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Flood Extent Mapping: An Integrated Method Using
Deep Learning and Region Growing Using

UAV Optical Data
Leila Hashemi-Beni and Asmamaw A. Gebrehiwot

Abstract—Flooding occurs frequently and causes loss of lives,
and extensive damages to infrastructure and the environment.
Accurate and timely mapping of flood extent to ascertain damages
is critical and essential for relief activities. Recently, deep-learning-
based approaches, including convolutional neural network (CNN)
has shown promising results for flood extent mapping. However,
these methods cannot extract floods underneath vegetation canopy
using the optical imagery. This article attempts to address this
problem by introducing an integrated CNN and region growing
(RG) method for the mapping of both visible and underneath veg-
etation flooded areas. The CNN-based classifier is used to extract
flooded areas from the optical images, whereas, the RG method is
applied to estimate the extent of floods underneath vegetation that
are not visible from imagery using the digital elevation model. A
data augmentation technique is applied for training the CNN-based
classifier to improve the classification results. The results show that
the data augmentation can enhance the accuracy of image clas-
sification and the proposed integrated method efficiently detects
floods in both the visible and the areas covered by vegetation, which
is essential to supporting effective flood emergency response and
recovery activities.

Index Terms—Convolutional neural network (CNN), flood
mapping, LiDAR, region growing (RG), remote sensing.

I. INTRODUCTION

F LOODING is one of the catastrophic and frequently oc-
curring natural disasters that cause extensive damages to

life, infrastructure, and the environment. In many countries, the
severity and frequency of flooding have increased in recent years
due to extreme weather such as hurricanes, and the expansion of
urbanization. Generating accurate and timely inundation maps
is essential for regional and federal agencies to manage rescue
operations and assess damages effectively [1]–[2].
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In the past decades, remote sensing has been used as a
powerful tool for flood extent mapping. High-resolution satellite
imagery (e.g., Sentinel-1, Sentinel-2, and Landsat 8) can provide
much of the useful information for detecting and extracting
flood-affected areas, assessing the damage (e.g., road, bridge,
and infrastructures), and feeding models that can predict the
vulnerability to flooding of inland and coastal areas [3]. How-
ever, the satellite track may not always coincide with cloud-free
conditions or with flood peak, which is related to the maximum
inundation area due to revisit limitations. Thus, flood extent
mapping is still challenging using satellite optical imagery due
to dense cloud cover, complex urban landscapes, and satellite
revisit and viewing angle limitations. With technological ad-
vances, unmanned aerial vehicles (UAVs) have been considered
as effective platforms for flood management applications [4].
Compared to the conventional remote sensing platforms, UAVs
have several advantages. UAVs can acquire multiview and high-
resolution imagery that are less affected by cloud shadows, and
are relatively low cost and flexible in the frequency and time
of data acquisition [5], [6]. Therefore, UAVs offer a critical
edge and potential in remote sensing including flood mapping.
However, in spite of recent developments in UAV data col-
lection technologies, more sophisticated processing is required
to compensate for less controlled geometry and vibration of
these platforms and sensors. In addition, UAVs’ limited payload,
short flight endurance, and small-scale coverage remain areas of
weakness for large-scale remote sensing projects.

Processing of a vast number of high-resolution UAV imagery
using traditional remote sensing methods are time-consuming
and sometimes inconvenient for time-sensitive applications like
flood management [4]. In the past decades, conventional ma-
chine learning classifiers have been used for remote sensing
mapping applications [7]–[8]. These methods did not yield
significant results in terms of accuracy owing to the complexity
of the textual information, especially in highly vegetated and
urban areas. Deep convolutional neural networks (CNNs) [9]
overcome these problems and have shown to yield promising
performance in many tasks, including image classification [10],
object detection [11], scene labeling [12], and object recognition
[13]. Unlike other machine learning classifiers, CNNs provide
a hierarchical representation of the data using various convolu-
tions and can automatically learn feature representation from big
datasets [14]. This allows more extensive learning capabilities
and, thus, higher performance and precision. Based on that
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context, the remote-sensing community has recently started
shifting its focus from traditional classifiers such as support
vector machine [15] and random forest [16] to deep learning, for
mapping and classification tasks such as land cover classification
[17], scene classification [18], and crop deep species classi-
fication [19]. For inundation mapping, Gebrehiwot et al. [20]
applied a CNN for flood extent mapping. In this article, the in-
undation extent is extracted by fine-tuning the Visual Geometry
Group-16 (VGG-16) based pretrained fully convolutional model
(FCN) [21] using very high-resolution UAV optical imagery. The
research was conducted using 100 training samples and resulted
in more than 95% accuracy on extracting the surface floods,
which were visible on the imageries. However, the FCN method,
similar to other image segmentation algorithms, is unable to
extract the flood extent underneath vegetation canopies from
2-D optical imagery. This becomes a serious issue in flood-
prone areas covered with dense vegetation using remote sensing
methods. In addition to this problem, the FCNs were trained
and tested on a relatively small data set (100 UAV images).
However, the performance of these deep learning algorithms
is heavily reliant on the volume of the training data. Although
more massive training datasets can help machines to learn model
parameters and improve the optimization process and imparts
generalization, annotating a large amount of remote sensing
data is challenging. Remote sensing images are rich in features
including buildings, roads, grasses, vegetation, dry land, etc. and
labeling these features is time-consuming and costly.

This research is an attempt to address the above problems.
To extract the flood extents from both the visible areas and
underneath vegetation, we integrated the visible flooded areas
obtained using a CNN-based approach from the UAV data, and
the flood extents in dense vegetation using a region growing
(RG) method from the Digital Elevation Model (DEM) and
water level data. RG, which was proposed by Adams et al. [22],
is a pixel-based image segmentation method that involves the
selection of initial points or seed points. Many researchers have
used the RG method for various tasks, including for mapping
land use [23], urban environment [24], and detection of water
from remote sensing images [25]. Bins et al. [23] present an
RG method to segment images to assess land-use changes in the
Amazon region. The RG was implemented using the geographic
information system and tested on forest and agricultural images
and achieved satisfactory segmentation results. Vo et al. [24]
introduced an RG method for the surface patch segmentation
of 3-D point clouds for the urban environment. Pan et al. [25]
presented a seeded RG method to effectively detect water bodies
from aerial images based on the texture of the feature. In this
article, the RG method is applied to estimate the flood extent
underneath dense canopy using the topography information
obtained from Lidar data collected before the flood events.
Thus, the performance of the RG method highly depends on
the accuracy of the topography information (e.g., DEM) and
seed points. We implement an RG method considering two
possible scenarios: 1) water level measurement of one or more
locations is available in the study area (e.g., gauge stations), thus
these points are used as seed points; 2) there is no water level
measurement or gauge stations in the study areas, in this case,

the FCN classification results are overlaid on DEM and slope
map of the area, and some seed points are selected from the
interface of water/no water classes using spatial analysis.

To address the issue related to the small data size to train a
deep learning model, the research examines data augmentation
to artificially enlarge the training dataset by either data warping
or oversampling—without collecting new data. Data warping
techniques use transformations (e.g., geometric transformations
and color transformations) to augment training data while pre-
serving labels. Oversampling techniques augment training data
by creating synthetic images using methods such as generative
adversarial network. Shorten et al. [26] provide an extensive
overview of data augmentation algorithms for deep learning.
Data augmentation using geometric transformations have shown
a significant effect on deep learning on a small-scale dataset
using several tasks [27]–[30]. Zhou et al. [28] applied data
augmentation methods such as mirroring and rotation to a
small volume aircraft training data. Based on their experimental
results, the data augmentation significantly improved test ac-
curacy. Zhong et al. [29] proposed an augmentation approach
for classifying scenes in remote sensing images. Their method
was evaluated with the IKONOS, the UC Merced, and the
SIRI-WHU datasets and effectively enhanced the classification
accuracy. Zach et al. [30] used an augmentation technique to
improve semantic segmentation results for medical applications.
They used linear combinations of training images and labels to
augment the dataset using the mix-up algorithm and achieved
significant increases in segmentation performance.

The objectives of the article are as follows.
1) To investigate the effect of data augmentation for improv-

ing the accuracy of flood extent extraction when a small
dataset is available for deep learning methods. To the best
of our knowledge, there is no study on data augmentation
for flood extent mapping using high-resolution optical data
including UAV data.

2) To develop a new method to extract and map flood extent in
visible areas on imagery as well as underneath vegetation
by deep learning and RG methods.

II. DATA AND STUDY AREA

We selected three flood-prone areas in North Carolina (USA)
for this research including the town of Princeville, Lumberton,
and Fair Bluff. The Town of Princeville is located along the
Tar River in Edgecombe County and has been highly affected
by several flood events many times. Hurricane Floyd (1999) and
Hurricane Matthew (2016) caused widespread devastation when
the Tar river flooded the town of Princeville. These flood events
caused massive damages to human life and property in this town.
Lumberton is the largest city in Robeson County, North Carolina.
It is located on the Lumber River in the coastal plains region of
North Carolina. Hurricane Matthew and Florence hit Lumberton
with major flooding in 2016 and 2018, respectively. Fair Bluff is
a town in Columbus County that was also devastated by flooding
from Hurricane Matthew in 2016 and Hurricane Florence in
2018.
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TABLE I
INFORMATION ABOUT UAV AND AERIAL IMAGERY DATASETS

USED FOR THE STUDY

The datasets used for the research include UAV imagery,
high-resolution (manned) aerial imagery, and Lidar data. The
Lidar and UAV data were acquired by North Carolina Emer-
gency Management (NCEM), whereas the aerial imagery was
collected by NOAA. Table I provides the information about the
datasets.

The UAV data and aerial imagery are used to study the effect
of data augmentation for improving the accuracy of flood extent
extraction on these two high-resolution datasets when a small
dataset is available for deep learning methods.

To implement RG method, preflood LiDAR data were avail-
able in the town of Princeville. This LiDAR with two pulses per
square meter (pls/m2) and an accuracy of 9.25-cm RMSE [31]
were collected by NCEM in 2014. This data was used to create
a DEM of the area at 10-cm resolution for developing our RG
method to estimate the flood flows underneath vegetation. We
also collected the information of the USGS Surface Water Gauge
station [Fig. 1(b)] that is located near the Princeville study area
(#02083500 Tar River) from the NOAA website. USGS Gauge
Stations collect time-series data that describe stream levels,
streamflow or discharge, reservoir and lake levels, surface–water
quality, and rainfall. The elevation of the gauge station selected
for this article is 42.7 ft. NAVD88, which was taken from stream
levels on October 15, 2016, at 14:30 EDT.

Finally, we used the inundation map created by NOAA for the
town of Princeville during the hurricane Matthew flood event.
This inundation map was generated using hydrodynamic numer-
ical models and used for validation of the proposed integrated
method.

III. MATERIALS AND METHODS

To extract and delineate flood extents in both open and vege-
tated areas, the research method consists of three stages (Fig. 2).
Stage 1 extracts flood extents using a deep neural network
(FCN-8s) approach from high-resolution images (flood map 1).
A data augmentation method is applied to increase the training
dataset and improve the classification results. Stage 2 delineates
the flood extent using an RG method using a DEM/topography
data and water level information in one or more locations in the
area (flood map 2). In stage 3, Using flood map 2, the FCN-based
flood extent is modified and improved for vegetated areas where
the flooded areas under canopies are not visible on the images.

Fig. 1. Study areas. (a) Princeville. (b) USGS surface-water gauge station in
Princeville. (c) Lumberton, NC. (d) Fair Bluff, NC.

Fig. 2. Proposed approach for inundation mapping.

A. Flood Extent Mapping Using Deep Convolutional Network

The first stage of the method involves classifying the UAV
images by applying a data augmentation technique and georefer-
encing the classified images. Many deep learning methods have
been successfully developed and used for various applications
such as AlexNet, Unet, GoogleNet, and FCNs. Among these
methods, FCNs have been adopted by several researchers for
classification and segmentation tasks in remote sensing applica-
tions and showed promising results [20], [32], [33]. Specifically,
FCN-8s showed better performance on extracting flooded areas
from high-resolution UAV imagery compared to other FCNs
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Fig. 3. FCN-8s architecture [35].

variants such as FCN-16s and FCN-32 [20]. Thus, in this article,
we utilized FCN-8s to investigate the effect of data augmentation
for improving the accuracy of flood extent extraction when a
small dataset is available for deep learning methods.

The FCN-8s is composed of locally connected layers, such as
convolution, pooling, and upsampling, without having any dense
layer (Fig. 3) that allows reducing the number of parameters
and computation time. Given that all connections are local,
FCN-8s can work on any image size. In this model, VGG-16
fully connected based classification layers were replaced by
convolutional layers to maintain the 2-D structure of images.
VGG-16 is a CNN architecture proposed by Simonyan et al.
[34] to investigate the effect of the convolutional network depth
on its accuracy in the large-scale image recognition setting. The
gradual upsampling of the scoring layer and merging of features
from earlier layers results in a fine label map using the FCN-8s.

1) Annotating Training Images: 150 UAV images (4000 by
4000 pixels) were manually labeled to train the FCN-8s in-
cluding 90 images from the Princeville dataset and 60 images
from the Lumberton and Fair Bluff dataset [20]. We used the
Image Labeler tool in MATLAB [36] to annotate each pixel into
four classes: water, building, vegetation, and road classes. This
manual classification served as ground truth for training and
validation of the FCN-8s model results.

2) Training the Network: Training deep neural networks
generally need large datasets (with plenty of diverse training
data), which are not always available. In our previous study
[20], we only used 150 images to train the FCN-8s classifier.
Data augmentation can be an alternative method to increase the
amount of training data and improve the segmentation accuracy
by reducing the overfitting of CNN models caused by limited
training samples. Data augmentation operations such as ran-
domly cropping, translation, and random rotation are commonly
used to artificially generate new training data from existing
training data. These operations are applied to images in the
input space. Random cropping is done by randomly sampling a
section from the original image and resizing this section to the
original image size. Translation is implemented by moving all
pixels of the images in one direction such as horizontally (left
or right) or vertically (up or down). When shifting an image, the
remaining space is either filled by 0s, 255s, or filled with random
or Gaussian noise, thus preserving the original spatial dimension
of the image. Rotation is done by rotating the image right or left
on an axis between 1° and 359°. To investigate the effect of

data augmentation for improving the accuracy of flood extent
extraction, the FCN-8s network was trained by applying data
augmentation (including random cropping, rotation, reflection,
and translation) and the classification results were compared
with the results of the network trained without employing data
augmentation technique.

To train the FCN-8s network, the 10-fold cross-validation
strategy was used to avoid overfitting the data and improve the
performance of the FCN-8s model. In a k-fold cross-validation
method, we divided the training UAV images (150 images) into
k equal subsets called folds (in our case 10 subsets). At each run,
the union of k-1 folds (9 folds or 135 images) is put together to
form a training set, and the remaining 1-fold (15 images) is used
as a testing or validation set to evaluate the performance of the
FCN model. This is an iterative algorithm using a different fold
as the testing set at each time. In other words, the images included
in the first testing fold would never be part of a testing fold again.
Finally, the average error from all 10 folds was used to evaluate
the performance of the model. The importance of this technique
is to give a less biased estimate of the FCN model on unseen
data. The network is trained using stochastic gradient descent
for six epochs with a learning rate of 0.001, and the maximum
batch size of 4. In the classification stage, the performance of
the network is tested using the unseen testing images during
cross-validation.

For the data augmentation experiment, the FCN-8s was
trained by applying random cropping, random rotation, random
left/right reflection, and random X/Y translation of data augmen-
tation techniques. We extracted a total of 32 patches (512 ∗512)
per image. The patches were inserted to the network with a batch
size of 4. Random translation and rotation data augmentation
techniques were implemented by randomly translating the im-
ages up to 10 pixels horizontally and vertically and rotating the
images with an angle up to 20°. During the training, the datastore
performed image augmentation without saving any images to the
memory.

The FCN-8s was trained using this augmented dataset and
applied to input images to predict the water, road, building, veg-
etation, and dry features. Then, the accuracy of the classification
was assessed using a confusion matrix. Finally, the classification
result obtained using data augmentation and without using data
augmentation was compared to investigate the effect of data aug-
mentation techniques to increase the classification performance
on the small training dataset. To handle the class misbalancing
issue, we applied the median frequency balancing approach
during training [37]. In this approach, the weight assigned to
each category (ac) in the loss function is the ratio of the median
of the class frequencies (median_freq(c)) computed on the entire
training set divided by the class frequency (freq(c)). The class
frequency was calculated by dividing the number of pixels for
each class by the total number of pixels in the image. Therefore,
the dominant labels are assigned with the lowest weight, which
balances the training process.

The research also evaluated the performance of the trained
deep-learning-based method (with and without using data aug-
mentation) on other high-resolution aerial imagery captured
from an aircraft during three different flood events during
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Hurricane Matthew (Lumberton), Hurricane Harvey (Houston),
and Hurricane Florence (Lumberton) flood events that occurred
in 2016, 2017, and 2018, respectively. These images were not
used to train the FCN-8s model in this article.

3) Georeferencing the Classified Images: The classification
results were exported to a categorical raster as well as a vector
data model (polygons). These data models are suitable for spatial
analysis, including area calculation, spatial overlay, and spatial
join. The results are georeferenced using eight ground control
points available in the study area for geospatial data integration
and visualization purposes.

4) Performance Evaluations: In this research, the Confusion
matrix, also known as the error matrix, was used to evaluate the
performance of the FNC-8s model. A confusion matrix is a table
applied to assess the performance of classifiers on a set of test
data for which the actual values are known. In addition, the kappa
coefficient was used in this article to summarize the information
provided by the confusion matrix.

B. Flood Extent Mapping Using Region Growing

The second stage of the workflow (Fig. 2) involves producing
a flood map using an RG method. The RG is a pixel-based image
segmentation method that involves the selection of the initial
points or seed points whose water level is known. This approach
examines neighboring pixels of the initial seed points using
DEM or topography information of the area and determines
whether the pixel neighbors should be added to the (water)
region. The performance of the RG approach highly relies on
the accuracy of DEM or topography information as well as
the seed points. A DEM can be generated from ground survey
data, existing topographic maps, or Lidar data. Recently, LiDAR
has been widely used to create DEMs, since it can map large
spatial areas by less manpower at a lower cost. In addition, it
can capture data for the areas hidden by trees and greenery,
penetrating through the forest canopy. The ability to record
more than one return signal per emitted pulse allows LiDAR
to generate an accurate DEM of the landscape. This makes
LiDAR highly valuable for detecting flooded areas underneath
vegetation canopy [38]. However, LiDAR data from flooded
areas are not always available. For this article, we used LiDAR
data collected by NCEM in 2014 prior to the flooding events.

In this article, we implemented an RG method to determine
the flooded (water) areas in the areas covered with vegetation
(i.e., vegetation class resulted from the FCN algorithm) using
two scenarios for seed points selection: 1) the water level is
available in one or more points in the relatively small area (0.5
km2); a gauge station is available in the study area; b) the water
level information is not available; thus, we propose a new method
to determine the seed points for the RG method. For the first case,
the flood level recorded at the USGS gauge station near the TAR
River was used to generate an RG-based flood extent map. The
raster DEM was analyzed to classify flood and nonflood pixels
starting from the USGS Gauge station location as the seed point.
The flood region was grown from the seed pixel (with the water
level of 42.7 ft.) by comparing the elevation of the neighboring
pixels to the gauge water level. The pixels with elevations lower

than the water level are assigned to the flood class. This process
was applied recursively for all the flood pixels in the area to
generate the flood extent map. This is a simple and fast method
to identify flooded areas in a small study area. However, the
method has many limitations. The simplifying assumption of
the constant water level does not apply to a large study area for
flowing water conditions. Since the extension of a flood depends
on the areas hydrologic conditions such as flood speed and
magnitude, however, these hydrologic conditions are omitted
in the calculation of water level for each pixel using the method
[39]. These limitations may lead to either underestimation or
overestimation of the flood extent map.

To address these limitations, many studies calculate a variable
water level for each pixel by calculating a geomorphic flood
index (GFI) [40]–[41]. The GFI is a morphological descriptor
and depends on river depth and the difference in elevation
between each pixel under examination and the pixel of the river
network closest to that pixel. These methods are relatively simple
for understanding the floodplain geometry without the need for
complex hydraulic models [40]. However, gauge stations are
usually unavailable for most of the areas; if they exist, the results
of flood extent mapping heavily depends on the distance between
the selected gauge station/stream element and the study area
and local topography of the area where the gauge is located and
the study area. Moreover, the gauge data are usually in-channel
measurements, which is sometime not hydrologically connected
with urban areas unless there is huge overbank flooding. For
these cases, we propose applying the FCN classification results
directly to guide the RG. In this article, we manually selected
some seed points on the interface between the dry and water
areas (wet pixel with a water depth = 0) near to the vegetated
areas. However, by considering some criteria for spatial prox-
imity between water polygons and vegetation polygons, and the
distribution and region of influence of seed points, the locations
of seed points can be automatically identified. The elevations of
the seed points and water levels for flooded areas were then
extracted by intersecting the water polygons (FCN-8s-based
flood/water class) with the LiDAR-based DTM (bare earth)
generated before the flood event. Slope, mean, and standard
deviation of each water polygon were calculated and analyzed to
remove noises and verify the seed points elevation information.
It should be noted that the seed points must not be located on the
water-vegetation or water-building interfaces where there is an
ambiguity in the water level estimation. Line segments resulting
from the intersection of water and vegetation polygons or water
and building polygons do not necessary represent the interfaces
between dry and water areas. Thus, assigning a water depth of
zero to any seed point located on those line segments could be
inaccurate. Using the seed points, another RG flood map was
developed.

C. Flood Maps Integration

Although the FCNs provide promising results for flood map-
ping in the areas where the water surface is visible on the optical
images, they are unable to extract the flood extent in the areas
covered with dense vegetation canopies. Thus, we applied an
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Fig. 4. FCN-8s classification results using UAV images. (a) Test images.
(b) Labeled images (ground truth). (c) FCN-8s results without data augmen-
tation. (d) FCN-8s results by applying data augmentation.

integrated method to improve the FCN-based flood map for
underneath vegetation canopy, which is the final stage of the
workflow (Fig. 2). In this stage, the FCN-based flood map and
RG-based flood map are integrated. To combine these two raster
data, having same resolution, Map Algebra was used to modify
the FCN-based flood extent for dense vegetated areas. If a cell
is classified as vegetation in the FCN flood map, its label was
updated based on the flood raster created by the GR flood map.
This integrated method provides detailed information about the
floods in both open areas and under vegetation canopy areas.

IV. RESULTS AND DISCUSSION

In this section, the results of classification and flood maps
obtained from FCN-8s, RG, and the integrated approach are
presented.

A. Classification Results of FCN-8s Approach

To investigate the effect of data augmentation on image clas-
sification, the results of the FCN-8s generated with and without
applying data augmentation are compared. All the training pa-
rameters for the two FCN-8s experiments are the same. The clas-
sification results of FCN-8s with and without implementing data
augmentations are shown in Fig. 4. Fig. 4(a) shows the testing
UAV images from the Lumberton study area during hurricane

TABLE II
CONFUSION MATRIX OF FCN-8S USING DATA AUGMENTATION

(UNIT: PERCENTAGE)

TABLE III
CLASSIFICATION RESULTS OF FCN-8S FOR INDIVIDUAL CLASSES WITH AND

WITHOUT DATA AUGMENTATION TECHNIQUES USING HIGH-RESOLUTION

UAV DATASET (UNIT: PERCENTAGE)

Florence that were not used to train the FCN-8s model; the model
was trained using UAV imagery from Princeville and Lumberton
during hurricane Matthew and Hurricane Florence, respectively.
Each test image has a size of 4000 × 4000 pixels. Table II
describes the confusion matrix or the detailed information on the
FCN-8s model performance using data augmentation techniques
for classification.

The confusion matrix was calculated to assess the overall
effectiveness of the network. The cells of a confusion matrix
show the percentage of true and false predictions for all the pos-
sible correlations between the validation and segmented image.
The cell in the ith row and jth column means the percentage
of the ith class samples, which classified into the jth class.
The above table shows as 98.63% of class water samples were
classified correctly, but 0.84%, 0.88%, and 0.06% of class water
samples were incorrectly classified as the building, vegetation,
and road classes, respectively. The diagonal cells of the matrix
represent the percentage of correctly classified pixels for each
class. Our primary goal in this article was to extract flooded
areas (water class) from the UAV imagery. The FCN-8s trained
by the augmented data achieved 98.63% accuracy in extracting
the inundation areas (excluding underneath vegetation canopy
or in vegetation class).

The overall accuracy was also calculated to provide a com-
prehensive assessment of the proposed approach. The overall
accuracy is calculated as the total number of correctly clas-
sified pixels (diagonal elements) divided by the total number
of test pixels. The overall accuracy achieved for the FCN-8s
with and without implementing the data augmentation technique
were about 97.56% and 95.2%, respectively. Applying data
augmentation improved the segmentation overall accuracy by
2.4%.

Using data augmentation techniques, the accuracy of extract-
ing the flooded areas increased from 96.52% to 98.63%. The
results also show that data augmentation has improved the classi-
fication accuracies of other infrastructures such as buildings and
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Fig. 5. FCN-8s classification results using the aerial high-resolution images.
(a) Test images. (b) Labeled images (ground truth). (c) FCN-8s results without
data augmentation. (d) FCN-8s results by applying data augmentation.

TABLE IV
OVERALL CLASSIFICATION RESULTS OF FCN-8S FOR INDIVIDUAL CLASSES

WITH AND WITHOUT DATA AUGMENTATION TECHNIQUES USING

HIGH-RESOLUTION AERIAL IMAGES (UNIT: PERCENTAGE)

roads, which are critical infrastructures when studying flooding
issues in urban areas. The classification results for buildings
were enhanced by about 7%.

We also tested the FCN trained by UAV imagery using and
without data augmentation on the high-resolution imagery cap-
tured by an aircraft from Lumberton (during Hurricane Matthew
in 2016 and Hurricane Florence in 2018) and Houston (Hur-
ricane Harvey). Fig. 5 and Table IV show the results of the
classification.

Table IV describes the classification results to extract flood
extent from high-resolution aerial images. The FCNs achieved
76.4%, 79.8%, and 83.3% of overall accuracy for the datasets,
which is less accurate in comparison with the results obtained
by the high-resolution UAV dataset (96.52%). However, with
the augmented data, the overall accuracy of the classifica-
tion results improved by 8.1%, 6.94%, and 7.2%, respectively.
This experiment emphasizes the importance of data augmen-
tation for flood extent mapping using the limited number of
images.

Fig. 6. (a) Test image (Princeville, NC). (b) DEM created by LiDAR data
(Unit: Foot).

Fig. 7. (a) Test image. (b) Validation data-NOAA inundation map. (c) FCN-
8s result. (d) RG classification result for Scenario 1. (e) Flood map using the
integrated method for Scenario 1. (f) Seedpoints location on the FCNs-based
flood-non flood interface. (g) RG classification result for Scenario 2. (h) Flood
map using the integrated method for Scenario 2.

B. Classification Results of the Proposed Integrated Approach

The USGS gauge station 02083500 Tar River [circled with
yellow color in Fig. 6(a)] located inside our study area. Fig. 6(b)
shows the DEM created by LiDAR data of the study area.

Fig. 7 shows the results generated by FCN, RG, and the
integrated method for two scenarios for seedpoints selection.
Fig. 7(b) shows the NOAA inundation map for this area during
the hurricane Matthew flood event and Fig. 7(c) illustrates
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TABLE V
FLOOD EXTENT MAPPING: COMPARISON OF THE RG AND INTENERATED

CLASSIFICATION RESULTS (UNIT: PERCENTAGE).

the flood map generated using the FCN classification using
the UAV optical images. For this, the multiclass classification
(water, building, road, and other classes) was converted to a
binary classification, flooded, and nonflooded classes. The flood
extent map in Fig. 7(d) was generated using the RG-based
approach from the DEM and the flood level recorded on the
gauge station (43.7 ft) in the area at the time that the UAV
data was captured (Scenario 1). Fig. 7(e) illustrates the result
of the integrated method discussed in Section III-C. The map
was generated by modifying the flood extent results of the FCN
classification for underneath vegetation canopies using the RG
method. Comparing the results of the integrated method with the
NOAA inundation map [Fig. 7(b)], it shows that the integrated
approach [Fig. 7(e)] has significantly improved the FCN results
for mapping of both visible and vegetation floods.

As Scenario 2, we conducted another analysis for the in-
tegrated method when the FCN classification results lead the
selection of the seedpoints [Fig. 7(f) and (g)]. The seedpoints can
be automatically selected from the flood and nonflood interface
in locally flat areas (using slope analysis) considering their
proximity to the dense vegetation areas (using spatial proximity
analysis). In this article, we manually selected three seed points
(considering both flatness and proximity criteria) to investigate
the performance of the integrated method [Fig. 7(f)]. The flood
extent map was generated using the RG method from DEM
[Fig. 7(g)]. The results of the integrated method [Fig. 8(h)]
show the promising performance of detecting both visible and
underneath vegetation canopy floods.

Table V summarizes the results of the flood classification
assessment for the RG and the integrated method for both
Scenario 1 and 2 in vegetated, nonvegetated areas, as well as
the overall accuracy for the classification. As the results show
the FCN-8s has better classification potential compared to the
RGs for open areas, i.e., nonvegetated areas. This is because the
FCN-8s classification is a data-driven method extracting spatial
features and patterns automatically, whereas the performance
of the DEM-based RG approach depends on the accuracy of
topography info, seed points, and the assumptions for envi-
ronmental and hydrological parameters. However, the FCN-8s
segmentation, similar to other image classification methods,
does not have the ability to detect the floods underneath the
dense vegetation canopies (flooded vegetation) from the optical
imagery, since these flooded areas are simply not visible on
the imagery. For flood-prone areas that are mostly covered by
vegetation (e.g., North Carolina), it is essential to detect these

areas to estimate the extent of the floods and to avoid the unseen
floods that come from these areas protecting both human life
and property. The integrated method helped to overcome the
problems of the occlusion to obtain a classification of the entire
area.

V. CONCLUSION

In this article, we proposed an integrated method for map-
ping the flood extent using FCN deep learning and RG. The
deep-learning-based (FCN-8s) model was used to extract the
surface flood extent from high-resolution UAV imagery. A data
augmentation method was applied during training to improve the
classification results of FCN-8s. The results show that applying
data augmentation to the FCN during training can outperform
those methods when a small dataset is available. Although the
FCNs provide promising results for flood mapping in the areas
with visible water surface from imagery, they fail to extract
the flood extent in the areas covered with dense canopies. To
resolve this problem, we implemented an RG approach to detect
the floods underneath vegetation canopy using DEM and water
level information. The flooded areas extracted under vegetation
canopy from the RG method were combined to the flood map
generated by the deep learning method using Map Algebra. The
experimental results show the integrated approach can efficiently
detect floods in both the visible and hidden areas, which is
essential to supporting effective flood emergency response and
recovery activities.
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