. We follow this
discussion with two experimental demonstrations of how
benchmarking database can be used to evaluate different
types of peptide sequencing algorithms. For the sake of this
study we use two algorithms, (1) Tide (Database search)
(Diament and Noble 2011) and (2) Novor (Denovo sequenc-
ing) Ma (2015).

3 Proposed benchmarking database

The benchmarking reference database has been constructed
by considering many possible combinations of six variables
which govern the nature of MS/MS spectra that are gen-
erated during MS based proteomics experiments. A list of
variables and the possible states that they can assume has
been shown in Table 1. Real world MS spectra are stochas-
tic and one can argue that six variables are not enough to
simulate experimental conditions. Despite this argument, we
have previously shown that correctly chosen small number
of variables can be used to simulate MS/MS spectra that are
very close to the real-world spectra with relatively small
error percentage (Gul Awan and Saeed 2018). Since these

Table 1 Each parameter can

take several possible states Parameter Possible states State 1 State 2 State 3
Peptide length 1,2 <15 >30 & <51
Post-translational modifications 1,2 No PTMS 2 PTMs per peptide
Peptide coverage 1,2,3 10 to 30% 30 to 70% 70 to 100%
Percentage of sound (POS) 1,2,3 7 to 10% 3to 6% 1to 3%
Companion ions coverage 1,2,3 10 to 30% 30 to 70% 70 to 100%
Noise peak intensity 1,2,3 30 to 160% 30 to 90% 30 to 35%

The table describes the possible states each parameter can assume and the values it holds while in that state
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are the variables that can easily be customized using MaSS-
Simulator (Gul Awan and Saeed 2018), we chose them as the
control variables for the proposed benchmarking database.

By assigning different values to each variable a unique
experimental condition can be simulated using MaSS-Sim-
ulator. For this database we put together three hundred and
twenty-four (324) possible experimental conditions by using
variables and their states from Table 1. As a result, we have
a very comprehensive benchmarking database covering a
wide variety of dissociation strategies, noise content, relative
intensities of signal peaks, peptide coverage, peptide length
and peptide modifications. For each of the possible experi-
mental conditions we simulate 1000 spectra in a single .ms2
file accompanied with a corresponding ground-truth file. In
the table below, each variable can take several states. Using
a combination of all possible states we have generated three
hundred and twenty-four MS/MS spectra files with their cor-
responding peptide sequences available. Brief details of all
the parameters have been provided in Table 2.

4 Assessment of FDR based method

A popular post-processing algorithm for evaluating PSMs
from database search is Percolator from the Crux Toolkit
(K4l et al. 2007). Percolator makes use of the Target-Decoy

strategy and uses semi-supervised learning approach to
assign FDR indicators to each PSM. Existing proteomics
software evaluation is primarily done using percolator gen-
erated ground-truth spectra and is frequently considered as
the gold-standard.

To evaluate how accurately Percolator assigns FDR
values to PSMs we used the above discussed bench-
marking database. The standard spectra were labelled
with peptide sequences using Tide database search
algorithm (Diament and Noble 2011) and then post-
processed using Percolator. Since we already had the
ground-truth for simulated spectra available, we were
able to evaluate the accuracy of FDR values assigned
to each PSM. We filtered out PSMs which had been
assigned an FDR value of 1% or less and then evaluated
the accuracy by comparing the assigned peptide against
the ground-truth peptides. It can be observed in Fig. 2
that for multiple experimental conditions Percolator
is not able to accurately assign the FDR values. Plots
in Fig. 2 give a comprehensive analysis of Percolator.
Additional plots for remaining benchmark files can be
found in Supplementary materials.

Our experiments and the results in the figure also suggest
that spectra with low-coverage and peptides with shorter
lengths are incorrectly assigned using Percolator.

Table 2 Description of different
parameters used to develop the

Features

Description

standard proteomics database Peptide length

Post-translational modifications
Peptide coverage

Percentage of sound (POS)
Companion ions coverage
Noise peak intensity

Number of amino acids in a peptide

Number of PTMs that can occur in a peptide

Peptide coverage provided by the resulting b/y-ions
Percentage of b/y-ions with respect to other peaks

Neutral losses and isotopic ions accompanying each b/y-ion
Intensity of noise peaks relative to the intensity of sound peaks

Fig.1 Conventional work flow
for generation ground-truth
datasets for proteomics and

l

Database

evaluation of peptide sequenc-
ing algorithms
Experimental
Spectra — ™

Database Search
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Fig.2 Plots showing percent-
age of Peptide correctly filtered
using 1% FDR criteria
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Fig. 3 Plots showing percentage
of Peptides correctly identified
using Tide database search
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These results support the hypothesis that low FDR PSM’s
cannot always be assumed to be a reliable ground-truth.

5 Evaluation of database search algorithm

To demonstrate the usability of the benchmarking ref-
erence database, we evaluated the performance of Tide
database search software to observe its performance over
various experimental conditions. Figure 3 shows plots
which represent the behavior of Tide-Search engine
across all the possible conditions covered by the pro-
posed benchmarking database (additional plots avail-
able in supplementary materials). It can be observed
that with decreasing peptide coverage the performance
of Tide falls drastically and with a combination of low
coverage and high noise the number of correct peptides
even falls below 10%. In Fig. 3b it can be observed that
introduction of two PTMs can also negatively affect the
accuracy of Tide. But as shown in Fig. 3c, for longer
peptide lengths Tide performs quite well in general but
can still give a large number of incorrect matches when
peptide coverage is low.

6 Evaluation of denovo sequencing
algorithm

To demonstrate the usability of the benchmarking refer-
ence database, we evaluated the performance of Novor
which is a denovo search software to observe its per-
formance over various experimental conditions. Novor
was used with its default settings, each .ms2 file was
processed by Novor and the results were then evaluated
by measuring recall value for each sequenced peptide
and averaging the recall for each file in database (one
file contains 1000 simulated spectra).

@ Springer

It can be observed in Fig. 4 that increasing Ion Cover-
age improves the recall significantly, across all lengths of
peptides. Similarly, it can be seen that Companion Ions also
have a significant effect on recall and low percentage of
companion ions adversely effects Novor’s performance. In
general, performance of Novor is better for smaller peptides
as compared to longer peptides. Results for additional data-
sets can be found in supplementary materials. It can be noted
that the insights about the algorithm’s performance, such
as the effect of Companion Ions’ population and peptide
length on overall accuracy of the algorithm are not possible
to understand when algorithms are published with handful
of experimental datasets. This can be only possible when
minor details of the spectra in the dataset are known and
understood as was the case for the proposed benchmarking
database.

7 Closing remarks

We have introduced a novel benchmarking strategy that
can be used for evaluation of the algorithms on a wide
variety of experimental conditions. This coverage of
experimental conditions on our benchmarking data set
will allow developers to report their accuracy of pep-
tide deductions on a uniform scale and metrics. This
benchmarking database strategy is the first step towards
making peptide deduction algorithms more reliable and
predictable in performance, and proteomics results
more reproducible. Using this benchmarking database
during algorithm development process can provide val-
uable insights into the design of the algorithms. Such
benchmarking, if widely adopted, will help identify pit-
falls and steer the algorithmic development process in
correct direction. Profiling of these search algorithms
will also make their performance more predictable for
proteomics practitioners.
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Fig.4 Plots showing recall for
Novor algorithm across the
spectra from benchmarking
database
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Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s13721-021-00298-3.
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