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Abstract The retina has a very high energy demand but lacks an internal blood supply in most
vertebrates. Here we explore the hypothesis that oxygen diffusion limited the evolution of retinal
morphology by reconstructing the evolution of retinal thickness and the various mechanisms for
retinal oxygen supply, including capillarization and acid-induced haemoglobin oxygen unloading.
We show that a common ancestor of bony fishes likely had a thin retina without additional retinal
oxygen supply mechanisms and that three different types of retinal capillaries were gained and lost
independently multiple times during the radiation of vertebrates, and that these were invariably
associated with parallel changes in retinal thickness. Since retinal thickness confers multiple
advantages to vision, we propose that insufficient retinal oxygen supply constrained the functional
evolution of the eye in early vertebrates, and that recurrent origins of additional retinal oxygen
supply mechanisms facilitated the phenotypic evolution of improved functional eye morphology.

Introduction

The light-absorbing retina lining the back of the vertebrate eye is an outgrowth of the forebrain and
shares the same high oxygen demand with other neural tissues (Country, 2017). Despite its high
demand for oxygen, the retina of most vertebrates remains avascular (Country, 2017; Yu et al.,
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2009) and must be supplied by oxygen diffusing from adjacent vascular structures. Thus, retinal
thickness is constrained by the diffusive distance between the retinal mitochondria and the ubiqui-
tous choroidal capillary network (choriocapillaris) behind the retina (Country, 2017; Buttery et al.,
1991; Chase, 1982; Yu et al., 2009). Diffusion is governed by Fick's law, where adequate oxygen
delivery to sustain a thicker retina can be achieved through reduced diffusion distance, increased
surface area of retinal capillary beds, or increased oxygen partial pressure gradient. Any combination
of such enhancements will increase oxygen flux and open opportunities for enhanced retinal thick-
ness. While thickness itself may be of little adaptive consequence, its enhancement allows for
changes in retinal morphology that are directly associated with visual performance. These include
increased density of photoreceptors and ganglion cells within the retina (Walls, 1937,
Querubin et al., 2009; Potier et al., 2017) as well as the stacking of rods and cones to increase
light sensitivity (Rodieck, 1998).

Shorter diffusion distance from blood to the retina and/or larger diffusive area can be achieved
by developing capillaries either within the retina itself or on its light facing side (intra- and pre-retinal
capillaries, respectively). These additional capillary networks, which are analogous to those of the
human retina, are found in a small minority vertebrates, including examples in teleost fish, amphib-
ians, reptiles, birds, and particularly mammals, and are thus scattered across the vertebrate phylog-
eny (Yu et al, 2009; Country, 2017, Chase, 1982; Meyer, 1977, Buttery et al., 1991,
Walls, 1937). While improving the oxygen supply, such retinal capillaries may interfere with the light
path to the retinal cells and hence introduce a trade-off between oxygen delivery and visual acuity
(Country, 2017, Yu and Cringle, 2001).

Early in the evolution of the ray-finned fishes, amino acid substitutions in haemoglobin produced
an exceptional pH-sensitivity of oxygen binding called the Root effect (Root, 1931). The subsequent
evolution of a specialised capillary bed behind the retina (choroid rete mirabile) allowed for localised
reduction of pH, which promoted efficient oxygen off-loading. In combination with the counter-cur-
rent arrangement of its capillaries it became possible to generate localised extreme oxygen partial
pressures (PO,) in excess of 1300 mmHg (Wittenberg and Wittenberg, 1962; Wittenberg and Wit-
tenberg, 1974b; Wittenberg and Haedrich, 1974a) (see Figure 3—figure supplement 1 and Inter-
active 3D Model for detailed vascular overview). Thus, many of the ray-finned fishes enhance oxygen
flux to the retinal cells not by increased diffusion area or diminished diffusion distance, but instead
by massively increasing the steepness of the diffusion gradient using the oxygen secretory
mechanism.

Whilst the evolutionary relationships between the size of the Root effect and the development of
the choroid rete mirabile has been studied in some detail (Berenbrink et al., 2005; Verde et al.,
2008), the relationship between oxygen secretion and retinal thickness has not been examined. The
same can be said of the relationship between the development of intra- or pre-retinal capillaries and
retinal thickness. It has been convincingly argued that the choroid rete mirabile evolved only once in
an early ray-finned fish but was subsequently lost independently within five clades of teleosts, con-
comitantly with a reduction in Root effect (Berenbrink et al., 2005). These losses allow for the inves-
tigation of whether secondary reductions in oxygen secretion resulted in thinning of the retina or in
compensatory introduction of pre- or intra-retinal capillarization to maintain retinal thickness.

The present study was therefore designed to detect co-evolutionary changes between retinal
oxygen supply and retinal morphology. Since the ray finned fishes are known to present all three
enhancements in oxygen flux (Country, 2017; Yu and Cringle, 2001), we developed a phylogenetic
model based on ray-finned fishes to illuminate the effects of enhancements and losses of oxygen
secretion on retinal thickness, and we used the lobe-finned fishes as outgroup. Within these species,
we measured the magnitude of the Root effect, the extent of retinal thickness, and the degree of
retinal capillarization (Supplementary file 1). We then scanned the literature and included additional
data on Root effect magnitude and the presence of the choroid rete mirabile to increase the power
of the ray-finned fish model (Supplementary file 1). In addition, since intra-retinal capillarization is
widespread among mammals, we used the model to evaluate the correlation between oxygen sup-
ply and retinal thickness in mammals based primarily on literature data.

Using this model, we tested three hypotheses on vertebrate eye evolution. Firstly, since retinal
capillarization and oxygen secretion have not been reported in elasmobranchs or jawless verte-
brates, we tested the hypothesis that the archetypal bony fish retina was thin and was supplied
solely by the choriocapillaris. Next, we tested the hypothesis that any evolutionary enhancement of
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retinal oxygen flux was associated with thicker retinae. Finally, we tested the hypothesis that modu-
lation of oxygen secretion changes the need for retinal capillarization, such that loss of oxygen secre-
tion should be associated with either thinning of the retina or introduction of extra capillary supply
routes.

Results

In the following, we initially analyse the evolution of retinal thickness followed by a similar analysis of
the evolution of retinal oxygen flux mechanisms. Finally, we present the analysis of the evolutionary
interactions between retinal morphology and its oxygen supply.

Evolution of retinal and ocular morphology

The thickness of the retina and its layers was quantified with both in vivo high-frequency ultrasound
and histology on 34 ray-finned fish species, three lungfishes and two mammals (Figure 1, Videos 1-
2). This core data was supplemented with literature values of retinal thickness from 14 tetrapods.
We then used a maximum likelihood ancestral state reconstruction to model retinal thickness across
all branches within a phylogenetic tree encompassing these species.

This analysis suggested a thin retina (194 um) in the last common ancestor of bony fishes some
425 million years ago (MYA), that is before the split of the ray- and lobe-finned fishes (Figure 1) sup-
porting the first hypothesis. The analysis revealed that retinal thickness doubled independently on
six occasions within the bony fish phylogeny. Thus, the doubling occurred once within osteoglossi-
form fishes, once in salmoniformes and four times in perciform fishes. In all of these groups retinal
thickness exceeded 500 um in some species (Figure 1). The analysis also showed that retinal thick-
ness halved three times within the vertebrates, falling to below 96 um within several species
(Figure 1).

To test whether increased eye size was associated with a thicker retina, we first computed the
body mass corrected residuals in eye mass (phylogenetic general least squares (PGLS), t = 12.7,
p<0.001, n = 79, Figure 2A) and showed that these residuals were indeed strongly associated with
increases in retinal thickness (PGLS, t = 21.6, p<0.001, n = 36, Figure 2B). This suggests that species
that invest in large eyes (compared to similar sized species) also invest in increased retinal thickness.

Evolution of additional retinal vascularization
Next, we used stereological analyses on high-resolution computed tomography scans, magnetic res-
onance imaging scans, and histological sections of eyes from 58 different vertebrates to identify and
quantify the type and extent of capillary networks supplying the retina. In addition, we measured the
Root effect in blood samples from 43 species and combined these two data sets to reconstruct the
evolutionary history of the oxygen flux to the vertebrate retina (Figure 3). This analysis indicated
that the most recent common ancestor of bony fishes was devoid of a choroid rete mirabile (proba-
bility for presence = 0.1%), devoid of intra-retinal capillaries (probability for presence = 0.4%), and
likely also lacked pre-retinal capillaries (probability for presence = 32.4%) (Figure 3). These results
strongly support the first hypothesis that the retina of this ancestor to bony fish only relied on the
choroidal capillaries lining the back of the retina for oxygen delivery similarly to what is found in the
extant coelacanth and Australian and South American lungfishes (Figure 3—figure supplement 2).
Further, the reconstruction showed that the choroid rete mirabile originated at least twice in the
ray-finned fishes. Firstly, in the lineage leading to Amia, and secondly, in a common ancestor to the
teleosts (Figure 3). Loss of the choroid rete mirabile actually appears to have been a common phe-
nomenon through the radiation of the ray-finned fishes, as we find a surprising 23 losses (Figure 3).
Intra-retinal capillaries originated independently within ray-finned fishes and mammals (Figures 3
and 4): Within the ray-finned fishes, intra-retinal capillarization originated at least twice, in the
branches leading to the European eel, Anguilla anguilla, and the elephant nose fish, Gnathonemus
petersii (Figure 3). Applying this model on mammalian data (Chase, 1982; Leber, 1903,
Samorajski et al., 1966; Moritz et al., 2013; Kolmer, 1927, Bellhorn, 1997, McMenamin, 2007),
reveals that the retina of the most recent common ancestor of mammals was most likely devoid of
capillaries (anangiotic) (probability for presence of capillaries = 1.2%). Capillarization of the whole
retina (holangiotic retina) seems to have originated from an anangiotic ancestor on at least three
occasions within the mammalian phylogeny including twice within marsupials (~63 and 54 MYA) and
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Figure 1. Evolution of maximal retinal thickness in 53 bony fishes. Measured (bars) and reconstructed (internal nodes) values for maximal retinal
thickness plotted on a bony fish phylogeny. Stacked colours represent thicknesses of individual retinal layers (retinal thickness in species without data
on retinal layers thickness are shown in grey bars). Retinal thickness was measured using in vivo ultrasound, histology, or acquired from the literature,
and retinal layer thickness was measured on histological sections. Ancestral states were inferred using maximum likelihood. Retinal layer abbreviations:
PEPRL, pigment epithelium and photo receptor layer; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform

layer; GCL, ganglion cell layer; NFL, nerve fiber layer.

once in a common ancestor of the eutherian superorders Laurasiatheria and Euarchontoglires (~96
MYA) (Figure 4). The analysis also shows secondary reductions in retinal capillarization within mam-
mals. Thus, there are at least five complete losses within the eutherian mammals (Figure 4) where

Damsgaard et al. eLife 2019;8:e52153. DOI: https://doi.org/10.7554/eLife.52153

4 of 24


https://doi.org/10.7554/eLife.52153

LIFE

Color_DoppliTo0e.

-

Video 1. Two-dimensional ultrasound videos in
B-mode, quadratic average mode, and colour Doppler
mode in a mid-coronal plane through the eyes of
fishes. Ambystoma mexicanum, Lepidosiren paradoxa,
Protopterus annectens, Polypterus senegalus,
Acipenser baerii, Lepisosteus oculatus, Anguilla
anguilla, Pantodon bucholzi, Gnathonemus petersii,
Chitala ornata, Carassius auratus, Pangio kuhlii,
Pangasianodon hypophthalmus, Clarias batrachus,
Apteronotus albifrons, Pygocentrus nattereri, Astyanax
mexicanus (Surface), Astyanax mexicanus (Micos),
Astyanax mexicanus (Pachon), Astyanax mexicanus
(Chica), Oncorhynchus mykiss, Gadus morhua,
Ctenolabrus rupestris, Dicentrarchus labrax,
Gasterosteus aculeatus, Perca fluviatilis, Pterophyllum
scalare, Pleuronectes platessa, Parachanna obscura,
Mastacembelus erythrotaenia, and Monopterus albus.
https://elifesciences.org/articles/52153#video

tory, the Root effect increased linearly over time
(Figure 6A). When the Root effect increased
above 40% around 200 MYA, the choroid rete
mirabile evolved, allowing a decrease in pre-reti-
nal capillarization (Figure 6A). Similar reductions
in retinal capillarity in the evolutionary trajectory
leading to several other teleosts with retinal oxy-
gen secretion further supported this relationship
(evolutionary trajectories to all extant species are
deposited on GitHub, https://github.com/christi-
andamsgaard/Retinaevolution). Moreover, the
reconstructed evolutionary trajectories of retinal
oxygen supply indicate reverse causation
between retinal capillarity and oxygen secretion
during secondary losses of oxygen secretion. For
example, oxygen secretion was secondarily lost
in the lineages leading to European eel, Anguilla
anguilla (Figure 6B), and striped catfish, Panga-
sianodon hypophthalmus (Figure 6C), and these
losses coincided with the origin of intra-retinal
capillarization and extended pre-retinal capillari-
zation in the two respective lineages. All three of
these findings strongly support the third hypoth-
esis by showing an inverse relationship between
retinal capillarization and oxygen secretion

Evolutionary Biology

retina change from a holangiotic to an anangiotic
state, as well as two partial reductions (holangi-
otic to merangiotic) where capillaries in the reti-
nal periphery are lost but remain around the
optical disc (i.e., in the branches leading to Euro-
pean rabbit, Oryctolagus cuniculus, and musk
deer, Moschus fuscus).

Evolutionary dynamics in retinal
vascularization in ray-finned fishes
The presence of a choroid rete mirabile is associ-
ated with an elevated Root effect. Thus, the Root
effect is significantly higher in species with cho-
roid rete mirabile compared to species without
(phylogenetic analysis of variance simulation
(PAQV), F = 122, p<0.001, n = 68, Figure 5A).
Further, there is a negative correlation between
the extent of pre-retinal capillarization and Root
effect magnitude (PGLS, t = -4.62, p<0.001, n
= 19; Figure 5B) supporting the idea of pre-reti-
nal capillaries causing light scattering and thus a
trade off in visual performance. This inverse rela-
tionship between retinal capillarization and oxy-
gen secretion was supported by reconstructing
retinal oxygen supply in the lines of descent con-
necting the most recent common ancestor of
bony fishes and extant fishes exhibiting retinal
oxygen secretion, such as European perch, Perca
fluviatilis (Figure 6A). In this evolutionary trajec-

Quadratic average

Video 2. Three-dimensional, quadratic-averaged
ultrasound slice videos through the coronal plane of
the eyes of five species with fundamentally different
eye circulatory patterns. Acipenser baerii, Only
choriocapillaris; Polypterus senegalus, Choriocapillaris
and pre-retinal capillaries; Gnathonemus petersii,
Choriocapillaris, pre-retinal capillaries and intra-retinal
vessels; Pterophyllum scalare, Choriocapillaris and
choroid rete mirabile; and Carassius auratus,
Choriocapillaris, choroid rete mirabile and pre-retinal
capillaries.
https://elifesciences.org/articles/52153#video2
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Figure 2. Scaling of eye mass and retinal thickness. (A) Species-mean values of eye mass and body mass (dots)
showing an allometric scaling relationship. Solid line depicts a phylogenetic general least squares (PGLS) fit to the
data (logioleye mass [g])=0.77 logiolbody mass [g]) — 2.64, t = 12.7, p<0.001, n = 79). (B) Positive correlation
between retinal thickness and residual eye mass (rEM) that are the residuals of the PGLS fit, which are body mass-
independent measures of eye mass. Solid line depicts a PGLS fit to the data (retinal thickness = 34.9 rEM + 265,
t=21.6, p<0.001, n = 36).

through the dual presence of Root effect haemoglobins and the choroid rete mirabile.

Relationships between retinal oxygen supply and retinal thickness

The retinal thickness in the ray-finned fishes was strongly associated with the presence of a choroid
rete mirabile which represents a proxy for oxygen secretion (pAOV, F =, p=0.00264; Figure 7A).
This association was found in the evolutionary trajectory connecting the most recent common ances-
tor of bony fishes and extant teleosts showing a 30% increase in retinal thickness in the branch
where the choroid rete mirabile evolved ~200 MYA (e.g., perch; Figure 6A). Conversely, in branches
where the choroid rete mirabile was secondarily lost, retinal thickness decreased substantially, which
further supported the tight relationship between oxygen secretion and retinal morphology (e.g., loa-
ches; Figure 6D). The only species that deviated from this loss of retinal thickness downstream of
loss of oxygen secretion are those in which oxygen flux was to some extent maintained by the intro-
duction of intra- or pre-retinal capillaries that replace the loss of partial pressure gradient with an
increase in diffusive surface area or reduced diffusive distance (Figure 6C; Figure 7A black vs.
orange symbols, p=0.005, PGLS). This relationship can be tested in mammals, which never evolved
oxygen secretion, but which show a strong relationship between retinal thickness and presence of
intra-retinal capillarization (pAQV, F =, p = 0.00168; Figure 7B).

We also examined two groups of fishes with ‘natural knock-out’ of retinal morphology or haemo-
globin to examine whether they follow the patterns described above. Firstly, Antarctic icefishes that
lost haemoglobin could be compared to close relatives that retained haemoglobin allowing exami-
nation of how a sudden loss in blood oxygen carrying capacity affected retinal morphology. Here,
the reconstruction showed that species with or without haemoglobin show remarkably similar retinal
thickness (Figure 8). Those that lost haemoglobin and hence oxygen secretion show an extensive
pre-retinal capillarization (previously described by Wujcik et al., 2007) allowing the maintenance of
retinal thickness (Figure 8). This finding strongly emphasises how loss of blood oxygen supply can
be compensated by increasing the diffusion area via new capillary networks. Secondly, we explored
how relaxed selection on vision affected the oxygen supply to the eye. During the recurrent cave
invasions by the Mexican tetra, Astyanax mexicanus, vision has been lost through varying degrees of
eye regression (Figure 9). The ecotypes within this species displayed variation in Root effect magni-
tude and choroid rete mirabile size, where ecotypes with greatest eye regression showed lowest
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See Figure 3—figure supplement 3 for a phylogeny with species names.
The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Circulation in the bony fish eye.
Figure supplement 2. Examples of retinal blood supply types in bony fishes.
Figure supplement 3. Evolution of retinal oxygen supply mechanisms in vertebrates.
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Figure 4. Evolution of retinal capillarization in mammals. Mammalian phylogeny showing retinal capillarization
examined in extant species (tips; literature data: Chase, 1982; Leber, 1903; Samorajski et al., 1966;

Moritz et al., 2013; Kolmer, 1927, Bellhorn, 1997, McMenamin, 2007) and reconstructed retinal capillarization
(internal branches), showing of holangiotic (capillarization of the whole retina; orange), merangiotic (capillarization
confined to the retina around the optic nerve; grey), and anangiotic capillarization (little or no capillarization;
white). Pie charts indicate ancestral states on internal nodes showing posterior probabilities summarised from

stochastic character mapping.

Root effect magnitudes as well as diminished choroid rete mirabile size (Figure 9). In addition, the
Micos ecotype that exhibited an intermediate stage of eye regression had almost halved the retinal
thickness compared to the basal surface ecotype. Thus, both of these ‘natural knock-out” examples
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Figure 5. Haemoglobin function and retinal capillarization. (A) Frequency distribution of Root effect magnitude in
ray-finned fishes with and without a choroid rete mirabile. The effect of the presence of the choroid rete mirabile
was tested by phylogenetic analysis of variance simulation (F = 122, p<0.001, n = 68). (B) Pre-retinal capillarization
and Root effect magnitude in ray-finned fishes, showing a negative correlation as tested by phylogenetic general
least squares (t = -4.62, p<0.001, n = 19). Each dot represents mean values for each species. Pre-retinal
capillarization is the volume of capillaries on the inner side in mm? of the retina per retinal surface area in mm?.
Root effect is the per cent haemoglobin desaturation at pH 5.5 compared to pH 8.5 in air-equilibrated buffers.

follow the pattern of retinal thickness correlating positively to oxygen supply capacity and further,
where one type of oxygen delivery mechanism has been diminished it has been replaced by other
types of oxygen delivery.

Discussion

The evolutionary interplay between retinal oxygen supply and eye
morphology

Our analysis reveals a tight, mutually dependent relationship between retinal oxygen supply mecha-
nisms and retinal morphology in ray-finned fishes and mammals. These relationships are revealed
both in the statistical correlations, in the temporal overlap within macroevolutionary reconstructions,
and in the cases of ‘natural knock-out’ within Astyanax and Channichthyidae. These three separate
lines of data independently support the hypothesis that the origin of additional oxygen supply mech-
anisms was associated with the evolutionary increases in retinal thickness.

The evolutionary reconstruction indicates that the last common ancestor of bony fishes only sup-
plied the retina with oxygen from the choriocapillaris. This finding contrasts previous investigations
suggesting an earlier origin of the choroid rete mirabile in a shared ancestor of bony fishes
(Bailes et al., 2006; Yu et al., 2009). Further, our reconstruction revealed that this ancient bony fish
likely possessed a thin retina, typical for extant species with no additional oxygen supply mecha-
nisms, as well as species with reduced eye size (Figure 2B). Given that the positive relationship
between eye size and retinal thickness held true for early vertebrates, our prediction of a thin retina
is consistent with the fossil evidence where the oldest known bony fishes, for example tGuiyu
oneiros (Zhu et al., 2009) and the oldest lobe-finned fishes (Maclver et al., 2017) possessed small
eyes. Therefore, we propose that the advanced retinal oxygenation patterns in extant bony fishes
derive from a very basic physiological phenotype in their most recent common ancestor.

The trajectories of retinal evolution from the most recent common ancestor of bony fish to tele-
osts with oxygen secretion show that the origin of the choroid rete mirabile ~200 MYA coincided
with significantly increased retinal thickness (e.g., Figure 6A). This finding strongly suggests that
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Figure 6. Evolutionary trajectories of retinal oxygen supply and morphology. Each column displays the evolution
of physiological and anatomical parameters in the lines of descent connecting the most recent common ancestor
of bony fishes to either European perch, Perca fluviatilis (A), striped catfish, Pangasianodon hypophthalmus (B),
European eel, Anguilla anguilla (C), or kuhli loach, Pangio kuhli (D). The right-most symbols in each column are
measured values and points to the left are reconstructed values of in all internal nodes in the phylogeny
connecting to the most recent common ancestor of bony fishes (see top phylogeny, where the four species are
marked in bold). Maximal retinal thickness is plotted in black where stacked shaded areas below represent
measured and reconstructed thickness of the individual retinal layers. Pre-retinal capillarization is the volume of
capillaries on the inner side in mm? of the retina per retinal surface area in mm?. Root effect is the per cent
haemoglobin desaturation at pH 5.5 compared to pH 8.5 in air-equilibrated buffers. Maximum total retinal
thickness, thickness of individual retinal layers, and pre-retinal capillarization were reconstructed using maximum
likelihood, and the presence of intra-retinal capillaries or the choroid rete mirabile was reconstructed using
stochastic character mapping. Retinal layer abbreviations: PEPRL, pigment epithelium and photo receptor layer;
ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL,
ganglion cell layer; NFL, nerve fiber layer. Trajectories to all extant species in the data set are deposited on
GitHub (https://github.com/christiandamsgaard/Retinaevolution).
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Figure 7. Relationship between retinal oxygen supply and morphology. Frequency distribution of retinal thickness
in ray-finned fishes with and without a choroid rete mirabile (A), and in mammals with and without intra-retinal
capillaries (B). In (A), orange symbols indicate species with intra-retinal capillarization. Each dot represents mean
values for each species. The effect of the choroid rete mirabile or intra-retinal capillaries on retinal thickness were
assessed by phylogenetic analysis of variance simulation. Root effect is the per cent haemoglobin desaturation at
pH 5.5 compared to pH 8.5 in air-equilibrated buffers.

oxygen secretion conferred an adaptive advantage to teleosts by improving retinal oxygenation
through a steeper diffusion gradient and hence permitted the morphological evolution of the retina.
Further, our confirmation of the second hypothesis of a negative correlation between Root effect
magnitude and pre-retinal capillarization suggests that oxygen secretion conferred an additional
advantage to fish vision by reducing the adverse effects of light scattering from red blood cells in
the visual field (Country, 2017; Yu and Cringle, 2001).

Our data set also revealed multiple independent losses of the oxygen secretion system within the
teleosts and associated regressions in retinal morphology (Figures 1 and 3). The causality underlying
these secondary losses in oxygen secretion and the declines in retinal thickness is challenging to
resolve. However, our demonstration of reduced Root effect magnitude and regressed choroid rete
mirabile morphology in cave-dwelling ecotypes of Mexican tetras proposes that the recurrent sec-
ondary losses of oxygen secretion across teleosts may have resulted from relaxed selection on vision.
The rapid loss of Root effect may also be an indication of costs associated with the maintenance of
enhanced Root effect haemoglobins. Such costs have been suggested previously and include exag-
gerated coupling between CO, and O, transport, increased oxidative damage, and a reduction in
blood's oxygen-carrying capacity under acidification of the blood (e.g., under anaerobic exercise,
hypoxia, hypercapnia) (Pelster and Weber, 1991; Damsgaard et al., 2019b; Wilhelm Filho, 2007).
However, the loss of a choroid rete mirabile did not lead to a complete loss of the Root effect in
species that utilise a rete mirabile in the swim bladder for buoyancy regulation, as these species
tend to have a reduced, but not lost, Root effect in their blood (Berenbrink et al., 2005). Whatever
the dynamics of the Root effect loss, the positive correlation between retinal thickness and the mag-
nitude of the Root effect in Mexican cave fishes provide further support for an intrinsic link between
retinal morphology and oxygen flux mechanisms within vertebrates.

Interestingly, our analysis identified some species descending from ancestors that had lost the
choroid rete mirabile but retained a thick retina. These species provided valuable insight into alter-
native mechanisms for retinal oxygenation that are independent of oxygen secretion. Here, we iden-
tified multiple independent increases in pre-retinal capillarization downstream to separate secondary
losses of oxygen secretion, including, but not limited to, the striped catfish and the Channichthyidae.
This vascular pattern also originated within the lobe-finned fishes that never evolved oxygen secre-
tion, such as within the amphibians, reptiles, and birds (Country, 2017, Yu et al., 2009,
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Figure 8. Evolution of retinal oxygen supply and morphology in Notothenioids, including the haemoglobin-less
Antarctic icefishes (C. rastrospinosus and C. wilsoni). Measured and reconstructed values of maximal retinal
thickness plotted on the Notothenioid phylogeny. Ancestral state values for retinal thickness were estimated by
maximum likelihood. The observed absence (open symbols) and presence (filled symbols) of red blood cells (pink),
choroid rete mirabile (green), and pre-retinal capillaries (purple) are indicated at the tips, and inferred origins and
losses of these traits are marked on internal branches by filled and open symbols, respectively. Pie charts at the
most recent common ancestor of notothenioids indicate the Bayesian posterior probability of these traits being
present.

Meyer, 1977), providing the same general mechanism for improved retinal oxygenation, which was
also associated with retinal thicknesses exceeding those of many other tetrapods.

Intra-retinal capillaries represent an alternative mechanism to improve oxygen supply in the
absence of oxygen secretion. The two independent origins of intra-retinal capillaries within teleosts
both overlapped with the losses of oxygen secretion, but a maintenance of retinal thickness, which
illustrates the efficacy of intra-retinal capillaries in oxygenating the retina. This retinal capillarization
is functionally similar to the solution that evolved independently in mammals. Interestingly, the inde-
pendent origins of holangiotic capillarization in mammals seem to coincide with the origin of endo-
thermy in a late-Mesozoic dinosaur group, whereby mammals altered from a nocturnal to diurnal
activity pattern that increased the reliance on vision and a thicker retina (Gerkema et al., 2013). Our
reconstruction also revealed five secondary losses of intra-retinal capillaries in the eutherian mammal
groups, which include species that have evolved non-visual primary senses (e.g., echolocation in
bats) with retinal thicknesses well below those of species with intra-retinal capillarization. These
observations all support the second hypothesis of a tight connection in the evolution of enhanced
retinal oxygen delivery mechanisms and improved retinal thickness.

Retinal oxygen supply and the evolution of visual performance

The six-fold interspecific differences in retinal thickness raise the question of the adaptive signifi-
cance of retinal thickness to visual performance. Several studies have shown that retinal thickness
increases with the density of photoreceptors and retinal ganglion cells, where the latter relates
directly to spatial resolution (Walls, 1937, Querubin et al., 2009; Potier et al., 2017). This relation-
ship is particularly pronounced in the retinal region surrounding the fovea or area centralis, where
visual cells are not only densely packed but also frequently arranged in several layers, one above the
other (Querubin et al., 2009; Potier et al., 2017; Jeffery and Williams, 1994). The only exception
to this is the central fovea, where the retinal ganglion cells (and sometimes other inner retinal layers)
are partially or fully displaced to create a depression on the retinal surface (known as the fovea),
below which the retina is much thinner. Nonetheless, a thicker retina with a higher density of visual
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Figure 9. Regressive evolution of oxygen secretion in troglobitic Mexican tetras. Representative photographs and
computed tomography scans of a surface and three cave forms of Astyanax mexicanus: Surface (large eyes), Micos
(invaded caves about 10-20,000 years ago, variably reduced eyes), Chica (invaded caves around 10-20,000 years
ago, highly reduced eyes), and Pachén (invaded caves at earliest around 3 Ma but most likely during the last
glaciation, highly reduced eyes). Orange circles on computed tomography scans mark the actual size and location
of eyes. Green bars show residuals of logg(choroid rete mirabile endothelium surface area [mm]) (rSA) on
logiobody mass [g]). There was no choroid rete mirabile in A. mexicanus (Chica). Root effects magnitudes are
marked as pink dots, and black dots and bars are means and standard error of mean. There were significant
differences in mean Root effect between ecotypes as determined by one-way ANOVA (F3 3, = 4.617, p=0.009)
with a Student-Newman-Keuls posthoc test and indicated by letters above bars (n = 9, 11, 11, and five for Surface,

Micos, Pachon and Chica, respectively). Lower panel shows the phylogenetic relationships between different forms
of A. mexicanus.

cells arranged in layers (as found in the vicinity of a fovea or area centralis) confers a number of
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performance advantages: Firstly, the ability to resolve spatial details in a well-focused retinal image
is directly proportional to the density of ganglion cells (i.e., to the fineness of the sampling matrix;
Rodieck, 1998). Secondly, layers of ganglion cells (possibly with parallel sampling matrices) have the
potential to analyze different types of visual information in parallel pathways (e.g. the parallel ‘'ON’
and ‘OFF’ ganglion cell pathways; Rodieck, 1998). Thirdly, a thicker photoreceptor layer allows the
possibility of longer rod and cone outer segments for greater light absorption and enhanced sensi-
tivity (Land and Nilsson, 2012; Cronin, 2014). Indeed, in many species of deep-sea fishes
(Warrant and Locket, 2004; Locket, 1977), and in one remarkable nocturnal bird (the oilbird, Stea-
tornis caripensis; Martin et al., 2004), the retina has thickened substantially to allow several layers
of rods, hence significantly improving photon catch in the light-impoverished environments where
these animals live.

Summary

A thicker retina obviously confers multiple performance advantages to the vision of animals, but
simultaneously introduces an inherent trade-off between visual performance and retinal oxygen
delivery. Here, we provide evidence for the convergent evolution of improved retinal morphology
from a primitive retinal phenotype that was invariably associated with the emergence of improved
oxygen supply mechanisms. We show that these additional mechanisms have been repeatedly
gained and lost during vertebrate evolution and are in all cases associated with parallel changes in
retinal morphology and possibly visual performance. Based on these data, we propose that retinal
oxygen diffusion constrained the evolution of improved vision in ancestral vertebrates; a constraint
that was repeatedly relaxed by various combinations of vascular and haemoglobin adaptations per-
mitting the adaptive evolution of the vertebrate eye.

Materials and methods

Study design

We used an integrative and comparative analysis of retinal morphology and respiratory phenotyping.
First, measurements of the functional anatomy of the vertebrate eye were made in vivo with high-fre-
quency ultrasound (Videos 1-2). These were expanded with stereological analyses of histological
sections, high-resolution computed tomography and magnetic resonance imaging of whole eyes to
quantify extra-retinal capillarization and thicknesses of all retinal layers and were combined with
measurements of haemoglobin functional properties (Figure 3—figure supplement 1). We analyzed
these data in a phylogenetic comparative framework to test to what extent independent origins of
additional retinal oxygen supply were consistently associated with improved retinal morphology.
When compatible, we further included published literature values for retinal thickness and Root
effect magnitude and the absence and presence of a choroid rete mirabile and intra-retinal capillar-
ies to increase the power in the ancestral state reconstructions (Supplementary file 1).

Animal procurement and housing
Eighty-seven species of fishes were included in this study, and were chosen to include representa-
tives from as many clades as possible that were known to contain species with and without distinct
types of retinal oxygen supplies. Of the initial 87 species, 31 species were examined by in vivo ultra-
sound imaging. These specimens were purchased from local aquaculture facilities, research institu-
tions, or aquarium stores, and kept in large tanks coupled with a recirculation system at
Zoophysiology, Aarhus University, Denmark. Animals were fed daily with commercially dry pellets
until analysis and held under a 12:12 hr light cycle. Animals of the three ecotypes of Astyanax mexi-
canus (Surface, Micos, and Pachén) were offspring of animals caught in their natural caves by H.W.
Notothenioid specimens were captured and sampled by TD and HWD along the West Antarctic Pen-
insula during a field campaign in 2016 supported by the United States Antarctic Program (USAP).
Several specimens with the following museum numbers were loaned from Natural History
Museum of Denmark to examine retinal capillarity phenotype using whole animal magnetic reso-
nance imaging in Latimeria chalumnae (ZMUC P1112, Conservation du Coelacanthe number 23) and
Dissostichus eleginoides (ZMUC P63215), and using micro-CT following by histological sectioning of
the eye of Neoceratodus fosteri (ZMUC P1127) (Figure 3—figure supplement 2).
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Figure 10. Validation of eye volume [V(eye)] measurement from eye radius and schematic of quantitative anatomical measurements. Estimations of V
(eye) in 16 species of notothenioids spanning 4 orders of magnitude in body size (A, relative sizes of largest, a medium sized and smallest species)
showed a proportional relationship between V(eye) based on eye radius and stereological measurements from three-dimensional magnetic resonance
imaging (MRI) and micro-CT imaging (B, correlation plot with magnifications (b1 and b2). C and D, Bland-Altman plot containing all specimens (C) and

Figure 10 continued on next page
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Figure 10 continued

with the markedly larger Dissostichus eleginoides excluded (D)). Retinal thickness, T(retina), was measured at 20°, 30° and 40" to the optic nerve at both
sides (only one side shown in figure) on ultrasound (E) and micro-CT (F, volume reconstruction to show shape of choroid rete mirabile) datasets and
similarly on histological slides. Eye volume, retina volume, Vretina) and choroid rete mirabile volume, VI(CRM), were calculated based on geometrical
assumptions (G1, G2, and H. See Materials and methods for written description) and the measurement of the radii, r(x), of the circle describing the eye,
Cleye), and the imaginary circles constituted by the inner side of the retina, C(retina), the choroid rete mirabile, C(CRM), the optic nerve, C(NO) and the
displacement, d(x), of the center of these circles.

To test for the effect of spheriality on eye volume estimations, we used whole animal imaging
data sets of nototenioid specimens with the following museum numbers that were scanned using
magnetic resonance imaging in Cottoperca gobio (ZMUC P639); Eleginops maclovinus (ZMUC CN2);
Notothenia angustata (ZMUC 7746); Notothenia coriiceps (ZMUC 9086); Gymnodraco acuticeps
(ZMUC P6346); Parachaenichthys georgianus (ZMUC P632), Parachaenichthys charcoti (ZMUC 6),
Champsocephalus gunnari (ZMUC P63195); Chaenocephalus aceratus (ZMUC P63200); Chionodraco
rastrospinosus (ZMUC P63202)], and using micro-computed tomography imaging (micro-CT) in
Bovichtus variegatus (ZMUC CN1), Artedidraco skottsbergi (ZMUC 8374), Pogonophryne immacu-
late (ZMUC 7755), Harpagifer antarcticus (ZMUC P63273), and Harpagifer bispinis (ZMUC P6310).

Micro-ultrasound imaging

High-frequency micro-ultrasound was applied to visualise retinal blood flow in vivo. Fish were lightly
anaesthetised until unresponsive to tactile stimulation using benzocaine (ethyl-4-aminobenzoate) at
species-dependent concentrations (Supplementary file 2) and immobilised in a custom-made har-
ness underwater and under the same light regime. Ultrasound imaging was performed using a Visu-
alSonics Vevo 2100 system with either a 21 MHz transducer (MS250) for very large species, a 40
MHz transducer (MS550d) for medium-sized species, or a 48 MHz transducer (MS700) for smaller
species (Supplementary file 2), with the transducer placed orthogonally to the eye and parallel to
the longitudinal axis of the fish. Both eyes were imaged 1 cm underwater using brightness mode to
acquire high-resolution transversal videos and blood-motion-enhanced images by quadratic averag-
ing (described below), and colour Doppler mode to acquire colour-coded videos of directional
blood movement. All individuals within a species had similar blood flow patterns. Ultrasonographic
videos from all species can be found in Videos 1-2. The transducer was initially translated across the
entire eye surface to scan for optimal positioning of 2D ultrasound section for quantitative
measurements.

Ultrasound imaging was used to quantify maximal retinal thickness [T(retina)] (as described below
in Stereological analysis section) and the volumes of the eye [V(eye)], the retina [V(retina)], and the
choroid rete mirabile [V(CRM)]. Maximal retinal thickness was used in the subsequent data analysis,
while V(eye), V(retina), and VICRM) were used to assess intraspecific variation in eye morphology
(Supplementary file 3). For V(eye), a spherical eye shape was assumed, and volume was calculated
from the radius [r(eye)] of the eye:

V(eye) :gﬂ'r(eye)3 (1)

To determine how slight deviations from sphericity biased the results, 16 notothenioid species
previously harvested as intact museum specimens were subjected to detailed analysis of the relation-
ship between geometrically calculated eye volume from average eye radius (average of horizontal
and vertical radius of the eye) and eye volume calculated from stereological measurements on 3D
datasets acquired with MRI and micro-CT (see description of scanning parameters below). This
showed that eye volume estimates based on eye radius were proportional (Figure 10) and not signif-
icantly different (p=0.33, paired t-test) to V(eye) estimates obtained by three-dimensional stereologi-
cal analysis, thus allowing valid inclusion of species where only eye radius was available.

Retinal volume estimation was performed by subtracting the volume of intersection between the
imaginary sphere constituted by the inner side of the retina [with the radius r(retina)] and the eye
sphere displaced by the maximum thickness of the retina [d(eye/retina)] from the total eye volume
(Figure 10):
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» )
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Choroid rete mirabile volume estimation was performed by assuming a semilunar shape of the
choroid rete mirabile and subtracting the volume of intersection between the imaginary sphere con-
stituted by the choroid rete mirabile [with the radius {CRM)] and the eye sphere displaced by d(eye/
CRM) and the volume of intersection between the imaginary sphere constituted by the choroid rete
mirabile and the imaginary sphere constituted by the optic nerve penetrating though the choroid
rete mirabile [with the radius (NO)] displaced by d(CRM/NO) from the total imaginary CRM sphere
volume (Figure 10):

V(CRM) = ($mr(CRM)’ — 372 X (r(eye) +r(CRM) — d(eye/CRM))?

(d(eye/CRM)? + 2d(eye/CRM)(r(eye) + r(CRM)) — 3(r(eye) — r(CRM))?)—
TmcraToy X (F(CRM) 4 r(NO) — d(CRM/NO))? x (d(CRM/NO)? +2d(CRM/

NO)(r(CRM) + r(NO)) — 3(r(CRM) — r(NO))*)) /2

Both T(retina), WMeye), Wretina), and WV(CRM), showed low intraspecific variation
(Supplementary file 3), and consequently, only one replicate per species was used in the stereologi-
cal analysis of micro-CT and histology. Additionally, 3D ultrasound was used to model the blood
flow architecture in five representative species of different retina supply types (Video 2). Here a Visu-
alSonics Vevo 2100 system with a 48 MHz transducer (MS700) was moved using motor-assisted step-
wise 2D scanning in 20 um steps to scan the entire eye in the dorsal-to-ventral direction, acquiring
1000 frames/step. Each sectional dataset was post-processed to calculate the quadratic averaged
intensity (D) from the arithmetic averaged intensity (1) from the intensity () at each pixel coordinate
(x, y) over time (1) in the total number of frames (N):

%tﬁ;(l(x,yﬁ) —I(x,y7t)>2:| (4)

This was reconstructed into 3D datasets with a 30 x 30 x 20 pum? spatial resolution in which
blood speckles that are much more dynamic than tissue speckles were greatly enhanced, thereby
creating a functional angiography of the eye without the use of contrast agent (Tan et al., 2015).

D(x,y) =

Blood- and eye sampling

After micro-ultrasound imaging, animals were euthanised with a benzocaine overdose in aquaria
water. Blood was withdrawn from the caudal vein using a heparinised (5,000 IU ml~") syringe in
larger specimens and using heparinised hematocrit tubes from the exposed heart ventricle in smaller
specimens. Fishes were then decapitated, and the whole heads fixed by immersion in buffered 4%
formaldehyde for 10 min. Both eyes were then removed, weighed and immersed in buffered 4%
formaldehyde at 5°C until histological preparation.

Root effect

Immediately after sampling, blood was centrifuged (3 min, 2,900 g) to remove plasma and leuko-
cytes. The red blood cell pellet was washed three times in saline and then stored and lysed at —80°
C. Red blood cell solutions were thawed on ice, centrifuged (1 min, 12,000 g), and mixed to a final
heme concentration of ~10 pmol =" in either 50 mmol |=" citrate-HCI (pH 5.5) or Tris-HCI buffers
(pH 8.5) containing 100 mmol I=! KCI. Root effect magnitude was calculated as the per cent desatu-
ration at pH 5.5 compared to pH 8.5, by recording the absorbance spectrum between 480 and 700
nm at 0.2 nm intervals, where fractions of oxyHb, deoxy-Hb and metHb were calculated by spectral
deconvolution using species-specific wavelength spectra of oxyHb, deoxy-Hb and metHb (Jen-
sen, 2007). This method shows the same Root effect magnitude as in whole blood
(Berenbrink et al., 2011).
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Micro-computed tomography and magnetic resonance imaging
Micro-CT was used to acquire high-resolution three-dimensional information of ocular anatomy. In
order to produce soft-tissue contrast in the micro-CT images, the fixed eye samples were soaked for
1-3 days (depending on specimen size) in phosphate-buffered saline to remove residual formalde-
hyde, and then immersed in isosmotic Lugol’s solution (16.6 g I™" Kl and 8.3 g I™" I, in distilled
water) for 2-14 days (depending on specimen size) to ensure adequate iodine staining of the sam-
ples. Micro-CT imaging was performed using a Scanco Medical LCT 35 scanner (Scanco Medical AG,
Bruttisellen, Switzerland) in high-resolution mode (1000 projections/180°) with an isotropic voxel size
of 3.5 um, 6 um, 10 um, or 15 um (depending on specimen size; Supplementary file 2), an X-ray
tube voltage of 70 kVp, an X-ray tube current of 114 pA, and an integration time of 800 ms. Arterial
perfusion via the ventral aorta using a custom made, BaSOy-containing, CT contrast agent
(Rasmussen et al., 2010) was applied to model the vascular supply of the eye in goldfish. This speci-
men was imaged on an Xradia Zeiss VersaXRM-520 system to acquire both a low-resolution scan of
the entire head region at 120 kVp with 1200 projection/180° and an isotropic voxel size of 36.5 um
and a high-resolution scan of the eye region at 100 kVp with 1200 projection/180° and an isotropic
voxel size of 4.6 um. For validation of eye sphericity five smaller notothenioid whole-body specimens
were micro-CT scanned on a clinical Scanco Medical XtremeCT system (Scanco Medical AG, Brutti-
sellen, Switzerland) with 1500 projections/180° and an isotropic voxel size of 41 um, an X-ray tube
voltage of 59.4 kVp, an X-ray type current of 119 pA and an integration time of 132 ms.

For larger intact notothenioid species and the intact coelacanth specimen, MRI was performed on
a clinical 3 T Siemens Magnetom Skyra system (Siemens Medical Solutions, Forchheim, Germany).
For each scan, the fish were positioned on one side, and multiple surface RF coils were applied to
cover the specimen. For both notothenioids and the coelacanth a 3D gradient echo DIXON
sequence was first acquired with the following parameters: Repetition time (TR) = 5 ms, echo time
(TE) = 1.23 ms, excitation flip angle of 10°, three averages and an isotropic image resolution of 1.42
mm. The eye of the coelacanth, still in place in the skull, was subsequently imaged applying a small
surface RF coil with two sequences: first a T1 weighted gradient echo sequence with the following
parameters: TR = 40 ms, TE = 8.53 ms, excitation flip angle = 35°, and an isotropic image resolution
of 400 um; secondly a T2 weighted spin-echo sequence with the following parameters: TR = 1.03 s,
TE = 136 ms, four averages, and an isotropic image resolution of 350 um. Then the left eye of the
coelacanth was dissected free and was MRI scanned at a higher field strength in a pre-clinical 9.4 T
Agilent system (Agilent Technologies, Oxford, United Kingdom) using a Rapid 72 surface RF coild
and applying two sequences: first a T1 weighted gradient-echo sequence with the following parame-
ters: TR = 11 ms, TE = 5.87 ms, excitation flip angle = 30°, eight averages, and an isotropic image
resolution of 121 um; secondly a T2 weighted turbo spin echo sequence with the following parame-
ters: TR = 1's, TE = 41.7 ms, echo train length = 8, four averages, and an isotropic image resolution
of 242 um. ImageJ (Wayne Rasband, National Institutes of Health, USA) version 1.51 hr was used for
micro-CT, MRI and ultrasound data analysis and Amira 5.6 (FEI, Visualization Sciences Group) was
used for anatomical model building.

Histology

Formaldehyde-fixed eyes were dehydrated in an ethanol series (70%, 96%, 99.9%), embedded in
paraffin and sectioned at 5-um-thick along the ventral-to-dorsal axis. The tiny eyes (Lepidosiren para-
doxa, Pangio kuhlii, Astyanax mexicanus, Gasterosteus aculeatus) were fixed in situ and a portion of
the head containing the eye, sectioned after decalcification in EDTA. All sections were stained with
hematoxylin and eosin. Sections were imaged using bright-field microscopy with 20x (NA = 0.75) or
60x (NA = 1.35) oil objectives on an Olympus VS120 virtual slide scanning system.

Stereological analysis

V(CRM), V(retina), and V(eye) were estimated from the micro-CT scans by choosing >12 equally
spaced parallel sections spanning each eye and applying a systematic uniform point grid on each
section plane. Volumes were calculated by counting the number of points intersecting each tissue
using the Cavalieri estimator (Mdihlfeld et al., 2010). Similarly, the volume of pre-retinal capillaries
[V(PRC)] was found by estimating the volume densities using test points on histological sections and
multiplying by V(retina) estimated from micro-CT scans. The criterion for the presence of pre-retinal
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capillaries was set at vessels on the inner side of the retina with a diameter <3 times the length of
the long semi-axis of the red blood cell spheroid. Presence of red blood cells in the retina was used
as the criterion for the presence of intra-retinal capillaries. Types of intra-retinal capillaries in mam-
mals were taken from the literature (Chase, 1982, Leber, 1903, Samorajski et al., 1966;
Moritz et al., 2013; Kolmer, 1927, Bellhorn, 1997; McMenamin, 2007).

Choroid rete mirabile surface area [SA(CRM)] and retinal surface area [SA(retina)] were estimated
by applying a systematic set of parallel test lines (with length L) to >5 and>3 histological sections,
respectively. The number of intersections (I) with the choroid rete mirabile surface endothelium and
the retina were counted, and SA(CRM) and SA(retina) were estimated as 2 x | x V(CRM)/L and
2 x | x Vretina)/L, respectively (Mthlfeld et al., 2010), using VICRM) and V(retina) estimated from
micro-CT scans. The spherical shape of the eye makes it possible to fulfil the assumption of isotropic
vessel surfaces.

Maximum retinal thickness was measured as the maximum perpendicular distance through the
retina from either 20, 30, or 40 degrees on each side of the optic nerve using ultrasound. To obtain
information on the thickness of the individual retinal layers, we used the histological section that
included the optical nerve. Here, the relative thicknesses of the individual retinal layers were mea-
sured from the position on the retina, where retinal thickness was maximal (choosing between posi-
tions 20, 30, or 40 degrees on each side of the optic nerve and Bruch’s membrane and the inner
limiting membrane as retinal boundaries), and absolute retinal layer thickness was calculated from
the absolute retinal thickness obtained from ultrasound and relative layer thickness obtained from
histology. This approach was chosen to avoid any potential bias from retinal shrinkage. However,
maximal retinal thickness obtained from ultrasound and histology did not differ (p=0.18, paired
t-test), and hence maximal retinal thickness and retinal layer thicknesses were obtained from histo-
logical sections in the notothenioids.

Stereological analyses of micro-CT scans and histological sections were performed in Fiji (1.8.0)
and newCAST (Visiopharm, Hersholm, Denmark), respectively.

Statistical analysis
A composite phylogeny was generated based on published, time-calibrated phylogenies, pruned to
represent only species within the data set.

A simulation-based phylogenetic ANOVA was used to test for the effect of intra-retinal vessels or
choroid rete mirabile on retinal thickness using a phylogenetic analysis of variance simulation, where
a null distribution of F-statistics was simulated by allowing traits to evolve by Brownian motion across
the tree for 50,000 generations, and calculated the probability of the observed F-statistic lying within
the null distribution of F-statistics (o0 <0.05) (Garland et al., 1993).

Generalised least-squares fit by maximum likelihood were used to test for correlations between
continuous characters assuming an error structure that follows either an Ornstein-Uhlenbeck or
Brownian motion model for character evolution (Phylogenetic general least squares, PGLS), and the
best fit was chosen based on Akaike's weight.

Eye mass was body mass corrected by computing the residuals from a PGLS regression of spe-
cies-mean logo(eye mass [g]) plotted against species-mean logo(body mass [g]). The choroid rete
mirabile endothelium surface area was corrected for body mass in the same way.

The evolutionary histories of continuous characters were reconstructed using maximum likelihood
using a Brownian motion model for character evolution. To reconstruct the evolutionary history of
the choroid rete mirabile as well as intra- and pre-retinal capillaries, we summarised information
from 10,000 simulations of stochastic character mapping with transition rate matrix with equal rates,
and an equal root node prior distribution (Bollback, 2006). Branches on which transitions most likely
occurred were identified by first mapping the Bayesian posterior probabilities onto the phylogeny
and then identifying branches where the probabilities changed between < 0.5 and > 0.5 along the
branch. The reconstruction of intra-retinal capillarization across all species in the data set suggested
anangiotic capillarization of the retina in the most recent common ancestor of mammals. Thus, the
reconstruction of intra-retinal capillarization within mammals on Figure 4 was simulated using 1:0:0
root node prior distribution for anangiotic-, merangiotic-, and holangiotic capillarization for
mammals.

Differences in Root effect magnitude between ecotypes of Astyanax mexicanus were determined
by one-way ANOVA, and pairwise differences between groups were determined by a Student-
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Newman-Keuls posthoc test (o < 0.05). Analyses were made R v. 3.5.0 using the phytools, ape, and
phangorm, and geiger packages (Revell, 2012; Paradis et al., 2004; Schliep, 2011; Harmon et al.,
2008).

The full raw data set, computer code, and evolutionary trajectories to all species in Figure 6 are
deposited on GitHub (https://github.com/christiandamsgaard/Retinaevolution; Damsgaard et al.,
2019a; copy archived at https://github.com/elifesciences-publications/Retinaevolution).
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