
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM REVIEW c� 2020 Society for Industrial and Applied Mathematics

Vol. 62, No. 4, pp. 837–865

Forecasting Elections Using

Compartmental Models of Infection
⇤

Alexandria Volkening
†

Daniel F. Linder
‡

Mason A. Porter
§

Grzegorz A. Rempala
¶

Abstract. Forecasting elections—a challenging, high-stakes problem—is the subject of much uncer-
tainty, subjectivity, and media scrutiny. To shed light on this process, we develop a method
for forecasting elections from the perspective of dynamical systems. Our model borrows
ideas from epidemiology, and we use polling data from United States elections to determine
its parameters. Surprisingly, our model performs as well as popular forecasters for the 2012
and 2016 U.S. presidential, senatorial, and gubernatorial races. Although contagion and
voting dynamics di↵er, our work suggests a valuable approach for elucidating how elections
are related across states. It also illustrates the e↵ect of accounting for uncertainty in dif-
ferent ways, provides an example of data-driven forecasting using dynamical systems, and
suggests avenues for future research on political elections. We conclude with our forecasts
for the senatorial and gubernatorial races on 6 November 2018 (which we posted on 5
November 2018).

Key words. elections, compartmental modeling, polling data, forecasting, complex systems

AMS subject classifications. 34F05, 37N99, 60G10, 91D10

DOI. 10.1137/19M1306658

Contents

1 Introduction 838

2 Background: Compartmental Modeling of Infections 841

⇤Received by the editors December 16, 2019; accepted for publication (in revised form) August
24, 2020; published electronically November 3, 2020.

https://doi.org/10.1137/19M1306658
Funding: The work of the first, second, and fourth authors was partially supported by the

Mathematical Biosciences Institute and the National Science Foundation (NSF) under grant DMS-
1440386. The work of the fourth author was also supported by the NSF under grant DMS-1853587.
The work of the first author was also supported by the NSF under grant DMS-1764421 and by the
Simons Foundation/SFARI under grant 597491-RWC.

†NSF–Simons Center for Quantitative Biology, and Department of Engineering Sciences and
Applied Mathematics, Northwestern University, Evanston, IL 60208 USA (alexandria.volkening@
northwestern.edu, https://www.alexandriavolkening.com).

‡Medical College of Georgia, Division of Biostatistics and Data Science, Augusta University,
Augusta, GA 30912 USA (dlinder@augusta.edu, https://www.augusta.edu/mcg/dphs/bds/people/
daniel linder.php).

§Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095 USA
(mason@math.ucla.edu, https://www.math.ucla.edu/⇠mason/).

¶Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH
43210 USA (rempala.3@osu.edu, https://neyman.mbi.ohio-state.edu).

837

 
 

 
 

 
j

 
 

 
 

 
py

g
 

 
p

p
g

p
g



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

838 A. VOLKENING, D. F. LINDER, M. A. PORTER, AND G. A. REMPALA

3 Model and Methods 841

3.1 Our Model of Election Dynamics . . . . . . . . . . . . . . . . . . . . . 841
3.2 Parameter Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844
3.3 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
3.4 Summary of Our Approach and Important Simplifications . . . . . . . 846

4 Results 847

4.1 2012 and 2016 Election Forecasts . . . . . . . . . . . . . . . . . . . . . 848
4.2 Accounting for and Interpreting Uncertainty . . . . . . . . . . . . . . . 848
4.3 2018 Senatorial and Gubernatorial Forecasts . . . . . . . . . . . . . . . 851

5 Conclusions 856

Appendix A. Additional Background on Compartmental Models 858

Appendix B. Election-Modeling Details 858

B.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859
B.1.1 Special Cases and Notes . . . . . . . . . . . . . . . . . . . . . . 859

B.2 Selecting Superstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860
B.3 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 860

Appendix C. Supplementary Materials 861

Acknowledgments 861

References 861

1. Introduction. Despite what was largely viewed as an unexpected outcome in
the 2016 United States presidential election, recent work [44] suggests that national
polling data are not becoming less accurate. Election forecasting is a complicated,
multistep process that often comes across as a black box. It involves polling members
of the public, identifying likely voters, adjusting poll results to incorporate demo-
graphics, and accounting for other data (such as historical trends). The result is a
high-stakes, high-interest problem that is rife with uncertainty, incomplete informa-
tion, and subjective choices [50]. In this paper, we develop a new forecasting method
that is based on dynamical systems and compartmental modeling, and we use it to
help examine U.S. election forecasting.

People typically use two primary types of data to forecast elections: polls and
“fundamental data.” Fundamental data consist of di↵erent factors on which vot-
ers may base their decisions [37]; such data include economic data, party member-
ship, and various qualitative measurements (e.g., how well candidates speak) [41, 73].
Mainstream forecasting sources, such as newsletters and major media websites, of-
fer varying levels of detail about their techniques and often rely on a combina-
tion of polls and fundamental data. Some analysts forecast vote margins at the
state or national level (e.g., [16, 31, 43, 77]), while others (e.g., [6, 11, 38, 67])
call outcomes by party without giving margins of victory. We will refer to the
former approaches as “quantitative” and the latter as “qualitative,” though both
settings typically employ quantitative data. Among quantitative forecasters, it is
important to distinguish between those that aggregate publicly available polls from
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a range of sources and those that gather their own in-house polls (e.g., The Los

Angeles Times [31]). For example, FiveThirtyEight [77] is a poll aggregator that
is known for its pollster ratings; they weight polls more heavily from sources that
they judge to be more accurate [74]. After adjusting polls to account for factors
such as recency, poll sample, convention bounce,1 and polling source, FiveThir-
tyEight uses state demographics to correlate random outcomes, such that similar
states are more likely to behave similarly [74]. For instance, in one of FiveThir-
tyEight’s simulations, they may adjust the projected vote among Mormons by a
few percentage points in favor of the Democratic candidate; in another, they may
adjust the vote among Hispanic individuals toward the Republican candidate. By
replicating this process many times for a wide range of characteristics, FiveThir-
tyEight produces outcomes that tend to be correlated in states with similar demo-
graphics [74].

In the academic literature, many statistical models (see, e.g., [41, 49, 50]) combine
a variety of parameters—including state-level economic indicators, approval ratings,
and incumbency—to forecast elections. See [54] for a review. Although some of these
methods [24, 49] blend polls and fundamental data, Abramowitz’s Time for Change
model [14] and the work of Hummel and Rothschild [41] rely on fundamental data
without using any polls. Models that are based on fundamental data alone can pro-
vide early forecasts, as they do not need to wait for polling data to become available.
However, these forecasts are not dynamic and do not measure current opinion. To
provide both election-day forecasts and estimates of current opinion, Linzer [55] aug-
mented fundamental data with recent polls using a Bayesian approach. Although the
media often stresses daily variance in polls as election campaigns unfold, the political-
science community has cautioned that such fluctuations are typically insignificant and
may represent di↵erences in technique between polling sources, rather than true shifts
in opinion [37, 42, 87]. Therefore, to account for nonrepresentative poll samples or
“house e↵ects” (i.e., bias that is introduced by the specific methods that each polling
organization, which is often called a “house,” uses to collect and weight raw poll
responses [42]), some statistical models [42, 85] adjust and weight polling data in dif-
ferent ways (in a similar vein as FiveThirtyEight [74]). One can also consider simpler
approaches, such as poll aggregation, for reducing error and improving the accuracy
of forecasts [84].

Although there is extensive work on mathematical modeling of political behavior
(see, e.g., [19, 20, 33, 34]) and opinion models more generally [25, 62], most of these
studies focus on phenomena such as opinion dynamics or on questions that are related
only tangentially to elections, rather than on engaging with data-driven forecasting.
For example, Braha and de Aguiar [20] and Fernández-Gracia et al. [33] combined
voter models with data on election results to comment on vote-share distributions
and correlations across U.S. counties. In a series of papers (e.g., [35, 36]), Galam
used a “sociophysics” approach (without reliance on polls or fundamental data) to
suggest race outcomes and shed light on the dynamics that may underlie various
election results. Very recently, Top̂ırceanu [80] developed a temporal attenuation
model for U.S. elections with a basis in national polling data. Reference [80] includes
measurements of each candidate’s momentum in time and is able to produce forecasts
at the national level.

1Candidates often receive a brief increase (i.e., a “bounce”) in support after their party’s conven-
tion. Because of this, some analysts adjust polling data shortly after the Republican and Democratic
conventions take place [74].
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Accounting for interactions between states is crucial for producing reliable fore-
casts, and FiveThirtyEight’s Nate Silver [74] has stressed the importance of correlating
polling errors by state demographics. Such correlations play an important role in the
forecasts of FiveThirtyEight. Their approach [74], which one can view as indirectly in-
corporating relationships between states through noise, relies on geographic closeness
or demographic similarity between states; these are inherently undirected quantities.
For example, if Ohio and Pennsylvania are viewed as similar by FiveThirtyEight, so
are Pennsylvania and Ohio. However, it is possible that states influence each other in
directional ways. For example, voters in Ohio may more strongly influence the popu-
lation in Pennsylvania than vice versa. The strength with which states influence each
other can depend on where candidates are campaigning, the people with whom voters
in di↵erent states interact, which distant states are featured prominently in the news,
which states most resonate with local voters, and other factors. Linzer [55] estimated
national-level influences on state voters on a daily basis using a statistical-modeling
approach, but we are not aware of prior work that has estimated directed, asymmetric
state–state relationships. We are also not aware of poll-based forecasting approaches
that take a mathematical-modeling perspective.

To make election forecasting more transparent, broaden the community that en-
gages with polling data, and raise research questions from a dynamical-systems per-
spective, we propose a data-driven mathematical model of the temporal evolution of
political opinions during U.S. elections. We use a poll-based, poll-aggregating ap-
proach to specify model parameters, allowing us to provide quantitative forecasts of
the vote margin by state. We consider simplicity in the election-specific components
of our model a strength and thus do not weight or adjust the polling data in any way.
Following Wang [84], we strive to be fully transparent; we provide all of our code,
data, and detailed reproducibility instructions in a GitLab repository [82]. We have a
special interest in exploring how states influence each other, and (because it provides
a well-established way to frame such asymmetric relationships) we borrow techniques
from the field of disease modeling. Using a compartmental model of disease dynam-
ics, we treat Democratic and Republican voting intentions2 as contagions that spread
between states. Our model performs well at forecasting the 2012 and 2016 races, and
we used it to forecast the 6 November 2018 U.S. gubernatorial and senatorial elec-
tions before they took place. We posted our forecasts [81] on arXiv on 5 November
2018. For the 2018 senatorial races, we also explore how early we can make accurate
forecasts, and we find that our model is able to produce stable forecasts from early
August onward.

Admittedly, our forecasting method involves many simplifications. Our goal is to
apply a data-driven, dynamical-systems approach to elections that we hope leads to
more such studies in the future. Most importantly, our model demonstrates how one
can employ mathematical tools (e.g., dynamical systems, uncertainty quantification,
and network analysis) to help demystify forecasting, explore how subjectivity and
uncertainty impact forecasting, and suggest future research directions in the study of
political elections. See [26] for our model’s forecasts for the 2020 U.S. elections, which
are forthcoming at the time of this writing.

2Throughout our paper, we use the term “Democratic voter” (respectively, “Republican voter”)
to indicate an individual who is inclined to vote for a Democratic candidate (respectively, Republican
candidate). We thereby focus on an individual’s current voting inclination, rather than on any
possible affiliation that they may have with a political party.
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2. Background: Compartmental Modeling of Infections. Because we repur-
pose our forecasting approach from compartmental modeling of disease dynamics
[21, 30, 39], we begin with an introduction to these techniques. Compartmental mod-
els [21, 30, 39, 45, 46, 47] are a standard mathematical approach for studying biological
contagions, including the current COVID-19 pandemic [83]. Developed initially for
analyzing the spread of diseases such as influenza [27], compartmental models (which
are often combined with network structure to incorporate social connectivity [48, 60])
have also been used to study phenomena such as social contagions [17, 18]. Com-
partmental models are built on the idea that one can categorize individuals into a
few distinct types (i.e., “compartments”). One then describes contagion dynamics
using flux terms between the various compartments. For example, a susceptible–
infected–susceptible (SIS) model divides a population into two compartments. At a
given time, an individual can be either susceptible (S) or infected (I). As we illustrate
in Figure 1(a), the fraction of susceptible and infected individuals in a community
depends on two factors:

• transmission: when an infected individual interacts with a susceptible indi-
vidual, the susceptible person has some chance of becoming infected;

• recovery : an infected person has some chance of recovering and becoming
susceptible again.

Suppose that S(t) and I(t) are the fractions of susceptible and infected individ-
uals, respectively, in a well-mixed population at time t. One then describes infection
spread using the following set of ordinary di↵erential equations (ODEs):

dS

dt
= γI|{z}

recovery with rate γ

− βSI|{z}
infection with rate β

,(2.1)

dI

dt
= −γI + βSI ,(2.2)

where S(t)+I(t) = 1 and β and γ correspond to the rates of disease transmission and
recovery, respectively. We provide additional background on compartmental models
in Appendix A, but it may be helpful to think of the equations dS

dt = f(S, I) and
dI
dt = g(S, I), where f and g are unknown functions. If we Taylor expand the functions
f and g, then (2.1)–(2.2) are the lowest-order terms in this expansion that make sense
for our application. In particular, the term for transmission must depend on both S
and I, because both susceptible and infected individuals need to be present for a new
infection to occur. SIS models have been extended to account for more realistic details,
such as multiple contagions, communities, and contact structure between individuals
or subpopulations [15, 48, 57, 60].

3. Model and Methods. We now construct a model of party choices in elections
in the form of a compartmental model, describe how we specify its parameters, and
overview how we incorporate uncertainty into our forecasts. See section 3.4 and
Figure 2 for a summary of the steps that we follow to generate a forecast. We also
summarize some of the main simplifications that our method involves in section 3.4.
Our code and the data sets that we use in our model are available on GitLab [82].

3.1. Our Model of Election Dynamics. Our model of election dynamics is a
two-pronged SIS compartmental model (see Figure 1(a)). First, we reinterpret “sus-
ceptible” individuals as undecided (or independent or minor-party) voters. Because
most U.S. elections are dominated by two parties, we consider two contagions: Demo-
cratic and Republican voting intentions. We track these quantities within each state
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Fig. 1 Overview of our modeling approach. (a) A susceptible–infected–susceptible (SIS) compart-
mental model tracks the fraction of susceptible (S(t)) and infected (I(t)) individuals in a
community in time; these quantities evolve according to infection and recovery. We repur-
pose this approach by including two types of infections (Democratic and Republican voting in-
clinations), interpreting infection as opinion adoption, and replacing recovery with turnover
of committed voters to undecided ones. (b) We assume that individuals interact within and
between states. Red (respectively, blue) lines indicate interactions between undecided voters
and Republican voters (respectively, Democratic voters), and thick and thin lines correspond
to interactions between voters in di↵erent states and in the same state, respectively. In
this cartoon example, Pennsylvania influences Ohio, but voters in Nevada and Pennsylvania
do not interact. We show individual voters and their interactions in this figure, but our
model works at a population level and tracks voter percentages. Additionally, this image is
a schematic and is not to scale. (c) Example model dynamics of a Democratic voting incli-
nation in Ohio leading up to the 2012 presidential election. We take the mean of the polls
by month to obtain the data points, which we indicate using purple asterisks. We specify
parameters by minimizing the di↵erence between our model (3.1)–(3.3) and these monthly
data points. We simulate the temporal evolution of opinions in the year leading up to each
election, but we focus on the result when there are 0 days until the election. (d) For elections
with many state races, we combine all reliable Republican and Democratic regions into two
“superstates” (in Red and Blue, as we use traditional party colors). We show the superstates
for presidential elections. See Table SM1 for the superstates that we use in other elections.

and make the assumption that populations are well-mixed within each state. Let

Si = fraction of undecided voters in state i ,

Ii
D
= fraction of Democratic voters in state i ,

Ii
R
= fraction of Republican voters in state i ,

where Ii
D
+ Ii

R
+ Si = 1. We account for four behaviors:

• Democratic transmission: An undecided voter can decide to vote for a Demo-
crat due to interactions with Democratic voters. As we discuss below, we
interpret “interactions” and “transmission” broadly.

• Republican transmission: An undecided voter can decide to vote for a Re-
publican due to interactions with Republican voters.
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• Democratic turnover : An infected person has some chance of changing their
mind to undecided (this amounts to “recovering”).

• Republican turnover : An infected person has some chance of becoming unde-
cided (i.e., recovering).

We assume that committed voters can “transmit” their opinions to undecided voters
but that undecided voters do not sway Republican or Democratic voters. Marvel
et al. used a similar assumption in a model of more general ideological conflict [56].
Although the language of contagions does not necessarily apply to social dynamics [52],
we find it useful for our work. Our use of terminology from contagion dynamics
highlights that our model is not a specialized election model, as part of our goal is
to show how a general framework can give meaningful forecasts in high-dimensional
systems. We thus expect similar ideas to provide insight into the forecasting of many
complex systems.

By extending the traditional SIS model (2.1)–(2.2) to account for two contagions
and M states or “superstates” (see Figure 1(d)), we obtain the following ODEs:

dIi
D

dt
(t) = −γi

D
Ii
D| {z }

Dem. loss

+

MX

j=1

βij
D

N j

N
SiIj

D

| {z }
Dem. infection

,(3.1)

dIi
R

dt
(t) = −γi

R
Ii
R| {z }

Rep. loss

+

MX

j=1

βij
R

N j

N
SiIj

R

| {z }
Rep. infection

,(3.2)

dSi

dt
(t) = γi

D
Ii
D
+ γi

R
Ii
R
−

MX

j=1

βij
D

N j

N
SiIj

D
−

MX

j=1

βij
R

N j

N
SiIj

R
,(3.3)

where N is the total number of voting-age individuals in the U.S.; N j is the num-
ber of voting-age individuals in state j [2, 4, 7]; and γi

D
and γi

R
describe the rates

at which committed Democratic and Republican voters, respectively, convert to be-
ing undecided. Similarly, βij

D
and βij

R
correspond, respectively, to the transmission

(i.e., influence) rates from Democratic and Republican voters in state j to undecided
individuals in state i. In addition to the presence of state-level variables and two
contagions in (3.1)–(3.3), the other di↵erence between our election-dynamics model
and the traditional SIS system in (2.1)–(2.2) is the new terms that include the factor
N j/N . These terms appear in (3.1)–(3.3) because of how we choose to approximate
the mean number of interactions between undecided voters in state i and committed
voters in state j. See Appendix A for details.

The β parameters, which pertain to transmission dynamics, allow us to model
directed relationships as a form of network between states. We take a broad interpre-
tation of “transmission.” Although opinion persuasion (i.e., transmission) can occur
through communication between undecided and committed voters [61], we expect that
it can also occur through campaigning, news coverage, and televised debates. We hy-
pothesize that these venues are an indirect means for voters in one state to influence
voters in another state. For example, if news coverage of Republican campaigning
in Pennsylvania resonates with undecided voters in Ohio, there may be an associ-
ated indirect route of opinion transmission from Pennsylvania to Ohio. Therefore, we
consider large βij

R
to signify that Republican voters in state j strongly influence unde-

cided voters in state i, and such “strong influence” may be due either to conversations
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(or other direct interactions) between voters or due to indirect e↵ects like state–state
affinities that are influenced or activated by media.

3.2. Parameter Fitting. Broadly, we obtain our parameters in (3.1)–(3.3) by
fitting to about a year (or less, in the case of our early forecasts) of state polls [8, 10].
We gather these polls from Hu↵Post Pollster [8] for our 2012 and 2016 forecasts and
from RealClearPolitics [10] for our 2018 forecasts. Our parameters are di↵erent for
each election and year, as we use the data that are specific to each race for fitting.
To fit model parameters for a given election and year (e.g., the 2012 senatorial races),
we begin by formatting its associated polling data. First, we assign each poll a time
point by taking the mean of its start and end dates. Because some states are polled
more frequently than others, we then adjust our data so that each state or superstate
has an equal number of data points that we can use to fit our model. We do this by
binning the polls for each state in 30-day increments that extend backward from the
appropriate election day (6 November 2012, 8 November 2016, or 6 November 2018).
Counting backward from election day, the bin that is closest to the election is (0, 30],
the next bin is (30, 60], and so on. Our earliest bin includes polls from between 330
and 300 days before an election,3 so the maximum number of bins that we consider
is 11. Most of our forecasts are in November; for these, we use all T = 11 bins. For
our earlier forecasts in Figure 6, we use a smaller subset of the polling data. As an
example, to forecast the 2018 senatorial elections on 7 August, we bin the polling data
from between 330 and 90 days of the election in 30-day increments to obtain T = 8
bins.

Within each 30-day bin, we take the mean of the polling data to help remove
small-scale fluctuations in the polls. If a given state has no polls within a bin, we
approximate the associated data point using linear interpolation. In many cases, there
are no polls for a state early in the year, so we set all missing early data points for
that state to its earliest data point. To arrive at T data points each for the Safe Red
and Safe Blue superstates, for each of these T points, we take a weighted average
of the individual data points of each of the states within these conglomerates. To
determine the weightings, we use the states’ voting-age population sizes. The result
of this process is T data points per state or superstate that we forecast; see Figure 1(c)
for an example.

Let {Rj(ti), D
j(ti), U

j(ti)}i=1,...,T denote the T data points for state (or super-
state) j that we obtain through the above process. The variables Rj(ti), D

j(ti), and
U j(ti) are the fractions of people who are inclined to vote for a Republican, are in-
clined to vote for a Democrat, and are undecided (or have other plans) in state j at
time point ti. To describe our fitting procedure, we define a “concentration” vector

C(ti) = [R1(ti), . . . , R
M (ti), D

1(ti), . . . , D
M (ti), U

1(ti), . . . , U
M (i)] ,

where M is the number of states and superstates that we forecast for a given election
(see Table SM1). For a candidate parameter set, (β, γ) = {βjk

R
, βjk

D
, γj

R
, γj

D
}j,k=1,...,M ,

we define cβ,γ to be the solution of (3.1)–(3.3) using these parameters:

cβ,γ(t) = [I1
R
(t), . . . , IM

R
(t), I1

D
(t), . . . , IM

D
(t), S1(t). . . . , SM (t)] .

3We made one adjustment to this rule for the 2012 presidential race. For this race, when a state
either has polls between 330 and 300 days before the election or has no polls within 330 days of
the election, our earliest bin for that state includes polls from between 400 and 300 days until the
election.
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We obtain our parameters (β̂, γ̂) for a given election by minimizing the least-squares
deviation between the averaged polling data and the solutions of (3.1)–(3.3) at the T
time points. That is,

(β̂, γ̂) = argmin
(β,γ)

TX

i=1

kC(ti)− cβ,γ(ti)k22 .

These parameter estimates are consistent and converge weakly to a Gaussian distri-
bution if the data are from a density-dependent Markov jump process [65].

We base our parameters for a given election on 2 ⇥ T ⇥ M data points that
represent the fractions of Republican and Democratic voters at T time points in each
of M states or superstates. (We also know the fractions of other voters, but these data
points are correlated with the above data, because Rj(ti)+Dj(ti)+U j(ti) = 1.) As a
comparison, there are 2⇥M turnover parameters and 2⇥M2 transmission parameters
in (3.1)–(3.3). For example, we use 308 data points to specify 420 parameters in
our November forecasts of presidential elections, which include M = 14 states and
superstates.

Our GitLab repository [82] includes all of the model parameters that we generate
using the procedure that we just described. Across all election years (2012, 2016,
and 2018) and election types (gubernatorial, senatorial, and presidential) that we
consider, the mean minimum transmission parameter is 0.000000 and the mean max-
imum transmission parameter is 0.555818. Our recovery parameters {γi

R
, γi

D
} vary

from a mean minimum of 0.000000 to a mean maximum of 0.047622. As an example,
we illustrate the parameters for the 2018 senatorial races in Figures SM4–SM6 in our
supplementary material.

3.3. Uncertainty. For some of our forecasts (specifically, for our 2018 forecasts
and for our case study of the 2016 presidential race in section 4.2), we generalize our
model (3.1)–(3.3) to a system of stochastic di↵erential equations (SDEs):

dIi
D
(t) =

0

@−γi
D
Ii
D
+

MX

j=1

βij
D

N j

N
SiIj

D

1

A

| {z }
deterministic dynamics in (3.1)

dt+ σdW i
D
(t)| {z }

uncertainty

,(3.4)

dIi
R
(t) =

0

@−γi
R
Ii
R
+

MX

j=1

βij
R

N j

N
SiIj

R

1

A dt+ σdW i
R
(t) ,(3.5)

dSi(t) =

0

@γi
D
Ii
D
+ γi

R
Ii
R
−

MX

j=1

βij
D

N j

N
SiIj

D
−

MX

j=1

βij
R

N j

N
SiIj

R

1

A dt+ σdW i
S
(t) ,(3.6)

where we now consider Ii
D
, Ii

R
, and Si to be stochastic processes. We let W i

D
,W i

R
, and

W i
S
be Wiener processes; these are the components ofWD, WR, andWS, respectively.

The parameters in this system have the same values as those that we fit for the
corresponding deterministic model (3.1)–(3.3). By simulating many (e.g., we use
10,000) elections using (3.4)–(3.6), we obtain a distribution of possible outcomes; this
allows us to quantify uncertainty in a given race. We explore the e↵ects of uncorrelated
and correlated noise on our forecasts in section 4.2.

In graphics that describe its 2016 presidential forecasts, FiveThirtyEight [79]
included both its expected vote margin for each state and a confidence interval that
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Step 3:!
Generate !
forecast.

Step 1: !
Format!
polling data.

Polling data

{Rj(ti), D
j(ti), U

j(ti)}i=1,...,T

Step 2: !
Determine !
parameters.

Formatted data:

Option A: Simulate our ODE model!
from 1 Jan. until election day.!
  !
Option B: Simulate our SDE model!
from 1 Jan. until election day 10,000!
times and take the mean of these !
outcomes.

Broad steps

Minimize the difference between the!
formatted data and the solutions to our!
ODE model at times                   .{ti}i=1,...,T

Model parameters

Option A Option B

Methods per step

!
average the polls within each month !
(and combine the polls for superstates, !
as appropriate).

T

Our forecast:!
Margin of victory

Our forecast:!
Margin of victory!

(a) (b) (c)

Fig. 2 Summary of our approach. (a) To forecast a given election, we follow three steps. We start
by formatting polling data from [8, 10]. (b) Once we fit our model parameters, we have
two options for forecasting elections. When using Option A, we generate forecasts of the
vote margin by simulating our ODE model (3.1)–(3.3) from 1 January through election day.
When using Option B, we instead simulate many realizations of our SDE model (3.4)–(3.6)
to produce a distribution of vote margins, and we take the mean of this distribution to be our
forecast vote margin. (c) Our final forecasts in November have T = 11 months, but earlier
forecasts for the 2018 races (see Figure 6) have T < 11 months.

indicates the range that encompassed the middle 80% of its model outcomes for that
state. To determine our noise strength σ in (3.4)–(3.6), we measure the length of these
confidence intervals in FiveThirtyEight’s final forecasts. Based on our estimates, the
intervals range in length from about 13 to about 19 percentage points for swing states.
We tested a few values of σ and chose σ = 0.0015 to roughly match the length of our
80% confidence intervals4 for the vote margin to these measurements for our 2016
presidential forecasts. For example, across the 10,000 simulations of (3.4)–(3.6) that
we show in Figure 4(b), the mean length of our 80% confidence intervals for swing
states is about 15 percentage points.

3.4. Summary of Our Approach and Important Simplifications. Our fore-
casting process consists of three steps, which we illustrate in Figure 2. Our first step
is to take the mean of the polling data [8, 10] within each month (specifically, within
each 30-day increment extending backward from election day) to generate T data
points in time for each state or superstate. Because we focus on November forecasts,
there are T = 11 months in most of our simulations. This corresponds to one data
point in each month from January to November of an election year. For our earlier
forecasts for the 2018 races in Figure 6, there are T < 11 months. As an example,
our forecasts in August have T = 8. Our second step is to fit our parameters to
our trajectory of polling data in the first T months of a year using our deterministic
model (3.1)–(3.3). Third, after we fit our parameters to polls for a given election, we

4The middle 80% confidence interval is the range in which a set of outcomes lies after we have
removed the bottom 10% and top 10% of the outcomes from the set. We determine these cuto↵s
using the built-in prctile function in MATLAB (version 9.3).
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use one of our models to simulate the daily evolution of political opinions from the
preceding January through election day. In such simulations, we use the polling data
point at T = 1 to specify our initial conditions (see Appendix B.3). Because we have
both a deterministic model (3.1)–(3.3) and a stochastic model (3.4)–(3.6), we have
two options for simulating elections. For our initial study in section 4.1, we use our
ODE model (3.1)–(3.3) to simulate elections. (We label this approach as “Option A”
in Figure 2.) Following this initial study, we generate forecasts by simulating many
realizations of our SDE model (3.4)–(3.6). This alternative approach (which we label
as “Option B” in Figure 2) provides a distribution of the vote margin in each state,
allowing us to forecast the margin of victory (namely, the mean of this distribution)
in each state and our confidence in this margin. Except for Figures SM1(b,c), we use
a time step of ∆t = 3 days for parameter fitting, specify a time step of ∆t = 0.1 days
for simulating our models once we have determined their parameters, and simulate
10,000 realizations of (3.4)–(3.6) to generate the forecasts that are based on our SDE
model. We refer to these values as our “typical” simulation parameters.5 In each
figure caption, we indicate whether we use our ODE model or our SDE model for the
simulations in that figure.

We do not claim that our approach is the most accurate method of forecasting
elections. Instead, we propose it as a data-driven model that admittedly involves
many simplifications, some of which are instructive to mention before we discuss our
simulation results. Important simplifications include the following:

• Although it is generally not realistic, we assume that voters mix uniformly
(e.g., everyone has the same influence on everyone else), aside from the state
structure, which is analogous to patches in epidemiology. Accounting for
additional network structure may improve forecasts [22, 58, 86].

• We combine all sources of opinion adoption into time-independent transmis-
sion parameters βij

R
and βij

D
. Including time-dependent transmission param-

eters may lead to richer model behavior, such as oscillations over time in a
state’s vote margin.

• If undecided voters remain at the end of our simulation, we assume that they
vote for minor-party or other candidates.

• We assume that all polls are equally accurate. Unlike FiveThirtyEight [74],
we do not weight polls more strongly based on recency or make any distinc-
tion between partisan and nonpartisan polls (or polls of likely voters, regis-
tered voters, or all adults). Notably, Wang [84] has illustrated that, when
aggregated, polling data can be accurate without needing to be weighted or
adjusted to account for polling source.

• Because of our approach to fitting parameters, we use the earliest available
formatted polling data to initialize our models. Using data-assimilation tech-
niques [51] to determine initial conditions may improve the accuracy of our
forecasts.

Despite these simplifications, our forecasting method performs as well as popular
analysts. We discuss our results in section 4.

4. Results. We now use our ODE model (3.1)–(3.3) to simulate the races for
governor, senator, and president in 2012 and 2016. Because realistic forecasts should

5Our forecasts in Figures SM1(b,c) are the only situations in which we do not use our typical
simulation parameters. We determined the model parameters for our simulations in Figures SM1(b,c)
using a time step of ∆t = 15 days, and we then produced our forecasts based on 4,000 simulations
of (3.4)–(3.6) with a time step of ∆t = 0.1 days.
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incorporate uncertainty, we follow this exploration of past races with a short study
of the impact of noise on our 2016 presidential forecast. To do this, we compare
simulations of our SDE model (3.4)–(3.6) with uncorrelated and correlated noise.
We conclude by using our SDE model to forecast the gubernatorial and senatorial
midterms on 6 November 2018.

4.1. 2012 and 2016 Election Forecasts. By fitting our parameters to polling
data for senatorial, gubernatorial, and presidential races in 2012 and 2016 without
incorporating the final election results, we can simulate forecasts as if we made them
on the eve of the respective election days. In Figure 3, we summarize our forecasts
for these races. To measure the accuracy of our forecasts, we compute a success rate
for predicting (“calling”) party outcomes at the state level:

success rate = 100⇥ number of state or district races that are called correctly

total number of state or district races that are forecast
,

(4.1)

where we consider only state and district races for which our model provides forecasts.6

As we show in Table 1, our model has a success rate that is similar to those of popular
forecasters FiveThirtyEight [79] and Sabato’s Crystal Ball [67]. For example, our
success rate across all 102 of the (state or Washington, D.C.) forecasts that we made
for the presidential elections in 2012 and 2016 is 94.1%, whereas FiveThirtyEight and
Sabato’s Crystal Ball achieved success rates of 95.1% and 93.1%, respectively.

Figure 3 and Table 1 highlight two forecasting goals: (1) estimating the vote share
by state (e.g., the percentages of the state vote that are received by the Democratic
and Republican candidates) and (2) calling the winning party by state (i.e., which
party’s candidate wins the election in a given state). Many qualitative forecasters
(e.g., [11, 67]) focus on the second goal, whereas our model and FiveThirtyEight [77]
pursue both goals.

4.2. Accounting for and Interpreting Uncertainty. Sources of uncertainty and
error in election forecasting include sampling error and systematic bias from the spe-
cific methods of di↵erent polling sources [42, 55, 74, 84]. Consequently, election fore-
casting involves not only calling a race for a specific party and estimating vote shares,
but also specifying the likelihood of di↵erent outcomes. This raises a third goal of
forecasters: (3) quantifying uncertainty, such as by estimating a given candidate’s
chance of winning an election or by providing a confidence interval for their vote mar-
gin. We suggest that this is one of the key places where mathematical techniques
can contribute to election forecasting. As a case study, we investigate two methods
of accounting for uncertainty. Specifically, we compare the forecasts that result from
simulating 10,000 realizations of our SDE model (3.4)–(3.6) (see section 3.3) for the
2016 presidential race with uncorrelated noise with those that arise from following the
same process with correlated noise.

Although U.S. elections are decided at the level of states, polling errors are cor-
related in regions with similar populations [74]. Therefore, if a pollster is wrong
in Minnesota, they may also be o↵ in states (such as Wisconsin) with shared fea-
tures [74]. This type of error makes it possible for polls of a bloc of states to all

6As we discuss in Appendix B.1.1, there are a few special cases in which we do not forecast
a given state (see Table SM1). For example, we do not forecast single-party state races or 2012
gubernatorial races in states for which we have no polling data. See section SM2 for a discussion of
alternative choices that we could have made when calculating accuracy in the face of these special
cases.
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(d)(c) 2016 Senatorial Elections
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Fig. 3 Simulations of (3.1)–(3.3). We calculate our 2012 and 2016 forecasts using polling data
up until election day. Our forecasts do not include any election results, and they should
be interpreted as forecasts from the night before an election. Comparison of our forecasts
for (a, b) gubernatorial, (c, d) senatorial, and (e, f) presidential elections with results from
[12, 53]. The horizontal axis shows the percentage-point leads by the Democratic (blue) or
Republican (red) candidates. Shorter bars represent closer elections, and bars that extend to
the right (respectively, left) correspond to Republican (respectively, Democratic) leads. The
states that we forecast incorrectly are in a bold, italic, green font. “Safe Red” and “Safe
Blue” refer to superstates that are composed, respectively, of reliably Republican and reliably
Democratic states. We assemble the superstates based on forecaster opinions and historical
data (see Appendix B.2).
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Table 1 Comparison of the success rates for our model (3.1)–(3.3) and two popular sources. We
measure a forecaster’s “success rate” in (4.1) as the percent of (state or Washington, D.C.)
races that they correctly forecast, in the sense that they identified the true winner by party,
among the races that we forecast using our model (see Table SM1). Importantly, we leave
races that we do not forecast (e.g., single-party races) out of these computations. See
Appendix B.1.1 and section SM2 for more details. For FiveThirtyEight [79], we use the
2016 polls-only forecast.

Election FiveThirtyEight [79] Our model Sabato [67]

2016 presidential 90.2% 88.2% 90.2%
2016 senatorial 90.9% 87.9% 93.9%
2016 gubernatorial NA 91.7% 83.3%
2012 presidential 100% 100% 96.1%
2012 senatorial NA 90.3% 93.5%
2012 gubernatorial NA 100% 77.8%

be wrong together, leading to an unforeseen upset. To explore these dynamics, we
compare the impact of uncorrelated noise with the e↵ect of additive noise that is
correlated on a few sample demographics. Specifically, we consider the fractions of
Black, Hispanic, and adult college-educated individuals in a population. We correlate
on these demographics because these data are readily available; future work should
incorporate additional data.

To correlate noise in (3.4)–(3.6), we first quantify the similarity of two states, i
and j, using the Jaccard index J i,j = min{Xi, Xj}/max{Xi, Xj}, where Xi is the
fraction of a given demographic in state i andXj is the fraction of that demographic in
state j. The Jaccard index indicates the covariance for our increments of WR and WS

in (3.4)–(3.6). We define JB,JE, and JH to be the Jaccard indices that we find using
the fractions of non-Hispanic Black individuals, adults without a college education,
and Hispanic individuals, respectively.7 We calculate JB and JH using 2016 U.S.
Census Bureau data [3], and we base JE on data from 247WallSt.com [29]. For our
forecasts with correlated noise, each time that we simulate an election, we select one
Jaccard index uniformly at random among JB, JE, and JH to use as our covariance.
For example, if we select JH, then the increment dWR(tn) has a multivariate normal
distribution with mean 0 and covariance JH at each time step in that simulation.
Consequently, for each such simulated election, at any given time, we are more likely
to adjust the vote in a set of states with a similar feature (e.g., a high Hispanic
population) in the same direction (e.g., in favor of the Democratic candidate) than
we are to adjust the vote in these states in opposite directions.

Our case study of the 2016 presidential race illustrates how accounting for uncer-
tainty in di↵erent ways influences forecasts, echoing points that have been raised by
Nate Silver and his collaborators [74]. In Figure 4, we demonstrate that uncorrelated
noise, which can model uncertainty in a single state or a single poll without assuming a
larger systematic (e.g., country-wide) polling error, results in a low likelihood of a win
by Donald Trump (the Republican candidate) in the 2016 presidential election. By
contrast, correlating outcomes by demographics, which can model systematic polling

7We compute the fraction of a given demographic in the Safe Red (respectively, Safe Blue)
superstate by calculating the mean of the fractions in all of the states inside the Safe Red (respectively,
Safe Blue) superstate. We do not weight these averages by state population. Additionally, for
presidential elections, we do not include Washington, D.C., in our estimate of education level in
the Safe Blue superstate, because data on education levels in Washington, D.C., are not listed on
247WallSt.com [29].
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Fig. 4 Impact of incorporating uncertainty in di↵erent ways, as demonstrated by simulations of
our SDE model (3.4)–(3.6) for the 2016 U.S. presidential election. (a) Uncorrelated additive
white noise gives Donald Trump an approximately 5% chance of winning the electoral college,
whereas (b) correlating noise on state demographics increases his chance of winning to about
21%. The tall bar in the magnified image in panel (b) illustrates that many of our simulations
forecast that only the Red superstate votes Republican, leading to 191 electoral votes for
Trump. The smaller bar in the magnified image corresponds to model outcomes in which only
the Red superstate and either Iowa or Nevada vote Republican. We generate distributions
by simulating 10,000 elections using (3.4)–(3.6) with � = 0.0015.

errors (e.g., due to misidentifying likely voters) in similar states, increases Donald
Trump’s chances of winning the election by a factor of about four. This agrees with
Nate Silver’s comment [74] that failing to account for correlated errors tends to result
in underestimations of a trailing candidate’s chances. As we discuss in section SM1
of our supplementary material, because of an indexing error in one of our files, in
an earlier version of our model, we correlated state outcomes on the demographics of
the wrong states. After correcting this error, we obtained similar results, suggesting
that it is the mere presence of correlated noise that improves Donald Trump’s chances
in these forecasts and that the noise does not need to be correlated on the specific
state demographics that we used. FiveThirtyEight [74], for example, correlates state
outcomes on party, region, religion, race, ethnicity, and education.

In our computations, we do not attempt to account directly for errors in polls.
Instead, we take the simple approach of assuming that we can incorporate all sources of
uncertainty as an additive noise term in our SDE model (3.4)–(3.6). There has been
extensive work on quantifying uncertainty (see [51]); exploring alternative ways of
accounting for uncertainty is an important future direction for research on forecasting
complex systems.

4.3. 2018 Senatorial and Gubernatorial Forecasts. The 2018 midterm elec-
tions provided a fantastic opportunity for us to test our model. Our final forecasts,
which we posted on 5 November 2018 (the night before the 2018 elections) [81], rely
on polls that we gathered from RealClearPolitics [10] through 3 November8 and are
based on our SDE model (3.4)–(3.6). We account for uncertainty by correlating noise
on education, ethnicity, and race (as in Figure 4(b)). Because of computational time

8There is a time delay between when polls are completed and when the data become available
from RealClearPolitics [10]. The latest polls in our gubernatorial and senatorial data sets were
completed on 1 November and 2 November, respectively. Polls do not always become available in
the temporal order of polling day, so this does not imply that our data include all of the polls that
occurred before these dates. For example, RealClearPolitics [10] occasionally updates its website
with additional early polls, despite its prior posting of more recent polls.
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(b)(a) 2018 Gubernatorial Elections
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Fig. 5 Forecasts of vote margins for the 2018 (a) gubernatorial and (b) senatorial races. We base
our forecasts on 10,000 elections that we simulate using (3.4)–(3.6) with noise that we cor-
relate on state demographics. We base our forecasts on poll data that we collected from
RealClearPolitics [10] through 3 November 2018. (The election took place on 6 November.)
We compare them to FiveThirtyEight’s 6 November forecasts (according to the “classic” ver-
sion of the FiveThirtyEight algorithm) [77] and the election results [5]. (We use an asterisk
to mark the MN special election.) The bold, italic, green font indicates state races that we
called incorrectly. The length of the bars that extend to the right (in red) and left (in blue)
indicate the mean percentage leads by the Republican and Democratic candidates, respec-
tively. (A value of 0 represents a tie.) The narrow orange bars indicate the regions that
encompass the middle 80% of our simulated election results.

constraints, we based our original senatorial forecast from 5 November on 4,000 sim-
ulations of (3.4)–(3.6) and used a larger time step (∆t = 15 days) than usual for
parameter fitting. Additionally, after checking our polling data without the election-
day rush, we found several typos that we corrected for the forecasts in the main text.
See section SM1 in our supplementary material for details. We include our original
forecasts [81] from 5 November 2018 in Figures SM1–SM3. In the main text, we
present the forecasts that we obtain using our typical simulation parameters.9 Both
forecasts project the same candidate to win in each state.

In Figures 5 and 6, we compare our gubernatorial and senatorial forecasts for
swing states and superstates with those of several popular sources. For the guber-
natorial races, our Safe Red superstate consists of Alabama (AL), Arizona (AZ),
Arkansas (AR), Idaho (ID), Maryland (MD), Massachusetts (MA), Nebraska (NE),
New Hampshire (NH), South Carolina (SC), Tennessee (TN), Texas (TX), Vermont
(VT), and Wyoming (WY); and our Safe Blue superstate consists of California (CA),
Colorado (CO), Hawaii (HI), Illinois (IL), Michigan (MI), Minnesota (MN), New
Mexico (NM), New York (NY), Pennsylvania (PA), and Rhode Island (RI). For the
senatorial races, our Safe Red superstate consists of Mississippi (MS), Mississippi
special (MS*), NE, Utah (UT), and WY; and our Safe Blue superstate consists of
Connecticut (CT), Delaware (DE), HI, Maine (ME), MD, MA, MI, MN, NM, NY,

9For our typical simulation parameters, we use ∆t = 3 days for parameter fitting and simulate
10,000 realizations of (3.4)–(3.6). See section 3.4 and Appendix B.3 for details.
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Fig. 6 Ratings for the 2018 (a) gubernatorial and (b) senatorial races. There is considerable vari-
ability in these ratings across forecasters. One forecaster may identify a given race as a
toss-up, and another forecaster may identify that race as solidly partisan. As we show in
panel (b), our forecasts are consistent (with respect to which party we project to win a given
race) after July. We base our forecasts on 10,000 simulations of our SDE model (3.4)–(3.6).
We show ratings from our model, the Cook Political Report [11], Inside Elections (IE) [38],
Sabato’s Crystal Ball [68], RealClearPolitics (RCP) [10], and FiveThirtyEight [77]. IE [38]
breaks down its ratings to include a “Tilt” category. Our SDE model and FiveThirtyEight [77]
provide numbers to quantify uncertainty. For toss-ups, the number or text is red (respec-
tively, blue) if it corresponds to a Republican’s (respectively, Democrat’s) chance of winning.
We indicate the actual election outcome by the coloring of the state name. In panel (b), we
do not forecast the MN special (MN*) election in July, because this race had no polls before
August.
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Table 2 Final forecast performance for the 2018 gubernatorial and senatorial races. We measure
performance by calculating the mean MOV error, the number of state races that are missed
or not called, and log-loss error. We use final forecasts, and we note that lower numbers
indicate better performance. Across these diagnostics, the forecasters perform similarly,
but determining who is the most successful depends on what one values in a forecast. For
example, the Cook Political Report [11] identified the winning gubernatorial candidate in all
of the states for which they provided a forecast, but they left 12 states as too close to call.
Our SDE model (3.4)–(3.6) provides forecasts for all of these states, but it was incorrect
for 4 of them. The measurements in the table are for the races in Figure 6, and they
do not include the states that we combined into the Safe Red and Safe Blue superstates.
(Additionally, see section SM2 and Tables SM2 and SM3 for alternative ways of measuring
forecast accuracy.)

Forecaster 2018 gubernatorial races 2018 senatorial races

Mean
MOV
error

Num.
races
missed

Num.
races not
called

Log-
loss
error

Mean
MOV
error

Num.
races
missed

Num.
races not
called

Log-
loss
error

Our model 4.1% 4 0 0.589 4.6% 3 0 0.396
538 [77] 3.1% 4 0 0.548 3.7% 3 0 0.410
Sabato [68, 69] NA 3 1 0.585 NA 1 0 0.379
Cook [11] NA 0 12 0.670 NA 0 9 0.553
IE [38] NA 2 3 0.619 NA 1 1 0.415
RCP [10] NA 0 12 0.647 NA 0 8 0.565

PA, RI, VT, Virginia (VA), and Washington (WA). Our results in Table 2 are based
only on the remaining states, which we treat individually in our model.

Given the probabilistic nature of forecasts, it is not straightforward to evaluate
their accuracy [63], and we use the 2018 races to discuss a few ways of quantifying
forecast performance. For quantitative forecasters, one natural way of evaluating
performance is by computing the error in their forecast margin of victory (MOV) by
state. We denote the percentages of people who voted Republican and Democratic
in a given state by Rresult and Dresult, respectively, and we denote the corresponding
forecast percentages by Rforecast and Dforecast. The MOV error in that state is

MOV error =
���Rresult −Dresult

�
−
�
Rforecast −Dforecast

��� .

For example, as we show in Figure 5(a), we forecast that the Democratic candidate
(Gillum) would win the Florida gubernatorial race by 0.4 percentage points over the
Republican nominee (DeSantis). DeSantis edged out Gillum by 0.4 points, so our
MOV error is 0.8 points for this specific race. For close races, it is worth comparing
vote margins and MOV errors to the margins of error in the polling data. The mean
margins of error that were reported in the polls [10] on which we based our parameters
were 4.1 and 4.0 for the gubernatorial and senatorial data, respectively. Critically,
this reported error is sampling error only; it does not account for other sources of
error, such as ones from unrepresentative polling samples, which can result in error
that is correlated by demographics [63]. Although it is straightforward to measure
accuracy using MOV error, one drawback of doing so is that one can use this measure
only for quantitative forecasters (see Table 2).

The baseline measure of how well forecasters do at calling race outcomes—specif-
ically, of whether a state will elect a Republican or a Democrat—often attracts media
attention. As we illustrate in Table 2, 2018 was a good year for a couple of the
well-known pundits who use qualitative approaches, and Sabato’s Crystal Ball [69]
was the most successful of these at calling outcomes. The quantitative forecasts of
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our SDE model (3.4)–(3.6) and FiveThirtyEight tied for second place (along with
Inside Elections [38]). Our SDE model and FiveThirtyEight forecast the incorrect
winner in the same 4 races for governor and in 2 of the same races for senator. We
also were wrong about Tennessee, and FiveThirtyEight missed Florida [77]. The Cook
Political Report [11] and RealClearPolitics [10] performed worse based on this baseline
measure, because they left many races as toss-ups.

As we show in Figure 6, there is a lot of variability in how strongly di↵erent sources
forecast the races. A helpful measure to evaluate classification models is logarithmic
loss [28], which rewards confident forecasts that identify the winning candidate and
penalizes confident forecasts that do not identify the winner. It is given by

log loss = − 1

E

EX

j=1

(yi log pi + (1− yi) log (1− pi)) ,

where “log” is the natural logarithm, E is the number of states that we treat indi-
vidually (so E = 13 and E = 14 for the 2018 gubernatorial and senatorial races,
respectively), yi = 1 if the projected candidate wins in state i and yi = 0 otherwise,
and pi is the probability (see the percentages in Figure 6) that we assign to the pro-
jected winning candidate in state i. To calculate the log-loss error for qualitative
forecasts, we specify pi = 0.5 for “Toss-up,” pi = 0.55 for “Tilt,” pi = 0.675 for
“Lean,” pi = 0.85 for “Likely,” and pi = 0.975 for “Solid.” As we show in Table 2, the
forecasts from our SDE model (3.4)–(3.6) rank second and third according to log-loss
error for the races for senator and governor, respectively, among our example popular
forecasters. In comparison to the log-loss errors in Table 2, a log-loss error of about
0.7 corresponds to a hypothetical forecast that assigns a 50% chance to each of the
two candidates in a race.

We have focused predominantly on producing final forecasts (i.e., those that are
available right before an election takes place), in part because public attention often
centers on how forecasts from the eve of an election compare to race outcomes and in
part because our work is a first step toward data-driven election forecasting from a
dynamical-systems perspective. However, the most meaningful forecasts are those in
the weeks and months before an election day, and there is particular value in forecasts
that remain stable across time [54, 55, 84]. Producing an early forecast is very chal-
lenging, and it provides a better view than late forecasts of a model’s worth [55]. To
begin to address these ideas, we show earlier forecasts for the 2018 races in Figure 6.
We base these forecasts on less polling data; for example, our 8 July forecast uses
polling data up to and including 8 July. We use the same superstate categorizations
in these forecasts as we do in our final forecasts, which rely on the ratings of popular
forecasters in August and November (see Appendix B.2). Notably, our July, August,
September, and October forecasts for swing states in the senatorial races are as accu-
rate as our final forecasts at calling race outcomes (see Figure 6(b)). As the election
nears and we incorporate more polling data into our model, our performance (as mea-
sured by log-loss error and MOV error) improves. This supports observations [24, 87]
that polling data become more reliable over time. In comparison to Table 2, we miss
the true vote margins by 6.7, 5.8, and 5.0 percentage points on average in August,
September, and October, respectively. Similarly, our log-loss error decays in time;
it is 0.56 in August, 0.53 in September, and 0.44 in October. For the gubernatorial
elections, our SDE model calls the same state outcomes roughly two weeks before the
election as it does in November.
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5. Conclusions. We developed a method for forecasting elections by adapting
ideas from compartmental modeling and epidemiology, and we illustrated the utility
of such a dynamical-systems approach by applying it to the U.S. races for president,
senator, and governor in 2012, 2016, and 2018. When making our modeling choices,
we tried to limit the number of election-specific details in our methodology. De-
spite our approach of using poll data without any weighting adjustments, as well as
clear di↵erences between voting dynamics and the spread of infectious diseases, we
performed similarly to popular forecasters in calling the final outcomes of the races.
Moreover, we were able to forecast the outcomes of the senatorial elections in 2018 us-
ing polling data prior to August 2018 with the same success rate as FiveThirtyEight’s
final forecast [77].

We consider our model’s basis in the well-studied, multidisciplinary field of math-
ematical epidemiology a virtue in this initial dynamical-systems e↵ort, as part of our
goal is to help demystify election prediction, highlight future research directions in the
forecasting of elections (and other complex systems), and motivate a broader research
community to engage actively with pollster interpretations and polling data. There
are many ways to build on our basic modeling approach and account more realistically
for voter interactions.

To give one example of a viable research direction, it will be useful to be more
nuanced about how to handle undecided and minor-party voters. FiveThirtyEight [74]
assigns a voting opinion (mostly to one of the major parties) to any undecided voters
who remain on election day, and The Hu�ngton Post factors undecided voters into
an election’s uncertainty [43]. By contrast, we assumed that any undecided voters at
the end of our simulations are minor-party voters. Using the fraction of undecided
voters to inform one’s choice of noise strength is an interesting direction to pursue.
Moreover, because we compare our model with some popular qualitative forecasters,
we showed our forecasts as projected vote margins rather than as absolute Republican
and Democratic percentages. It may be desirable for future studies to look more
closely at how the fractions of Republican, Democratic, and undecided voters evolve
in time (see, e.g., [55, 85]).

We assumed that all polls are equally accurate (e.g., we did not consider the time
to election and pollster-reported error), and we did not distinguish between partisan
and nonpartisan polls or between polls of likely voters, registered voters, and adults.
This minimal, poll-aggregating approach echoes the work of Wang [84]. By contrast,
FiveThirtyEight [74] relies on measures [78] of polling-firm accuracy to weight polls,
and its analysts adjust polls of registered voters and adults to frame all of their data in
terms of likely voters. Using FiveThirtyEight’s pollster ratings [78] to weight polls in
our model would allow us to explore how the various subjective choices of forecasters
determine their predictions. Similarly, future work can compare the influence of noise
that is correlated based on demographics with the e↵ects of noise that is correlated
based on roughly the last 80 years of state voting history. The Hu�ngton Post [43]
uses the latter (and it does not use demographics).

In our study of election dynamics, we took a macroscopic, simplified view of
state and voter interactions. We based our approach on compartmental modeling
of contagions because it gives a well-established, multidisciplinary way to include
asymmetric state–state relationships in a model. However, when a social behavior or
opinion appears to spread in a community, it is often difficult to determine whether
transmission is actually occurring. In particular, the appearance of “spreading” may
emerge because social contagions are truly spreading between individuals (that is,
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individuals are influencing each other), because people form relationships with others
who are similar to them and behave in a similar way (e.g., adopting the same opinion)
due to their shared characteristics [72], because of some external factors, or because
of a combination of such processes. By building more detailed mathematical models
of voter behavior in the future, one can help elucidate what role influence plays in
political opinion dynamics.

Our models assume that every voting-age individual is equally likely to interact
with any other voter in the U.S. Although this mean-field approach fits within the
theme of simplicity that we embraced throughout our modeling process, the assump-
tion of uniform mixing is not particularly realistic [22, 58, 86]. For example, several
celebrities were heavily involved in encouraging individuals to vote in the 2018 elec-
tions, and they have more prominent platforms than a typical voter. Accounting for
realistic network structures and exploring frameworks—such as voter models [20, 33],
local majority-rule models [34, 35], and threshold models [52]—other than compart-
mental models may be helpful for capturing relationships between voters. Network
models may also allow future studies of how di↵erent methods, such as “big nudg-
ing” [32, 88], may influence voter turnout and behavior at an individual level.

In future modeling e↵orts, it will also be useful to incorporate additional types
of data (e.g., measurements of partisan prejudice by county [66]), as they become
available, into election models to improve both the detail and the quality of forecasts.
Our models work on the level of states because state polling data are available. By
contrast, House elections are polled less regularly, making fundamental data more im-
portant for these races [76]. Although precinct-level data are available for presidential
election results (see, e.g., [71]), we are not aware of polls at the precinct level. Because
many states have regions with di↵erent voting behavior, such as urban versus rural
areas, incorporating precinct-level polling data has the potential to lead to significant
improvements in forecasts.

When fitting our parameters, we averaged polls [8, 10] by month (see section 3.2).
This technique smooths out daily fluctuations, which may be more representative of
sampling error than of real shifts in opinion [42], so it may throw out certain interesting
dynamics, such as those that occur around party conventions [55]. (As described by
FiveThirtyEight [74], candidates often receive a spike in support after their party’s
convention.) The impact of campaigns and media coverage on opinion dynamics is
debated in the political-science community [24, 37, 87]. With a finer view on polls, one
can explore the possible e↵ects of time-specific events, such as a large rally or a story
about a candidate in the media, using our modeling framework. Similarly, one can
build feedback mechanisms into a model to test how the perception of future election
results influences an individual’s likelihood of voting. The framework of dynamical
systems provides a valuable approach for exploring the temporal evolution of opinions
and their interplay with external forces (such as the media, rallies, and conventions).

Our compartmental-model approach allowed us to obtain parameters that are
related to the strengths of interactions between states and measurements of voter
turnover by state for each election year and race (see Figures SM4–SM6). In the fu-
ture, it will be useful to investigate the stability of our forecasts and parameters using
alternative methods (e.g., data-assimilation methods [51]) for fitting these parameters.
By comparing our parameters across years, types of elections, and di↵erent approaches
for fitting, one can help identify blocs of states that are related persistently, analyze
which states have the most plastic voter populations, and suggest di↵erences in the
political dynamics in presidential, senatorial, and gubernatorial races. One can also
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use our parameters from previous elections to provide early forecasts for upcoming
races before large-scale polling data become available. These and other future re-
search directions may provide insight into how state relationships evolve across years,
allowing researchers to identify ways that the U.S. electorate may be changing in time,
which may in turn suggest ideas to incorporate into future forecasts.

Appendix A. Additional Background on Compartmental Models. The dynam-
ics of transmission and recovery in a susceptible–infected–susceptible (SIS) model are
described by the following coupled ODEs:

dS̃

dt
= γĨ − β̃[S̃Ĩ] ,

dĨ

dt
= −γĨ + β̃[S̃Ĩ] ,

where S̃(t) and Ĩ(t), respectively, are the mean numbers of susceptible and infected
individuals in a population at time t and [S̃Ĩ] is the mean number of contacts between
infected and susceptible individuals. To close the system [48], we use the approxima-
tion [S̃Ĩ] ⇡ S̃ · n · Ĩ/N , where N is the total number of individuals in a population
and n is the mean number of contacts per person. We define the notation β := β̃n
and obtain the following system:

dS̃

dt
= γĨ − βS̃Ĩ/N ,

dĨ

dt
= −γĨ + βS̃Ĩ/N .

Writing this system in terms of the population fractions, S(t) = S̃(t)/N and I(t) =
Ĩ(t)/N , and dividing by N yields (2.1)–(2.2).

A similar process yields our two-pronged deterministic SIS model (3.1)–(3.3) for
election forecasting. The key di↵erence is how we calculate [SiIj

D
] and [SiIj

R
]. Specif-

ically, we use the approximation

[S̃iĨj
D
] ⇡ S̃i · n ·

�
N j/N

�
·
⇣
Ĩj
D
/N j

⌘
,

[S̃iĨj
R
] ⇡ S̃i · n ·

�
N j/N

�
·
⇣
Ĩj
R
/N j

⌘
.

We thereby estimate, for example, the number of interactions between undecided
voters in state i and Democratic voters in state j as the mean number of interactions
that involve an undecided voter in state i multiplied by the probability that the
interaction is with someone in state j multiplied by the probability that someone
in state j is a Democratic voter. In making these approximations, we are assuming
that an undecided voter is equally likely to interact with a Republican voter or a
Democratic voter across the U.S. In particular, we do not assume that interactions
are more likely to occur between individuals in the same state or between those in
neighboring states. We also ignore any e↵ects of homophily (even though people are
more likely to interact with others who are similar in some way, such as their political
outlook [59]), such that the number of interactions between individuals in di↵erent
states depends only on the voting-age populations [2, 4, 7] of the states and on the
numbers of Republican, Democratic, and undecided voters that are currently in them.

Appendix B. Election-Modeling Details. We now provide additional details
about our election-forecasting process. We overview the data that we use and describe
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several special cases in Appendix B.1. We then discuss how we select superstates (see
Appendix B.2) and how we numerically implement our model (see Appendix B.3).

B.1. Data. We obtained publicly available state polling data for 2012 and 2016
from Hu↵Post Pollster [8] using the Pollster API v2 [9]. State polling data for 2018
were not available from Hu↵Post Pollster [8], so we collected 2018 data by hand from
RealClearPolitics [10]. See our GitLab repository [82] for the 2012, 2016, and 2018
polling data. We use 2012, 2016, and 2017 estimates of voting-age population sizes
from the Federal Register [2, 4, 7] to specifyN andN i in (3.1)–(3.6). We use 2017 data
for 2018 because 2018 measurements were not yet available at the time of our analysis.

B.1.1. Special Cases and Notes. Working with election data is often messy, and
we comment on a few special cases in our e↵orts.

(1) Di↵erent election days: Unlike the other 2012 races, the Wisconsin guberna-
torial election took place in June 2012, so we do not forecast this race.

(2) Single-party races: California had two Democrats running for senator in 2018
and 2016. Because our model assumes a race of a Democrat facing a Repub-
lican, we do not use polling data from California when it has a single-party
race. Naturally, we also do not forecast these races.

(3) Independent candidates: The Vermont senatorial races featured an indepen-
dent candidate in place of a Democrat in 2012 and 2018. Consequently, for
the 2012 election, we do not forecast Vermont. For the 2018 race, we treat
the independent candidate as a Democrat in our models so that we can still
provide a forecast for Vermont.

(4) Third-candidate polling data: We focus on polling data that compare two
candidates. In particular, we do not include polls that report data for races
in which there are three or more candidates who each get reasonably large
shares of the vote (with the exception of the Louisiana Senate race in 2016).
The polls that we found from RealClearPolitics [10] for New Mexico’s 2018
senatorial race were for three candidates, so we do not include New Mexico’s
polls in our averaged data points for the Safe Blue superstate for this election.
We also do not forecast the Maine 2012 senatorial race because it included
three popular candidates. For the 2016 Senate race in Louisiana, which uses
the so-called “jungle primary” system, there were more than two candidates.
No candidate received a majority of the vote on election day, so there was a
runo↵ election between the top Republican candidate and the top Democratic
candidate on 10 December 2016. We treat these two candidates as the main
candidates in our forecasts of the 2016 Senate election in Louisiana, and we
forecast the percentages of the vote that they each received on 8 November
2016. However, in Figure 3(d), we compare our forecast vote margin to the
final vote margin in the runo↵ election.

(5) No polls: In some elections, one or more states have no polls. If these states
lie in our Safe Red or Safe Blue superstates, this is not an issue, as we simply
assign the vote margin of the appropriate superstate to them. However, in
elections for which we forecast each state individually, we cannot forecast
states without polling data. Therefore, because polling data from Hu↵Post
[8, 9] were not available for the 2012 gubernatorial races in Delaware and
West Virginia, we do not provide forecasts for these races.

(6) Early forecasts: For our 8 July forecasts for the 2018 senatorial races in
Figure 6(b), the Minnesota special election had no polls prior to 8 July, so
we remove this race from our models for this forecast only.
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(7) Demographic estimates: To correlate noise in our model (3.4)–(3.6), we use
estimates of the numbers of Hispanic individuals and non-Hispanic Black
individuals in each state in 2016. We gathered these estimates from the U.S.
Census Bureau through American FactFinder [3]. Later, after we developed
our model, American FactFinder was decommissioned, so the website [3] is no
longer available. Demographic estimates are now available at [13], but these
data are slightly di↵erent from the estimates that we used, because the U.S.
Census Bureau revises their past estimates when they make new estimates.
See [82] for the data that we used.

B.2. Selecting Superstates. We focus on forecasting elections in swing states
and treat all reliably Red and Blue states together as two “superstate” conglomer-
ates. (We do not specify that these superstates actually vote Republican and Demo-
cratic, respectively; such voting results are outputs of our models.) This raises the
question of how to identify states as “safe” or “swing,” and we do this di↵erently for
di↵erent elections. For presidential races, we define our swing states as the ones that
FiveThirtyEight has identified as “traditional swing states” [75]. These states are
Colorado (CO), Florida (FL), Iowa (IA), Michigan (MI), Minnesota (MN), Nevada
(NV), New Hampshire (NH), North Carolina (NC), Ohio (OH), Pennsylvania (PA),
Virginia (VA), and Wisconsin (WI) (see Figure 1(d)). Therefore, for the presidential
elections, M = 14 in (3.1)–(3.6). In our notation, {S1, I1

D
, I1

R
} and {S2, I2

D
, I2

R
} refer

to the voter fractions in the Red and Blue superstates, respectively, and {Si, Ii
D
, Ii

R
}

for i 2 {3, 4, . . . , 14} are the voter fractions in the 12 swing states.
To define superstates in the senatorial and gubernatorial races, we use the race

ratings of popular forecasters. For the 2018 senatorial races, we combine the August
2018 ratings of Sabato’s Crystal Ball [69], 270toWin (the consensus version) [6], and
The New York Times [16]. We determine which states to include in our superstates for
the 2018 gubernatorial races based on the ratings of FiveThirtyEight [77], the Cook
Political Report [11], Sabato’s Crystal Ball [68], and Inside Elections [38] (all accessed
on 1 November 2018). We define our Safe Red and Safe Blue superstates for the 2012
senatorial races based on Sabato’s Crystal Ball [70] and The New York Times [1]. We
base our superstates for the 2016 senatorial races on 270toWin [6], Sabato’s Crystal
Ball [67], and The Hu�ngton Post [43]. We treat each state separately for the 2012
and 2016 gubernatorial races. In Table SM1, we give a summary (for each election)
of the states that we forecast individually and those that we combine into the Safe
Red and Safe Blue superstates.

B.3. Numerical Implementation. For our parameter fitting, we use the optim
routine in R (version 3.4.2) [64] to perform constrained optimization of the least-
squares objective function (see section 3.2), subject to nonnegative rate constraints
[23], with a time step of ∆t = 3 days over T months. (As a simplification, we assume
that each month is 30 days long.) We use this time step in all cases, except for
the forecasts in Figures SM1(b,c) (for which we use ∆t = 15 days). We simulate
our models in MATLAB (version 9.3). For each state (or superstate), we set its
initial condition to the earliest of its T data points that we use for parameter fitting.
We solve our ODE model (3.1)–(3.3) using a forward Euler scheme and our SDE
model (3.4)–(3.6) using the Euler–Maruyama method [40]. We use the constraint
that Si+Ii

R
+Ii

D
= 1 to reduce our system to 2 equations per state (or superstate) for

our simulations. For both of our models, we use a time step of ∆t = 0.1 day, and we
simulate them from 1 January until an election day. In these simulations, we assume
that each month has a length of 30 days. Specifically, we simulate for 306 days for
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the 2012 and 2018 races and for 308 days for the 2016 races. The noise strength in
our SDE system (3.4)–(3.6) is σ = 0.0015 in all of our simulations.

Appendix C. Supplementary Materials. We include the following in our sup-
plementary materials:

• The original forecasts for the 2018 elections that we posted on 5 November
2018 [81]; see section SM1 and Figures SM1–SM3.

• A summary of the races that we forecast individually, the races that we
include in our Safe Red and Safe Blue superstates, and the races that we do
not forecast (see Appendix B.1.1) by year; see Table SM1.

• Alternative ways of measuring forecast accuracy; see section SM2 and Ta-
bles SM2 and SM3.

• A summary of the simulation code, formatted polling data, and model pa-
rameters that we include in our GitLab repository [82]; see section SM3 and
Figures SM4–SM6.
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