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Abstract
Arterial wall tension increases with luminal radius and arterial pressure. Hence, as body mass (Mb) increases, associated 
increases in radius induces larger tension. Thus, it could be predicted that high tension would increase the potential for rup-
ture of the arterial wall. Studies on mammals have focused on systemic arteries and have shown that arterial wall thickness 
increases with Mb and normalizes tension. Reptiles are good models to study scaling because some species exhibit large 
body size range associated with growth, thus, allowing for ontogenetic comparisons. We used post hatch American alligators, 
Alligator mississippiensis, ranging from 0.12 to 6.80 kg (~ 60-fold) to investigate how both the right aortic arch (RAo) and the 
left pulmonary artery (LPA) change with Mb. We tested two possibilities: (i) wall thickness increases with Mb and normalizes 
wall tension, such that stress (stress = tension/thickness) remains unchanged; (ii) collagen content scales with Mb and increases 
arterial strength. We measured heart rate and systolic and mean pressures from both systemic and pulmonary circulations in 
anesthetized animals. Once stabilized alligators were injected with adrenaline to induce a physiologically relevant increase 
in pressure. Heart rate decreased and systemic pressures increased with Mb; pulmonary pressures remained unchanged. Both 
the RAo and LPA were fixed under physiological hydrostatic pressures and displayed larger radius, wall tension and thickness 
as Mb increased, thus, stress was independent from Mb; relative collagen content was unchanged. We conclude that increased 
wall thickness normalizes tension and reduces the chances of arterial walls rupturing in large alligators.

Keywords  Arterial wall stress · Crocodilians · Law of Laplace · Scaling

Abbreviations
fH	� Heart rate
LPA	� Left pulmonary artery
Mb	� Body mass

Pmpul	� Pulmonary mean arterial pressure
Pmsys	� Systemic mean arterial pressure
Pspul	� Pulmonary peak systolic pressure
Pssys	� Systemic peak systolic pressure
RAo	� Right aortic arch
ri	� Internal radius
T	� Arterial wall tension
W	� Arterial wall thickness
σ	� Arterial wall stress

Introduction

Blood flows in major arteries increase with body mass (Mb), 
and the widening of the arterial internal luminal radius (ri) 
needed to accommodate the higher flows is coupled to an 
increase in arterial wall tension (T—Wolinsky and Glagov 
1967; Holt et al. 1981; West et al. 1997; Dawson 2001; Prim 
et al. 2018; Seymour et al. 2019). This can be described 
by the Law of Laplace, where wall tension is the product 
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of luminal internal radius and arterial pressure. It remains 
debated whether arterial pressure increases with Mb in mam-
mals (White and Seymour 2014; Poulsen et al. 2018), but 
pressure clearly increases with Mb in the reptile species stud-
ied so far (Seymour 1987; Enok et al. 2014).

The rise in wall tension with increased Mb is typically 
accompanied by the thickening of the vessel wall (Wolin-
sky and Glagov 1967; Prim et al. 2018). The relationship 
between wall tension and wall thickness (W) is known as 
arterial wall stress (σ = ri × P/W), and corresponds to the nor-
malized wall tension by cross-sectional area of the arterial 
wall (Wolinsky and Glagov 1967; Shadwick 1998; Seymour 
and Blaylock 2000; Prim et al. 2018). The composition of 
the arterial wall, such as the collagen content, could also 
play an important role strengthening and stiffening the arte-
rial wall (Nichols et al. 2011).

Studies on the scaling of arterial mechanics have focused 
on interspecific comparisons of the systemic arteries in 
mammals with different Mb (e.g., Wolinsky and Glagov 
1967; Cox 1978; Prim et al. 2018). Reptiles, on the other 
hand, allow ontogenetic investigations of scaling relation-
ships because many species exhibit large changes in Mb over 
their life history without substantial changes in overall mor-
phology (Avery 1994), which reduces putative variations 
resulting from interspecific comparisons (Enok et al. 2014). 
Here, we investigated whether wall thickness and collagen 
content from both systemic and pulmonary arterial vessels 
of the American alligator, Alligator mississippiensis, scaled 
with Mb to increase the capacity to tolerate larger wall ten-
sions. In contrast to most reptiles, crocodilians possess a 
complete interventricular septum (White 1976; Alves et al. 
2016; Cook et al. 2017; Lima et al. 2020) that allows for gen-
eration of different arterial pressures at the systemic and pul-
monary circulations (e.g. ~ 8 kPa and 2 kPa, respectively, for 
the estuarine crocodile, Crocodylus porosus—Axelsson et al. 
1996). Since pulmonary blood pressure is lower than sys-
temic pressure, and the pulmonary artery is usually thinner 
than the systemic counterpart (Greenfield and Patel 1962; 
Greenfield and Griggs 1963; van Soldt et al. 2015; Filogo-
nio et al. 2018), we predicted that the wall tension of the 
pulmonary circulation should scale with a lesser magnitude.

Materials and methods

Experimental animals

From 2013 to 2017, American alligator (Alligator mississip-
piensis) eggs were harvested from the Rockefeller Wildlife 
Refuge in Grand Chenier, LA (USA), and transported to 
the University of North Texas in Denton, TX, USA. Eggs 

were incubated at 30 ℃ as previously described (Joyce et al. 
2018; Smith et al. 2019) to ensure all embryos developed as 
females (Ferguson 1985). After hatching, all animals were 
transferred to holding tanks (500 l), partially filled with 
water, at room temperature ranging from 26 to 30 ℃ and a 
light regime of 12:12 light:dark cycle. All animals were fed 
ad libitum four times a week (Mazuri® Crocodilian Diet, 
Mazuri®, PMI Nutrition International, Brentwood, MO, 
USA). Food was withheld at least 7 days before experiments. 
Body mass from 14 juvenile alligators ranged from 0.12 to 
6.80 kg, representing an almost 60-fold increment.

Instrumentation

All experiments were conducted in environmental cham-
bers at 30 ℃. Anesthesia was induced by placing the alli-
gator’s head inside a Ziploc bag (17 × 15 cm) containing 
isoflurane-soaked cotton gauze (Isoflo®, Abbott Laborato-
ries, USA). After loss of reflexes, the trachea was intubated 
to enable ventilation with a tidal volume of 20 ml × kg−1 at 
a rate of 5–8 breaths × min−1 using a Harvard Apparatus 
665 ventilator (Harvard Apparatus, Holliston, MA, USA) 
with a gas mixture of 2% isoflurane, 21% O2 and 3% CO2 
(GF-3mp, Cameron Instrument Co., Port Aransas, TX, USA) 
throughout the surgery (Smith et al. 2019). Local anesthe-
sia (lidocaine 2%; Lidoject, Henry Schein Animal Health, 
Dublin, OH, USA) was administered subdermally at the 
incision sites, and a longitudinal incision of 2 cm was made 
in the left thigh to access the femoral artery for occlusive 
cannulation with a PE50 catheter filled with heparinized 
saline (50 UI × ml−1). After closing the incision, alligators 
were placed in a supine position and a thermocouple was 
introduced into the cloaca and connected to a microprobe 
thermometer (BAT-12, Physitemp Instruments, Clifton, 
NJ, USA) for continuous body temperature monitoring. 
Subsequently, an incision was made at the ventral midline 
to open the sternum and expose the major vessels close to 
the heart. The left pulmonary artery (LPA) was non-occlu-
sively cannulated using the Seldinger technique (Seldinger 
1953; Filogonio and Crossley 2019). Briefly, we tapered a 
PE50 catheter over a 23-gauge needle, which was inserted 
upstream into the artery. After withdrawing the needle, the 
catheter was connected to a PE50 cannula filled with hep-
arinized saline (50 UI × ml−1). This procedure was repeated 
for the right aortic arch (RAo) of smaller alligators (< 3.5 kg; 
n = 8). The cannulas were connected to disposable pressure 
transducers (ADInstruments model MLT0699, ADInstru-
ments), which were calibrated daily against a static water 
column. Signals were amplified with a Bridge Amp (ADIn-
struments). Data were recorded at 100 Hz with a PowerLab® 
16/35 data acquisition system connected to a computer 
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running LabChart Pro® software (v.8.2, ADInstruments). 
Heart rate (fH), systemic and pulmonary arterial systolic 
pressures (Pssys and Pspul, respectively), and mean arterial 
pressures (Pmsys and Pmpul, respectively) were derived from 
the pulsatile pressure signals. All procedures were approved 
by the University of North Texas animal ethics committee 
(UNT-IACUC protocol # 17-001).

Experimental protocol

After instrumentation, the isoflurane was reduced to 1% and 
the cardiovascular parameters were allowed to stabilize for 
30 min, after which pressures were recorded for 10 min. 
Then, adrenaline (2 μg × kg−1) was administered through 
the systemic catheter to elicit a physiologically relevant rise 
in arterial pressures by affecting vascular resistances (Galli 
et al. 2007; Filogonio et al. 2019), thus, inducing higher wall 
tensions at both the RAo and the LPA.

Upon completion of the experiment, the isoflurane level 
was raised to 5% for 10 min and the animals were euthanized 
by an injection of pentobarbital (Euthansol; 150 mg × kg−1) 
through the carotid artery. The heart was immediately 
removed to measure its wet mass to the nearest 0.01 g. A 
2–3 cm section from both the RAo (after the bifurcation 
from the right subclavian) and the LPA (after the curvature 
out of the myocardium) were removed, and freed from sur-
rounding tissue by gross dissection. Isolated arteries were 
cannulated, and connected to a manometer to control inter-
nal pressure of the arteries. Arterial pressures were achieved 
by injecting 4% phosphate-buffered formalin through the 
cannula until pressures reached the correspondent peak sys-
tolic pressure measured after adrenaline injection for each 
animal. At this peak pressure, both ends of the arterial seg-
ment were tied with suture lines prior to immersion in buff-
ered formalin for histological processing.

Histology

Samples were dehydrated in ascending ethanol concentra-
tions and embedded in paraffin and stained for collagen con-
tent (Dubansky and Dubansky 2018). Briefly, 6 µm serial 
transverse sections were produced (Microm HM355S, Hei-
delberg, Germany), mounted on charged slides and stained 
with Picro-Sirius red (Fig. 1; Dubansky and Dubansky 
2018). Arterial cross-sections were imaged using a DP71 
digital camera mounted in an Olympus BX51 microscope 
powered by Olympus DP controller software (Olympus 
America Inc., Savage, Minnesota, USA). Image analysis of 
micrographs was completed using ImageJ freeware image 
analysis program (Schneider et al. 2012). Using tools in 
ImageJ, we estimated the arterial internal radius (ri) from 
the internal circumference (Ci): ri = Ci/2π (Fig. 1a). Arterial 
wall thickness (W; Fig. 1b) was the mean value of measure-
ments made at four different places from the arterial wall. 
Arterial wall tension was calculated according to the Law 
of Laplace for cylinders: T = ri × Ps, where “Ps” is the indi-
vidual arterial systolic pressure after adrenaline injection 
(2 μg × kg−1). We choose to use systolic pressure to estimate 
the peak of the tensional forces experienced by the arteries 
during each cardiac cycle. Similarly, arterial wall stress was 
calculated as: σ = T/W. We also avoided the most curved 
sections of each arterial segment to minimize the effects 
of curvature on the calculation of wall tension in cylinders 
(Azuma and Oka 1974).

Utilizing the enhanced birefringent properties of Picro-
Sirius red-stained collagen, polarization microscopy 
was used to estimate collagen content within the artery 
(Fig. 1d–f). Collagen content was assessed using pixel den-
sity analysis with ImageJ (Bautista and Burggren 2019). 
Briefly, bright-field and polarized light images from each 
tissue section were compared to calculate the total cross-sec-
tional area of tissue. Bright-field images (Fig. 1b) were used 

Fig. 1   Histological cross-sec-
tional cuts from the right aortic 
arch of a 2.20 kg American alli-
gator, Alligator mississippiensis. 
Picro-Sirius red staining. a–c 
Photos at bright field showing 
internal radius and circumfer-
ence (a), and arterial wall thick-
ness (b). d–f Photos at dark 
field using circular polarization, 
where collagen is shown in 
bright yellow, orange or green. 
At c and f: Ad tunica adventitia; 
Me tunica media. Scale bars: 
a, d = 1 mm; b, e = 0.5 mm; c, 
f = 0.1 mm
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to calculate total cross-sectional area of tissue in the region 
of interest using a hue ratio of 0:255, saturation 30:255, and 
brightness 10:255. Polarized light images (Fig. 1e) were then 
used to assess collagen content, evident at a hue ratio of 
0:105, saturation 0:255, and brightness 60:255. The rela-
tive amount of collagen per tissue was given as the ratio 
of collagen content identified by polarization microscopy 
(Fig. 1e), over the total cross-sectional area of tissue found 
at the bright-field analysis (Fig. 1b).

Statistical analysis

Scaling patterns were assessed using a non-linear power 
regression (equation: Y = aXb) using body mass (kg) as the 
predicting variable. Variables that fit to a power regression 
were then log10-transformed for comparisons of the scaling 
patterns between control values and after adrenaline injec-
tion (fH, Pmsys, Pssys, Pmpul, and Pspul), or between RAo 
and LPA (ri, T, W, σ, and collagen content) with an analysis 
of covariance (ANCOVA) using Mb as the covariate. When 
data did not fit to a power regression (i.e., did not scale with 
Mb), comparisons were made with a paired Student’s T test 
for the hemodynamic variables, and a Student’s T test for the 
morphological and mechanical variables. Non-linear power 
regressions were fitted with Sigma Plot v.11; we used Graph-
Pad Prism version 7.00 for ANCOVAs, Student’s T test, and 
graphs. Statistical significance was assigned as P < 0.05. All 
data are presented as mean ± 95% CI.

Results

Heart mass and hemodynamic variables

Heart mass increased with Mb, but as evident from the scal-
ing factor being less than 1, the relative size of the heart 
decreased with Mb (R2 = 0.89; P = 0.0001; a = 2.51 ± 0.88; 
b = 0.78 ± 0.22; Fig. 2a). Heart rate decreased with increased 

Mb at control conditions and after adrenaline injection 
(Table 1; Fig. 2b). Although adrenaline exerted an excita-
tory chronotropic effect, the scaling factors remained similar 
(Table 1). Both mean and systolic arterial pressures from 
the systemic circulation increased with Mb (Table 1; Fig. 3a 
and b, respectively). Similar scaling factors persisted after 
adrenaline injection, although both mean and systolic arte-
rial pressures were elevated (Table 1). Neither mean nor sys-
tolic pulmonary arterial pressures varied with Mb (Table 1), 
although adrenaline injection raised both parameters (Pmpul: 
t = 10.57; P < 0.0001; Fig. 3c; Pspul: t = 15.26; P < 0.0001; 
Fig. 3d).

Arterial morphology and mechanics

The internal luminal radius of the RAo increased proportion-
ally less than LPA (Table 2). The figures also indicate that 
the internal radius from RAo was larger than LPA (Fig. 4a). 
Wall tension was also higher in the RAo than the LPA, albeit 
with a similar scaling pattern (Table 2; Fig. 4b).

The wall thickness from RAo was larger than that of LPA, 
but both circuits scaled similarly with Mb (Table 2; Fig. 4c). 
The concomitant changes of wall thickness with tension 
caused stress to be independent of Mb for both RAo and LPA 
(Table 2), albeit differences between wall stress from RAo 
and LPA were statistically significant (t = − 4.58; P = 0.0001; 
Fig. 4d). Likewise, collagen content was independent from 
Mb for both RAo and LPA (Table 2). Both arteries displayed 
similar collagen contents (t = − 0.72; P = 0.48; Fig. 4e).

Discussion

This study was designed to investigate putative anatomi-
cal changes in the major systemic and pulmonary arterial 
vessels to resist the increased tensional forces as alligators 
grow larger. Our findings indicate that the thickening of the 
arterial walls as the alligators increased body mass occur 

Fig. 2   Scaling of heart mass 
and heart rate in the American 
alligator, Alligator mississippi-
ensis. Scaling patterns followed 
a non-linear power regression 
(Y = aXb). a Heart mass (g); b 
heart rate (bpm). Data for con-
trol values are represented by 
open circles and dashed lines; 
data for adrenaline injection are 
represented by closed circles 
and continuous line (n = 14)
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without changes in relative collagen content. However, wall 
thickening was sufficient to offset the larger arterial internal 
radius and pressure, thus, normalizing wall stress at both 
circuits.

Scaling of heart mass confirmed previous observations 
(Altimiras et al. 2017), and indicates that the relative size 
of the heart, and thus, stroke volume, decreases with Mb 
(Schmidt-Nielsen 1984). The reduction in heart rate also 
agrees with previous studies in mammals, birds, and reptiles 
(Seymour 1987; Seymour and Blaylock 2000; Enok et al. 
2014), and is usually attributed to a concomitant decrease in 
mass-specific metabolism (Dawson 2001). As in mammals 
(Baudinette 1978), adrenaline did not affect the heart rate 
scaling pattern. The increase of mean and systolic blood 
pressures from the systemic circulation with Mb agrees with 
previous studies on reptiles (Seymour 1987; Enok et al. 
2014), although mean and systolic pulmonary blood pres-
sures remained unchanged.

We acknowledge that anesthesia may depress the car-
diovascular system (Vatner and Braunwald 1975; Çeçen 
et al. 2009; Filogonio et al. 2014), and while the pressures 
recorded in anesthesia may differ from recovered animals, 
there is no a priori reason to believe that such an effect 
should differ with body mass. During the present study, 
mean heart rate recorded after adrenaline injection was 
similar to values observed for recovered A. mississippiensis 
during activity (30–40 bpm—Joyce et al. 2018). Although 
mean systemic arterial pressures were reduced, the systolic 
blood pressure of the systemic circulation—which in this 
study was utilized to calculate arterial wall tension and 
stress—was similar to mean systemic arterial pressures from 
recovered crocodilians (e.g. ~ 3 kPa for hatchling A. missis-
sippiensis – Crossley et al. 2003; 5.10 ± 0.39 kPa in Caiman 
latirostris weighting 1.81 ± 0.27 kg—Hagensen et al. 2010; 
and 7.10 ± 1.57 kPa in Crocodylus porosus with a mean 
body mass of 2.02 ± 0.12 kg—Altimiras et al. 1998). The 
goal of the adrenaline treatment was to elevate arterial pres-
sures within a physiologically relevant range that might be 
experienced by the arterial tree. Although adrenergic stimu-
lation may affect the vascular tone of the systemic and pul-
monary conduit and resistance vessels (Campos et al. 2019; 
Filogonio et al. 2020), vascular resistance is essentially regu-
lated downstream, at the level of small arteries and arterioles 
(Mulvany and Aalkjaer 1990). Since injection of adrenaline 
elevated systolic blood pressures to similar values to mean 
blood pressure recorded in recovered crocodilians, calcu-
lated wall tension and stress were physiologically relevant.

Arterial morphology and mechanics

Wall tension was higher in the RAo compared to the LPA. In 
a recent study of the yellow anaconda, Eunectes notaeus, the 
systemic dorsal artery was more elastic than the pulmonary Ta
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artery (Filogonio et al. 2018). If A. mississippiensis exhibits 
similar arterial mechanical properties, then the higher wall 
tension experienced by the RAo may be beneficial, since it 
would improve the arterial recoil during the diastolic phase 
(i.e., the Windkessel effect). Since the systemic circulation 
typically exhibits a higher peripheral resistance than the pul-
monary circulation (Barnes and Liu 1995), larger wall ten-
sions could improve the recoiling function of the distended 
arterial wall to overcome this elevated afterload. This mech-
anism could be further enhanced for both circuits at larger 
body sizes since lower heart rate results in a longer diastolic 
phase (Westerhof and Elzinga 1991); the time of pressure 
decay scales with size and is proportional to pulse interval 
in mammals (Westerhof and Elzinga 1991). In this context, 
the increased wall tension could sustain arterial recoiling for 
longer periods, thus, ensuring constant blood flow for larger 
animals even at reduced heart rate.

As demonstrated, the increase in wall thickness was suf-
ficient to normalize tension, rendering wall stress independ-
ent of Mb in both arteries. A similar adaptation has been 

observed in the left ventricular wall of the giraffe, Giraffa 
camelopardalis, which experiences a disproportional thick-
ening to resist elevated blood pressures as individuals grow 
(Smerup et al. 2016). The arterial wall of mammals also 
increases with size and the resultant stress is reduced (Prim 
et al. 2018). Therefore, wall thickening seems to be a con-
vergent mechanism within the cardiovascular system of ver-
tebrates to resist increased tensional forces.

Although the arterial wall from the RAo was thicker, the 
stress experienced by this artery was higher than the LPA. 
Therefore, we expected the RAo collagen content would be 
higher than in the LPA, but this hypothesis was refuted. In 
the ball python, Python regius, a reptile with functional ven-
tricular separation, although maximum stress recorded for both 
systemic and pulmonary circuits were similar, the pulmonary 
artery experienced larger stress at lower relative stretch (van 
Soldt et al. 2015). Therefore, our results may indicate that the 
systemic circuit is subjected to a much larger strain than the 
pulmonary artery in A. mississippiensis. Alternatively, in E. 
notaeus, the systemic artery possessed collagen capable of 

Fig. 3   Scaling of the systemic 
and pulmonary hemodynamic 
parameters of the American alli-
gator, Alligator mississippiensis. 
The scaling pattern followed 
a non-linear power regression 
(Y = aXb). Data for control 
values are represented by open 
circles and dashed lines; data 
for adrenaline injection are 
represented by closed circles 
and continuous line. a Mean 
systemic arterial pressure (kPa); 
b systemic systolic pressure 
(kPa); c mean pulmonary arte-
rial pressure (kPa); d pulmo-
nary systolic pressure (kPa). In 
c and d, data are presented as 
mean ± 95% CI and statistical 
differences are represented by 
an asterisk (n = 14)
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tolerating higher loads than the pulmonary artery (Filogonio 
et al. 2018). This can be attributed to different collagen iso-
forms, fiber orientation and crosslinking, or the interplay with 
other components of the extracellular matrix, such as elastin 
and glycosaminoglycans (Dingemans et al. 2000; MacDonald 
et al. 2000; Humphrey 2008; Wagenseil and Mecham 2009). 
Therefore, it is possible that intrinsic collagen properties differ 
between the RAo and the LPA in A. mississippiensis, as in E. 
notaeus (Filogonio et al. 2018). As such, it is likely that the 
collagen matrix arrangement, differential ratios of collagen 
isoforms and other extracellular matrix proteins may be con-
tributing to resist the increase in arterial wall tension in larger 
body sizes.

Conclusions

In the present study, heart rate decreased with Mb, agreeing 
with previous studies on reptiles. The increase of systolic 
and mean systemic blood pressures with size was not paral-
leled by systolic and mean pulmonary blood pressures. The 
internal luminal radius from both RAo and LPA increased 
with Mb, which led to increased wall tension at both arteries. 
The relative content of collagen did not scale with animal 
size and the different wall stress between RAo and LPA indi-
cates that these arteries are experiencing different strain, or 
that the collagen capacity needed to endure increasing ten-
sional forces diverges between the systemic and pulmonary 
circuits. Normalization of wall tension was attained with the 
scaling of the wall thickness at both RAo and LPA, render-
ing wall stress independent of Mb. Thus, it appears that the 
scaling of the wall thickness allows growing alligators to 
resist artery rupture from increasing tensions.
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