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Abstract
In many biological systems, chemical reactions or changes in a physical state are assumed to occur
instantaneously. For describing the dynamics of those systems, Markov models that require
exponentially distributed inter-event times have been used widely. However, some biophysical
processes such as gene transcription and translation are known to have a significant gap between
the initiation and the completion of the processes, which renders the usual assumption of
exponential distribution untenable. In this paper, we consider relaxing this assumption by
incorporating age-dependent random time delays (distributed according to a given probability
distribution) into the system dynamics. We do so by constructing a measure-valued Markov
process on a more abstract state space, which allows us to keep track of the ‘ages’ of molecules
participating in a chemical reaction. We study the large-volume limit of such age-structured
systems. We show that, when appropriately scaled, the stochastic system can be approximated by a
system of partial differential equations (PDEs) in the large-volume limit, as opposed to ordinary
differential equations (ODEs) in the classical theory. We show how the limiting PDE system can be
used for the purpose of further model reductions and for devising efficient simulation algorithms.
In order to describe the ideas, we use a simple transcription process as a running example. We,
however, note that the methods developed in this paper apply to a wide class of biophysical systems.

1. Introduction

We consider biophysical systems described by a set of
chemical reactions. The chemically identical molecu-
lar entities in the system are called (chemical) species.
A chemical reaction refers to the event of creation,
annihilation, or conversion of a number of molecules
of one or more species. Here, we assume the sys-
tem is well mixed spatially in that a randomly chosen
molecule of a species has an equal chance to chemi-
cally interact with any other molecule of any species in
the system. A continuous time Markov chain (CTMC)
is a natural choice to model the species copy numbers
of such systems.

When modeling chemical reaction networks
(CRNs) stochastically using CTMCs, one assumes
that every reaction occurs instantaneously after an

exponentially distributed amount of time. Whenever
a reaction takes place, we update the system state. A
random time-change representation of the Poisson
process is often used to write the trajectory equations
and to analyze the system dynamics [1–4]. The
sample paths of the CTMC are simulated exactly
using the Doob–Gillespie’s stochastic simulation
algorithm (SSA) [5–7] or the next reaction method
by Gibson and Bruck [8].

1.1. Delays are inherent and a useful model
reduction tool
It has been reported that some biological processes
do not take place instantaneously. In other words,
there is a time lag between the initiation and the
completion of the process. Time delays are observed
inherently in many biological systems, such as gene
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transcription [9–11] and translation [12], cell cycle
in cancer treatment [13], intracellular viral dynam-
ics [14, 15], control of infectious diseases [16], pop-
ulation growth [17, 18], RNA and protein folding
[19, 20], and enzyme catalyzed reactions [21, 22].
Sometimes time delays are introduced purposefully
as a useful means to reduce model complexity and
to compensate for the lack of experimental observa-
tion in both deterministic and stochastic models of
biological processes.

Intermediate, ancillary processes or unobserved
reactions can be replaced by time delays. For example,
production of hes1 mRNA from hes1 gene has been
modeled using delay differential equations where
detailed mRNA synthesis and processing steps are
replaced by a time delayed reaction [23]. While mod-
eling the mammalian circadian clock, intermediate
protein dynamics can be simplified as transcriptional
feedback loops with time delayed variables in delay
differential equations [24]. In enzyme catalyzed reac-
tions with multiple intermediates, the production of
the final product can be expressed as a distributed
delay equation, which is a useful tool when measure-
ments on multiple intermediates in the experiment
are not available [25].

Introduction of time delays as a model reduction
technique has also been applied in discrete stochastic
models for CRNs. For instance, model complexity of
unimolecular reaction networks is reduced by gener-
ating delay distributions with key model features that
are derived by computing first passage times of target
species [26]. In [27], the production of yellow fluores-
cent protein has been described using a time-delayed
birth and death process where a randomly distributed
time delay was generated to simplify a sequence of
steps in gene activation.

1.2. Our contribution
In most previous works in this area, the focus was on
investigating stochastic models for CRNs with con-
stant or random time delays. In those models, the
probability that a reaction occurs within the next
short interval of time is commonly described by
a propensity (also known as intensity) function of
the reaction. The waiting time for non-delayed reac-
tions is exponentially distributed [28]. In practice,
the occurrence of some reactions is not only deter-
mined by the molecular counts of the reactants but
also affected by the age distributions or lifetimes of
the reactant molecules. For example, mRNA decay
rates vary depending on the age of each mRNA. More-
over, the age of the mRNAs determines polysome
size distributions and protein synthesis rates in trans-
lation ([29, 30], chapters 3 and 5 in [31]). It was
also reported that an mRNA tail length distribution
depends on the average age of mRNA population
and that the tail-length distribution plays a significant
role in deadenylation and decay dynamics of mRNA
populations [32, 33].

When time delays are used to aggregate out ancil-
lary or unobserved processes and reduce model com-
plexity, it makes more sense that the length of time
delay depends on the age of each reactant molecule
(e.g., mRNA, protein, and enzymes). Therefore, it
is worthwhile to consider an individual-based age-
structured stochastic model for CRNs.

In this work, we develop a way to describe CRNs
with random time delays and non-delayed reaction
rates incorporating the age of each reactant and
making use of hazard functions in survival analysis
[34, 35]. See appendix A for some preliminaries on
relevant mathematical and statistical concepts. In our
approach, the hazard functions are set as constant,
time-dependent, or age-dependent functions general-
izing the notion of reaction rate constants in propen-
sity functions. Our model keeps track of the age of
each reactant molecule and provides a new way to
express time delays in non-Markovian models. More-
over, the method also allows us to describe discrete
stochastic CRNs with constant or random time delays
without age dependence, as considered in previous
works. We study the large-volume limit of the pro-
posed non-Markov CRN and provide a mean-field
PDE limit for the age densities by virtue of the law
of large numbers (LLN), as opposed to an ODE limit
in the classical theory. The PDE limit is based on
existing results in the literature [36, 37] and fol-
lows from the standard limit theory for measure-
valued Markov processes. However, novel usage of
the PDE limit can provide further approximations
and pave the way for efficient simulation algorithms.
For the sake of illustration, we show how the PDE
limit can be used to approximate mean first passage
times (MFPTs) in the context of CRNs. As another
by-product of the LLN, we show how an efficient
(fast) hybrid simulation algorithm can be devised
when a subset of the CRN is abundantly available,
giving a flavor of multiscale approximation. Finally,
as simple applications of our approach, we briefly
discuss a prokaryotic auto-regulation and the quasi-
steady state approximation (QSSA) in the context
of the Michaelis–Menten enzyme kinetic reactions.
Numerical examples have been provided wherever
deemed necessary. For the sake of ready usage of
our methods, the Julia scripts used in the numeri-
cal examples have been made available via a GitHub
repository [38].

The following notational conventions are adhered
to throughout the paper. We use 1{A}(x) to denote
the indicator (or characteristic) function of a set A,
i.e., 1{A}(x) = 1 if and only if x ∈ A. Given a suitable
space E, let D([0,∞), E) (or D([0, T], E)) denote the
space of E-valued càdlàg functions defined on [0,∞)
(or [0, T], for some T > 0). The set of Borel subsets
of a set A will be denoted by B(A). The set of natural
numbers are denoted by N. The set of real numbers is
denoted by R. Other notations will be introduced as
and when needed.
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2. The simplest model with a delay

Let us consider a simple CRN with two chemical
species A and B. First, we shall describe the standard
Markovian approach and then introduce an age struc-
ture to allow non-exponential holding times. The
following network describes the production and the
degradation of A along with a conversion from A to B

∅ −→b A−→τ B,

A −→d ∅,
(2.1)

where b, τ , and d, depending on whether we are in
the Markovian or non-Markovian setup, will be either
reaction rate constants or hazard functions for the
production of A, the conversion from A to B, and the
degradation of A, respectively.

An example similar to the CRN in equation (2.1)
was investigated in some previous works with time
delays [39, 40]. It is worth noting that the simplistic
CRN described in equation (2.1) can be thought of
as a model reduction of a more complex CRN. For
instance, a series of conversion type reactions

A −→k1 A1 −→k2 A2 −→k3 · · · −→kn B (2.2)

can be described by a single conversion reaction
A −→τ B with an appropriate hazard function τ . For
the sake of illustration, let us assume we are in the
Markovian setup so that k1, k2, . . . , kn are positive
constants. We can interpret the CRN in equation (2.2)
as follows: one molecule of A gets transformed into
a molecule of A1 after an exponentially distributed
(with rate k1) amount of time. Then, the molecule
of A1 gets transformed into a molecule of A2 after
an exponentially distributed (with rate k2 this time)
amount of time. This process goes on until the
molecule finally gets transformed into a molecule
of B from a molecule of An−1. Therefore, from the
perspective of a single A molecule, the amount of
time required for the molecule to finally get trans-
formed into a molecule of B is the sum of those expo-
nentially distributed amounts of times (with rates
k1, k2, . . . , kn). Under independence, the probability
distribution of the total amount of time required
for a single A molecule to get transformed into a B
molecule can be described by a convolution of the
individual exponential distributions. Denoting the
corresponding hazard function by τ , one can describe
the CRN in equation (2.2) by a single conversion
reaction A −→τ B. Similarly, a series of birth–death-
conversion type reactions

∅ −→b A −→k1 A1 −→k2 A2 −→k3 · · · −→kn B,

A −→d ∅, A1 −→d1 ∅, A2 −→d2 ∅, . . . , An −→dn ∅

can be approximated by a single birth type reac-
tion ∅ −→τ B with an appropriate hazard function τ .
Therefore, even a simplistic model such as the CRN
in equation (2.1) covers a nontrivial class of CRNs

and builds the foundation for studying more complex
CRNs.

2.1. Standard Markov approach
The standard way to model the CRN in equation (2.1)
is to use a CTMC to describe the counts of molecules
of the species A and B over time. In such a model,
whenever each reaction fires, the consumption and
the production of molecules are instantaneous. Let
X̃A, X̃B denote the stochastic processes counting the
copy numbers of the species A and B respectively.
Here, the quantities b, τ , and d are reaction rate con-
stants. The propensity functions corresponding to the
three chemical reactions are defined as

λb(t) = b, λτ (t) = τ × xA(t),

λd(t) = d × xA(t),

where xi(t) denotes the number of molecules of the
chemical species i at time t, for i = A, B. Define Tk

to be the waiting time until the next reaction of type
birth (k = b), conversion (k = τ), and death (k =

d). Then, Tk is exponentially distributed with rate
λk(t) for k = b, τ , d. The probability of each reaction’s
occurrence is expressed in terms of the corresponding
propensity function as follow:

P
(

t � Tk < t +Δt|X̃A(t) = xA, X̃B(t) = xB

)
≈ λk(t)Δt + o(Δt),

for k = b, τ , d when Δt is small enough. Then, the
trajectory equations can be written in a straightfor-
ward fashion following the random time changed
representation of Poisson processes as

X̃A(t) = X̃A(0) + R1 (bt) − R2

(∫ t

0
τ X̃A(s) ds

)

− R3

(∫ t

0
d X̃A(s) ds

)
,

X̃B(t) = R2

(∫ t

0
τ X̃A(s) ds

)
,

where R1, R2, and R3 are unit rate Poisson processes
[2]. We assume we do not have any B molecules in
the system initially, i.e., X̃b(0) = 0. Now, if we scale
the stochastic processes by a scaling parameter n, e.g.,
volume of the system, it follows directly from the LLN
for Poisson processes [41, 42] that the scaled process
(n−1X̃A, n−1X̃B) can be approximated by the solution
to the following system of ODEs:

d

dt
xA(t) = −(τ + d)xA(t),

d

dt
xB(t) = τxA(t).

Notice that the birth rate b vanishes in the limit
because we did not assume any scaling of b with
respect to n. In general, one would assume that the
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overall birth rate scales linearly with n so that it is
retained in the limit.

2.2. Age-structured model
Now, let us introduce age and delay into the CRN
described by equation (2.1). We assume that the pro-
duction rate of B and the degradation rate of A depend
on the age of the reactant molecule of species A. We
use ‘age’ as an umbrella term to refer to the amount of
elapsed time since a specific event. Thus, ‘age’ could
mean different things depending on the application
area. The most straightforward way is the biological
or the physical age, which we take as the time duration
since the molecule was born or created. In systems
where a certain reaction can fire only when a gene is
activated, one could define age as the time duration
since activation of the gene. In some cases, it may be
desirable to define delays in terms of time duration
since the initiation of a reaction. The notion of age is
sufficiently general to account for those cases as well.
For example, a reaction A → B in which the delay is
defined purely in terms of time difference between
initiation and completion of the reaction, can be
replaced by the reaction system A → F → B where F
is a fictitious species. The physical age of this ficti-
tious species F is precisely the time since the initiation
of the reaction A → B. Now, putting an appropriate
hazard function on the reaction F → B, we can intro-
duce a random or a deterministic delay in the reaction
A → B. Therefore, for the CRN in equation (2.1), it
seems sufficient to define the age to be the physical
age of the molecules of A.

When we have an age-structured model, the
counts (copy numbers of the species A and B) are
inherently non-Markovian unless the holding times
are exponentially distributed. However, if we keep
track of the ages of the molecules in addition to the
counts, we can get a Markov system, albeit on a more
abstract state space. A neat way to do so is to use
measure-valued processes that keep track of the age
distribution of the molecules over time. Moreover, the
measure-valued processes are also Markovian, which
allows us to make use of the already existing limit the-
ory for Banach space-valued Markov processes. This
approach to age-structured modeling in biology is
not new. Our work builds on the existing literature
[36, 37, 43, 44]. In the next section, we describe how
the measure-valued processes can be utilized in the
context of the CRN in equation (2.1).

2.3. The measure-valued process and the limiting
system
Let us denote by NA(t) and NB(t) the numbers
of molecules of the chemical species A and B at
time t. Then, individual molecules of A are labeled
1, 2, . . . , NA(t). We denote the age of the ith molecule
of the species A by ai(t) for i = 1, 2, . . . , NA(t). Sim-
ilarly, we denote by bj(t) the age of the jth molecule

of the species B at time t. Now, we define a measure-
valued process Xt =

(
XA

t , XB
t

)
where XA

t and XB
t

describe the age distributions of chemical species A
and B at time t. To be more precise, we define

XA
t :=

NA(t)∑
i=1

δai(t), XB
t :=

NB(t)∑
i=1

δbi(t), (2.3)

where δx is the Dirac measure, a function that takes
value 1 if the argument to the function (a mea-
surable set) contains x and zero otherwise. The
components XA

t and XB
t of Xt are finite point

measures with atoms placed on the individual ages
of the molecules. For example, XA

t ((0.5, 11.25]) =∑NA(t)
i=1 δai(t) ((0.5, 11.25]) gives us the count of species

A molecules with ages in the set (0.5, 11.25] at time
t. In general, XA

t (F) gives us the count of species A
molecules whose ages lie in the set F at time t.

For any point measure μ =
∑n

i=1 δxi and a mea-
surable function f, we denote the integration of the
function f with respect to the measure μ by

〈μ, f 〉 :=

∫
f dμ =

n∑
i=1

f (xi).

If μ := (μ1, μ2, . . . , μL), for some positive integer L,
is a vector of point measures and f is a measurable
function, we use the notation 〈〈μ, f 〉〉 to denote

〈〈μ, f 〉〉 :=
L∑

i=1

〈μi, f 〉.

Therefore, we have NA(t) = 〈XA
t , 1〉 = XA

t (R+) and
NB(t) = 〈XB

t , 1〉 = XB
t (R+) where 1 stands for the

identity function. The set of non-negative real num-
bers is denoted by R+. The total population size is
given by

N(t) := 〈〈Xt , 1〉〉 = NA(t) + NB(t).

The process Xt is a Markov process on the space
D([0, T],MP(R+) ×MP(R+)) where T > 0 is a
finite time horizon and MP(R+) is the space of finite,
point measures on R+.

In order to simplify notations, we introduce maps
σi : MP(R+) → R+, for i = 1, 2, 3, . . . , the purpose
of which is to extract the ith atom (the age of the ith
molecule) from a point measure following some par-
tial order (e.g., ‘greater or equal to’ relation). There-
fore, σi(XA

t ) gives us the age of the ith molecule of
the species A at time t. We can now write down the
trajectory equations:

XA
t =

NA(0)∑
k=1

δt+σk(XA
0 ) +

∫ t

0

∫ ∞

0
δt−s 1{θ�b}

× Q1(ds, dθ) −
∫ t

0

∫
N

∫ ∞

0
δt−s+σi(XA

s−)

× 1{i�NA(s−)} 1{θ�τ(σi(XA
s−))} Q2(ds, di, dθ)

4
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−
∫ t

0

∫
N

∫ ∞

0
δt−s+σi(XA

s−) 1{i�NA(s−)}

× 1{θ�d(σi(XA
s−))} Q3(ds, di, dθ), (2.4)

XB
t =

∫ t

0

∫
N

∫ ∞

0
δt−s 1{i�NA(s−)} 1{θ�τ(σi(XA

s−))}

× Q2(ds, di, dθ), (2.5)

where Q1, Q2, Q3 are independent Poisson point
measures (PPMs) with intensity measures ds × dθ,
ds × di × dθ, and ds × di × dθ respectively, where
di is a counting measure on N, and ds and dθ
are Lebesgue measures on R+. Provided the global
jump rates are upper bounded by a finite quan-
tity and the initial population size does not explode
supnE

[
n−1NA(0)

]
< ∞, the trajectory equations

admit a unique pathwise solution (XA
t , XB

t ) (see [37,
theorem 2.5] for a similar derivation).

Under some assumptions on the hazard functions
and the initial age distribution of the A molecules,
the scaled process n−1Xt converges to a determin-
istic, continuous function xt := (xA

t , xB
t ) whose com-

ponents xA
t and xB

t are themselves measure-valued
functions satisfying

〈xA
t , ft〉 = 〈xA

0 , f0〉+
∫ t

0

∫ ∞

0

(
∂

∂a
fs(a) +

∂

∂s
fs(a)

− fs(a)(τ(a) + d(a))

)
xA

s ( da) ds

〈xB
t , ft〉 =

∫ t

0

∫ ∞

0

(
∂

∂a
fs(a) +

∂

∂s
fs(a)

+ fs(0)τ(a)

)
xA

s ( da) ds,

for a sufficiently large class of test functions f : (a, s) →
fs(a). The convergence of the scaled stochastic process
n−1Xt to the deterministic function xt can be proved
using techniques similar to those in [36, 37, 43–45].
However, for the sake of completeness, a brief, intu-
itive argument is presented in appendix B.

Since the measure-valued function xB
t is deter-

mined entirely by xA
t , it suffices to study xA

t . The den-
sities yA(t, a) of the measure xA

t , when they exist, are
an important quantity describing the distribution of
age of the species A molecules in the large-volume
mean-field limit. The density function yA should sat-
isfy

(∂t + ∂s) yA(t, s) = − (τ(s) + d(s)) yA(t, s), (2.6)

with the initial and the boundary conditions

yA(0, s) = fA(s), yA(t, 0) = 0,

where fA(s) specifies the age distribution of A
molecules at time t = 0. To be more precise, it is the
density of the limiting measure xA

0 , which we assume
exists, with respect to the Lebesgue measure. Notice
that the birth rate b vanishes in the limit, as in case of
CTMC model, because we did not assume any scaling
of the birth rate with respect to n.

Let yB denote the limiting proportion of B
molecules in the system. Then, yB can be described
entirely in terms of the density yA as a solution to the
ODE:

d

dt
yB(t) =

∫ ∞

0
τ(s)yA(t, s) ds, (2.7)

with the initial condition yB(0) = 0. Luckily, the lim-
iting system equation (2.6) can be solved explicitly
using standard analysis techniques:

yA(t, s) = fA(s − t)Sτ (s)Sd(s)/ (Sτ (s − t)Sd(s − t)) ,

where Sτ and Sd are the survival functions of the prob-
ability distributions characterized by the hazard func-
tions τ and d respectively (see appendix A for the
definition of a survival function). Therefore, the lim-
iting concentration of B molecules can be described
by

yB(t) =

∫ t

0

∫ ∞

0
τ(v)yA(u, v) dv du.

In figure 1, we numerically show the agreement
between the theoretical limits in equations (2.6) and
(2.7) and the stochastic simulation. More specifi-
cally, we compare

∫∞
0 yA(t, s) ds with stochastic sim-

ulations of 〈n−1XA
t , 1〉 and yB(t), with 〈n−1XB

t , 1〉. As
it can be verified, the approximation error vanishes
in the limit. Because Xt is a Markov process, the
simulation of the stochastic CRN in equation (2.1)
can be carried out by adapting the Doob–Gillespie’s
SSA, which involves simulating two quantities at each
step: (1) simulating the next reaction time; and (2)
determining the reaction type. Note that, for the
CRN in equation (2.1), there are (2NA(t) + 1) dif-
ferent reactions possible at time t, even though there
are only three types of reactions. The next reaction
time can be simulated by drawing an exponential
random variable with rate equal to the total haz-
ard (the sum of the hazards corresponding to those
(2NA(t) + 1) possible reactions). The total hazard is
given by b + 〈XA

t , τ〉+ 〈XA
t , d〉. The type of reaction

is then decided by drawing a categorical random vari-
able whose probability masses are the ratios of the
individual hazards and the total hazard. This dis-
crete event simulation algorithm is a straightforward
adaptation of Doob–Gillespie’s SSA for CTMCs.
However, it must be noted that the simulation of
a non-Markovian CRN is computationally more
expensive than the CTMCs. For the sake of complete-
ness, a pseudocode describing the above procedure is
given in algorithm 2.1. An implementation in the Julia
programming language [46] is also made available
in [38].

In section 1, we mentioned that introduction of
delay into a CRN could also serve the purpose of
model reduction. Indeed, the LLN limit y := (yA, yB)
provides a model reduction of the original non-
Markovian CRN in equation (2.1). In the following,
we discuss two other examples of usefulness of the
LLN limit in the form of a PDE system. The first

5



Phys. Biol. 18 (2021) 015002 W R KhudaBukhsh et al

Figure 1. (Left) The shapes of the three hazard functions in the CRN described by equation (2.1). Here, b = 0.4. The hazard
functions τ and d correspond to a generalized extreme value distribution with parameters (1.25/0.30, 1.250, 0.30) and a gamma
distribution with parameters (2.5, 1.75) respectively. Here, the conversion reaction has been explicitly made a delayed one. (Right)
Comparison of the theoretical limiting trajectory and the simulated trajectories of concentrations of A and B molecules. The mean
of the simulated trajectories is shown in solid lines, while the theoretical mean curve (given by the PDE limit) is shown in dashed
lines. The width of the ribbons indicate 1 standard deviation fluctuation around the mean. Here, n = 100, i.e., the initial number
of A molecules is 100. It is evident that the theoretical limit provides a fairly accurate approximation to the scaled processes.

one approximates mean first passage times while the
second one describes a faster simulation algorithm.

2.4. Mean first passage times
Mean first passage times are important quantities in
the study of stochastic processes and dynamical sys-
tems. In the context of CRNs, they could arise in
several ways [47, 48]. For instance, natural questions
that could arise for the CRN in equation (2.6) are how
long it takes to deplete all molecules of species A or to
produce the first molecule of B. One of the benefits
of the LLN limit is that it can be used to approximate
FPTs when the scaling parameter n is sufficiently large.
The following illustrates this point.

Suppose we are interested in the time required
to produce the first molecule of B. Following
the exact simulation algorithm 2.1 adapted from
Doob–Gillespie’s SSA, the total hazard for the pro-
duction of a B molecule is 〈XA

0 , τ〉. In the large-
volume limit, we can approximate this hazard by∫∞

0 nτ(s)yA(0, s) ds. Therefore, for a sufficiently large
n, the MFPT can be approximated by

m =

(∫ ∞

0
nτ(s)yA(0, s) ds

)−1

, (2.8)

which, of course, vanishes in the limit of n →∞.
Moreover, the FPTs can be approximated by a ran-
dom variable following an exponential distribution
with mean m, whenever n is sufficiently large. It fol-
lows that we can use a simple likelihood function
(based on the exponential distribution) for the pur-
pose of statistical inference of the underlying parame-
ters, provided we have observations on the FPTs. This
method, called dynamic survival analysis, of estimat-
ing parameters based on timings rather than counts
was recently explored in the context of epidemiology

in [34]. Dynamic survival analysis of general CRNs
will be discussed elsewhere.

In figure 2, we show the accuracy of this approx-
imation when n = 100. The approximation appears
to be reasonably accurate. More importantly, this sug-
gests we might be able to devise an efficient simulation
algorithm using such approximate results. We explore
this idea next.

2.5. Fast hybrid simulation
Consider a situation when the species A is abundantly
available at the beginning of the reaction. Naturally,
we expect the PDE approximation to the age density
of the species A to be quite accurate, even though
there will be considerable stochastic fluctuations in
the copy numbers of B, at least initially. However, if we
approximate the age density of A by the limiting PDE,
we can also approximate the initial growth of the B
molecules by a Poisson process whose time-varying
intensity is driven by the PDE. We use this idea to
devise a hybrid simulation algorithm, which is, again,
essentially an adaptation of the Doob–Gillespie’s SSA
in the sense that it only draws next reaction times from
an exponential distribution whose mean depends on
the solution to the PDE. For the sake of complete-
ness, a pseudocode describing the idea is provided in
algorithm 2.2.

In figure 3, we show the accuracy of the hybrid
simulation algorithm. Expectedly, the hybrid simu-
lation is considerably faster than the full stochastic
simulation of the CRN in equation (2.1). A more
elaborate comparison of performance is shown in
figure 4. However, it is worth noting that the hybrid
simulation algorithm, by design, will underestimate
the variance in the counting process for the species
B. Therefore, one should use the hybrid simulation
when it suffices to get the mean trajectory accu-
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Algorithm 2.1. Pseudocode for the exact simulation of the CRN in equation (2.1).

Require n, X0, K � K: Maximum number of iterations
Ensure (t1, Xt1 ), (t2, Xt2 ), . . . � Timings of the reactions along with the measures

1: Set t = 0
2: for i = 1, 2, . . . , K do � Compute the next reaction time

3: Calculate Λ =
(

b + 〈XA
ti−1

, τ 〉+ 〈XA
ti−1

, d〉
)−1

� Λ−1: Total hazard

4: if 0 < Λ < ∞ then
5: Draw an exponential random variable T with mean Λ, i.e., T ∼ Exponential(Λ) � Advance time to the next reaction time
6: Set ti = ti−1 + T � Determine the reaction type
7: Define π1 = Λb � Probability for the birth reaction
8: Define πj = Λτ (σj−1(XA

ti−1
)) for j = 2, 3, . . . , (NA(ti−1) + 1) � Probabilities for the transformation reaction

9: Define πj = Λd(σj−NA(ti−1 )−1(XA
ti−1

)) for j = (NA(ti−1) + 2), (NA(ti−1) + 3), . . . , (2NA(ti−1) + 1) � Probabilities for the death reaction

10: Set π := (π1,π2, . . . ,π2NA(ti−1 )+1)
11: Draw a categorical random variable L with probability distribution π
12: if L = 1 then � Birth reaction

13: XA
ti
= δ0 +

∑NA(ti−1 )

k=1 δσk(XA
ti−1

)+T � Advance ages of all A molecules by T and add an atom {0}

14: XB
ti
=

∑NB (ti−1 )

k=1 δσk(XB
ti−1

)+T � Advance ages of all B molecules by T

15: else if L � (NA(ti−1) + 1) then � Transformation reaction

16: XA
ti
=

∑NA(ti−1 )

k=1 δσk(XA
ti−1

)+T − δσL−1(XA
ti−1

)+T � Remove the atom {σL−1(XA
ti−1

)} from the measure XA
ti−1

and advance ages of all other A molecules by T

17: XB
ti
= δ0 +

∑NB(ti−1 )

k=1 δσk(XB
ti−1

)+T � Advance ages of all B molecules by T and add an atom {0}
18: else � Death reaction

19: XA
ti
=

∑NA(ti−1 )

k=1 δσk(XA
ti−1

)+T − δσL−NA(ti−1 )−1 (XA
ti−1

)+T � Remove the atom{σL−NA(ti−1 )−1(XA
ti−1

)} from the measure XA
ti−1

and advance ages of all other A molecules by T

20: XB
ti
=

∑NB (ti−1 )

k=1 δσk(XB
ti−1

)+T � Advance ages of all B molecules by T

21: end if
22: else
23: Stop and break loop
24: end if
25: Set i = i + 1.
26: end for

7
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Figure 2. (Left) The shapes of the three hazard functions in the CRN described by equation (2.1). Here, b = 0.1. The hazard
functions τ and d characterize an inverse gamma distribution with parameters (1.75, 4.25) and a Weibull distribution with
parameters (1.5, 3.75) respectively. (Right) The density of approximate FPTs match that of the true FPTs. Here, n = 100.

Algorithm 2.2. Pseudocode for the hybrid simulation algorithm.

Require n, yA, K � K: Maximum number of reactions
Ensure t1, t2, . . . � Timings of creation of B molecules

1: Set t0 = 0
2: for i = 1, 2, . . . , K do

3: Calculate Λ =
(∫ ∞

0 nτ (s)yA(ti−1, s) ds
)−1

.
4: if 0 < Λ < ∞ then
5: Draw an exponential random variable T with mean Λ, i.e., T ∼ Exponential(Λ)
6: Set ti = ti−1 + T
7: else
8: Stop and break loop
9: end if

10: Set i = i + 1.
11: end for

rately. Alternatively, one can borrow ideas to esti-
mate the variance correctly in other simulation algo-
rithms [49–51]. Similar ideas to expedite simulations
have been proposed previously. For instance, Gan-
guly et al [52] propose a jump-diffusion approxi-
mation to the stochastic CRNs and provide error
analysis while others [28, 53] introduce hybrid sim-
ulation methods using a piecewise deterministic
Markov process.

3. Michaelis–Menten enzyme-kinetic
reactions

Michaelis–Menten enzyme-catalyzed chemical reac-
tions form an important class of CRNs particularly
because of their vast applications in the industry
[55, 56]. Several descriptions of this class of reactions
are available in the literature. For the sake of simplic-
ity, in what follows we shall adopt the simplest form of
the Michaelis–Menten enzyme-catalyzed reactions.
In this form, the CRN comprises a reversible bind-
ing of a molecule of a substrate (S) and a molecule
of an enzyme (E) into a molecule of a substrate-
enzyme complex, and an irreversible conversion of a
molecule of the complex into a molecule of a product

(P) leaving the molecule of the enzyme free. That is,
the system consists of the following reactions:

E + S−→k1 C,

C −→k−1 E + S,

C −→k2 P + E.

(3.9)

In traditional models of enzyme kinetics, the quanti-
ties k1, k−1, and k2 are reaction rate constants. When
modeled stochastically using a CTMC, the mean-
field limit of the scaled concentrations is described
by the following set of ODEs (see [57] for more
details):

d

dt
[E] = −k1[E][S] + (k−1 + k2)[C],

d

dt
[S] = −k1[E][S] + k−1[C],

d

dt
[C] = k1[E][S] − (k−1 + k2)[C],

d

dt
[P] = k2[C].

(3.10)

The [·] notation is used to denote the concen-
trations. The ODE system in equation (3.10) has
been studied extensively in the literature. We will

8
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Figure 3. An example of the hybrid simulation approach. (Left) The shapes of the three hazard functions the CRN described by
equation (2.1). (Right) Comparison of the hybrid simulation algorithm (algorithm 2.2) with the full stochastic simulation
algorithm (algorithm 2.1). Here, the birth rate b = 0.01. The distributions characterized by τ and d are inverse gamma
distribution with parameters (1.75, 4.25) and a beta prime distribution with parameters (1.75, 1.25). The value of n in this
example is 5000. The full stochastic simulation took 305.714 216 s, while the hybrid simulation took only 62.093 832 s on a
2.3 GHz 18-Core Intel Xeon W machine.

Figure 4. Efficiency of the hybrid simulation algorithm. The figure shows the empirical density of the ratios of execution times
and memory usage of the full stochastic simulation and those of the hybrid simulation algorithm described in algorithm 2.2. It is
evident that the hybrid simulation algorithm is at least five times faster in terms of execution times and at least four times more
efficient in terms of memory usage. The simulation set-up is the same as Figure 3. The performance evaluation of the hybrid
simulation is done using the BenchmarkTools.jl package [54] in Julia language [46].

adopt our measure-valued representation to incorpo-
rate potential age structure in the Michaelis–Menten
CRN.

3.1. Enzyme kinetics with age structure
We assume the binding reaction depends on the age
of the participating molecule of the enzyme. That is,
only k1 depends on the age of the E molecules (and
not on the age of the S molecules); k−1 and k2 are
constants. For the species E, S, C, and P, define the
measure-valued stochastic processes

XE
t :=

NE(t)∑
i=1

δei(t), XS
t :=

NS(t)∑
i=1

δsi(t),

XC
t :=

NC(t)∑
i=1

δci(t), XP
t :=

NP(t)∑
i=1

δpi(t),

where NE, NS, NC, NP denote the counts of molecules
of E, S, C, and P respectively. Similarly, ei, si, ci, pi

denote the age of the ith molecule of E, S, C, and
P respectively. The process X := (XE, XS, XC, XP) is a
Markov process on the space D([0, T],MP(R+)4).
Please note that we need to scale the hazard function
k1 corresponding to the bimolecular reaction by n−1

following the stochastic law of mass actions [1].
As before, we are interested in the large-volume

limit of the scaled process n−1Xt. The scaled stochastic
process n−1Xt converges to a deterministic function

9
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xt := (xE
t , xS

t , xC
t , xP

t ) whose components xE
t , xS

t , xC
t , xP

t

are finite measures on R+ by virtue of the LLN.
Let yE denote the density of the measure xE

t

with respect to the Lebesgue measure. Also, let
yS, yC, yP denote the concentrations of the S, C, and P
molecules. Then, we get the following limiting system:

(∂t + ∂s) yE(t, s) = −k1(s)yE(t, s)yS(t),

d

dt
yS(t) = −yS(t)

∫ ∞

0
k1(s)yE(t, s) ds

+ k−1yC(t),

d

dt
yC(t) = yS(t)

∫ ∞

0
k1(s)yE(t, s) ds

− (k−1 + k2)yC(t),

d

dt
yP(t) = k2yC(t),

(3.11)
with the boundary condition

yE(t, 0) = (k−1 + k2)yC(t)

and the initial condition yE(0, s) = fE(s) such that∫∞
0 fE(s) ds = [E0]. Appropriate initial conditions for

S, C, and P are also assumed. This limiting system
can now be used to study the effects of delay in
the binding reaction. One interesting approxima-
tion that has been widely applied in the context of
Michaelis–Menten enzyme kinetic reactions is what
is known as a quasi-steady state approximation [58].
There are many forms of QSSAs, namely, standard
QSSA (sQSSA), total QSSA (tQSSA), and reversible
QSSA (rQSSA). Detailed analysis of any of the QSSAs
is beyond the scope of the present work. For the
purpose of illustration, we informally describe an
analogue of the sQSSA here.

3.2. The standard QSSA
The QSSAs are a multiscale approximation of the
Michaelis–Menten enzyme-kinetic reactions. The
basic assumption behind the standard QSSA is that
the substrate-enzyme complex C reaches its steady-
state much quicker than the other species. In the
deterministic set-up, the approximation is achieved
by setting d

dt yC(t) = 0 in equation (3.11), which
allows one to work with a smaller system of ODEs.
Several conditions for the validity of the sQSSA have
been proposed in the literature. See [57] for a detailed
discussion.

Following the deterministic approach in our case,
we set d

dt yC(t) = 0 in equation (3.11) to get a reduced
PDE system that is analogous to the sQSSA. To be
more precise, d

dt yC(t) = 0 yields

yC(t) =
yS(t)

∫∞
0 k1(s)yE(t, s) ds

k−1 + k2
,

which further yields an approximate system

d

dt
yS(t) = − k2

k−1 + k2
yS(t)

∫ ∞

0
k1(s)yE(t, s) ds,

d

dt
yP(t) =

k2

k−1 + k2
yS(t)

∫ ∞

0
k1(s)yE(t, s) ds.

(3.12)
Recall that yE solves (∂t + ∂s) yE(t, s) =
−k1(s)yE(t, s)yS(t) with boundary condition
yE(t, 0) = (k−1 + k2)yC(t) and initial condition
yE(0, s) = fE(s). As a consequence, yE is determined
by yS and yC, and can be partially solved in terms of
yS and yC. Therefore, the reduced system of ODEs in
equation (3.12) is indeed autonomous and therefore,
serves as an sQSSA of the CRN in equation (3.9).

In the stochastic set-up, the QSSAs are obtained
by means of the probabilistic multiscaling techniques
developed in [3, 4]. The stochastic and the determin-
istic QSSAs mostly agree with each other with some
notable differences. Please see [57] for examples of
discrepancies as well as more details on the methods.
Here, for paucity of space, we do not consider the
stochastic QSSAs or possible discrepancies between
stochastic and deterministic methods in the present
age-structured models.

4. Prokaryotic auto-regulation

As another example, we consider a simple genetic net-
work with feedback. We apply our approach using
an age-dependent measure-valued process to build a
model for a simple prokaryotic auto-regulation with a
time delay. We modify an auto-regulation mechanism
in the prokaryote gene network in [59] (section 1.5.7).
We simplify the example by approximating transcrip-
tion and translation as a one-step process with a
time delay and replacing repression of the gene by a
protein dimer to repression by a single protein
instead. For other related examples for the gene tran-
scription and translation, see section 2.1.1 in [60] and
[61–64].

Consider a genetic network with a gene (G), a
protein (P), and a gene-protein complex (C). The
gene activates production of protein following a haz-
ard function bP and the protein degrades following a
hazard function dP. The protein can reversibly bind
with the gene to form a complex with binding hazard
bC and unbinding hazard dC. Since the gene-protein
complex cannot participate in the production of pro-
tein, this is auto-regulation of the gene by its complex.
Schematically, the reactions are as follows:

G−→bP P + G,

P + G−→bC C,

C −→dC P + G,

P −→dP ∅. (4.13)
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In (4.13), we assume that the age of the gene is impor-
tant. Therefore, the hazard functions bP and bC are
assumed to be age-dependent whereas dC and dP are
assumed to be constants. Note that after unbinding of
the gene-protein complex, the age of the gene is reset
to zero. On the other hand, the age of the gene is not
affected by the protein production.

Denote by NG(t), NP(t), and NC(t) the total molec-
ular counts of the gene, the protein, and the gene-
protein complex at time t, respectively. For the species
G, P, and C, define the measure-valued processes

XG
t :=

NG(t)∑
i=1

δgi(t), XP
t :=

NP(t)∑
i=1

δpi(t),

XC
t :=

NC(t)∑
i=1

δci(t),

where we denote the age of the i-th molecule of the
species G, P, and C by gi, pi, and ci respectively. As
in the case of the Michaelis–Menten enzyme kinetic
reaction, we scale the hazard function bC correspond-
ing to the bimolecular reaction by n−1 following the
stochastic law of mass actions [1].

The LLN limit of the scaled process
n−1Xt := (n−1XG

t , n−1XP
t , n−1XC

t ) can be derived
following by now familiar arguments of the pre-
vious examples. As one would expect, the scaled
process n−1Xt converges to a deterministic function
xt := (xG

t , xP
t , xC

t ) whose components are finite mea-
sures on R+. Since we assume only the age of the gene
is important, we consider the limiting age density yG

of the gene, which we obtain as the density, when it
exists, of the measure xG

t with respect to the Lebesgue
measure. Similarly, define the limiting concentrations
of the product yP and the complex yC. The limiting
system is then described by

(∂t + ∂s) yG(t, s) = −bC(s) yG(t, s)yP(t),

d

dt
yP(t) =

∫ ∞

0
bP(s)yG(t, s) ds

− yP(t)

∫ ∞

0
bC(s)yG(t, s) ds

+ dC yC(t) − dP yP(t),

d

dt
yC(t) = yP(t)

∫ ∞

0
bC(s)yG(t, s) ds

− dC yC(t),
(4.14)

with the boundary condition

yG(t, 0) = dC yC(t)

and the initial condition yG(0, s) = fG(s), which spec-
ifies the initial ages of the gene. Note that the hazard
function for unbinding of the gene-protein complex
appears in the boundary condition since we assumed
that the age of the gene is reset to zero when the
complex breaks into the gene and the protein. Also,

recall that bP(s) encodes a time delay in transcrip-
tion and translation. For example, we may set bP(s) =
r1[τ ,∞)(s), which asserts that protein is produced only
when the age of the gene is greater than τ with a
hazard function r.

5. Discussion

Many biological processes with time delays, including
CRNs, cannot be directly modeled using CTMCs due
to non-exponentially distributed inter-event times of
the processes. The simulation and analysis of sys-
tems with an age structure and time delays become
challenging since the system dynamics are affected
by the inherent randomness (stochasticity) as well
as time delays. One way to simulate such stochas-
tic systems with age structure and time delays is
to modify simulation algorithms for CTMC mod-
els where the next reaction time and type are
determined based on molecule counts of reactants.
Bratsun et al [39], Barrio et al [65] and Cai [66]
constructed modified SSAs, while Anderson [67]
introduced a modified next reaction method to sim-
ulate discrete stochastic chemical reaction networks
with delays. Notably, all of those works assume
that the time lags in the delayed reactions are con-
stant. Furthermore, in [68], Caravagna and Hillston
described a non-Markovian stochastic process alge-
bra, called Bio-PEPAd, to incorporate determinis-
tic delays and perform formal analysis. Mura et al
[69] described how general holding time distribu-
tions can be incorporated in the programming lan-
guage BlenX and studied the effect of the choice of
the reaction time distributions. A stochastic simula-
tion algorithm for non-Markovian biochemical reac-
tions based on constraint programming is presented
in [70].

CRNs with an age structure and random time
delays provide a more realistic description of stochas-
tic biophysical or chemical systems compared to
the ones with fixed time delays. Unfortunately, the
literature on stochastic systems with random time
delays remains sparse. In a previous work by Koyama
(chapter 4 in [40]), the author investigated a stochas-
tic kinetic network with a random time delay where a
delayed reaction can be interrupted by another reac-
tion and can fail to complete. In another work by
Marquez-Lago et al [71], the authors utilized prob-
ability distributed time delays to incorporate spatial
effects such as diffusion or translocation of molecules
in temporal stochastic models. In a recent work by
Choi et al [27], the authors described protein produc-
tion in transcription and translation as a birth and
death process with a random time delay.

In this paper, we developed a new way to incor-
porate an age structure and time delays in CRNs
using age-dependent processes. We availed ourselves
of previous theoretical works [36, 37, 43, 44] designed
to study age-dependent population dynamics. We
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applied those stochastic models in the context of
CRNs to account for the non-Markovian property
due to the time delays. The use of age-dependent
hazard functions not only enables us to model age-
dependent time delays or reaction rates but also cov-
ers the modeling of constant and random time delays
in the existing literature. We illustrated our method
using simple biophysical systems in gene regulation
and enzyme kinetics, but it will easily apply to general
CRNs.

One potential disadvantage of the age-dependent
processes is that simulation can be prohibitive since
the age of each individual molecule of the chemi-
cal species of interest needs to be tracked over the
entire simulation time. Therefore, we derived a large-
volume limit of the age-dependent process for CRNs
in the form of PDEs using the analytic methods in
[36, 37, 43, 44] and used the PDE limit to construct a
hybrid simulation algorithm, which, in our example,
turned out to be five times faster than the full stochas-
tic simulation. Moreover, we approximated a mean
first passage time efficiently utilizing the theoretical
limit.

In this work, we emphasized how age-structured
processes and their large-volume limits can be applied
to model CRNs, in particular, biophysical or chem-
ical systems with time delays. Many previous find-
ings for general CRNs under Markovian assumption
can be reinvestigated and extended to non-Markovian
settings using age-structured processes. It would be
interesting to see how the long time behavior of
stochastic CRNs is affected by incorporating age
structure. For example, it would be interesting to
study stationary distributions of autocatalytic CRNs
with switching behavior [72], to identify a class of
CRNs maintaining product-form Poisson distribu-
tions for all times [73] and to find when CRNs
show nonexplosive behavior [74]. Another interesting
direction will be to study stability of CRNs [75] and to
estimate transition times between different attractors
in CRNs [76].

For the sake of simplicity, we have assumed in
this paper that the molecular entities of all chemi-
cal species are abundant at the same order of mag-
nitude so as to obtain the large-volume limit under
the classical scaling. A natural extension of this work
is to consider general CRNs with a wide range
of molecular abundances and reaction rates where
we can apply multiscale approximations to reduce
model complexity [1, 3, 77]. We leave such inves-
tigation to future work. In this paper, we briefly
described how an analogue of QSSA can be derived
in the Michaelis–Menten enzyme-kinetic reactions.
As shown in the related previous work [57, 58],
both deterministic and stochastic QSSAs can be revis-
ited with an extension of our approach to mul-
tiscale approximations in enzyme kinetics under

non-Markovian setting. Another promising appli-
cation of our approach seems to be in parame-
ter inference and survival analysis of general CRNs
with age structure. Given the current interests in
pandemic modeling, such CRNs could lead to
interesting examples in population dynamics and
epidemiology. We hope to be able to pursue such work
in the near future.

We conclude our discussion by briefly mentioning
a class of CRNs modeled using Poisson processes with
time-varying intensities. While retaining the Markov
property, time-varying intensities provide a flexible
way to aggregate out unobserved processes and to
account for heterogeneity in the system such as cell-
to-cell variability, changes in the volume or temper-
ature of a cell affecting reaction rates [67, 78, 79].
However, the crucial difference between those models
and ours is that time-varying intensities alone can-
not induce a dependence structure of time delays on
the initiation times of reactions whereas introduction
of an age structure can. This is because time-varying
intensities are a property of the system, whereas the
age is a property of the individual molecule. There-
fore, making the intensities depend explicitly on the
individual ages of the molecules, as we do in this
paper, provides a richer class of models.
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List of symbols
N: The set of natural numbers
R: The set of reals
R+: The set of non-negative reals
1{A}(x): Indicator (characteristic) function of

the set A
δx: Dirac delta function at x
B(A): The Borel σ-field of subsets of a set A
MP(E): The space of finite point measures on

the set E
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D([0, T], E): The space of E-valued càdlàg func-
tions defined on [0, T]

〈μ, f 〉: The integral
∫

fdμ

Acronyms
CDF: Cumulative distribution function
CRN: Chemical reaction network
CTMC: Continuous time Markov chain
FPT: First passage time
LLN: Law of large numbers
MFPT: Mean first passage time
ODE: Ordinary differential equation
PDE: Partial differential equation
PDF: Probability density function
PPM: Poisson point measure
QSSA: Quasi-steady state approximation
rQSSA: reversible QSSA
sQSSA: standard QSSA
SSA: Stochastic simulation algorithm
tQSSA: total QSSA

Appendix A. Preliminaries

For the sake of completeness, we briefly describe some
statistical and mathematical preliminaries here. Con-
sider a continuous random variable U taking non-
negative values with cumulative distribution function
(CDF) GU and probability density function (PDF) gU.
The survival function SU of the random variable U is
defined as

SU(t) :=P (U > t) = 1 − GU(t). (A.15)

The hazard function hU of the random variable U is
defined as

hU(t) :=
gU (t)

SU (t)
. (A.16)

Hazard and survival functions are extensively used
in survival analysis to model time to event data, e.g.,
time to death, time to hospitalization, time to default,
time to failure etc. Intuitively, the hazard function
describes the probability of failure in an infinitesi-
mally small time period (t, t +Δt) given survival till
time t. With little application of calculus, one can see
that

hU (t) = lim
h→0

P
(
t < U < t + h|U > t

)
h

= − d

dt
log SU(t),

which yields another useful relationship between the
hazard function and the survival function:

SU (t) = exp

(
−
∫ t

0
hU(u) du

)
= exp (−ΛU (t)) ,

where ΛU(t) :=
∫ t

0 hU(u) du is called the cumulative
hazard function. Hazard and survival functions can-
not always be obtained in closed form. Probability
distributions for which we can obtain them in closed
form include Weibull, exponential, log-logistic dis-
tributions. The case of exponential distribution is
unique in that it is the only probability distribution
for which the hazard function is constant. However,
a constant hazard is unrealistic in models for many
biophysical systems.

Appendix B. Brief derivation of the PDE
limit

In this section, we provide a brief, intuitive derivation
of the PDE limit mentioned in section 2.3. The line of
argument follows the standard tightness-uniqueness
route for abstract Markov processes and has been
used in several prior works [36, 37, 43–45]. A rig-
orous proof of convergence for a general class of
non-Markovian CRNs will be discussed elsewhere.

Consider the CRN in equation (2.1) with the
measure-valued process Xt as defined in section 2.3.
The components XA

t , XB
t satisfy the trajectory

equations given in equations (2.4) and (2.5). In order
to study moments and martingale properties of XA

t

and XB
t , it is worthwhile to check that

〈XA
t , ft〉 =

NA(0)∑
k=1

ft(t + σk(XA
0 )) +

∫ t

0

∫ ∞

0

× ft(t − s) 1{θ�b} Q1(ds, dθ)

−
∫ t

0

∫
N

∫ ∞

0
ft(t − s + σi(XA

s−))

× 1{i�NA(s−)} 1{θ�τ(σi(XA
s−))}

× Q2(ds, di, dθ) −
∫ t

0

∫
N

∫ ∞

0

× ft(t − s + σi(XA
s−)) 1{i�NA(s−)}

× 1{θ�d(σi(XA
s−))} Q3(ds, di, dθ),

〈XB
t , ft〉 =

∫ t

0

∫
N

∫ ∞

0
ft(t − s) 1{i�NA(s−)}

× 1{θ�τ(σi(XA
s−))} Q2(ds, di, dθ),

for a sufficiently large class of test functions f : (a, s) →
fs(a).

As in the case of standard Markov model in
section 2.1, we are now interested in the large-volume
limit (n →∞) of the scaled stochastic process n−1Xt.
By virtue of the LLN, if we assume (i) the haz-
ard functions are continuous, (ii) the global jump
rates are bounded above by a finite quantity, (iii) a
finite second moment condition on the initial pop-
ulation size supnE

[
n−2NA(0)2

]
< ∞, and (iv) the

initial age distribution does not explode, we have
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that the scaled process n−1Xt converges to a deter-
ministic function xt := (xA

t , xB
t ) whose components

xA
t and xB

t are themselves measure-valued functions.
This can be formally justified by verifying that the
sequence of processes n−1Xt is tight and then, show-
ing that the limit points (along subsequences) are
unique. We can identify the limit points by study-
ing certain martingale processes associated with the
scaled processes n−1Xt. Outline of the argument is
provided below.

B.1. Martingale property and
tightness-uniqueness
First, under the above mentioned assumptions, we
can show that the components of the scaled pro-
cess n−1Xt do not explode (similar derivation in [37,
lemma 2.6 and proposition 2.7]). Now, note that the
trajectory equations for the processes XA

t and XB
t given

in equations (2.4) and (2.5) are driven by PPMs. Since
we have

ft(a + t − s) = fs(a) +

∫ t

s

(
∂

∂u
fu(a + u − s)

+
∂

∂a
fu(a + u − s)

)
du,

and using the compensated PPMs of the PPMs
Q1, Q2, Q3, we can show the processes

MA,f
t = 〈n−1XA

t , ft〉 − 〈n−1XA
0 , f0〉

−
∫ t

0

∫ ∞

0

(
∂

∂a
fs(a) +

∂

∂s
fs(a)

− fs(a)(τ(a) + d(a))
)

n−1XA
s ( da) ds

MB,f
t = 〈n−1XB

t , ft〉 −
∫ t

0

∫ ∞

0

(
∂

∂a
fs(a) +

∂

∂s
fs(a)

+ fs(0)τ(a)
)

n−1XA
s ( da) ds

are zero mean, square integrable, càdlàg martingale
processes with predictable quadratic variations of the
order n−1. Since we expect the predictable quadratic
variations to vanish in the limit of n →∞, the scaled
process n−1Xt converges to a deterministic, continu-
ous function xt. The tightness of the process n−1Xt can
be established by verifying a criterion due to Roelly
[80] in the vague topology and the Aldous–Rebolledo
criteria [81]. See [36] or [37, proposition 3.1] for sim-
ilar calculations. Furthermore, thanks to the martin-
gale representations above, we expect the limit xt to
satisfy

〈xA
t , ft〉 = 〈xA

0 , f0〉+
∫ t

0

∫ ∞

0

(
∂

∂a
fs(a) +

∂

∂s
fs(a)

− fs(a)(τ(a) + d(a))

)
xA

s ( da) ds

〈xB
t , ft〉 =

∫ t

0

∫ ∞

0

(
∂

∂a
fs(a) +

∂

∂s
fs(a)

+ fs(0)τ(a)
)

xA
s ( da) ds.

The uniqueness of the solutions can be shown by
first establishing that the solutions remain bounded
on finite time intervals (recall the global jump
rates are assumed bounded) and then invoking
Grönwall’s lemma to show the distance between two
possible solutions must vanish proving the desired
uniqueness.

Appendix C. Software

The numerical results in this paper are obtained by the
Julia programming language [46]. The Julia scripts
(compatible with version 1.4.1) used in this paper
have been made available publicly at a dedicated
GitHub repository [38].
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