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ABSTRACT

We report a new equation of state (EoS) of cold and hot hyperonic matter con-
structed in the framework of the quark-meson-coupling (QMC-A) model. The QMC-A
EoS yields results compatible with available nuclear physics constraints and astrophys-
ical observations. It covers the range of temperatures from T=0 to 100 MeV, entropies
per particle S/A between 0 and 6, lepton fractions from YL=0.0 to 0.6, and baryon
number densities nB=0.05-1.2 fm−3. Applications of the QMC-A EoS are made to cold
neutron stars (NS) and to hot proto-neutron stars (PNS) in two scenarios, (i) lep-
ton rich matter with trapped neutrinos and (ii) deleptonized chemically equilibrated
matter. We find that the QMC-A model predicts hyperons in amounts growing with
increasing temperature and density, thus suggesting not only their presence in PNS
but also, most likely, in NS merger remnants. The nucleon-hyperon phase transition
is studied through the adiabatic index and the speed of sound cs. It is shown that the
lowering of (cs/c)2 to and below the conformal limit of 1/3 is a general consequence of
instabilities due to any phase transition and is not a unique fingerprint of the hadron-
quark matter transition. Rigid rotation of cold and hot stars, their moments of inertia
and Kepler frequencies are also explored.

The QMC-A model results are compared with two relativistic models, the chi-
ral mean field model (CMF), and the generalized relativistic density functional with
hyperons (GRDF-Y). Similarities and differences are discussed.
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1 INTRODUCTION

Properties of young proto-neutron stars (PNS) born in core-
collapse supernovae (CCSN) have been one of the main top-
ics of interest in observation and theoretical modeling for a
long time (Burrows & Lattimer (1986); Prakash et al. (1997);
Pons et al. (1999)). Recently, the topic has resurfaced in the
context of the possible emission of detectable gravitational
waves (GW) in CCSN events (Ferrari et al. (2003); Camelio
et al. (2017); Torres-Forné et al. (2019)). Better understand-
ing of both static and dynamic properties of neutron stars
(NS) will support an increasing interest in the emission of
continuous GW from neutron star candidates in young su-
pernova remnants Lindblom & Owen (2020). More generally,
hot dense matter and its composition is particularly relevant
in the context of binary neutron star mergers (BNSM) (Ab-
bott et al. (2017); Baiotti & Rezzolla (2017); Abbott et al.
(2018); Most et al. (2020); Bauswein et al. (2019)).

There has been an extensive discussion concerning the
appearance of non-nucleonic species in high density matter,
such as strange baryons (hyperons), pion and kaon conden-
sates, and various phases of quark matter, together with
their density and temperature dependence (Balberg et al.
(1999); Pons et al. (1999, 2001); Mishra et al. (2010); Chat-
terjee & Vidaña (2016); Oertel et al. (2016, 2017); Roark
et al. (2019); Malfatti et al. (2019)). The effects of finite
temperature were first studied by Goussard et al. (1998).
They restricted the solutions to several cases of chemically
equilibrated nucleonic matter at fixed temperature and/or
entropies with overall fixed lepton fractions. More recently,
the finite temperature high density matter in CCSN and
PNS, including nucleons, Λ, Σ0,+,− and Ξ0,− hyperons (the
full baryon octet) and free thermal pions, was studied in
by Ishizuka et al. (2008) in the framework of an extended
SU f (3) relativistic mean model (RMF). Three new EoS la-
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beled EOSY were constructed and tables computed in a wide
range of charge ratios, baryon densities and temperatures,
mainly designed for CCSN models.

The new EoS tables were later adopted by Sumiyoshi
et al. (2009) in their simulation of the dynamical collapse
of a non-rotating massive stars. The exploration of the time
dependence of the hyperon appearance in stages of the ini-
tial collapse, core bounce, and a temporary proto-neutron
evolution before collapsing to a black hole revealed a signif-
icant hyperon content (mostly Λ and Ξ−) in the center of
the star 680 ms after bounce, after being mostly located at
about 10 km off center at 500 ms.

A somewhat simplified variant of the QMC model (dif-
ferent from that used in the present work) has been used by
Panda et al. (2010) to explore neutrino-free matter and mat-
ter with trapped neutrinos in PNS at fixed temperatures up
to 20 MeV and fixed entropy per particle S/A = 1 and 2. In
comparison with the non-linear Walecka model with GM1
parameterization, QMC predicted smaller strangeness and
neutrino fractions, however, growing faster with increasing
temperature and density.

Shen et al. (2011) constructed three EoS tables for
CCSN simulations, assuming matter composed of nucleons
and Λ hyperons, in the framework of the RMF theory. They
found that the population of Λ hyperons increases with
temperature and is distributed over the whole stellar-core
density range at T=100 MeV, where it constitutes 16%
for the proton fraction Yp=0.1. Burgio et al. (2011) con-
structed an EoS for hyperonic matter at finite tempera-
ture using the Bruckner-Hartree-Fock (BHF) method with
V18+UIX nucleon-nucleon and the NSC89 nucleon-hyperon
interactions. Only Λ and Σ− hyperons were predicted up to
high densities when S/A was chosen to be 1 and 2. It was
shown that the density threshold found for the appearance
of hyperons at zero temperature do not exist at finite tem-
perature and hyperons are present at all densities in the
star core. The hyperonic content in matter with trapped
neutrinos was found to be lower than in the neutrino free
chemically-equilibrated matter.

Numerical simulations of BNSM both with nucleonic
and hyperonic EoS with Λ hyperons were performed by
Sekiguchi et al. (2011), who predicted a substantial role of
hyperons in post-merger dynamics and suggested a possi-
bility that the presence of hyperons may be imprinted in
the evolution of the characteristic frequency of GW and the
peak width of the GW signal. Oertel et al. (2012) modified
the widely used Lattimer-Swesty EOS (Lattimer & Dou-
glas Swesty (1991)) by including hyperons, pions and muons
to the high density part of the EoS and showed that the
additional degrees of freedom influence the thermodynamic
properties such as pressure, energy density, and the speed
of sound in a non-negligible way. The EoS including Λ hy-
perons in dense matter, based on GRDF-Y with the DD2Y
interaction (Typel et al. (2010)), developed by Banik & Char
(2014), and the EoS including the whole baryon octet and
decuplet and allowing for chiral symmetry to be restored,
constructed by Dexheimer & Schramm (2008), predicted the
maximum gravitational mass of a cold neutron star to be >
1.9 M�, consistent with observations at the time. These re-
sults were in contrast will previously published EoS with
hyperons (Ishizuka et al. (2008); Sumiyoshi et al. (2009);
Shen et al. (2011); Burgio et al. (2011); Oertel et al. (2012)),

which predicted the maximum mass of the cold NS below
that limit. These EoS predicted a large population of hyper-
ons in dense uniform matter, at the cost of neutrons, growing
with increasing temperature. The latest model of dense mat-
ter at finite temperatures was constructed by Marques et al.
(2017) in the RMF framework. The authors also examined
hypermassive NSs in the post-merger phase of BNSM and
the moment of inertia-quadrupole moment (I-Q) universal-
ity. They found this universality was broken in fast rotating
stars when thermal effects became important.

Despite the great variety of models and approaches in
the literature, a general consensus on the EoS and composi-
tion of either cold or hot high density matter in the core of
(proto)neutron stars, based on microphysics, has not been
achieved as yet (Stone et al. (2016)). The reason is that
the nuclear and particle physics input to modeling of the
EoS is poorly understood and there are no terrestrial data
directly applicable to the high-density low-temperature sec-
tor of the QCD diagram (Sharma (2019)). The most recent
trend in the field of study of EoS points toward statistical
methods, such as Bayesian analysis (Nättilä et al. (2016);
Raaijmakers et al. (2018); Lim & Holt (2019); Greif et al.
(2019)), parametric representations based on observational
data (e.g. Özel & Freire (2016); Lindblom (2018); Mena-
Fernández & González-Romero (2019)), or machine learning
methods (e.g. Fujimoto et al. (2018); Weih et al. (2019); Fu-
jimoto et al. (2020)). However, this trend leaves many ques-
tions related to the underlying quark structure of hadrons
in dense matter unanswered.

In this work we report a new microscopic EoS of
hot high-density hyperonic matter using the latest QMC-
A model based on the model detailed in (Guichon et al.
(2018)) extended to finite temperature. The model is funda-
mentally different from other mean-field microscopic models
used up to now, as outlined in Sec. 2, and provides a natu-
ral explanation to some open questions in low energy nuclear
structure physics. The QMC-A model predictions of proper-
ties of static cold NS are presented in Secs. 3.1.1 and 3.2.1
and for hot PNS in Sec. 3.1.2 and 3.2.2, compared with the
outcome of the chiral mean field model (CMF) (Dexheimer
& Schramm (2008); Roark et al. (2019)), and the extended
GRDF-Y model with the DD2Y interaction (Typel et al.
(2010); Typel (2020)). The nucleon-hyperon phase transi-
tion and its consequence for the stability of the star, to-
gether with the speed of sound, in both cold and hot stars
are shown in these sections. Effects of uniform rotation on
the stars’ mass, radius and composition, as well as the uni-
versal relations between the moment of inertia and the star
mass and compactness, are illustrated in Sec. 4. Discussion
of the results and outlook can be found in Sec. 5.

2 THE METHOD

2.1 The QMC-A model

In the QMC framework (Guichon (1988); Guichon et al.
(1996)), the effect of the dense medium surrounding nucleons
and hyperons in the dense stellar core on their interaction
is modeled by dynamics of the quarks inside individual par-
ticles. In other words, the quarks in a nucleon (or hyperon)
interact self-consistently with the quarks in surrounding par-
ticles via exchange of σ, ω, and ρ virtual mesons. This is
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fundamentally different from the RMF-like models, where
the exchange of mesons proceeds between point-like parti-
cles with no internal structure. The first version of the rel-
ativistic QMC model applied to NS (Rikovska-Stone et al.
(2007)) predicted the existence of cold NS with Λ and Ξ0

hyperons in their cores with a maximum mass of 1.97 M�,
three years before such a star was observed by Demorest
et al. (2010) (later updated by Fonseca et al. (2016)). The
non-relativistic application of the QMC model to finite nu-
clei yielded predictions of ground state properties of finite
nuclei (Stone (2016); Martinez et al. (2019); Stone et al.
(2019); Martinez et al. (2020)) in excellent agreement with
experimental data.

The QMC-A model has a unique set of four variable
parameters, the meson-nucleon couplins to the non-strange
quarks, which are conveniently expressed as the coupling
constants in free space GσN , GωN , GρN and the mass of
the σ meson Mσ . These parameters generated data, consis-
tent with saturation properties of symmetric nuclear matter
and observational data on NS, including the maximum mass
and radius/tidal deformation of a 1.4 M� star. The cou-
pling constants used in the present work are GσN=10.33
fm2, GωN= 6.095 fm2, GρN= 2.91fm2, and Mσ=700 MeV.
Because in our case the forces acting in dense matter are
between quarks and not between the particles as entities,
there is no need to increase the number of parameters when
the baryonic composition changes. Thus, matter consisting
of only nucleons or of the entire baryon octet is modeled by
the same parameter set. Once determined, the set is fixed
and cannot be varied to improve the predictive power of the
model. Should a discrepancy between the model prediction
and new observational and experimental data occur, missing
physics in the model must be sought.

The latest version of the model, called QMC-A, is an
extension of the original model for T=0, described in detail
in Ref. (Guichon et al. (2018)). The formalism has been
extended to finite temperatures with and without neutrinos
and includes a smooth transition between T=0 and T>0
cases. The present work includes a new treatment of the
sigma field and a complete self-consistent treatment of Fock
terms, which will be described elsewhere. QMC-A EoS com-
plies with the commonly accepted constraints on the isospin-
symmetric nuclear matter at saturation (Tsang et al. (2012);
Horowitz et al. (2014); Stone et al. (2014)) yielding a satu-
ration density n0=0.156 fm−3, saturation energy E/A=-16.2
MeV, symmetry energy J=28.5 MeV, slope of the symmetry
energy L=54 MeV, and incompressibility K=292 MeV.

2.2 Calculation details

All calculations in this work have been performed assuming
a full chemical and thermal equilibrium, and the charge neu-
trality being strictly conserved. For a system consisting of
the octet baryons and leptons (e−, ν̄e, e+, νe), (µ−, ν̄µ, µ+, νµ),
we calculate chemical potentials of all the constituents, con-
sequently used to derive other thermodynamical quantities.
Further assuming lepton number conservation, the system
is described by the lepton fraction YL= (Le+ Lµ)/nB where
electron, Le, and muon, Lµ, lepton number densities are sup-
posed to be known and enter the equilibrium and charge

conservation relations

µ(e−) − µ(νe) = µ(µ−) − µ(νν) , (1)

µ(i) = µ(n) −Q(i)µ(e−) +Q(i)µ(νe) , (2)

and

n(e−) + n(νe) − n(e+) − n(ν̄e) = Le , (3)

n(µ−) + n(νµ) − n(µ+) − n(ν̄µ) = Lµ , (4)

n(e+) − n(e−) + n(µ+) − n(µ−) = −
∑
i

n(i)Q(i) , (5)∑
i

n(i) = nB , (6)

where n(i), µ(i) and Q(i) are particle number densities, chem-
ical potentials and charges of a baryon constituent i, re-
spectively. This scenario corresponds to dense matter with
trapped neutrinos, believed to exist, at least to a certain
extend, just after the bounce in the CCSN event. The sys-
tem can be modeled at fixed values of YL and tempera-
ture/entropy per particle. Although in the dynamic devel-
opment of a PNS during this regime, a thermodynamic equi-
librium is not likely to be fully observed, this is the approxi-
mation we take. As we do not have neutrino transport built
in the model to inform us about the changing number of neu-
trinos in the system, there is no other self-consistent way to
determine YL .

When the PNS is older than a few minutes, the temper-
ature of the star is low enough that the neutrinos can leave
freely, neutrino chemical potential becomes zero, and the
lepton number is no longer conserved. Matter goes through
a process called deleptonization (Burrows et al. (1981)).
The loss of neutrinos is accompanied by a loss of electrons
through electron capture. The chemical equilibrium shifts
matter to become more neutron rich and the number of free
leptons decreases considerably. The diffusion of neutrinos
from the core, which lasts a few seconds results in a sig-
nificant heating of the core (Burrows & Lattimer (1986)).
Deleptonized matter mater in the chemical equilibrium is
governed by equations

µ(e−) = µ(µ−) , (7)

µ(i) = µ(n) −Q(i)µ(e−) , (8)

and

n(e+) − n(e−) + n(µ+) − n(µ−) = −
∑
i

n(i)Q(i) , (9)∑
i

n(i) = nB . (10)

In this work, we adopt two illustrative scenarios, the
first has matter with lepton fraction YL=0.4, trapped neu-
trinos and the entropy per particle S/A=1 (scenario I) and
the second has neutrinoless, chemical equilibrated matter
with S/A=2 (scenario II). Note that we omit the Boltzmann
constant kB because we are using natural units, in which
case it assumes the value one. In the first case, consider
a PNS born after the shock wave have been isolated from
the collapsed material about 0.1-1 s after bounce. This is a
lepton rich object with high lepton fraction due to trapped
neutrinos in the core and temperature of several tens of MeV
(Pons et al. (1999); Hix et al. (2003); Lentz et al. (2012)).
The entropy per baryon S/A in the core is low, (Pons et al.
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(1999); Hix et al. (2003); Lentz et al. (2012)), as the PNS in-
herited this low entropy from the progenitor star that emit-
ted radiation during its whole lifetime.

Admittedly, both scenarios provide a rather schematic
picture of the PNS birth and development. In modern CCSN
simulations, all thermodynamical variables of the PNS, such
as temperature, YL and S/A, depend on the model of the
progenitor star, details of the collapse, and development of
the shock, which are themselves locally dependent on the
density and composition distribution of the core material,
determined by a chosen EoS. However, we believe that the
two examples described above provide an illustrative trend.

To facilitate better understanding of the role of micro-
physics in the EoS of cold and hot compact objects and
providing a comparison with other models, the Chiral-Mean-
Field (CMF) model and the generalized relativistic density
functional with hyperons and density dependent interaction
DD2 (DD2Y) were chosen. The Chiral-Mean-Field (CMF)
model is based on a nonlinear realization of the SU(3) sigma
model (Papazoglou et al. (1999)). It is an effective quantum
relativistic model that describes hadrons and quarks inter-
acting via meson exchange (ω, σ, ρ, δ, φ, and ζ ). It is con-
structed in a chirally invariant manner, with particle masses
originating from interactions with the medium and, there-
fore, decreasing at high densities and or temperatures. The
model is in agreement with standard nuclear and astrophys-
ical constraints (Dexheimer & Schramm (2008); Roark et al.
(2019); Dexheimer et al. (2019)), as well as lattice QCD and
perturbative QCD (Dexheimer & Schramm (2010); Roark &
Dexheimer (2018)).

The DD2Y model (Typel (2020)) is an extension of a rel-
ativistic energy density functional with ω, σ, and ρ mesons
by including the entire baryon octet and the φ meson. The
meson-baryon couplings are assumed to depend on the to-
tal baryon density using the parametrization DD2 (Typel
et al. (2010)). The hyperon couplings to the vector mesons
ω, ρ and φ follow the scaling of the SU(6) symmetry scheme,
(Weissenborn et al. (2012)). The coupling of the scalar σ-
hyperon is chosen through fixing the values of the single-
particle potentials in nuclear matter at saturation density.

The non-homogeneous matter below the nuclear satu-
ration density has not been modeled in the QMC framework
as yet. To cover the whole density range from the core to the
surface of NS, we use the Baym-Pethick-Sunderland (BPS)
(Baym et al. (1971)) EoS for the QMC and CMF models.
The DD2 model already includes light and heavy clusters, as
described in (Pais & Typel (2017)) below nuclear saturation
density for zero and finite temperatures. We also use these
finite temperature DD2 EoS to describe the crust of PNS
within the QMC and CMF models. The new QMC-A EoS
covers the range of temperatures from T=0 to 100 MeV, en-
tropies per particle S/A between 0 to 6, lepton fractions from
YL=0.0 to 0.6, and baryon number density range nB=0.05-
1.2 fm−3. It also provides neutrino energies in Scenario I.
The QMC-A EoS can be used in CCSN and NS merger sim-
ulations and extended beyond this range if necessary.
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Figure 1. Equations of state of the QMC, CMF and DD2Y mod-

els at T=0 MeV. Results for the full baryon octet and nucleonic
matter without hyperons are shown (left). Relative population of

nucleons and hyperons in units of the total baryon number den-

sity (right). Only populations higher than 0.01% in the region of
0.1 - 1 fm−3 are shown.

3 RESULTS

3.1 The Equation of state and composition of
high density matter

3.1.1 Cold matter

We start with application of the QMC-A model to construct
an EoS for the core of cold NSs, assuming charge neutral and
chemically equilibrated homogeneous matter, containing the
full baryon octet, electrons and muons. In the left panels
of Fig. 1, we plot the pressure dependence on the baryon
number density for matter containing the entire baryon octet
for the three models QMC-A, CMF, and DD2Y with the last
two being used for a comparison. The density range is limited
to 0.1 - 1.0 fm−3, as the central densities of most cold NS
models are expected to lie in this region. As anticipated, the
presence of hyperons softens the EoS, leading to lowering
of the slope of pressure with the onset of hyperons when
compared to the pure nucleonic EoS. Different patterns of
the softening are clearly related to the density distribution
of hyperon population, shown in the right panels of Fig. 1 for
particle fractions higher than 10−4. One can easily see that
the onset densities and the amount of individual species are
clearly model dependent.

It is interesting to note that Abbott et al. (2018) re-
ported a constraint on pressure at twice the nuclear satura-
tion density to be between 11.23 and 38.7 Mev/fm3 (with
90% confidence), derived from the analysis the GW170817
signal. Hyperons are not predicted to be present at this den-
sity in the models used in the present work. For matter com-
posed of only nucleons, all three models predict very close
values of pressure 32.99, 32.93 and 32.14 Mev/fm3 for QMC-
A, CMF and DD2Y, respectively, well within the limits ex-
tracted from the GW observation.

Examination of the right panels of Fig. 1 reveals that
Λ hyperons are predicted to appear first, at threshold den-
sities 0.5-0.6, 0.4-0.5 and 0.3-0.4 n0, in QMC-A, CMF and
DD2Y models, respectively. The other members of the full
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hyperon octet, included in the models, appear at different
threshold densities. The QMC-A model predicts only Ξ0,−

hyperons, CMF shows just the Σ− hyperon appearing at
densities above 0.6 n0 and in the DD2Y model both neg-
atively charged hyperons, Σ− and Ξ−, are present at rather
low densities below 0.4 n0. The differences emerge from the
differences in modeling hyperon couplings and consequent
hyperon binding energies in the system.

The hyperons appear naturally at T=0 in nucleonic
matter (due to the Pauli blocking) when their effective chem-
ical potentials, increasing with density of degenerate mat-
ter, reach values above that of their effective masses. Even-
tually, strangeness non-conserving weak processes become
possible, creating the hyperon population in the stellar core
(Glendenning (1985); Balberg et al. (1999); Glendenning
(2012)). The hyperon chemical potential is determined by
the hyperon mass and its binding energy. This energy, aris-
ing from the hyperon-nucleon, hyperon-meson and hyperon-
hyperon couplings is still poorly constrained. In QMC model
the hyperon-nucleon couplings are not fitted. They are com-
puted in the quark model, in free space as well as in matter.
What is fitted in free space are the parameters of the bag
model to reproduce the mass of the free octet. All the other
couplings are calculated self-consistently within the model.
In RMF-type models, the hyperon-meson couplings have to
be fitted, usually to expected values of the potential depth
for the hyperons in nuclear matter UYN , constrained by
(scarce) experimental data on hypernuclei (for the most re-
cent analysis using RMF models, see (Fortin et al. (2020))).
The UYN potentials are calculated at nuclear saturation den-
sity in the QMC-A model to be UΛ=-28 MeV, UΣ=-0.96
MeV and UΞ= -12.7 MeV. In the CMF and DD2Y mod-
els the potentials are chosen to be UΛ=-28 MeV, UΣ=5.33
MeV, UΞ=-18.4 MeV and UΛ=-28 MeV, UΣ=30 MeV, UΞ=-
14 MeV respectively. The least known coupling are the ones
of the Σ hyperons.

In the QMC-A model, Σ hyperons do not appear at
baryon number densities below nB=1.0 fm−3 This effect
was recognized already in our early work (Rikovska-Stone
et al. (2007); Guichon et al. (2018)). In the QMC model,
the nucleon-hyperon (N-Y) interactions are not a subject of
choice, but emerge naturally from the formalism. In particu-
lar, the hyperfine interaction which splits the Λ and Σ masses
in free space is significantly enhanced in-medium (Guichon
et al. (2008)), leading to what is effectively a repulsive three-
body force for the Σ hyperons, with no additional parame-
ters. The absence of Σ hyperons in cold matter is supported
by the fact that no bound Σ− hypernuclei at medium or
high mass has been found as yet, despite dedicated search
(Harada & Hirabayashi (2006, 2015)). However, the CMF
model predicts a considerable presence of Σ− at about 4 n0
and in the DD2Y model the Σ− appear in the density region
below 0.4 fm −3.

The Ξ0,− hyperons, not predicted by the CMF model
at densities below 1.0 fm−3, appear in the QMC-A model
at density almost identical to the threshold for Λ. Only the
negative Ξ− is observed in the DD2Y model. The presence
of the Ξ hyperons at rather low densities indicates an at-
tractive nucleon-Ξ interaction and the existence of bound
Ξ−hypernuclei. So far, two single events involving Ξ hyper-
nuclei, 12

Ξ−Be (Kchaustov (2000)) and 15
Ξ−C (Nakazawa et al.

(2015)), have been reported (Yoshida et al. (2019)).
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Figure 2. The adiabatic index (left) and the square of the speed
of sound (right) as a function of density as computed in QMC,

CMF and DD2Y models at T=0 MeV. Results for the full baryon

octet and nucleonic matter without hyperons are shown. The blue
horizontal line indicates the conformal limit c2

s=1/3.

An important thermodynamic quantity closely related
to the EoS is the adiabatic index Γ, a sensitive indicator of
phase changes in stellar matter and the stability with respect
to vibrations of a star (Akmal et al. (1998); Haensel et al.
(2002); Chamel & Haensel (2008); Casali & Menezes (2010)
) It is defined as

Γ =
d log P

d log nB
=

nB
P

dP
dnB

. (11)

Polytropic EoS have constant Γ, equal to 4/3 (5/3) for a rel-
ativistic (non-relativistic) free-Fermi gas. Using realistic nu-
cleonic EoS, Chamel & Haensel (2008) described supernova
matter, with trapped neutrinos using YL=0.4 and S/A=1
to find that Γ was continuously growing with density, from
0.5 to 4 fm−3. For multicomponent matter, Γ exhibits jumps
at densities coincident with density thresholds of individual
components, signaling phase transitions and/or changes in
make-up of the matter.

We present in Fig. 2 the adiabatic index Γ and the speed
of sound as calculated in the QMC-A, CMF and DD2Y mod-
els, in the range of density from 0.1 to 1 fm−3 (0.625 - 6.25
n0), predicted to be reached in NS cores by realistic mod-
els. We see significant drops in the values of Γ at densities
which are comparable with the threshold densities for ap-
pearance of hyperons (see Fig. 1). The large drop at density
0.5-0.6 fm−3 for QMC-A takes place because the Λ and Ξ−

hyperons appear at almost the same density. The next drop
is clearly related to appearance of the Ξ0. The CMF model
shows much smaller drops at the threshold densities for the
Λ− and Σ− hyperons. The DD2Y model predicts very close
density thresholds for the Λ− , Σ− and Ξ− hyperons, which
can be associated with the large unresolved drop below 0.4
fm−3. These bumps are manifestations of instabilities in hy-
peronic matter, leading to vibrations which may be damped
by various processes, including bulk, viscosity before reach-
ing equilibrium (Jones (2001b); Haensel et al. (2002); Lind-
blom & Owen (2002)).

The adiabatic index is closely related to the speed of
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sound in units of c (here equal to 1)(
cs)2 =

dP
dε

, (12)

where ε is the energy density. The stability and causality
conditions set limits 0≤ c2

s ≤ 1. Recent limits on the speed
of sound derived from astrophysical observation were ob-
tained by Bedaque & Steiner (2015) using a parameterized
EoS and by Tews et al. (2018) in the framework of the chi-
ral effective field theory. It has been argued that the speed
of sound in NS matter exceeds the conformal limit (Cher-
man et al. (2009)) c2

s ≤ 1/3. Very recently, Annala et al.
(2020), using their pQCD model extrapolated to low den-
sities, suggested that compliance with the conformal limit
signals sizable quark-matter core in massive NS. All these
studies were applied either to rather low densities or did
not explicitly include hyperonic degrees of freedom. Recent
discussion on the impact of irregularities in speed of sound
in dense matter on the macroscopic neutron-star properties
(Tan et al. (2020)) inspires more investigation along these
lines.

As is demonstrated in the right panel of Fig. 2, the
QMC-A model predicts a c2

s lower than 1/3 at densities
above 0.6 fm−3. The CMF and DD2Y models yield c2

s
around 1/3 at densities between 0.3-0.5 fm−3. It is not sur-
prising that the instabilities, seen in the adiabatic index,
reflect also in the density dependence of the speed of sound.
In a classical analog, induced vibrations in the medium in-
terfere with propagation of the sound wave, thus causing
its impedance through the refractive index. Because the in-
stability is larger in the QMC-A model than in the other
models, the effect on the speed on the sound is more pro-
nounced. Detailed analysis of these conjectures goes beyond
the scope of this paper and will be addressed separately.
However, we can rule out with certainty that the confor-
mal behaviour of c2

s is a unique signature of presence of a
phase transition to quark matter in the core of NS. None of
the models used here has quark degrees of freedom included
and yet the speed of sound is predicted to be below or close
to the conformal limit. As the QMC-A, CMF and DD2Y
EoS with nucleons and hyperons are in full compliance all
known astrophysical constraints, Γ and c2

s naturally reflect
these constraints.

3.1.2 Matter at finite temperature

We have demonstrated in the previous section that the num-
ber density dependence of the thresholds for the appearance
of hyperons in dense matter and their population in cold
stars are model dependent. This model dependence is still
more apparent at finite temperatures, where the temper-
ature effects smear out the density thresholds for appear-
ance of hyperons, thus, appearing at low density and, con-
sequently, within the cores of warm low mass NS. The pop-
ulation distribution of nucleons and hyperons at the two
scenarios adopted in this work, are presented in Fig. 3. Com-
paring Fig. 1 and Fig. 3 indicates an increase of hyperonic
content in scenario I, followed by a more dramatic increase
in scenario II. In the latter, population of the entire octet in
fractions larger than 10−4 is predicted by all three models at
densities below the respective thresholds at T=0 MeV. The
presence of neutrinos and somewhat lower temperature (see
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Figure 3. The same is Fig. 1 but for in scenario I (left) and

scenario II (right). Only populations higher than 0.01% in the
region of baryon density between 0.1 - 1 fm−3 are shown.
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Figure 4. Temperature distribution as a function of baryon den-
sity in scenarios I and II (denoted as S1 and S2).

Fig. 4) inhibits, to some extent, the creation of hyperons in
scenario I.

The temperature effect on the adiabatic index and the
speed of sound at finite temperature is illustrated in Fig. 5.
We observe a much smoother density dependence of Γ, re-
flecting the absence of the thresholds present in the T=0
MeV case. In the QMC-A model, the speed of sound is al-
most constant below 1/3 in scenario II and in scenario I it
remains below 0.4, again not showing the dependence on
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Figure 5. The same as Fig. 2 but for scenarios I and II.

the increasing population of hyperons with growing density
demonstrated in Fig 3. In CMF and DD2Y models there is
a very little difference between the density dependence of
the speed of sound in scenarios I and II, showing a smooth
growth up to the value of about 0.6 at density 1.0 fm−3.

3.2 Neutron star masses and radii

3.2.1 Cold neutron stars

In the multimesenger era, when not only data on masses and
radii of NS are accumulating and becoming more precise, but
also the analysis of the GW signals is continuously providing
additional constraints, the choice of the EoS of the NS inte-
rior narrows. We use all this information to investigate cold
NS models built using the QMC-A, CMF and DD2Y EoS.
First, the TOV equation (Tolman (1939); Oppenheimer &
Volkoff (1939)) is solved to yield the gravitational mass and
radius of a non-rotating, spherically symmetric cold NS. The
computed gravitational masses as a function of radii (right
panel) and of the central baryonic density (left panel) are
shown Fig. 6.

Our results are compared with the most recent data
from observation. Cromartie et al. (2019) reported gravita-
tion mass of the J0740+6620 millisecond pulsar, obtained
combining data from NANOGrav and the Green Bank tele-
scope, to be 2.14+0.20

−0.18 M� with 95.4% credibility interval

and 2.14+0.10
−0.09 M� with 68.3% credibility interval. Anto-

niadis et al. (2013) studied the PSR J0348+0432 neutron
star-white dwarf systems and derived the pulsar mass as
2.01±0.04 M�.

Further observation of the binary millisecond pulsar
PSR J1614-2230, reduced the original results, 1.97±0.04
M� to 1.928±0.017 (Fonseca et al. (2016)). We adopt the
range of gravitational masses from observation, including
their uncertainty, from 1.91 to 2.34 M� in the right panel
of Fig. 6. Complementary to those measurements, Rezzolla
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Figure 6. Neutron star masses as a function of the central baryon
density (left) and radius (right) computed with the QMC-A,

CMF and DD2Y models for hyperonic (solid line) and nucleonic

(dashed) matter. Observational limits on the maximum mass con-
figuration and its radius are illustrated by the grey rectangle. Re-

cent observation from the NICER mission limiting mass and ra-

dius of a ∼1.4 M� of PSR J0030-0451, analysed independently by
Miller et al. (2019) (yellow rectangle) and by Riley et al. (2019)

(blue dashed contour) are added for completeness. The colored

full circles in the left panel indicate the maximum masses.

et al. (2018), combining the GW observations of merging
systems of binary NS and quasi-universal relations, set con-
straints on the maximum mass that can be attained by non-
rotating stellar models of NS, implying that the maximum
mass of a non-rotating NS is between 2.01+0.04

−0.04 and 2.16+0.17
−0.15

M�. The QMC-A, CMF and DD2Y models with hyperons
produce NS with the maximum gravitational mass consis-
tent within these limits. The maximum mass of a purely nu-
cleonic NS lies within the observational limits for the QMC-
A and CMF EoS, but is somewhat higher for the DD2Y
EoS.

The deduction of stellar radii for the maximal mass con-
figuration from observation is rather involved. There are
many estimates in the literature (see e.g. Özel & Freire
(2016)), but the constraints they provide are still rather
wide, 10 - 15 km, as a simultaneous observation of a heavy
NS and its radius has not been yet achieved. The much
needed information for constraining the theory is compli-
cated because the TOV equation yields only the gravita-
tional mass of a NS as a function of its radius. Recent GW
observation directed the attention to lower-mass stars, with
masses around the canonical value of 1.4 M�. However, the
GW data supply only information on masses and tidal de-
formation. Constraints on radii have to be inferred, often
in combination with data from electromagnetic observation,
in a model dependent way (Abbott et al. (2018); Raithel
(2019); Weih et al. (2019)). Note that even when using uni-
versal relations to obtain stellar radii (Yagi & Yunes (2013);
Chatziioannou et al. (2018); Abbott et al. (2018) the equa-
tion of state dependency cannot be fully eliminated.

Steiner et al. (2013) derived that the radius of a 1.4 M�
star, R1.4, should lie between 10.4 and 12.9 km from data on
transiently accreting and bursting low mass X-ray binaries
sources, independent of the structure of the core. The up-
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.

per limit on R1.4 was found to be 13.6 km by Annala et al.
(2018), who used a piece-wise polytropic EoS, compatible at
high densities with pQCD and using the GW limits on tidal
deformability. Burgio et al. (2019) translated the limits on
average tidal deformability, imposed by the GW signal, into
limits on the R1.5 to be 11.8 km and of a ∼ R1.4 to be ∼ 13.1
km. Raithel (2019) obtained limits on the R1.4 to be 9.8 -
13.2 km from Bayesian analysis of the GW data. Recently,
Capano et al. (2020) constructed a large number of EoS us-
ing effective field theory and marginalized them using the
GW observations. They obtained R1.4=11.0+0.9

−0.6 km (90%
credibility interval), with the upper limit lower than the one
of Burgio at al. Very recently, Al-Mamun et al. (2020) com-
bined electromagnetic and gravitational wave constraints in
a Bayesian analysis and obtained a set of 1σ and 2σ con-
straints on R1.4 with mean points around 12 km. But note
that all these limits are, at least to certain extend, depen-
dent on the EoS used in the analysis (see e.g. Dexheimer
et al. (2019)) for a study showing that, even within one
model, considering different nuclear interactions can change
the radius-tidal deformation relation.

The only observational data known to us which report
gravitational mass and the corresponding radius on the same
object are the results from the NICER mission. Bayesian
inference approach of the energy-dependent thermal X-ray
waveform of the isolated 205.53 Hz millisecond pulsar PSR
J0030+0451 yields its estimated mass 1.44+0.15

−0.14 M� and ra-

dius 13.02+1.24
−1.06 km with 68% confidence level Miller et al.
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Figure 8. Total hyperon fraction as a function of baryon number

density as calculated in the QMC-A, CMF and DD2Y models at
T=0 MeV (top panel) and the total strangeness fraction in the

enclosed neutron-star baryonic mass (bottom panel).

(2019), consistent with the outcome of an independent anal-
ysis by Riley et al. (2019) 1.34+0.15

−0.16 M� and radius 12.71+1.14
−1.19

km. We display these data in the right panel of Fig. 6.
Lattimer & Prakash (2005) proposed that EoS-

independent Tolman VII solution to Einstein’s equations
sets an upper limit to the central density of cold, non-
rotating NS with maximum mass configurations between 1.8
- 2.1 M � in the range 9 - 10 nB/n0 (see Fig.1 in Lattimer
& Prakash (2005)). All three models in this work are well
within this limit with central densities 4.75, 5.69 and 5.87
nB/n0 for QMC-A, CMF and DD2Y models, respectively,
as demonstrated in the left panel of 6.

It is interesting to note that this central density seems
to be rather independent of the hyperonic core make up.
Density distributions of nucleons and hyperons in configu-
rations with maximum masses as function of stellar radius
are illustrated in Fig. 7 (for the core only). A significant
difference in hyperon populations in the three models, the
QMC and the CMF, when compared to the DD2 model, is
apparent. The large increase in strangeness population re-
flects mainly in the lowering of the maximum mass in the
DD2Y model, but also other differences between the nucle-
onic and hyperonic stars predicted in the QMC and CMF
models.

Fig. 7 shows that the radial distribution of particle
species in a cold star is again model dependent. All hy-
peron species disappear at roughly 5, 7, and 9 km from
the stellar center in the QMC-A, CMF and DD2Y mod-
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scenario I (left panel) and scenario II (right panel), as calculated

in the QMC-A model. Only results for nB in the region 2.0×10−2

- 2.0×10−9 fm−3 are shown for clarity.

els, respectively. Beyond these thresholds, the NS matter is
composed only of nucleons and leptons (not shown here).
The hyperon content in the PNS can be further quantified
by examination of the total hyperon fraction Y=

∑
j n( j)/nB

and total strangeness fraction Ys=
∑

j S( j)n( j)/nB, where j
denotes a hyperonic specie and S the strangeness number.
The baryon number density dependence of the hyperon frac-
tion (top panel) and the fraction of strange matter in a star
with a given baryon mass (bottom panel) are illustrated in
Fig. 8 . They show how hyperons dominate the behaviour of
a massive NS within the DD2Y model and the behaviour of
their inner cores within the QMC model.

3.2.2 Neutron stars at finite temperatures (PNS)

Calculation of the structure of a hot PNS is complicated
by the uncertainty in the location of the neutrinosphere,
which is needed as a boundary condition for solution of the
TOV equation. We have examined the dependence of the
maximum mass and the corresponding radius by solving the
TOV equation up to a fixed baryon number density in the
region of 2.0×10−2 - 2.0×10−12 fm−3, instead of locating the
surface of the star at zero pressure. The results, shown in
Fig. 9, demonstrate that the maximum gravitational mass
and the corresponding radius, computed at surface density
lower than nB ≤ 2.0×−9 fm−3 are practically identical to
those obtained with the definition of the surface at zero
pressure. This conclusion holds for all scenarios and the EoS
considered in this work. We observed a minor difference in
radii of the lower mass models for the case of neutrino trap-
ping matter, which is likely reflecting the accuracy of the
calculation at very low particle number density. The study
was repeated for the CMF and DD2Y models with very sim-
ilar results. We have adopted 2.0×10−12 fm−3 as the surface
density in all cases.

The properties of hot stars as calculated here are sum-
marized in Table 1 in comparison with the T=0 results. Fi-
nite temperature changes significantly the distribution of hy-
perons inside a PNS, when compared to a cold star. We have
already shown in Sec. 3.1.2 that the population of hyperons

Table 1. Macroscopic properties of stars, as predicted in the
QMC-A, CMF and DD2Y models in different scenarios. Gravita-

tional mass in units of M�, radius in km, central pressure P and

energy density ε in MeV/fm3, and central baryonic density nB in
fm−3 for different stars, scenarios and composition. The value of

the slope of the symmetry energy at saturation L in MeV in cold,
nucleon only matter is added in connection with the radius of the

1.4 M� NS. For more discussion see text.

Model QMC-A CMF DD2Y

NS hyperons
Mmax 1.963 2.075 2.091

R 12.42 12.04 11.47
Pcent 210.7 337.4 435.1

εcent 1005 1111 1221

nBcent 0.872 0.908 0.973

NS nucleons

Mmax 2.125 2.137 2.417
R 11.37 12.16 11.87

Pcent 502.8 352.3 519.4

εcent 1273 1085 1099
nBcent 1.019 0.892 0.851

R1.4 13.55 14.14 13.17
L 54 88 58

Pcent 45.9 56.8 46.8

εcent 387.7 329.0 353.3
nBcent 0.388 0.328 0.353

PNS hyperons scenario I
Mmax 2.022 2.025 2.177

R 12.987 12.51 12.46
Pcent 256.5 369.1 414.0

εcent 1122 1208 1143

nBcent 0.880 0.937 0.883

PNS nucleons scenario I

Mmax 2.107 2.041 2.372
R 12.40 12.69 12.3

Pcent 410.0 376.7 590.6

εcent 1237 1197 1139
nBcent 0.940 0.929 0.844

PNS hyperons scenario II
Mmax 1.966 2.077 2.068

R 13.61 12.57 12.08

Pcent 181.8 317.6 428.9
εcent 956.9 1075 1248
nBcent 0.815 0.862 0.963

PNS nucleons scenario II
Mmax 2.205 2.203 2.426
R 12.65 13.5 12.79

Pcent 329.8 343.0 463.8

εcent 1111 978.4 1039
nBcent 0.874 0.783 0.789

grows with increasing density and temperature. In Fig. 10 we
demonstrated that radial distribution of the hyperon popu-
lation inside the stellar core is also significantly impacted,
contrary to the result at zero temperature, by increasing
temperature. Comparing Fig. 7 with Fig. 10 shows that, for
example, Λ hyperons can be found almost throughout the
whole volume of massive stars, reaching close to 10 km from
the stellar center. This spreading is wider in scenario II, in
which the PNS is hotter than in scenario I.
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Figure 10. The same as Fig. 7 but for hot PNS in scenario I

and II.

It has been suggested (Lopes & Menezes (2014); Hu
et al. (2020); Li & Magno (2020)) that there is a correla-
tion between the slope of the symmetry energy, L, and the
radius of the canonical 1.4 M� NS. We find (see Table 1)
that this correlation is not strong in the cases studied in
this paper. Although the CMF model predicts L=88 MeV
and the radius R1.4 = 14.14 km and both QMC-A and DD2
models have smaller value of L, 54 MeV and 58 MeV, and
smaller radii, 13.55 km and 13.17 km, respectively, the rela-
tion between predictions of the QMC-A and DD2 models is
reversed.

In the same fashion, the total hyperon fraction and
strangeness fraction in both scenarios I and II, displayed in
Fig. 11, predict a substantial amount of strangeness present
in a PNS just a few milliseconds after birth. This amount
decreases during the cooling process when some strangeness
producing reactions freeze out and the composition of the NS
core is fixed to what is expected in cold stars (see Fig. 1).

4 ROTATING STARS

So far, we have investigated properties of cold and hot static
NS. Now, we turn our attention to rigid rotation (differential
rotation goes beyond the scope of the present manuscript),
which deepens our discussion, as it affects not only the
masses and radii of stars, but also their composition in a
significant way. It is still an open question whether PNS
rotate at their birth, but there is significant evidence of,
for example, fast rotating young millisecond pulsars (Bassa
et al. (2017); Pleunis et al. (2017)). It is not clear whether
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Figure 11. Total hyperon fraction as a function of baryon num-

ber density as calculated in the QMC-A, CMF and DD2Y mod-

els (top panel) and the total strangeness fraction in the enclosed
neutron-star baryonic mass (bottom panel) at finite temperature

in scenarios I and II for a comparison with Fig. 8 .

a star in a close binary system can gain angular momentum
just before merging. But if it can, the calculation of its mass
may be different. The data on dynamics of the stars should
be added to the prior in a Bayesian treatment.

Let us start our discussion with the moment of inertia
I, which is a candidate for providing a much needed observa-
tional constraint of the high density EoS. It is proportional
(using Newtonian physics for simplicity in this argument)
to the mass M of a star times its radius R squared. Thus,
if the mass of a star is known, its radius can be determined
from observation of its moment of inertia. Together with the
quadrupole moment, Q, and the Love number, k2, reflecting
the deviation from sphericity and the deformability of the
star, I is one of the global observables which is believed to
exhibit universal relations (see Wei et al. (2019) and refer-
ences therein), which are approximately equation of state
independent.

Here we calculate two quantities, I/M3, and I/MR2, as
a function of the stellar gravitational mass and its compact-
ness, M/R. The results are shown for cold (hot) stars in
Fig. 12 (Fig. 13), confirming that the three models analyzed
in this work, QMC-A, CMF, and DD2Y, indeed exhibit very
similar patterns for these quantities, thus, being good candi-
dates to be included in data sets leading to extraction of the
most likely value of stellar radius from a known mass and
moment of inertia. Note that the EoS spread seen in Fig. 13
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Figure 12. The normalized moment of inertia I/M3 (top) and

I/MR2 (bottom) vs. gravitational mass (left) and compactness
M/R (right) calculated for T=0 MeV. Note that the figure is

organized at the same way as Figure 2 in (Wei et al. (2019)) to

allow for a comparison of EoS.
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Figure 13. The same as Fig. 12 but for hot PNS stars in scenarios

I and II.

is expected to be larger at finite temperature Martinon et al.
(2014). In particular, there is a systematic difference between
the curves for scenario I and scenario II. Further exploration
of universal relations between global parameters of NS is in
progress.

This calculation was performed using a slow rotation
code based on the Hartle-Thorne method (Miller (2020)) It
is, however, also interesting to explore fast rotating stars
close to and at their Kepler frequency, the maximum fre-
quency at which stars are still compact, not shedding matter.
In particular, the limit on the maximum mass of a fast spin-
ning star is important for the ongoing discussion of the possi-
ble identification of the compact object with a gravitational
mass around 2.6 M�, recently observed though the detec-
tion of gravitational waves from its merger GW190814, as a
neutron star (Abbott et al. (2020); Dexheimer et al. (2020)).
For this purpose, we used the publicly available RNS code
(Stergioulas & Friedman (1995)).

In Fig. 14, we show gravitational masses for cold (top-
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Figure 14. Gravitational mass (top) and the Kepler frequency

(bottom) vs central energy density for cold stars (left) and hot
stars (right).

left panel) and warm (top-right panel) stars rotating at the
Kepler frequency. It can be seen that nucleonic stars can
carry gravitational masses up to 2.5 - 2.7 M�, but hyperonic
stars can only carry gravitational masses up to 2.3 - 2.5
M� for the different models. Therefore the compact object
with 2.6 M� may not be out of the question as a neutron
star if it rotates close to the Kepler frequency, identified in
the bottom-left panel. It is also interesting to see limiting
rotation frequencies for low mass NS, relevant for BNSM,
where the spread is not large. This is not the case for PNS,
where the mass and Kepler frequency spread is large for a
given (small or large) central energy density. We are aware
of the fact that hot PNS are less compact and therefore
may rotate faster than cold stars. However, the results in
Fig. 14 suggest the opposite trend. This may be an effect
of the larger hyperon content spread out all over the core
or, possibly, of just using only rigid rotation model. We will
investigate the rotation patterns of hot stars in more detail
in future work.

5 SUMMARY AND OUTLOOK

In this work, we presented for the first time results for the
QMC-A model, based on sub-nucleon degrees of freedom, for
conditions modeled after different stages of stellar evolution,
including one for neutron stars and two different stages for
proto-neutron stars. The latter included a lower constant
entropy per baryon together with a large amount of lep-
tons (including neutrinos) and a larger constant entropy per
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baryon free of neutrinos. These two different stages inspired
by supernova explosion simulations provided us with a tem-
perature distribution that modified the particle population
content in stars. In all cases, a substantial amount of hy-
perons were found in the core of massive stars, although
larger in the first two evolution stages than in the later one,
signaling how strangeness changes over time. Note that the
slightly lower amount of hyperons in the first stage consid-
ered to model proto-neutron stars comes from the imposition
of fixed lepton fraction.

The hyperon population reflects on the maximum possi-
ble stellar mass found in different states of evolution, which
decreases with time. Of course, as expected, if the hyperons
are artificially suppressed, stellar masses increase for any
given stage condition. But there is no motivation to do so,
as hyperons naturally appear in dense matter as soon as
the Fermi energy of the system is larger than the respective
hyperon chemical potential (at zero temperature), which de-
pends not only on its mass, but also on the interactions. The
QMC-A model has very few coupling parameters, which are
constrained in order to fulfill nuclear constraints, including
radii derived from tidal deformability of low mass cold stars.
This formalism predicts, for example, that no Σ hyperons ap-
pear in cold neutron stars, which is backed up by the absence
of measured Σ hypernuclei.

In this work, we have also shown the effect of the ap-
pearance of hyperons in the adiabatic index and in the speed
of sound cS . We found that a low speed of sound within
the conformal limit at large densities c2

S
< 1/3 can be re-

produced by our hadronic model, not being in this case a
unique fingerprint of quark matter cores in neutron stars,
but more a general consequence of instabilities caused by a
(not first-order) phase transition, such as from nucleonic to
hyperonic matter. Our results re-open the question of the
existence of r-modes in rotating neutron stars (Andersson &
Kokkotas (2001); Haskell (2015)). Jones (2001b,a) reported
that the bulk viscosity of hyperonic matter in neutron stars
would produce a serious damping of the r-modes. Lidblom
and Owen Lindblom & Owen (2002) argued that although
the cooling of the PNS is too rapid to influence the r-modes.
It will be interesting to pursue the connection between r-
modes and the internal composition of neutron stars in the
future.

When rotation is included, our moment of inertia re-
lations follow the standard universal relations determined
by other models. We can also reproduce massive stars, such
as the neutron-star candidate observed in the gravitational-
wave merger event GW190814 when rotation frequencies
were taken to the Kepler limit. For this purpose, we used
the publicly available RNS code.

Throughout this work, we compared our results with
results from two other relativistic models, the DD2 and
the CMF, each one containing very different physics. In
this way, we could have a better idea of how model de-
pendent our results were. To build our figures and table,
we have constructed QMC-A equation of state tables con-
taining data in the parameter space compatible with core-
collapse supernovae and neutron star mergers simulations.
These tables will be posted on the CompOSE depository
(http://compose.obspm.fr) in the near future.
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