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1 INTRODUCTION

Random counting measures, also known as point processes, are the central objects of this note. For general introduc-
tion, see, for instance, monographs by Olav1,2 or Erhan.3 Random counting measures have numerous uses in statistics
and applied probability, including representation and construction of stochastic processes, Monte Carlo schemes, etc.
For example, the Poisson random measure is a fundamental random counting measure that is related to the structure
of Lévy processes, Markov jump processes, or the excursions of Brownian motion, and is prototypical to the class of
completely random (additive) random measures.3 In particular, it is also well known that the Poisson random measure
is self-similar in the sense of being invariant under restriction to a subspace (invariant under thinning). The bino-
mial random measure is another fundamental random counting measure that underlies the theory of autoregressive
integer-valued processes.4,5
In this note,we explore a broad class of randomcountingmeasures to identify those that share the Poisson self-similarity

property and discuss their possible applications. The paper is organized as follows. In Section 2, we provide necessary
background and lay out the main mathematical results, whereas in Section 3, we give examples of possible applications
in different areas of modern sciences, from epidemiology to consumer research to traffic flows.
The main result of the note is Theorem 3, which identifies in a broad class of random counting measures those that are

closed under restriction to subspaces, ie, invariant under thinning. They are the Poisson, negative binomial, and binomial
random measures. We show that the corresponding counting distributions are the only distributions in the power series
family that are invariant under thinning. We also give simple examples to highlight calculus of PT randommeasures and
their possible applications.
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2 THROWING STONES AND LOOKING FOR BONES

Consider measurable space (E, ) with some collection X = {Xi} of iid random variables (stones) with law 𝜈 and some
non-negative integer-valued random variable K (K ∈ N≥0 = N>0 ∪ {0}) with law 𝜅 that is independent of X and has
finite mean c. Whenever it exists, the variance of K is denoted by 𝛿2 > 0. Let + be the set of positive -measurable
functions.
It is well known3 that the random counting measure N on (E, ) is uniquely determined by the pair of deterministic

probability measures (𝜅, 𝜈) through the so-called stone throwing construction (STC) as follows. For every outcome 𝜔 ∈ Ω,

N𝜔(A) = N(𝜔,A) =
K(𝜔)∑
i=1

IA(Xi(𝜔)) for A ∈  , (1)

where K has law 𝜅, the iid X1,X2, … have law 𝜈, and IA(·) denotes the indicator function for set A. Below, we write
N = (𝜅, 𝜈) to denote the random measure N determined by (𝜅, 𝜈) through STC. We note that N may be also regarded as a
mixed binomial process.2 In particular, when 𝜅 is the Dirac measure, then N is a binomial process.2 Note that on any test
function 𝑓 ∈ +,

N𝜔𝑓 =
K(𝜔)∑
i
𝑓◦Xi(𝜔) =

K(𝜔)∑
i
𝑓 (Xi(𝜔)).

Below, for brevity, we write N𝑓 , so that eg, N(A) = NIA. It follows from the above and the independence of K and X that

EN𝑓 = c𝜈𝑓 (2)

VarN𝑓 = c𝜈𝑓 2 + (𝛿2 − c)(𝜈𝑓 )2, (3)

and that the Laplace functional for N is

Ee−N𝑓 = E(Ee−𝑓 (X))K = E(𝜈e−𝑓 )K = 𝜓(𝜈e−𝑓 ),

where 𝜓(t) = E tK is the probability generating function (pgf) of K. In what follows, we will also sometimes consider the
alternate pgf (apgf) defined as 𝜓̃(t) = E(1 − t)K . Note also that for any measurable partition of E, say {A, … ,B}, the joint
distribution of the collection N(A), … ,N(B) is for i, … , 𝑗 ∈ N and i + … + 𝑗 = k

P(N(A) = i, … ,N(B) = 𝑗) (4)
= P(N(A) = i, … ,N(B) = 𝑗|K = k) P(K = k)

= k!
i! … 𝑗!

𝜈(A)i … 𝜈(B)𝑗 P(K = k).

The following result extends construction of a randommeasureN = (K, 𝜈) to the casewhen the collectionX is expanded
to (X,Y) = {(Xi,Yi)}, where Yi is a random transformation of Xi. Heuristically, Yi represents some properties (marks) of
Xi. We assume that the conditional law of Y follows some transition kernel according to P(Y ∈ B|X = x) = Q(x,B).

Theorem 1 (Marked STC). Consider random measure N = (K, 𝜈) and the transition probability kernel Q from (E, )
into (F, ). Assume that given the collection X the variables Y = {Yi} are conditionally independent with Yi ∼ Q(Xi, ·).
Then, M = (K, 𝜈×Q) is a randommeasure on (E×F, ⊗F). Here, 𝜇 = 𝜈×Q is understood as 𝜇(dx, d𝑦) = 𝜈(dx)Q(x, d𝑦).
Moreover, for any 𝑓 ∈ ( ⊗  )+

Ee−M𝑓 = 𝜓(𝜈e−g),

where 𝜓(·) is pgf of K, and g ∈ + satisfies e−g(x) = ∫FQ(x, d𝑦)e−𝑓 (x,𝑦).
The proof of this result is standard but for convenience, we provide it in the appendix. For any A ⊂ E with 𝜈(A) > 0,

define the conditional law 𝜈A by 𝜈A(B) = 𝜈(A∩B)∕𝜈(A). The following is a simple consequence of Theorem 1 upon taking
the transition kernel Q(x,B) = IA(x) 𝜈A(B).
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Corollary 1. NA = (NIA, 𝜈A) is a well-defined random measure on the measurable subspace (E ∩ A, A) where A =
{A ∩ B ∶ B ∈ }. Moreover, for any 𝑓 ∈ +

Ee−NA𝑓 = 𝜓(𝜈e−𝑓 IA + b),

where b = 1 − 𝜈(A).

In many practical situations, one is interested in analyzing random measures of the form N = (K, 𝜈 × Q) while having
some information about the restricted measure NA = (NIA, 𝜈A × Q). Note that the counting variable for NA is KA = NIA,
the original counting variable K restricted to (thinned by) the subset A ⊂ E. The purpose of this note is to identify the
families of counting distributions K for which the family of random measures {NA ∶ A ⊂ E} belongs to the same family
of distributions. We refer to such families of counting distributions as “bones” and give their formal definition below. The
term reflects the prototypical or foundational nature of these families within the class of random measures considered
here. One obvious example is the Poisson family of distributions, but it turns out that there are also others. The definite
result on the existence and uniqueness of random measures based on such “bones” in a broad class is given in Theorem
3 of Section 2.2.

2.1 Subset invariant families (bones)
Let N = (𝜅𝜃, 𝜈) be the random measure on (E, ), where 𝜅𝜃 is the distribution of K parametrized by 𝜃 > 0, that is,
P(K = k)k≥0 = (pk(𝜃))k≥0, where we assume p0(𝜃) > 0. For brevity, we write below K ∼ 𝜅𝜃 .
Consider the family of random variables {NIA ∶ A ⊂ E} and let 𝜓A(t) be the pgf of NIA with 𝜓𝜃(t) = 𝜓E(t) being the

pgf of K (since NIE = K). Let a = 𝜈(A), b = 1 − a and note that

𝜓A(t) = E(E tIA )K = E(at + b)K = 𝜓𝜃(at + b),

or equivalently, in terms of apgf, 𝜓̃A(t) = 𝜓̃𝜃(at).

Definition 1 (Bones).We say that the family {𝜅𝜃 ∶ 𝜃 ∈ Θ} of counting probabilitymeasures is strongly invariantwith
respect to the family {NIA ∶ A ⊂ E} (is a “bone”) if for any 0 < a ≤ 1 there exists a mapping ha ∶ Θ → Θ such that

𝜓𝜃(at + 1 − a) = 𝜓ha(𝜃)(t). (5)

Note that in terms of apgf, the above condition becomes simply 𝜓̃𝜃(at) = 𝜓̃ha(𝜃)(t).
In Table 1, we give some examples of such invariant (“bone”) families.

2.2 Finding bones in power series family
Consider the family {𝜅𝜃 ∶ 𝜃 ∈ Θ} to be in the form of the non-negative power series (NNPS) where

pk(𝜃) = ak𝜃k∕g(𝜃). (6)

and p0 > 0. We call NNPS canonical if a0 = 1. Setting b = 1 − a, we see that for canonical NNPS, the bone condition in
Definition 1 becomes

g((at + b)𝜃) = g(b𝜃)g(ha(𝜃)t). (7)
The following is a fundamental result on the existence of “bones” in the NNPS family.

Theorem 2 (Bones in NNPS). Let 𝜈 be diffuse (ie, non-atomic). For canonical NNPS 𝜅𝜃 satisfying additionally a1 > 0,
the relation (7) holds iff log g(𝜃) = 𝜃 or log g(𝜃) = ±c log (1±𝜃), where c > 0.

Name Parameter 𝜃 𝜓𝜃(t) ha(𝜃)
Poisson 𝜆 exp[𝜃(t − 1)] a𝜃
Bernoulli p∕(1 − p) (1 + 𝜃t)∕(1 + 𝜃) a𝜃∕(1 + (1 − a)𝜃)
Geometric p (1 − 𝜃)∕(1 − t𝜃) a𝜃∕(1 − (1 − a)𝜃)

TABLE 1 Some examples of “bone” distributions with
corresponding pgfs and mappings of their canonical parameters
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Proof. The proof follows from Lemma 1 in the appendix and the assumptions on NNPS family.

Remark 1 (Enumerating bones in NNPS). There are only three “bones” in canonical NNPS such that a1 > 0, namely,
𝜅𝜃 is either Poisson, negative binomial, or binomial. Note that the entries in Table 1 are all special cases.

The “bone” families of distributions {𝜅𝜃 ∶ 𝜃 ∈ Θ} are sometimes referred to as Poisson-type or PT.6 We also refer to the
random measures N = (𝜅𝜃, 𝜈), where 𝜅𝜃 is a “bone” family as Poisson-type or PT random measures. The following is the
main result of this note.

Theorem 3 (Existence and uniqueness of PT random measures). Assume that K ∼ 𝜅𝜃 , where pgf 𝜓𝜃 belongs to the
canonical NNPS family of distributions and {0, 1} ⊂ supp(K). Consider the random measure N = (𝜅𝜃, 𝜈) on the space
(E, ) and assume that 𝜈 is diffuse. Then, for any A ⊂ E with 𝜈(A) = a > 0, there exists a mapping ha ∶ Θ → Θ such that
the restricted random measure is NA = (𝜅ha(𝜃), 𝜈A), that is,

Ee−NA𝑓 = 𝜓ha(𝜃)(𝜈Ae
−𝑓 ) for 𝑓 ∈ + (8)

iff K is Poisson, negative binomial, or binomial.

Proof. The sufficiency part follows by direct verification of (8) for K Poisson, binomial, and negative binomial. The
appropriate mappings are given in the last column of Table 1. The necessity part follows upon taking in (8) constant
𝑓 of the form 𝑓 (x) ≡ − log t for some t ∈ (0, 1] and applying Corollary 1 and Theorem 2.

Remark 2. It follows from Theorem 1 that in Theorem 3, we may replace the laws 𝜈 and 𝜈A with 𝜈 × Q and 𝜈A × Q,
respectively.

Sometimes, it may be more convenient to parametrize PT distributions by their mean and variance (instead of 𝜃) and
write PT(c, 𝛿2). The following is useful in computations related to PT random measures.

Remark 3 (PT random measures can be thinned on average). Note that if N = (𝜅𝜃, 𝜈) is a PT random measure and
K ∼ 𝜅𝜃 = PT(c, 𝛿2), then for any random variable KA = NIA where A ⊂ E such that 𝜈(A) = a > 0, it follows from (5)
that

EKA = aEK = ac
EKA(KA − 1) = a2EK(K − 1) = a2(𝛿2 + c2 − c).

Remark 4 (Atomic measure and a nondifferentiable mapping). The iff result of Theorem 3 holds for diffuse measures
𝜈. When 𝜈 is atomic, the sufficiency part holds but the necessity part (uniqueness) fails if we also relax the differentia-
bility condition for the mapping h. To see this, consider the following simple example where wemay construct a bone
mapping for K that is not PT. This example was generously pointed out to us by one of the reviewers. Let E = {⧫,■}
with 𝜈{⧫} = 1∕2. There are four subsets of A ⊆ E with functions

𝜓∅(t) = 1, 𝜓⧫(t) = E((t + 1)∕2)K = 𝜓■(t), 𝜓E(t) = EtK

For A = {⧫} with a = 𝜈{⧫} = 1∕2, the restriction is 𝜓𝜃(at + 1 − a) = E((t + 1)∕2)K𝜃 with

K𝜃 =
{
K̃ =

∑K
i=1 Ci 𝜃 = 1

K 𝜃 = 2

where K̃ is the restricted or thinned version of K by independent coin tosses {Ci} (Bernoulli random variables) and
Θ = {1, 2}. Then, the bone condition

E((t + 1)∕2)K𝜃 = EtKha (𝜃)

is satisfied with the mapping

ha(𝜃) =
{
1 a = 1∕2
2 a = 1.
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3 EXAMPLES

Below, we discuss some simple examples of applications of PT random measures. The first one is an extension of the
well-known construction for compound Poisson randommeasures. The second one is (to our knowledge) an original idea
for application of binomial random measure to monitoring epidemics. Finally, the third one is an extension of a Poisson
point process to a PT process in a particle system having birth and death dynamics, applied to traffic flows of spacecraft.

3.1 Compound PT processes
Assume that the number of customers and their arrivals times over n days form a PT random measure (K, 𝜈) with K ∼
PT(c, 𝛿2) either Poisson or negative binomial. Consider the associated mark randommeasure N = (K, 𝜈 ×Q ×Q2), where
T ∼ 𝜈 gives customer arrival times, and the transition kernels Q(t, x) = P(X = x|T = t) and Q2(x, 𝑦) = 𝜈(𝑦|X = x)
describe, respectively, customer's “state” x = 1, … , s and his/her amount Y spent at the store, so that each customer may
be represented by the triple (T,X ,Y ). We further assume that customers are independent with the conditional variable
(X|T = t) ∼ Multinom(1, pt1, … , pts) and the conditional variable (Y |X = x), with mean 𝛼x and variance 𝛽2x . Assume that
we only have information about customers on a specific subsetA of n days. We would like to decompose the average total
amount E spent by customers over the entire n days period into two components, corresponding to the observed and
unobserved subsets (A and Ac). Let therefore

E = EA + EAc , (9)
whereB is the total amount spent in time set B ∈ {A,Ac}. Recall PT randommeasure N = (K, 𝜈̃), where 𝜈̃ = 𝜈 ×Q×Q2,
and consider two restricted measures NB = (KB, 𝜈̃B) where 𝜈̃B = 𝜈B × Q × Q2 for B ∈ {A,Ac}. Then,

 = N𝑓 and B = NB𝑓, B ∈ {A,Ac}

where 𝑓 (t, x, 𝑦) = 𝑦. By Theorem3,A andAc are also PT randommeasureswith the corresponding ha(𝜃) transformation
as presented in the last row of Table 1. Setting b = 𝜈(B) and recalling Remark 3, it follows from (2) that for B ∈ {A,Ac}

EB = cb 𝜈̃B𝑓 = c𝜈̃𝑓IB

= c∫ IB(t)𝜈(dt)Q(t, dx)Q2(x, d𝑦)𝑦

= c∫
B

𝜈(dt)
s∑

x=1
ptx𝛼x

and
VarB = cb 𝜈̃B𝑓 2 + b2(𝜈̃B𝑓 )2(𝛿2 − c) = c𝜈̃𝑓 IB + (𝛿2 − c)(𝜈̃𝑓 IB)2

= c ∫
B

𝜈(dt)
s∑

x=1
ptx(𝛼2x + 𝛽2x ) + (𝛿2 − c)

⎛
⎜
⎜⎝∫B

𝜈(dt)
s∑

x=1
ptx𝛼x

⎞
⎟
⎟⎠

2

.

Similarly, we find

Cov(A,Ac) = (𝛿2 − c)
⎛
⎜
⎜⎝∫A

𝜈(dt)
s∑

x=1
ptx𝛼x

⎞
⎟
⎟⎠

⎛
⎜
⎜⎝∫Ac

𝜈(dt)
s∑

x=1
ptx𝛼x

⎞
⎟
⎟⎠
.

Consequently, from (9)

E = c𝜈̃𝑓IA + c𝜈̃𝑓IAc = c𝜈̃𝑓 = c∫ 𝜈(dt)
s∑

x=1
ptx𝛼x,

as well as
Var = VarA +VarAc + 2Cov(A,Ac)

= c ∫ 𝜈(dt)
s∑

x=1
ptx(𝛼2x + 𝛽2x ) + (𝛿2 − c)

(

∫ 𝜈(dt)
s∑

x=1
ptx𝛼x

)2

.

Note that the last expression is equivalent to c𝜈̃𝑓 2 + (𝛿2 − c)(𝜈̃𝑓 )2 as obtained from (2). Note also that the term 𝛿2 − c is
zero for K Poisson (since thenNA𝑓 andNAc𝑓 are independent) but is strictly positive for K negative binomial. Intuitively,
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this implies that in this case, the observed variable NA𝑓 carries some information about the unobserved NAc𝑓 . This idea
appears to be closely related to negative binomial thinning.4 Observe that Theorem 3 states that this type of thinning
operation cannot be extended to other NNPS distributions.

3.2 SIR epidemic model
Assume that the independency of individuals (Ui) surveyed for symptoms of infectious (or sexually transmitted) disease
forms a randommeasure N = (K, 𝜈 ×Q) on the space (E, ),where E = {(x, 𝑦) ∶ 0 < x < 𝑦}. Each individual Ui = (Xi,Yi)
is described by a pair of infection and recovery times and K ∼ Binom(n, p), where n ≥ 1 and p > 0 (to be specified later).
Assume that at time t > 0, the collection of labels Lt(Ui) ∈ {S, I,R} for i = 1, … ,n is observed.
To describe the relevant mean law 𝜈 × Q, consider a standard SIR model describing the evolution of proportions of

susceptible (S), infectious (I), and removed (R) units according to the ODE system

.
St = −𝛽ItSt (10)
İt = 𝛽ItSt − 𝛾It
.
Rt = 𝛾It,

with the initial conditions S0 = 1, I0 = 𝜌 > 0,R0 = 0. Define0 = 𝛽∕𝛾 > 1 and note that

St = e−0Rt (11)

It − 𝜌e−𝛾t = −
t

∫
0

.
Sue−𝛾(t−u)du. (12)

Interpreting (0) as themass transfermodel (see previous study7)with initialmassS0 = 1, the functionSt is the probability
of an initially susceptible unit remaining uninfected at time t > 0. Since St + It + Rt = 1 + 𝜌 and I∞ = 0, then S∞ = 1 − 𝜏,
where 𝜏 ∈ (0, 1) is the solution of

1 − 𝜏 = e−0(𝜏+𝜌). (13)
By the law of total probability St = 𝜏S̃t + 1− 𝜏 where S̃t is a proper survival function conditioned on the fact that the unit
will eventually get infected, an event with probability 𝜏 < 1 given by (13). Note that the Lebesgue density function of the
proper conditional distribution function 1 − S̃t is simply

𝜈(x) = −
.
Sx∕𝜏. (14)

Define now 𝜏 Ĩt ∶= It − 𝜌e−𝛾t and note that from (12) and the last equation in (0), we may interpret 𝛾 Ĩt as the Lebesgue
density of the (conditional) recovery time t given by the Lebesgue density of the sumof two independent randomvariables,
one of them being exponential with rate 𝛾 . Hence, we may define the mean law 𝜈 × Q by taking (14) along with the
transition kernel Q(x, ·) in the form of the shifted exponential Lebesgue density

Q(x, 𝑦) = Hx(𝑦) ∼ Exp(𝛾)I{x<𝑦}(𝑦).

To complete the definition of N, take K ∼ Binom(n, p) with p = 𝜏 defined in (13) so that EK = n𝜏.
For fixed t > 0, let the sets EtS = {(x, 𝑦) ∶ x > t}, EtI = {(x, 𝑦) ∶ x ≤ t < 𝑦} and EtR = {(x, 𝑦) ∶ x < 𝑦 ≤ t} define the

t-induced partition of the space E. Define the label on the ith individual observed at time t as

Lt(Ui) =

{ S if Ui ∈ ES,
I if Ui ∈ EI ,
R if Ui ∈ ER.

Setting k = kS + kI + kR from (0), we obtain that

P(N(EtS) = kS,N(EtI) = kI ,N(EtR) = kR) (15)
= P(N(EtS) = kS,N(EtI) = kI ,N(EtR) = kR|K = k) P(K = k)

= n!
kS! kI! kR! (n − k)! (𝜏S̃t)kS (𝜏 Ĩt)kI𝜏kR(1 − S̃t − Ĩt)kR (1 − 𝜏)n−k.
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Since the overall count of susceptible labels is kS + n − k, marginalizing over the unobserved counts kS and k gives the
final distribution of I,R labels among n individuals at time t

P(N(EtI) = kI ,N(EtR) = kR) =
n!

kI!kR!(n − kI − kR)!
(𝜏 Ĩt)kI (1 − St − 𝜏 Ĩt)kRSn−kI−kRt .

Hence, it follows in particular that for the ith individual, its label probabilities at t are P(Lt(Ui) = S) = St, P(Lt(Ui) = I) =
𝜏 Ĩt and P(Lt(Ui) = R) = 1 − St − 𝜏 Ĩt.
Let A = (0, t] and define the conditional infection Lebesgue density by rescaling (14)

𝜈A(x) = 𝜈(x)I{x<t}(x)∕𝜈(A) = −
.
SxI{x<t}(x)∕(1 − St).

Then, by Theorem 3 and Remark 2, the restricted randommeasure NA = (KA, 𝜈A ×Q) is a binomial randommeasure and
according to Remark 3,

EKA = n(1 − S̃t)𝜏 = n(1 − St)

VarKA = n𝜏(1 − 𝜏)(1 − S̃t)2 + n𝜏S̃t(1 − S̃t) = nSt(1 − St),

so we see that KA ∼ Binom(n, 1 − St).

3.3 Spacecraft traffic flows
Consider a particle system of vehicles moving about in E ⊂ R3. We are interested in the locations of the vehicles in space
and time. We assume the vehicles form an independency, ie, are mutually independent, implied by weak gravitational
interaction, and their configuration forms a random countingmeasureN with number of vehiclesK ∼ 𝜅𝜃 . Particle system
ideas have been applied in air traffic control, for example, in an “interacting” particle system of aircraft for estimating
collision probabilities.8 We consider the scenario of space traffic control, now in its infancy, by takingE as the Solar System
and vehicles as spacecraft (such as satellites, rockets, space planes, space stations, probes, etc), although these ideas may
be readily applied to air traffic control, which is in a mature state.
A key issue for space traffic control is modeling the counts of the particle system in various subspaces {NIA ∶ A ⊂ E},

such as in regions of interest,9 eg, space traffic control thinning (restriction) of the particle system into orbital regimes
has been considered a topical issue in a recent Presidential Memorandum.10 Traffic flows can be subject to complex
dynamics, with varying degrees of “interactions” among spacecraft (in the sense of correlated counts in time and
space).
An obvious extension of the Poisson point process model used in Maria et al8 is to use random counting measures

closed under thinning with general covariance, ie, PT random measures. We discuss the role of PT random measures in
describing the dynamics of the arrivals of spacecraft into subspaces of time and space.
To describe the atomic structure of the particle system, first we label the spacecraft with integers i in N>0. Let Xi be

the initial location of spacecraft i in (E, ) and Yi = (Yi(t))t∈R+
be its motion in (F, ). Each Yi is a stochastic process

with state-space (E,), a path in space and time called a world line (also known as a trajectory or orbit) and regarded as a
random element of the function space (F, ) = (E, )R+ . The quantity Yi(t) is the location of spacecraft i in (E, ) at time t,
where Yi(0) = Xi is the initial location. Therefore, each spacecraft i is described by a pair (Xi,Yi). Assume X has law 𝜈 and
the conditional variable (Y |X = x) has transition probability kernel Q(x,B) = P(Y ∈ B|X = x) for B ∈  . We construct
random measures from independencies using STC. Let K ∼ 𝜅𝜃 where 𝜅𝜃 is PT. The independency Y = {Yi} forms a PT
random measureM = (𝜅𝜃, 𝜇) on (F, ) through STC as

M(A) =
K∑
i=1

IA(Yi) for A ∈  ,

with mean measure 𝜇 = 𝜈Q defined by

𝜇(A) = ∫
E

𝜈(dx)Q(x,A) for A ∈  .
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Consider the mapping h ∶ F → E as h(w) = w(t) for w ∈ F and t fixed. The PT image random measure Nt = M◦h−1 =
(𝜅𝜃, 𝜇t) on (E, ) is formed by Y(t) = {Yi(t)} through STC as

Nt(A) =
K∑
i=1

IA(Yi(t)) for A ∈  , (16)

with mean 𝜇t = 𝜇◦h−1 = 𝜈Pt defined by

𝜇t(A) = ∫
E

𝜈(dx)∫
F

Q(x, dw)IA(w(t)) = ∫
E

𝜈(dx)Pt(x,A) for A ∈  (17)

and the {Yi(t)} having conditional distributions {Pt(Xi, ·)} defined by transition kernel

Pt(x,A) = ∫
F

Q(x, dw)IA(w(t)) = P(w ∈ F ∶ w(t) ∈ A, w(0) = x) for A ∈  .

The (16) and (17)Nt = (𝜅𝜃, 𝜇t) defines an immortal particle system on (E, ). The family of transition kernels (Pt)t∈R+

is the transition semigroup in the theory of Markov processes.3 Queries about the particle system 𝑓 ∈ + form random
variables Nt𝑓 with mean (2) and variance (3).
The concept of thinning is well established for particle systems, such as in the Bienaymé-Galton-Watson branching

process literature11 as well as in the analysis of count time-series using PT thinning operators.12 Space traffic control
thinning (restriction) of the particle system into disjoint subspaces is a key operation. Using PT random measures, let
A ⊂ E with 𝜇t(A) = a > 0 be a subspace and NA = (𝜅ha(𝜃), 𝜇A) be the restricted random measure of Nt with 𝜇A(·) =
𝜇t(A ∩ ·)∕𝜇t(A). Theorem 3 says all such thinnings {NA ∶ A ⊂ E} are PT. Hence, Theorem 3 is archetypical for space
traffic control. Moreover, the PT family members identified in Theorem 3 convey distinct dynamic meanings for the
counting process of the particle system, reflected in their covariances. For Poisson, the counts of spacecraft arrivals in
disjoint subspaces are independent and Markov and correspond to low-density flows of freely passing spacecraft.13 For
binomial, the counts in disjoint subspaces are negatively correlated and are identified to following behaviors, platoons,
or congestion.14 For negative binomial, counts in disjoint subspaces are positively correlated and are identified to flows
having cycles, control intersections, or contagion.14 These ideas carry over to the random variables {Nt𝑓 ∶ 𝑓 ∈ +}.
Additional frills for the particle system include a notion of birth and death, manufacture and destruction respectively.

Death is achieved through a single point extension of the state-space to contain a point 𝜕 outside ofE called a cemeterywith
measure space (Ē, ̄), where Ē = E∪{𝜕} and ̄ =  ∪{A∪{𝜕} ∶ A ∈ }. The world line space becomes (F, ) = (Ē, ̄)R+ .
Manufacturing is the notion of an arrival time for each spacecraft Ti on (R,R), independent of spacecraft location or
motion. Yi(t) is the location of spacecraft i in (Ē, ̄) at time Ti + t, and Yi(0) = Xi is the (manufacturing) location at time
Ti. For Earth or Moon manufacturing, the motion (Y (t))t>0 involves moving the manufactured spacecraft to a spaceport,
launching, and bringing into orbit. Some spacecraft undergo repeated orbital maneuvers, such as landing at a spaceport,
launching, and bringing into orbit, repeating many times.15 Note that under this setup, the measure Pt is defective on
(E, ) as some spacecraft that are manufactured are destroyed with probability 1 − Pt(E).
The independency (T,X,Y) = {(Ti,Xi,Yi)} forms the randommeasure N = (K, 𝜂 × 𝜈 ×Q) onR×E×F through STC as

N(A) =
K∑
i=1

IA(Ti,Xi,Yi) for A ∈ R ⊗  ⊗  .

To describe spacecraft manufactured and not yet destroyed, let

h(s, x,w) =
{

(s, x,w(t − s)) for s ≤ t
(s, x, 𝜕) for s > t

and put N◦h−1 as the image of N under h. Then spacecraft manufactured and not yet destroyed at time t are represented
by the trace of N◦h−1 on E. This is formed by (T,X,Y(t − T)) = {(Ti,Xi,Yi(t − Ti))} through STC as

Nt(A) =
K∑
i=1

I(−∞,t]×E×A(Ti,Xi,Yi(t − Ti)) for A ∈  (18)
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with mean 𝜇t defined by

𝜇t(A) = ∫
(−∞,t]

𝜂(ds)∫
E

𝜈(dx)∫
F

Q(x, dw)IA(w(t − s)) for A ∈  . (19)

Other elaborations of the model Nt = (𝜅𝜃, 𝜇t) include expanding the state-space of the particle system to provi-
sion additional mark spaces, such as radiation detection and crew and passenger health monitoring systems for each
spacecraft.

4 DISCUSSION AND CONCLUSIONS

It is well known that the PT distributions are invariant under thinning.12,16 The “if” part of our Theorem 3 gives a different
proof of this result in terms of a certain functional equation called the “bone” condition. To the best of our knowledge,
the “only if” part of the theorem is novel. Therefore, the main result is the definite one on the existence and uniqueness
of PT random measures as random counting measures invariant under thinning.
We characterize PT distributions as those discrete distributions whose generating functions satisfy the “bone” condi-

tion. Hence, we can refer to the PT distributions as the “bone” class of distributions. It turns out that there are other
characterizations for PT distributions aside from the “bone” condition. For example, the PT distributions arise when con-
sidering discrete distributions whose mass functions obey a certain recursive relation and are called the Panjer or (a,b,0)
classes of distributions.17 Yet another (similar) recursive relation involving mass functions recapitulates the PT distribu-
tions as theKatz family of distributions.18 Another route to attaining the PT distributions is starting with and generalizing
the Poisson distribution to the Conway-Maxwell-Poisson distribution, each PTmember being a special or limiting case.19
These highlight show PT distributions possess rich structure and are independently retrievable using multiple distinct
hypotheses.
Given the ubiquity of random count data, PT randommeasures have wide utility in the sciences. We illustrate this with

several examples. First, we give an extension to the compound model applied to modeling the amount of money spent
by customers in a store, using compound Poisson and negative binomial random measures. We also give an application
to monitoring epidemics, showing that the popular SIR model has the structure of a binomial random measure. Finally,
we give an application to closed particle systems, highlighting how the distinct covariances of the PT random measures
confer multiple dynamical meanings to the particle system.
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APPENDIX A: PROOFS

Proof of Theorem 1. It suffices to verify the claimed identity for the Laplace functional ofM = (K, 𝜈×Q)with arbitrary
𝑓 ∈ ( ⊗  )+ as it will in particular imply the existence ofM. To this end consider

Ee−M𝑓 = E(Ee−𝑓 (X ,Y ))K = 𝜓((𝜈 × Q)e−𝑓 ),

where 𝜓(·) is pgf of K. Since

(𝜈 × Q) e−𝑓 = E∫
F

Q(X , d𝑦) e−𝑓◦(X , 𝑦) = 𝜈e−g,

where g ∈ + is defined by
e−g(x) = ∫

F

Q(x, d𝑦)e−𝑓 (x,𝑦),

therefore,
Ee−M𝑓 = 𝜓((𝜈 × Q)e−𝑓 ) = 𝜓(𝜈e−g) = Ee−Ng < ∞.

Proof of Theorem 2. The result follows from the following lemma.

Lemma 1 (Modified Cauchy equation). Assume that 𝑓 (t) is twice continuously differentiable in some neighborhood of
the origin, satisfies 𝑓 (0) = 0 and 𝑓 ′(0) > 0 as well as

𝑓 (s + t) − 𝑓 (s) = 𝑓 (h(s) t), (A1)

where h(s) is t free. Then 𝑓 is of the form 𝑓 (t) = At or 𝑓 (t) = B log (1+At) for someA,B ≠ 0. Moreover, h(s) = 𝑓 ′(s)∕𝑓 ′(0).

Proof. Differentiating (A1) with respect to t we obtain

𝑓 ′(s + t) = h(s)𝑓 ′(h(s) t). (A2)

Taking the above at t = 0 and denoting C1 = 𝑓 ′(0) > 0 gives

h(s) = 𝑓 ′(s)∕C1. (A3)
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Differentiating (A1) with respect to s yields likewise (note that h is differentiable in view of (A3))

𝑓 ′(s + t) = 𝑓 ′(s) + t h′(s)𝑓 ′(h(s) t).

Equating the two right hand side expressions and using (A3) we have

C1h(s) + t h′(s)𝑓 ′(h(s) t) = h(s)𝑓 ′(h(s) t)

𝑓 ′(h(s)t) = C1
1 − t h′(s)h(s)

.

In the last expression, we take now s = 0, denote C2 = h′(0) and consider two cases according to C2 = 0 and C2 ≠ 0.
Since by (A3) h(0) = 1, for the case C2 = 0

𝑓 (t) = At (A4)
where (A = C1) and we have one solution. Consider now C2 ≠ 0, then

𝑓 ′(t) = C1
1 − C2t

and hence the general form of 𝑓 when it is not linear is

𝑓 (t) = B log (1 + At)

where B = −C1∕C2 and A = −C2. This as well as (A4) and (A3) give the hypothesis of the theorem.
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