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We investigate the phase transition from hadron to quark matter in the general case without the
assumption of chemical equilibrium. The effects of net strangeness on charge and isospin fractions,
chemical potentials, and temperature are studied in the context of the Chiral Mean Field (CMF)
model that incorporates chiral symmetry restoration and deconfinement. The extent to which
these quantities are probed during deconfinement in conditions expected to exist in protoneutron
stars, binary neutron-star mergers, and heavy-ion collisions is analyzed via the construction of 3-
dimensional phase diagrams.

I. INTRODUCTION

Recent works have discussed the possible similarities
between the conditions in energetic astrophysical envi-
ronments, such as protoneutron stars, core-collapse su-
pernovae, and neutron-star binary mergers, to those
present in heavy-ion collisions (HICs) [1, 2]. These sim-
ilarities are a consequence of (i) new low-energy heavy-
ion experiments that are starting to produce matter at
larger densities, together with more refined HIC calcula-
tions that allow for large chemical potential fluctuations
at all energies [3] and (ii) high temperatures (compared
to the Fermi temperature) achieved in some astrophysi-
cal phenomena that, unlike in the case of cold-catalyzed
neutron stars, cannot be ignored. In particular, the tem-
perature in protoneutron stars can be as high as 30− 40
MeV [4, 5] and, in mergers, it can exceed 50 MeV or even
reach 100 MeV [6, 7]. On the other hand, contempo-
rary full general-relativity simulations [8] indicate that
neutron-star mergers cannot attain the large charge frac-
tions of close to YQ = 0.4 produced in HICs (eg. for
Au-Au and Pb-Pb) and supernovae [9, 10]. This is a new
feature as, before the advent of compact star mergers, all
known hot astrophysical systems out of chemical equilib-
rium were newly formed and, therefore, still contained
a significant amount of protons from the original heavy
nuclei in the progenitors. The knowledge of such a large
variety of conditions created the need to study hot and
dense matter under a large range of charge fractions.

Phase diagrams for high energy matter (usually re-
ferred to as or Quantum Chromodynamics - QCD - phase
diagrams) showing the position of the first-order decon-
finement and chiral symmetry restoration phase transi-
tion are usually only depicted in two dimensions, tem-
perature and baryon number density/chemical potential
or temperature and isospin number density/chemical po-
tential. The latter are interesting due to the fact that
lattice QCD results are not afflicted by the sign problem
at finite isospin chemical potential µI [11–17], as long as
the baryon chemical potential µB remains zero. When
µB 6= 0 or, equivalently, when there is a difference in the
number of particles and anti-particles in the system, first-

principle methods such as non-perturbative lattice QCD
simulations cannot be performed due to the well-known
fermion “sign problem” [18–21]. Although a considerable
amount of theoretical work has been devoted to the sub-
ject [22–68], the phase diagram of high-energy physics
still remains poorly understood.

Another issue raised in the literature is the manner in
which strangeness can affect phase diagrams. Ref. [69]
has recently studied this for the particular case of isospin
symmetric matter using functional renormalization the-
ory, although this is not a new topic [70–73]. Lattice
QCD calculations have also studied the effects of a non-
zero strange chemical potential in, for example, the cur-
vature of the chiral pseudo-critical line [74, 75]. In this
work, we consider two scenarios. In one of them, there
is no constraint on strangeness, assuming that chemical
equilibrium with respect to the weak force has already
been achieved, in which case there is no need to define
a strange chemical potential. In the other case, it is as-
sumed that there is not enough time for strangeness to
be produced, in which case the strange chemical potential
must be numerically determined in each phase to produce
a zero net-strangeness fraction.

When the baryon chemical potential is finite, the
usual practice in the literature has been to construct 2-
dimensional phase diagrams (with temperature on the
other axis) either in weak-chemical equilibrium, referring
to fully-evolved neutron star matter with the charged
chemical potential set to minus the electron chemical po-
tential µQ = −µe, or in an isospin-symmetric configu-
ration with µI = 0, referring to matter created in rel-
ativistic HICs. In this work, we examine the behavior
of the deconfinement coexistence region in 3-dimensional
phase diagrams as a function of either the (hadronic and
quark) charge fraction YQ or the isospin fraction YI (with
temperature and baryon chemical potential/free energy
completing our coordinate system). We do that numer-
ically by varying the charged or isospin chemical poten-
tial, and in some cases also the strange chemical poten-
tial. Note that the charge fraction YQ is the variable
usually employed in equations of state for astrophysical
applications, while the isospin fraction YI is more com-
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monly used in HIC applications. The relation between
the two quantities is trivial only when net strangeness
is zero. Our calculations and discussion extend to phase
diagrams in which the charge and isospin fractions are
replaced by the corresponding chemical potentials, both
at zero and non-zero net strangeness. As pointed out
in Ref. [76], it is important to understand which plane
of the high-energy phase diagram is being probed, eg.
in the HIC Beam Energy Scan experiment, as the tradi-
tional critical point for isospin-symmetric matter without
strangeness constraints may never be reached in the ex-
periment.

II. FORMALISM

A. The CMF model

In order to construct our phase-diagrams, we make use
of the Chiral Mean Field (CMF) description. It is based
on a nonlinear realization of the SU(3) sigma model and
constructed in such a way that chiral invariance is re-
stored at large temperatures and/or densities. In its
present version, it contains hadronic, as well as quark
degrees of freedom 1, and its Lagrangian density is given
by [79, 80]:

L = LKin + LInt + LSelf + LSB − U, (1)

where LKin is the kinetic energy density of hadrons and
quarks. The remaining terms are:

LInt = −
∑
i

ψ̄i
[
γ0

(
giωω + giφφ+ giρτ3ρ

)
+M∗i

]
ψi,

LSelf =
1

2

(
m2
ωω

2 +m2
ρρ

2 +m2
φφ

2
)

+ g4

(
ω4 +

φ4

4
+ 3ω2φ2 +

4ω3φ√
2

+
2ωφ3

√
2

)
− k0

(
σ2 + ζ2 + δ2

)
− k1

(
σ2 + ζ2 + δ2

)2
− k2

(
σ4

2
+
δ4

2
+ 3σ2δ2 + ζ4

)
− k3

(
σ2 − δ2

)
ζ

− k4 ln

(
σ2 − δ2

)
ζ

σ2
0ζ0

, (2)

LSB = −m2
πfπσ −

(√
2m2

kfk −
1√
2
m2
πfπ

)
ζ,

U =
(
aoT

4 + a1µ
4
B + a2T

2µ2
B

)
Φ2

+ a3T
4
o ln

(
1− 6Φ2 + 8Φ3 − 3Φ4

)
. (3)

Here, LInt represents the interactions between baryons
(and quarks) mediated by the vector-isoscalar mesons

1 Note that an alternative version of the CMF model includes in
addition the chiral partners of the baryons and gives the baryons
a finite size [77, 78]

ω and φ (strange quark-antiquark state), the vector-
isovector ρ, the scalar-isoscalars σ and ζ (strange quark-
antiquark state), and the scalar-isovector δ. LSelf de-
scribes the self-interactions of the scalar and vector
mesons. The chiral symmetry breaking term responsi-
ble for producing the masses of the pseudoscalar mesons
is given by LSB. U is the effective potential for the
scalar field Φ. It depends on the temperature and the
baryon chemical potential in order to reproduce the stan-
dard view of the high-energy phase diagram concerning
the shape of the deconfinement first-order phase transi-
tion coexistence line and its intersection with the zero-
temperature axis. Its pure temperature contribution was
fitted to reproduce the results of the Polyakov loop in the
PNJL approach [81, 82] at zero baryon chemical potential
(see details below when discussing quark couplings). The
chemical potential and mixed terms were motivated by
symmetry and simplicity. The former one also contains
the correct scale in the asymptotic zero-temperature case.
The index i runs over the baryon octet and the three
light quarks. Leptons are not included in this calcula-
tion, since they are not present in HIC initial conditions
and are not in chemical equilibrium with the rest of the
system in the astrophysical scenarios we discuss.

The coupling constants of the hadronic part of the
model are given in Ref. [83]. They were fitted to re-
produce the vacuum masses of baryons and mesons, nu-
clear saturation properties (density ρ0 = 0.15 fm−3, bind-
ing energy per nucleon B/A = −16 MeV, compressibil-
ity K = 300 MeV), symmetry energy (Esym = 30 MeV
with slope L = 88 MeV), and reasonable values for the
hyperon potentials (UΛ = −28.00 MeV, UΣ = 5 MeV,
UΞ = −18 MeV). The predicted critical point for the
nuclear liquid-gas phase transition of isospin symmetric
matter lies at Tc = 16.4 MeV, µB,c = 910 MeV. The
vacuum expectation values of the scalar mesons are con-
strained by reproducing the pion and kaon decay con-
stants.

As a result of their interactions with the mean field
of mesons and the field Φ, the baryons and the quarks
acquire (Dirac) effective masses, which have the form:

M∗B = gBσσ + gBδτ3δ + gBζζ +M0B
+ gBΦΦ2,

M∗q = gqσσ + gqδτ3δ + gqζζ +M0q + gqΦ(1− Φ), (4)

where the bare masses are M0 = 150 MeV for nucleons,
354.91 MeV for hyperons, 5 MeV for up and down quarks,
and 150 MeV for strange quarks (see Ref. [83] for the
coupling constants in the quark sector). Notice that for
vanishing values of Φ, M∗q is large, which suppresses the
quarks. Conversely, values of Φ close to 1 suppress the
hadrons. In this sense, Φ acts in our approach as an order
parameter for deconfinement, as it only gives rise to a
quark phase in the expected regime of large temperatures
and/or densities.

The coupling constants of the quark sector are fitted
to lattice data and to expectations from the phase di-
agram. The lattice data include (i) the location of the
first-order phase transition and the pressure functional
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P (T ) at µB = 0 for pure gauge (the latter resulting
from the PNJL model fitted to lattice) [82, 84] and (ii)
the crossover pseudo-critical temperature and suscepti-
bility dΦ/dT at vanishing chemical potential, together
with the location of the (T, µB) critical end-point for
zero net-strangeness isospin-symmetric matter [85]. The
phase diagram expectations include a continuous first-
order phase-transition line that starts at T = 167 MeV
temperature for zero-strangness isospin-symmetric mat-
ter and terminates on the zero-temperature axis at four
times the saturation density of chemically-equilibrated
and charge-neutral matter. See Ref. [83, 86] for a detailed
description of the effects of deconfined quarks inside neu-
tron and protoneutron stars within the CMF model.

Note that the CMF description allows for the existence
of a small admixture of quarks in the hadronic phase and
a small admixture of hadrons in the quark phase at finite
temperature. This feature becomes more prominent with
increasing temperature and is required for the reproduc-
tion of the crossover transition known to take place at
very large temperatures [87]. Despite this, quarks always
have the dominant contribution in the quark phase (de-
fined by a large Φ), and hadrons in the hadronic phase
(defined by a small Φ). The first-order phase transition is
characterized by a discontinuity in Φ, which disappears
at the critical point, beyond which (for higher tempera-
tures) only one phase exists. Note that at zero tempera-
ture, the hadronic phase only contains hadrons (Φ = 0)
and the quark phase only contains quarks (Φ ∼ 1).

In this work, we choose to only show our phase dia-
grams up to T = 160 MeV, a little bit below the criti-
cal temperature Tc = 167 MeV predicted by the current
parametrization of the model for zero net-strangeness
isospin-symmetric matter. This is done for two differ-
ent reasons. First, our critical point position was fitted
and any modification to it would not affect the qualitative
conclusions of our work. Second, we want to keep the dis-
cussion entirely general and the inclusion of a "special"
feature, such as the critical point, would detract from
our goals. In addition, the CompOSE [88] repository
contains equation of state tables that go up to T = 160
MeV, so all of our results could be reproduced as soon as
our tables are uploaded to their website. So far, only the
hadronic version of our tables are available online [89],
but complete ones with quarks will be available soon.

B. Useful Relations

We are interested in systems that are in equilibrium
with respect to the strong and electromagnetic interac-
tions, therefore, baryon number B and electric charge Q
are conserved. In some of the cases we study, chemi-
cal equilibrium is not attained because weak interactions
operate over much longer timescales (than the time scale
of the system), introducing an extra condition of zero
net strangeness S. The conserved quantities listed above
correspond to our three independent chemical potentials

µB , µQ, and µS . The total chemical potential µi of each
fermionic species i can be expressed as a linear combina-
tion of these:

µi = QB,i µB +Qi µQ +QS,i µS . (5)

This equation was derived in detail throughout Ref. [90]
without any model assumption using Lagrange multipli-
ers. The conventions we adopt for the values of the quan-
tum numbers Q’s for the baryon octet and the three light
quark species are given in Table I of Appendix A, followed
by the resulting chemical potentials of the various species.
Note that we consider the strangeness of particles to be
positive in our notation, otherwise, all strangeness re-
lated quantities would have to have their signs reversed.
For the purposes of our calculations, it is more conve-
nient to work with fractions, the charge fraction being
the amount of charged baryons and quarks over the total
amount of baryons and quarks:

YQ =
Q

B
=
nQ
n0
B

=

∑
iQi ni∑
iQB,i ni

, (6)

where the n′s are number densities. Note that within
the CMF model n0

B =
∑
iQB,ini is not the same as

the baryon number density nB , as the latter comes from
the derivative of the pressure with respect to the baryon
chemical potential and, therefore, also contains a contri-
bution from the potential U(Φ) when quarks are present
(see Eq. (3) and discussion at the end of this section). For
low temperatures, this contribution can be safely ignored
on the hadronic-phase side of the phase-coexistence re-
gion, where Φ is approximately zero and, thus, n0

B ' nB .
Furthermore, we can insert the Gell-Mann-Nishijima re-
lation [91]:

Qi = QI,i +
1

2
QB,i −

1

2
QS,i, (7)

where QI,i is the isospin of particle i, in the definition of
charge density from Eq. (6) to obtain:

nQ = Σi

(
QI,i +

1

2
QB,i −

1

2
QS,i

)
ni,

= nI +
1

2
n0
B −

1

2
nS , (8)

where we have also used the definitions of the isospin
density nI = ΣiQI,ini and strangeness density nS =
ΣiQS,ini. Dividing Eq. (8) by n0

B and using the defi-
nitions of isospin fraction YI = nI/n

0
B and strangeness

fraction YS = nS/n
0
B results in:

YQ = YI +
1

2
− 1

2
YS , (9)

so we can finally write:

YI = YQ −
1

2
+

1

2
YS , (10)

as a new way to calculate the isospin fraction in a for-
malism in which charge is the conserved quantity.
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Combining Eqs. (5) and (7) gives:

µi = QB,iµB +

(
QI,i +

1

2
QB,i −

1

2
QS,i

)
µQ +QS,iµS ,

= QB,i

(
µB +

1

2
µQ

)
+QI,iµQ +QS,i

(
µS −

1

2
µQ

)
,

= QB,i µ
′
B +QI,i µI +QS,i µ

′
S . (11)

A comparison of the above with Eq. (5) reveals that our
conserved charge formalism is equivalent to another in
which the isospin is fixed, leaving the isospin chemical
potential as the independent chemical potential (together
with µB and µS), provided we use the following new vari-
ables:

µ′B = µB +
1

2
µQ and µ′S = µS −

1

2
µQ. (12)

In this way, the chemical potentials correspond, µI = µQ,
and no modifications to our numerical codes are required
to show isospin fractions and isospin chemical potentials.
To the best of our knowledge, these model-independent
fractions and isospin correspondences Eqs. 10-12 have
never been discussed before. The expressions for the
chemical potential of each particle included in the model
derived using Eq. (5) or Eq. (11) are given in Appendix
A.

It is also convenient to define a Gibbs free energy per
baryon (henceforth called simply free energy) of the sys-
tem, a quantity that is always the same on both sides
of a first-order phase transition in order to fulfill phase
equilibrium. In our case (when, besides baryon number,
charge fraction and strangeness fraction are also fixed),
it is:

µ̃= µB + YQµQ + YSµS . (13)

Note that the free energy will be equal to the baryon
chemical potential only in the particular cases of zero
charge fraction or zero charge chemical potential and zero
strange fraction or strange chemical potential. This is the
case in the modeling of the typical examples of delep-
tonized cold neutron stars (charge neutral in chemical
equilibrium YQtotal

= 0, µQ = −µe and with no con-
straint on net strangeness µS = 0) and relativistic HICs
(no net isospin µQ = 0 and no net strangeness YS = 0).

Eq. (13) was derived without any model assumption
throughout Ref. [90] for the particular case in which net
strangeness is not constrained (which implies µS = 0)
and charge neutrality is enforced by leptons. It was then
later discussed in full in the Appendix D of Ref. [92]. This
equation can be derived either by a Legendre transfor-
mation of the grand-potential or by taking the derivative
of minus the grand-potential with respect to the baryon
number, giving:

µ̃ =
∑
i µini/n

0
B . (14)

Substituting µi from Eq. (5) in Eq. (14) results in:

µ̃ =

(∑
iQB,ini

)
µB

n0
B

+

(∑
iQini

)
µQ

n0
B

+

(∑
iQS,ini

)
µS

n0
B

.(15)

which, using the definitions above, results in Eq. (13).
Alternatively, replacing µi from Eq. (11) in Eq. (14) leads
to:

µ̃= µ′B + YIµI + YSµ
′
S . (16)

This general equation for the free energy in a formalism
in which the isospin and strangeness are conserved had
not been discussed before in the literature.

In the particular case of the CMF model, the grand-
potential density of the system is:

Ω = −P = ε− Ts−
∑
i

µini − µBnΦ, (17)

where the last term is a non-baryonic contribution nΦ =
−(4a1µ

3
B + 2a2T

2µB)Φ2 (with negative coefficients) nec-
essary to ensure thermodynamical consistency. This fol-
lows from the fact that our potential U for Φ contains
baryon chemical potential terms and, therefore, con-
tributes to nB . One can understand these terms as aris-
ing from a chemical-potential dependence of the confine-
ment phase transition temperature, see e.g. discussions
in Refs. [93–95].

Replacing Eq. (5) in (17) gives:

Ω = ε− Ts−
(∑

i

QB,ini

)
µB (18)

−
(∑

i

Qini

)
µQ −

(∑
i

QS,ini

)
µS − µBnΦ,

Ω = ε− Ts− n0
BµB − n0

BYQµQ − n0
BYSµS − µBnΦ.

(19)

Taking the derivative of minus the CMF grand-potential
density Eq. 19 with respect to the baryon number divided
by volume n0

B gives once more Eq. (13).

III. RESULTS

A. Non-Strange Matter YS = 0

We start by discussing 3-dimensional phase diagrams
with first-order phase transition deconfinement coexis-
tence regions calculated within the CMF model for tem-
peratures in the range 0 − 160 MeV, charge fractions in
the range 0 − 0.5, and the corresponding baryon chemi-
cal potentials µB or free energies µ̃. In order to construct
those, at each given temperature and charge fraction, the
free energy is varied. The free energy of the deconfine-
ment coexistence region is determined by finding a jump
in the deconfinement order parameter Φ. This jump is
very large (basically from 0 → 1) at zero temperature,
but its size decreases with temperature until it becomes
very close to zero at our chosen maximum temperature
near the critical point. At the coexistence region, our
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Hadronic Quark

Hadronic/Quark

Fig. 1: Top panels: The temperature T vs. baryon chemical potential µB vs. charge fraction YQ phase diagram for
non-strange matter YS = 0 on the hadronic-phase side of the deconfinement phase transition coexistence region (left
panel) and on the quark-phase side (right panel). Bottom panel: The temperature T vs. free energy µ̃ vs. charge
fraction YQ phase diagram for non-strange matter either on the hadronic or quark-phase side of the deconfinement
phase transition coexistence region. All curves were calculated varying the charge fraction between YQ = 0 and

YQ = 0.5.

numerical code determines the baryon chemical poten-
tial (see equation below) and charged chemical poten-
tial that reproduce the given charge fraction. In addi-
tion, in this subsection, the strange chemical potential is
also determined numerically in order to produce a zero
net strangeness YS = 0 in each phase. This is the case
for matter produced in HICs, where there is no time for
strangeness to emerge. Note that for non-strange matter
Eq. (13) simplifies to:

µ̃= µB + YQµQ. (20)

Having YQ = 0 means that there is no net charge in the
system even though the presence of charged particles is
not prohibited insofar as the sum of their charges is zero.
Having YQ = 0.5 corresponds to the situation where the
total baryon number of the system is twice as large as
its net charge. For matter with no net strangeness at
zero temperature, the case of YQ = 0 is equivalent to

having just neutrons or two times more d-quarks than
u-quarks, whereas YQ = 0.5 corresponds to having equal
amounts of protons and neutrons or d- and u-quarks. At
finite temperature, there can be hyperons and s-quarks
present when requiring no net strangeness, as long as the
difference between the number of strange particles and
strange antiparticles is zero.

As shown in the bottom panel of Fig. 1, the free energy
at deconfinement increases as a function of YQ. This
behavior is related to the softening of nuclear matter with
increased net charge (e.g. equal numbers of neutrons and
protons), the effect being stronger for hadronic matter.
A softening of the equation of state (pressure vs. energy
density) of hadronic matter corresponds to an increase in
pressure at a given free energy (with respect to the quark
phase), therefore, extending the stability of the hadronic
phase to larger free energies.

Although the free energy is the same on both sides of
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Hadronic Quark

Hadronic Quark

Fig. 2: Same as Fig. 1 but showing the charged chemical potential µQ. The separate bottom panels show the
hadronic phase (left panel) and quark phase (right panel) sides of the deconfinement phase transition coexistence

region.

the deconfinement coexistence region, the baryon chemi-
cal potential is not. This is evident in a comparison of the
top left (hadronic phase) to the top right (quark phase)
panel of Fig. 1. The difference stems from the fact that
the baryon chemical potential is calculated from the free
energy using the charged chemical potential, which is dif-
ferent on either side of the phase transition (the reason
for which will be discussed in the following). In addition,
when comparing the top left panel with the bottom one,
we find a reasonable difference for all cases corresponding
to µB 6= µ̃ in Eq. (20), that is, for all YQ other than 0
and 0.5 (when µQ = 0).

The difference is much smaller between the top right
panel of Fig. 1 and the bottom one, as the charged chem-
ical potential µQ is always small in the quark phase. This
has already been shown in Fig. 3 of Ref. [83] for the par-
ticular case of chemically equilibrated matter (with and
without trapped neutrinos). Here, we extend this discus-
sion to matter out of chemical equilibrium. A comparison
of the left and right panels of Fig. 2 demonstrates that
the hadronic-phase side reaches much larger absolute val-
ues of µQ than the quark phase for small charge fractions

(corresponding to the more negative µQ’s). This can be
easily understood in the case of zero temperature. In this
case, YQ = 0 means having only neutrons, which requires
a very large difference between their chemical potential
and the proton one (that differ only by µQ, as shown in
the equations of Appendix A). In the quark phase at zero
temperature, YQ = 0 implies having twice the amount of
d-quarks than u-quarks, a much more balanced case that
requires a smaller µi difference and, therefore, a smaller
µQ absolute value.

In the case of Fig. 2 (unlike Fig. 1), the bottom panels
are always different from each other. This happens be-
cause the charged chemical potential itself is discontin-
uous across the first-order phase transition. Analyzing
separately the hadronic-phase (left) side of the coexis-
tence region in Fig. 2, it can be seen that the curves in
the top and bottom panels are always different, except
on the upper and lower boundaries of µQ.

We show phase diagrams as functions of charge frac-
tion because this is common practice in astrophysics,
where the requirement of charge neutrality implies YQ =
Yelectron. There is no corresponding general equality
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Fig. 3: Equivalent to Fig. 1 (top panels) and Fig. 2 (bottom panels) but only showing results along the
deconfinement coexistence line for 0 (left panels) and 160 MeV (right panels) temperatures. Green, red and brown
lines (all grey in black and white print) show results already discussed for non-strange matter, while black lines show

new results for strange matter.

for the electron chemical potential: the relation µQ =
−µelectron is only valid in the special case of chemical
equilibrium, which is only established in deleptonized
cold neutron stars. Similar figures to Figs. 1 and 2 are
presented in Appendix B for the equivalent scenario of
fixed isospin fraction. For non-strange matter, Eq. (10)
reduces simply to YI = YQ − 0.5 and, therefore, the
changes in both figures are trivial. More details are given
in Appendix B.

B. Strange matter YS 6= 0

In this subsection, we compactify the temperature and
only show results for T = 0 MeV and T = 160 MeV
(corresponding to the two temperature extremes in our
previous figures) in order to make comparisons. Full
3-dimensional phase diagrams with net strangeness are
available upon request. In addition to quantities shown in
the preceding subsection (for matter with net strangeness
constrained to zero) using the same colors, we now dis-
play strange matter results in black for comparison. By
strange matter, we mean matter in which there is no
constraint on net strangeness and therefore, no strange
chemical potential (µS = 0). For T = 0, no significant
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Fig. 4: Same as the top panels of Fig. 3 but showing the isospin fraction YI . Equivalent isospin chemical potential
panels would be exactly like the charged chemical potential bottom panels of Fig. 3.

difference in the position of the deconfinement phase-
transition coexistence line with respect to the baryon
chemical potential or free energy is expected due to al-
lowing for nonzero strangeness. This is because, in this
case, in our model, only a few Λ’s and Σ−’s are present
around the deconfinement free energy (and no strange
quarks) and only at small charge fractions. This is il-
lustrated in the difference between the solid brown line
and the solid black line in the upper left panel of Fig. 3.
The strange solid black line being at a larger µ̃ than the
non-strange brown dashed line is a consequence of the
hyperons softening hadronic matter when they appear
(for low charge fraction) and pushing the phase transi-
tion coexistence line to larger values of µ̃.

The difference due to strangeness in the position of
the coexistence line with respect to the baryon chemical
potential is related to the presence of strange particles,
which modify the charged chemical potential relative to
the zero-strangeness case (Eq. (13) reduces once more to
Eq. (20) for µS = 0). As a consequence, as shown in
the green vs. black stars still in the upper left panel of
Fig. 3, µB on the hadronic-phase side is lower around
intermediate charge fractions for the strange case. This
is a combination of µQ being lower in absolute value for
low and intermediate values of YQ for strange matter (see
different color stars in the bottom left panel of Fig. 3) and
the fact that µQ is multiplied by YQ in Eq. (20). As for
the quark-phase side of the phase transition coexistence
line, µQ is always small in absolute value (different color
dotted-dashed lines in bottom left panel of Fig. 3), so µB
behaves very similarly to µ̃ in strange (as well as in non-
strange matter), as seen when comparing black and red
dot-dashed and solid lines in the top left panel of Fig. 3.

For large temperatures, strangeness generates much
larger effects and the first-order phase transition it-

self is very weak (particularly for the case without net
strangeness), becoming very similar to a crossover. The
large effects translate into a significant difference in the
position of the black vs. colored lines in the top right
panel of Fig. 3: the strange black solid line for µ̃ resides
about 40 MeV higher than the non-strange dashed pink
one. For T=0, this difference is . 5 MeV. This large shift
is a consequence of the fact that, at large temperatures,
the presence of strangeness-carrying particles is enhanced
at all charge fractions, but now softening more the quark
equation of state (relative to the hadronic one) around
deconfinement. As a consequence, strangeness pushes the
free energy to larger values.

To discuss the baryon chemical potential, we first note
that at this large temperature, which is very close to the
critical point, the hadronic-phase and quark-phase sides
of the deconfinement phase transition are nearly identi-
cal. The difference in the position of µB with respect to
µ̃ has to do with the fact that, once again, the charged
chemical potential difference also needs to be accounted
for. When looking at the black stars and dot-dashed line
still in the upper right panel of Fig. 3, we find that they
are lower in comparison to the solid line for µ̃ (than in the
colored non-strange case). This has to do with the fact
that µQ is lower in absolute value and even positive for
some large charge fractions when strangeness is included
(see all black lines in the right bottom panel of Fig. 3).

Fig. 4 shows the effects of strangeness on the baryon
chemical potential and free energy as a function of the
isospin fraction YI . Now, when net strangeness is non-
zero (black curves), the left panel in this figure is not sim-
ply a constant horizontal shift from the YQ axis shown in
the top left panel of the previous figure, but a shift that,
according to Eq. (10), depends on the strangeness frac-
tion and, therefore, is different for every point. The hori-
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zontal shift is always positive and larger for low YI/YQ at
zero temperature, where there is more net strangeness.
At T = 160 MeV, the black lines in the right panel of
Fig. 4 show that the horizontal shift (with respect to the
upper-right panel of the previous figure) is always pos-
itive and substantial for all YI/YQ, as, in this case, net
strangeness is always present.

Note that in Fig. 4 we do not show bottom panels for
isospin chemical potential, as they would be identical to
the charged chemical potential bottom panels of Fig. 3.
In addition, if instead of using Eq. (10) to calculate YI , we
had rewritten our numerical code to run for fixed isospin
fraction from -0.5 to 0, we would have obtained the same
results as shown in Fig. 4 but with an extra piece on
the left and a missing piece on the right side of our finite
temperature panel, a consequence again of the non-trivial
YQ to YI shift.

IV. DISCUSSION AND CONCLUSIONS

We present, for the first time, a comprehensive study of
the effects of fixing and varying either the (hadronic and
quark) charge fraction or isospin fraction on the position
of the deconfinement to quark matter coexistence line.
To do so, we assume the deconfinement phase transition
to be of first order and make use of the Chiral Mean Field
(CMF) model to produce our equations of state. We start
by obtaining model-independent relations among charge
and isospin fractions including how they are affected by
the presence of net strangeness. We also show the re-
lation between the isospin and charge chemical poten-
tials and free energies. We then use these relations to
draw 3-dimensional high-energy phase diagrams showing
phase-transition coexistence regions for the CMF model.
This discussion is extremely timely as, historically, the
heavy-ion collision community has modeled their systems
in terms of fixed isospin fraction, while the astrophysical
community has modeled it in terms of charge fraction
(equal to the electron fraction when muons are not in-
cluded), whereas now these communities are working to-
gether to understand the hot and dense matter generated
in neutron star mergers and in low energy heavy-ion col-
lisions and need to have their findings compared. We
provided here this tool.

Our goal in this work has been to obtain a qualita-
tive description of how a given fixed charge fraction or
isospin fraction changes the position of the deconfinement
coexistence line (for a given temperature) to larger or
lower baryon chemical potential or Gibbs free energy per
baryon. To that end, we have built 3-dimensional phase
diagrams for matter that possesses no net strangeness,
the kind of matter created in particle colliders like RHIC
and LHC. We have also determined the ranges that can
be probed (given specific initial conditions of tempera-
ture and strangeness) for charge and isospin chemical po-
tentials during deconfinement along the phase-transition
coexistence line. Unlike quark matter produced in the

lab, quark matter created inside stars can be strange, as
the timeframe for its creation is much longer than the
timeframe for weak decay. To discuss the effects of net
strangeness on deconfinement to quark matter, we have
constructed 2-dimensional phase diagrams at two chosen
temperatures of T = 0 and T = 160 MeV. In the former
case, very little strangeness is created and, therefore, its
effects are minimal. In the latter, the consequences of
nonzero strangeness are significant.

For example, when the charge fraction changes from
YQ = 0 → 0.5, the baryon chemical potential at the de-
confinement coexistence line can change by up to 130
MeV (at zero temperature on the hadronic side), the free
energy by up to 50 MeV (at zero temperature), and the
charge/isospin chemical potential by up to 330 MeV (at
zero temperature on the hadronic side). At zero tem-
perature, we have found that, for non-strange matter
(YS = 0), the charged and isospin chemical potentials µQ
and µI cover a range from −420 to 0 MeV following the
deconfinement coexistence line, reaching more negative
values on the hadronic-phase side of the phase transition.
For the strange case YS 6= 0, the corresponding range is
−320 to 0 MeV, once again reaching more negative val-
ues on the hadronic-phase side of the phase transition.
On the quark-phase side of the phase transition, µQ and
µI lie between −75 and 0 MeV. At large temperatures
close to the critical point, µQ and µI become practically
the same on the hadronic and the quark sides and have
intermediate values for YS = 0 ranging from −110 to 0
MeV. Finally, when strangeness is allowed, µQ and µI at
large temperature become less negative and even posi-
tive, reaching ∼ 50 MeV (all values calculated following
the deconfinement coexistence line).

Our results show that comparisons among results from
heavy-ion collision and hot astrophysical scenarios con-
cerning the position of the deconfinement phase transi-
tion have to be interpreted carefully. Their different char-
acteristics i.e in charge fraction going from YQ ∼ 0.4−0.5
to YQ ∼ 0.1−0.15 can change considerably (by hundreds
of MeV in chemical potentials for a given temperature)
the position of the deconfinement phase-transition co-
existence line. Also, when strangeness is included, the
commonly discussed equivalence between YQ = 0.5 and
YI = 0 is broken and in reality correspond to very differ-
ent systems.

Note that the formulas presented in section IIB, con-
cerning the relation between charge and isospin fractions
and respective chemical potentials are independent of any
chosen microscopic model to describe different phases.
Concerning our quantitative results extracted from phase
diagrams, they are model dependent, as the equation of
state in each phase depends on the particle population in-
cluded and particle couplings, both of which are hard to
quantify. Nevertheless, at zero temperature, the amount
of hyperons and strange quarks allowed in models used
to describe neutron stars, as well as how isospin/charge
fractions modify the equation of state are to some extent
constrained by several laboratory and astrophysical ob-
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servations, among which we list the symmetry energy, its
slope, and the hyperon optical potentials.

More specifically, on one hand, hyperons cannot ap-
pear at very low densities due to their massive character
and (together with protons) cannot appear in a very large
number, while keeping matter from being too soft (and
unable to generate massive stars) and preventing stars
from cooling too fast [96]. On the other hand, there
are no indications that quarks appear close to satura-
tion for isospin symmetric matter, but they also cannot
appear too late, beyond densities in which hadrons are
expected to overlap. Finally, the strange quarks usu-
ally appear at larger densities than the light ones. The
uncertainty included in our calculations at finite temper-
ature is larger, as it becomes harder to find observables
to fit effective models at large densities. In this case, we
rely on comparisons with perturbative QCD to test our
model [83]. That being said, our results concerning the
dependence of the position of the deconfinement phase
transition on charge/isospin fraction is only due to the
stiffening/softening of the hadronic/quark equations of
state when different particles appear and Fermi levels are
occupied by a different amount, which strongly depends
on the particles’ quantum numbers. As a result of the
fractional nature of the quark quantum numbers, quark
matter is not as sensitive to (small) YQ as hadronic mat-
ter. As a consequence, quark matter does not respond
as much for a given change in YQ. In this sense, the ef-
fective model used to produce our results is only a tool
fitted to reproduce a reasonable particle population at
each density/temperature/charge or isospin fraction.

As a final note, it is known that systems that undergo a
first-order phase transition between phases in which more
than one charge is globally conserved are non-congruent
and present extended mixtures of phases. These cases
show no discontinuities in the first derivatives of the po-
tential [97]. An example is the case we discuss in this
work, where charge or isospin is conserved in addition
to baryon number. An exception takes place when the
charge or isospin fractions are YQ = 0.5 or YI = 0, imply-
ing that the respective chemical potentials are zero (for
an extended discussion on this azeotropic behavior, see
Section II of Ref. [92]). Another exception takes place
when the surface tension between the phases is too large
and electric charge is conserved locally instead of glob-
ally. For this work, we assume the latter and, therefore,
avoid the discussion of a mixture of phases. But, even
if that had not been the case, and we had chosen to de-
scribe a mixture of phases, its position would had varied
with respect to the free-energy or baryon chemical poten-
tial when changing the charge or isospin fraction, as the
region with the mixture of phases always encompasses
the forced-congruent (no-mixture) coexistence line.

Particle QB Q QS QI

p 1 1 0 1/2
n 1 0 0 -1/2
Λ 1 0 1 0

Σ+ 1 1 1 1
Σ0 1 0 1 0
Σ− 1 -1 1 -1
Ξ0 1 0 2 -3/2
Ξ− 1 -1 2 -1/2
u 1/3 2/3 0 1/2
d 1/3 -1/3 0 -1/2
s 1/3 -1/3 1 0

TABLE A1: Baryon number QB , electric charge Q,
strangeness QS , and isospin QI quantum numbers for

the baryon octet and the three light quarks.
Antiparticles carry opposite signs.
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APPENDIX A

The chemical potentials of the various baryon and
quark species are obtained using the appropriate values
from Table I in conjunction with Eq. 5:

µp = µB + µQ,

µn = µB ,

µΛ = µB + µS ,

µ+
Σ = µB + µQ + µS ,

µ0
Σ = µB + µS ,

µ−Σ = µB − µQ + µS ,

µ0
Ξ = µB + 2µS ,

µ−Ξ = µB − µQ + 2µS , (A1)

µu =
1

3
µB +

2

3
µQ,

µd =
1

3
µB −

1

3
µQ,

µs =
1

3
µB −

1

3
µQ + µS . (A2)
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Hadronic Quark

Hadronic/Quark

Fig. A1: Same as Fig. 1 but showing the isospin charge fraction YI .

Once more, we remind the reader that we consider the
strangeness of particles to be positive in our notation.
Otherwise, all QS,i, nS , and YS would have to be multi-
plied by −1. This would also reverse the sign of µS in all
equations. In the equivalent isospin formalism discussed
in Section II B, the chemical potentials for the differ-
ent species look the same, except for µQ being replaced
by µI . This can be obtained by replacing the values of
QB,i, QI,i and QS,i for each baryonic or quark species in
Eq. (11).

APPENDIX B

To extend the discussion of Section III A to the equiva-
lent isospin formalism, we present Figs. A1 and A2, where
we plot phase diagrams in terms of the isospin fraction YI
and isospin chemical potential µI (as opposed to the ear-
lier YQ and µQ). Since for non-strange matter Eq. (10)
reduces simply to YI = YQ − 0.5, Fig. A1 is very similar
to Fig. 1, only differing by the 0.5 shift in the YI axis.

Fig. A2 is exactly like Fig. 2, which is a consequence of
the middle term being the same in Eq. (13) and Eq. (16)
in order to reproduce the same particle chemical potential
expressions of Appendix A. All of the statements made
in this Appendix and at the end of Section III B were
verified numerically by rewriting our numerical code to
run for fixed isospin fractions.
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